幻灯片 1

Size: px
Start display at page:

Download "幻灯片 1"

Transcription

1 3 年秋季学期 3 教 5 数字信号处理 第四章 Z 变换

2 第四章 Z 变换 4. Z 变换定义 4. Z 变换收敛域 4.3 Z 变换的基本性质 4.4 Z 反变换 4.5 几种变换的对应关系 4.5 系统函数与频率特性

3 本章主要学习 Z 变换的正变换和逆变换定义, 以及收敛域与序列特性之间的关系 Z 变换的定理和性质 : 移位 反转 域微分 共轭序列的 Z 变换 时域卷积定理 初值定理 终值定理 帕斯瓦尔定理 系统的传输函数和系统函数的求解 用极点分布判断系统的因果性和稳定性 零状态响应 零输入响应和稳态响应的求解 用零极点分布定性分析并画出系统的幅频特性 3

4 第四章 Z 变换 4. Z 变换定义 4. Z 变换收敛域 4.3 Z 变换的基本性质 4.4 Z 反变换 4.5 几种变换的对应关系 4.5 系统函数与频率特性 4

5 4. Z 变换定义 变换是离散时间傅立叶变换的推广形式 对于很多序列, 其离散时间傅立叶变换不存在, 但其 变换存在 对于实值序列, 其 变换是复数变量 的实有理函数 变换是数字滤波器设计和分析的重要工具 在 域中,LTI 离散时间系统的表示由其传输函数给出 5

6 4. Z 变换定义 序列的傅立叶变换频域分析 ; 推广 : 序列的 Z 变换 复频域分析 Z 变换的定义 e st e σ jω T e σt e jωt re jω 双边 Z 变换 X x 是连续的复变量, 它所在的复平面称为 平面 单边 Z 变换 X x 也可将 x 的 Z 变换表示为 Z[x]=X 6

7 对于任意给定的序列, 使 Z 变换收敛的 值集合称作收敛 区域 级数收敛的充分必要条件是满足绝对可和条件即 : x 一般来说,Z 变换将在 平面上的一个环形区域中收敛, 收敛域为 R x R x 式中,R x- 和 R x+ 称为收敛半径 R x- 和 R x+ 的大小和序列有密切 的关系 7

8 例求序列 x u 和 x u 的 Z 变换 解 : X X 结论 收敛域不同对应于不同的序列 当给出 Z 变换函数表达式的同时, 必须说明它的收敛域后, 才能单值的确定它所对应的序列 8

9 第四章 Z 变换 4. Z 变换定义 4. Z 变换收敛域 4.3 Z 变换的基本性质 4.4 Z 反变换 4.5 几种变换的对应关系 4.5 系统函数与频率特性 9

10 4. Z 变换收敛域 常用的 Z 变换是一个有理函数, 用两个多项式之比表示 分子多项式 P 的根是 X 的零点, 分母多项式 Q 的根是 X 的极点 在极点处 Z 变换不存在, 因此收敛域中没有极点, 收敛域总是用极点限定其边界 对比序列的傅里叶变换定义, 很容易得到 DTFT 和 ZT 之间的关系, 用下式表示 : P X Q X e j X j e 式中 =e jω 表示在 平面上 r= 的圆, 该圆称为单位圆 上式表明单位圆上的 Z 变换就是序列的傅里叶变换 如果已知序列的 Z 变换, 可用上式, 很方便的求出序列的 FT, 条件是收敛域中包含单位圆

11 4. Z 变换收敛域 序列 x 的形式决定了 X 的不同的收敛区域. 有限长序列这类序列只在有限的区间 具有非零的有限值

12 4. 有限长序列 其 Z 变换为 X x 因为 X 是有限项级数之和, 故只需级数的每一项有界, 则级 数就收敛, 即要求 由于 x 有界, 故要求 x - < - < 显然, 在 < < 上都满足此条件 在 满足特殊条件下, 收敛域还可进一步扩大 : x

13 例 x, 求此序列的 Z 变换及收敛域 Z[ ] 收敛域是整个 的闭平面 jim[] Re[] 3

14 4. b 右边序列 这类序列是有始无终的序列 即 当 时,x 有值, 当 < 时, x= 其 Z 变换为 其收敛域为 X R x x x... 注意 : 如果, 即序列是因果序列,Z 变换在 = 处收敛 R x 最重要的一种右边序列 4

15 4. b 右边序列 图右边序列及其收敛域 <, = 除外 5

16 4. c 左边序列 这类序列是有终无始的序列 即 当 时,x 有值, 当 > 时,x= 其 变换为 其收敛域为 X x Rx x 注意 : 如果, 则收敛域包括 =, Rx 6

17 4. c 左边序列 左边序列及其收敛域 >, = 除外 7

18 双边序列是从 =- 延伸到 =+ 的序列 其 Z 变换为 : 显然, 可以把它看成右边序列和左边序列的 变换叠加 如果 R x- <R x+, 则存在一个如下的公共收敛区域所以, 双边序列的收敛域通常是环状区域 x x x X x x R R 4. d 双边序列 8

19 例, 为实数, 求其 Z 变换及收敛域 解 : 若 <, 则存在公共收敛域 x x X / X X / X X X 9

20 4. d 双边序列 jim[] > < < / Re[] 双边序列及收敛域 Z 变换无收敛域的序列

21 例已知有限长序列 x=u+-u- 求 x 的双边 Z 变换及其收敛域 解 : u u x X ] [ x 所以, 当时, 级数收敛

22 例求 x= u 的 Z 变换及其收敛域解 : u X 所以, 当 > 时 X 收敛 于是得 : X

23 例求 x= - u-- 的 Z 变换及其收敛域 解 : X 存在要求 - <, 即收敛域为 < u X ] [ X 3

24 例 x=, 为实数, 求 x 的 Z 变换及其收敛域 解 : 第一部分收敛域为 - <, 得到 > ; 第二部分收敛域为 <, 得 < - X m m m 如果 <, 两部分的公共收敛域为 < < - 4

25 其 Z 变换如下式 : X < < - 如果, 则无公共收敛域, 因此 X 不存在 << 5

26 4. Z 变换收敛域 : 小结 有限长双边序列的双边 Z 变换的收敛域一般为 < < ; 单位序列 δ 的双边 Z 变换的收敛域为全 Z 复平面 无限长右边序列的双边 Z 变换的收敛域为 R x- < <, 即收敛域为半径为 R x- 的圆外区域 因果序列, 收敛域为 R x- < 3 无限长左边序列双边 Z 变换的收敛域为 <R x+, 即收敛域为以为 R x+ 半径的圆内区域 6

27 4. Z 变换收敛域 : 小结 4 无限长双边序列双边 Z 变换的收敛域为 R x- < <R x+, 即收敛域位于以 R x- 为半径和以 R x+ 为半径的两个圆之间的环状区域 5 在极点处 Z 变换不存在, 因此收敛域中没有极点 6 不同序列的双边 Z 变换可能相同, 即序列与其双边 Z 变换不是一一对应的 序列的双边 Z 变换连同收敛域一起与序列才是一一对应的 7

28 表常见序列 Z 变换 8

29 9

30 第四章 Z 变换 4. Z 变换定义 4. Z 变换收敛域 4.3 Z 变换的基本性质 4.4 Z 反变换 4.5 几种变换的对应关系 4.5 系统函数与频率特性 3

31 若则相加后序列 Z 变换的收敛域一般为两个相加序列收敛域的重叠部分 如果线性组合中某些零点与极点相互抵消, 则收敛域可能扩大 x x R R X x Z, ] [ y y R R Y y Z, ] [ ] [ by X by x Z, mi, mx y x y x R R R R 4.3 Z 变换性质 :. 线性 3

32 例已知 cos u x, 求其 Z 变换 ] [ cos u e e u j j u Z, ] [, ] [ j j j e e u e Z ], [ ] [cos e e u Z j j 解 3

33 证明 : k m k m X k x m x m x Z ] [ 4.3 Z 变换性质 :. 移位特性若, 则有, X x X m x X m x m m 式中,m 为正整数 33

34 例求序列 3 u u x 的 Z 变换 解 :, ] [ u Z, 3] [ 3 u Z, ] [ x Z 零点与极点相互抵消, 收敛域扩大 34

35 3. Z 域尺度变换 乘以指数序列 若, 则 4. X 的微分性质若, 则 x x R R X x Z, ] [ x x R R X x Z, ] [ x x R R X x Z, ] [ x x R R d dx x Z, ] [ 35

36 4.3 Z 变换性质 : 5. 序列的卷积 Z[ x ] X Z[ y ] Y w x y 证明 W Z[ x y ] X Y mx R W ZT[ x y ] x X Y [ x m y m], R y x m[ y m ] m x m Y mi R x, R y W 的收敛域就是 X 和 Y 的公共收敛域 36

37 例求解 : u x u b u b h b h x y ] [ x Z X ] [ b b b h Z H b b H X Y ] [ u b Y Z h x y b jim[] Re[] 在 = 处, 零极点相消, 如果 b <, 收敛域扩大 37

38 4.3 Z 变换性质 : 6. 共轭特性 设 则 若 ZT [ x ] X, R 则 证明 X ZT[ x ], R R * * * ZT X Z[ x ZT ] [ X ], X R x, R x x * * * * ZT[ X ] X [ x Z ] x * * * * [ x Z ] X Z R R 38

39 4.3 Z 变换性质 : 7. 初值定理 设 x 是因果序列,X=ZT[x] 证明 x lim X x X x x x x 若 x 是因果序列, 其 Z 变换的极点, 除可以有一个一阶极 点在 = 上, 其它极点均在单位圆内, 则 lim x lim X x 8. 终值定理 x 39

40 利用复卷积定理可以证明重要的帕斯维尔定理 那么 : dv v v Y v X πj y x c v 平面上,c 所在的收敛域为 : mx, mi, x x y y R v R R R, ], [ ], [ y x y x y y x x R R R R R R y ZT Y R R x ZT X 4.3 Z 变换性质 : 9. 帕斯维尔 Prsevl 定理 4

41 如果 x 和 y 都满足绝对可和, 即单位圆上收敛, 在上式中令 v=e jω, 得到 : 令 x=y, 得到 : j j x y X e Y e d j x X e d 和在傅里叶变换中所讲的帕斯维尔定理是相同的 表明时域中求序列的能量与频域中用频谱密度来计算序列的能量是一致的 4

42 第四章 Z 变换 4. Z 变换定义 4. Z 变换收敛域 4.3 Z 变换的基本性质 4.4 Z 反变换 4.5 几种变换的对应关系 4.5 系统函数与频率特性 4

43 4.4 Z 反变换 已知函数 X 及其收敛域, 反过来求序列的变换称为 反变换, 正 反变换表示为 : X x, R x X d, c R, R πj c c 是 X 收敛域中一个逆时针方向环绕原点的围线 求 Z 反变换的方法通常有三种 : 留数法 部分分式展开法 长除法 R c jim[] =R x+ =R x- Re[] 43

44 4.4 Z 反变换. 部分分式展开法 b b b b A B X m m m m 若 X 为有理分式, 则 X 可表示为 : 式中, i i=,,,, b j j=,,,, m 为实数, 取 = 若 m,f 为假分式, 可用多项式除法将 F 表示为 A D N A D c c c c X m m m c m c c c N k δ m m k δ 44

45 一般先把展开为部分分式, 然后再乘以, 得到用基本形式表示的 X, 再根据常用 Z 变换对求 Z 逆变换 X 的极点为一阶极点 X m i i i m m K K K K X i i i X K k 4.4 Z 反变换. 部分分式展开法 45

46 4.4 Z 反变换. 部分分式展开法 两端乘以, 得 m X K α< <β i i 根据 X 的收敛域和以下变换对 i i u i u > i i i < i 46

47 ,, F 求 F 的原函数 fk 例已知解 : 3 K K K F F K 3 F K 3 3 F 3 3 F > 3 3 F K 3 3 k u k u k δ k f k 47

48 例已知, 求逆 Z 变换 解 : 双边序列 6 5 X K K 3 6 5, X 3 3 X K X K 3 3 X 3 u u x 48

49 X 有重极点 m B X i i i m m m m K K K K X i i i m i m i m i X K X d d i m K! 49

50 例已知,, X 求 X 的原函数 x 解 : X K K K K 3 X K 5 X d d K! m i m i m i X d d i m K 5

51 3 5 X < < X 3 5 u u δ 5

52 u 3 5 δ u u u x 3 5 δ u u! m m u m m 5

53 4.4 Z 反变换. 留数法 X 若在围线 c 以内的所有极点集合为, 则根 据留数定理 j 即 :x 等于 X - 在围线 c 内所有极点上留数的总和 * 当 i 为单阶极点时, 有 c X d i Res[ X i, i ] Res[ X, i ] i X i * 当 i 为 k 阶极点时, 有 Res[ X, i ] k! d d k k [ i k X ] i 53

54 4.4 Z 反变换 3. 长除法 幂级数展开法 X x x x x x x 在给定的收敛域内, 把 X 展为幂级数, 其系数就是序 列 x

55 第四章 Z 变换 4. Z 变换定义 4. Z 变换收敛域 4.3 Z 变换的基本性质 4.4 Z 反变换 4.5 几种变换的对应关系 4.5 系统函数与频率特性 55

56 4.4 几种变换的对应关系 我们原来对一个信号其实是从时间的角度去理解的, 不知不觉中, 其实是按照时间把信号进行分割, 每一部分只是一个时间点对应一个信号值, 一个信号是一组这样的分量的叠加 傅里叶变换后, 其实还是个叠加问题, 只不过是从频率的角度去叠加, 只不过每个小信号是一个时间域上覆盖整个区间的信号, 但他确有固定的周期, 或者说, 给了一个周期, 我们就能画出一个整个区间上的分信号, 那么给定一组周期值 或频率值, 我们就可以画出其对应的曲线, 就像给出时域上每一点的信号值一样, 不过如果信号是周期的话, 频域的更简单, 只需要几个甚至一个就可以了, 时域则需要整个时间轴上每一点都映射出一个函数值 56

57 4.4 几种变换的对应关系 拉普拉斯变换, 是工程数学中常用的一种积分变换 它是为简化计算而建立的实变量函数和复变量函数间的一种函数变换 对一个实变量函数作拉普拉斯变换, 并在复数域中作各种运算, 再将运算结果作拉普拉斯反变换来求得实数域中的相应结果, 往往比直接在实数域中求出同样的结果在计算上容易得多 拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效, 它可把微分方程化为容易求解的代数方程来处理, 从而使计算简化 在经典控制理论中, 对控制系统的分析和综合, 都是建立在拉普拉斯变换的基础上的 拉普拉斯变换在工程学上的应用 : 应用拉普拉斯变换解常变量齐次微分方程, 可以将微分方程化为代数方程, 使问题得以解决 在工程学上, 拉普拉斯变换的重大意义在于 : 将一个信号从时域上, 转换为复频域 s 域 上来表示 ; 在线性系统, 控制自动化上都有广泛的应用 57

58 4.4 几种变换的对应关系 Z 变换可以说是针对离散信号和系统的拉普拉斯变换, 由此我们就很容易理解 Z 变换的重要性, 也很容易理解 Z 变换和傅里叶变换之间的关系 Z 变换中的 Z 平面与拉普拉斯中的 S 平面存在映射的关系,=expTs 在 Z 变换中, 单位圆上的结果即对应离散时间傅里叶变换的结果 58

59 傅里叶变换, 拉氏变换与 变换 法国拿破仑时代取代英国, 成为世界科学中心, 三巨星拉普拉斯 拉格朗日 傅里叶 前 者审的傅里叶论文 傅里叶变换限制条件时域内绝对可积的信号 拉氏变换 : 指数信号 exp-x 是衰减最快的信号之一, 对信号乘上指数信号之后, 很容易满足绝对可积的条件. 将微分方程转化为代数方程, 在 8 世纪计算机还远未发明的时候, 意义非常重大 傅里叶变换可以看做是拉普拉斯的一种特殊形式, 即所乘的指数信号为 exp 也即是说拉普拉斯变换是傅里叶变换的推广, 是一种更普遍的表达形式 Z 变换可以说是针对离散信号和系统的拉普拉斯变换. Z 变换中的 Z 平面与拉普拉斯中的 S 平面存在映射的关系,=expTs 在 Z 变换中, 单位圆上的结果即对应离散时间傅里叶变换的结果 59

60 4.4 几种变换的对应关系 : FT 与 Z 序列的傅氏变换与 Z 变换 F[ x ] Z [ x ] X x j X e x e e j j j Im[] e j Re[] 单位圆上序列的 Z 变换为序列的傅里叶变换 6

61 4.4 几种变换的对应关系 : 拉氏与 Z 变换 X s x t e st dt X ˆ s x T e 采样序列 x=x T 的 Z 变换为 st ST e X x T 当 =e st 时, 采样序列的 Z 变换就等于其理想采样信号的拉氏变换 st X X e Xˆ s e ST 6

62 4.4 几种变换的对应关系 : 拉氏与 Z 变换 下面来讨论这一映射关系 ST e 将 S 平面用直角坐标表示为 而 Z 平面用极坐标表示 s=σ+jω =re jω re jω =e σ+jωt =eσt e jωt 因此 : r=e σt ω=ωt 显然, 的模 r 对应于 s 的实部 σ, 的相角 ω 对应于 s 的虚部 Ω 6

63 S 平面与 Z 平面多值映射关系 r=e σt ω=ωt j jim[] 3 / T / T o - o Re[] - / T S 平面 - 3 / T Z 平面 63

64 第四章 Z 变换 4. Z 变换定义 4. Z 变换收敛域 4.3 Z 变换的基本性质 4.4 Z 反变换 4.5 几种变换的对应关系 4.5 系统函数与频率特性 64

65 4.5 系统函数与频率特性 系统函数 单位脉冲响应是指输入为单位脉冲序列时系统的零状态响应, 一般记为 h h=t[δ]. 系统的传输函数 对 h 进行傅里叶变换得到 He jω j H e h e j 称为系统的传输函数, 它表征系统的频率特性 65

66 b. 系统函数对 h 进行 Z 变换, 得到 H, 一般称 H 为系统的系统函数, 它表征了系统的复频域特性 x h y X H Y X Y H h h ZT H ] [ 如果 H 的收敛域包含单位圆 =, 则在单位圆上 =e jω 的系统函数就是系统的频率特性 He jω jω e jω H e H 66

67 线性非移变系统可以用线性常系数差分方程描述 : 对上式两边求 Z 变换, 利用线性性质和时不变性质, 得 : 可见系统函数的系数也正是其差分方程的系数 c 系统函数与系统差分方程的关系 m m m m b b b b A B H 67

68 系统函数还可以进一步分解成 : 式中 :{d k 和 {c r } 分别表示 H 在 平面上的极点和零点 这样, 系统函数可以用 平面上的极点 零点和常数 A 来确定 68

69 例 : 根据系统函数求该系统的差分方程 解 : 为了求满足该系统输入输出的差分方程, 可以将 H 的分子和分母各因 式乘开, 而得到如下的形式 : 于是, 其差分方程就是 : 同一个系统函数, 收敛域不同, 所代表的系统就不同 69

70 4.5 系统函数与频率特性 : 系统的因果性和稳定性 因果系统的充分必要条件 : 当 < 时,h= Z 变换在 = 处收敛是因果序列的特征 在极点处 Z 变换不存在, 因此收敛域中没有极点 R x- < 即 : 因果系统的系统函数的 Z 变换, 极点分布在某个圆的圆内, 收敛域在某个圆外 7

71 系统稳定的充要条件 : 由 Z 变换收敛域的定义 : h 如果系统稳定, 则系统函数 H 的收敛域一定包括单位圆 =, 在单位圆上收敛 很显然, 这就等于要求该系统函数的全部极点都在单位圆内, 即 He jω 存在且连续 因果系统 : R x- < 7

72 4.5 系统函数与频率特性 : 系统的因果性和稳定性 因果系统其单位脉冲响应 h 一定满足 h=<, 那么其系统函数的收敛域一定包含 单位脉冲响应 系统函数 因果性 h=,< 收敛域包括 稳定性 因果稳定系统的收敛域 h Rx Rx 收敛域包括单位圆 7

73 例 已知 H, 分析其因果性和稳定性 jim[] 解 : H 的极点为, / Re[] 讨论 : 当收敛域为 时, 对应的系统是因果系统, 但收敛域不包含单位圆, 因此是不稳定系统 单位脉冲响应 h u 当收敛域为 时, 对应的系统是非因果且 不稳定系统 单位脉冲响应 h u 73

74 3 当收敛域为 时, 对应的系统非因果, 但收敛域包含单位圆, 因此是稳定系统 jim[] h / Re[] 收敛的双边序列 非因果但稳定系统单位脉冲响应的近似实现 74

75 4.5 系统函数与频率特性 : 3 系统的频率响应 频率响应的意义 设输入信号为 : x e jω 系统输出 : e H e e H e e j j j j j 75

76 jω H e h e jω 称为系统的频率响应 它描述复指数序列 正弦序列 通过线性时不变系统后, 复振幅 包括幅度和相位 的变化 H e jω H e j ω h e jω 即 : 系统频率响应正是系统函数在单位圆上的值 或 : 系统频率响应是系统的单位取样响应的傅里叶变换 76

77 b 系统频率响应的特点 He jω 是 ω 的连续函数 ; He jω 是以 π 为周期的 ω 的周期函数 ; 3 h 为实序列时,He jω 的幅值为偶对称的, 相位为奇对称的 在 ω π 区间 H e h jω π π π h e H e jω jω 系统的单位取样响应与系统的频率响应, 互为傅里叶变换对 e jω dω 77

78 c 系统频率响应的几何确定法 A M r N r c d r r 设系统稳定,H 收敛域包含单位圆, 将 =e jω 代入 78

79 N r r j M r r j j d e c e A e H j j N r j r M r j r j e e H D e C e A e H r r, jθ r r r jω e C c e jψ r r r jω D e d e 令 : Re[] Im[] ψ θ 79

80 N r r M r r N M jω D C A D D D C AC C e H 频响的幅度函数频响的相位函数 N M ψ ψ ψ θ θ θ ω φ N k r M r θ r ψ 8

81 例 : 已知离散系统的系统函数为 H 6 4 求系统的频率响应, 粗略画出系统的幅频响应和相频响应曲线 4 解 : H e jω H e jω Im[] 3 e jω jω 4 e Re[] 8

82 令 :, 4 jω jθ jω jψ e Be e Ae ψ θ ω φ 3 ω jφ jω jψ jθ jω e e H Ae Be e H A B e H ω j 3 Re[] Im[] 4 ψ π ω π jω e H 4 π π φω B A 高通滤波器 8

83 例已知 H= -, 分析其频率特性 解 : 由 H= -, 极点为 =,He jω =e -jω 幅度特性 He jω =, 相位特性 φω=-ω He jω jφω ω ω 原点处的零极点不影响系统的频率特性 83

84 4.5 系统函数与频率特性 : 结论 原点处的极点和零点对于频率响应的幅度并无影响, 它们只是在相位中引入一个线性分量 极点主要影响频响的峰值, 极点越靠近单位圆, 峰值就越尖锐, 当极点处于单位圆上, 该点的频响就出现, 这相当于该频率处出现无耗谐振 3 零点主要影响频响的谷值, 零点越靠近单位圆, 谷值越小, 当处于单位圆上时, 幅度为 84

85 例已知 H=- -N, 试定性画出系统的幅频特性 解 : N N H H 的极点为 =, 这是一个原点处的 N 阶极点, 它不影响系统的频响 零点有 N 个, 由分子多项式的根决定 : N N e jk e j k N, k,,, N N 个零点等间隔分布在单位圆上, 设 N=8, 极零点分布如图所示 当 ω 从零变化到 π 时, 每遇到一个零点, 幅度为零, 在两个零点的中间幅度最大, 形成峰值 幅度谷值点频率为 : ω k =π/nk,k=,,, N- 一般将具有如图所示的幅度特性的滤波器称为梳状滤波器 85

86 例利用几何法分析矩形序列的幅频特性 解 : R N N N N RN N j k 零点 N e k,,,... N 极点 N- 阶, 设 N=8,= 处的极点和零点相互抵消 jim[] He j - Re[] b 86

87 设计数字滤波器的一般原则 : 若使设计的滤波器拒绝某个频率 不让该频率信号 通过 应在单位圆上相应频率处设置一个零点 若使设计的滤波器突出某个频率 使该频率信号尽量无衰减的通过, 应在单位圆内相应的频率处设置一个极点, 极点越接近单位圆, 在该频率处的幅频响应幅值越大 87

88 无限长单位冲激响应系统和有限长单位冲激响应系统 IIR FIR 若系统的单位冲激响应 h 无限长 : 称 IIR 系统若系统的单位冲激响应 h 有限长 : 称 FIR 系统 N k k k M m m m b H 归一化后 =: N k k k M m m m b H 88

89 若只要分母多项式有一个系数 k =, 则在有限 平面 ~ 会出现极点 利用 变换收敛域的知识, 我们知道如果是有限长序列不会在 ~ 上出现极点, 如果在 ~ 上出现极点, 那么肯定是右边序列 左边序列或双边序列中的一种, 而这三种序列均为无限长序列 所以, 此时为 IIR 系统 A 若分子只有常系数 b, 则 平面只有极点, 此时称全极点系统, 或自回归系统 AR 系统 B 若 H 为有理函数, 则 平面既有零点, 又有极点, 此时称零极点系统, 或自回归滑动平均系统 AR-MA 系统 若全部 k =, 则为 FIR 系统 此时有限长序列 h 的 H 在有限 平面 ~ 上是收敛的, 系统只是有可能在原点 = 处有极点, 而这不影响 h 为有限长序列的特性 若系统只存在零点, 称全零点系统或滑动平均系统 MA 89

90 从结构类型上看 : y M m b m x m N k k y k 对 IIR 系统 : k,y 要通过各 y-k 的反馈值得到, 因而, 在滤波器的结构上存在反馈回路, 我们称之为 递归型 结构 IIR 系统的输出与输入 x-m 和以前的输出 y-k 均有关 对 FIR 系统 : k =, 所以在滤波器的结构上不存在反馈回路, 我们称之为 非递归型 结构 FIR 系统的输出只与输入 x-m 有关 9

91 第四章 Z 变换 4. Z 变换定义 4. Z 变换收敛域 4.3 Z 变换的基本性质 4.4 Z 反变换 4.5 几种变换的对应关系 4.5 系统函数与频率特性 9

92 THANK YOU

93 本章相关 MATLAB 函数 b b b b b b A B H ], 3,,, [ ], 3,,, [ b b b b b b 要求 =, 若不为, 则程序会自动将其归一化为 93

94 filter.m filter 可用来求一个离散系统的输出 调用格式 : y=filterb,,x; xt=si*pi**t+ si*pi**t T=/; =:99; x=si*pi***t+ si*pi***t; H

95 = :99; % 取 个点 T=/; % 采样频率 KH x = si*pi***t+ si*pi***t; b=[,]; =[,-.9]; y=filterb,,x; subplot,,; stem, x; grid o; title' x'; subplot,,; stem, y; grid o; title' y'; 95

96 x y

97 imp.m imp 可用来求一个离散系统的 h 调用格式 : h=impb,,n; [h,t]=impb,,n; 注 : 其中,N 是 h 所需的长度 97

98 = :99; %x 取 个点 T=/; % 采样频率 KH x = si*pi***t+ si*pi***t; b=[,]; =[,-.9]; h= impb,,; y=:398; y=covx,h; subplot,,; stem, x; grid o; title' x'; subplot,,; stemy, y; grid o; title' y'; 98

99 x y xis[ - ]; 99

100 stem, h

101 3 freq.m freq 可用来求一个离散系统的频率响应 调用格式 : freqb,,n, whole,fs; [H,w] = freqb,,n, whole,fs; N 是频率轴分点数, 建议 N 为 的整次幂 w 返回频率轴坐标向量供绘图用 3 Fs 是采样频率, 若 Fs=, 频率轴给出归一化频率 4 whole 指定计算的频率范围从 ~Fs, 缺省时从 ~Fs/

102 b=[,]; =[,-.9]; [H,w]=freqb,,5,'whole',; subplot,,; plotw,bsh ; grid o; subplot,,; plotw,gleh; grid o;

103

104 x y

105 b=[,]; =[,-.9]; [H,w]=freqb,,5,'whole'; subplot,,; plotw,bsh ; grid o; subplot,,; plotw,gleh; grid o; 5

106 Pi=3.4 6

107 b=[,]; =[,-.9]; [H,w]=freqb,,5; subplot,,; plotw,bsh ; grid o; subplot,,; plotw,gleh; grid o; 7

108

109 Phse degrees Mgitude db b=[,]; =[,-.9]; freqb,; Normlied Frequecy rd/smple Normlied Frequecy rd/smple 9

110 4 ple.m ple 可用来显示离散系统的零极点图 调用格式 : pleb,; b=[,]; pleb,; =[,-.9];

111 Imgiry Prt Rel Prt

PowerPoint 演示文稿

PowerPoint 演示文稿 信号与系统 Sigls d Sstes 第七章 Z 变换 Chpter 7 Z Trsfortio 控制系网络课程平台 :http://www.cse.ju.edu.c/eclss/sigl_sste/ 浙江大学控制科学与工程学系 主要内容 双边 变换 变换的收敛域 变换的性质 常用信号的 变换对 反变换 单边 变换及其性质 LTI 系统的 域分析 单边 变换及其性质 -- 定义 实际问题中常遇到的是因果序列

More information

大理大学 2019 年自命题科目考试大纲 科目代码 :871 科目名称 : 信号与系统 一 目标要求 信号与系统 是大理大学电子与通信工程领域硕士专业学位研究生入学考试的自命题考试科目, 其目的是科学 公平 有效地测试考生掌握信号与系统的基本概念 基本理论和基本分析方法的情况, 评价考生根据工程应用

大理大学 2019 年自命题科目考试大纲 科目代码 :871 科目名称 : 信号与系统 一 目标要求 信号与系统 是大理大学电子与通信工程领域硕士专业学位研究生入学考试的自命题考试科目, 其目的是科学 公平 有效地测试考生掌握信号与系统的基本概念 基本理论和基本分析方法的情况, 评价考生根据工程应用 大理大学 2019 年自命题科目考试大纲 科目代码 :871 科目名称 : 信号与系统 一 目标要求 信号与系统 是大理大学电子与通信工程领域硕士专业学位研究生入学考试的自命题考试科目, 其目的是科学 公平 有效地测试考生掌握信号与系统的基本概念 基本理论和基本分析方法的情况, 评价考生根据工程应用的需求建立信号与系统的数学模型, 通过时间域与变换域的数学算法, 分析系统性能, 求解输出信号的能力,

More information

Microsoft PowerPoint - 第5章 连续系统的s域分析.ppt

Microsoft PowerPoint - 第5章 连续系统的s域分析.ppt 第五章连续系统的 域分析 点击目录 5. 拉普拉斯变换一 从傅里叶变换到拉普拉斯变换二 收敛域三 ( 单边 拉普拉斯变换 5. 拉普拉斯变换的性质 5.3 拉普拉斯变换逆变换 5.4 复频域分析一 微分方程的变换解二 系统函数三 系统的 域框图四 电路的 域模型五 拉普拉斯变换与傅里叶变换, 进入相关章节 第 4- 页 第五章连续系统的 域分析 频域分析以虚指数信号 e jω 为基本信号, 任意信号可分解为众多不同频率的虚指数分量之和

More information

作业 2.3,2.5(3)(5)(6) 2.6(2)(3) 2.8(3)(7)(8) 2.9(1)(3) 2.10 (2)(4)(8) (C),2.16(2), 自己仿真 2.29,2.30

作业 2.3,2.5(3)(5)(6) 2.6(2)(3) 2.8(3)(7)(8) 2.9(1)(3) 2.10 (2)(4)(8) (C),2.16(2), 自己仿真 2.29,2.30 第二章 离散时间信号和系统的时域分析 作业 2.3,2.5(3)(5)(6) 2.6(2)(3) 2.8(3)(7)(8) 2.9(1)(3) 2.10 (2)(4)(8) 2.11 2.13(C),2.16(2), 自己仿真 2.29,2.30 主要内容 离散时间信号的表示 典型离散信号 序列基本运算 离散时间系统时域分析 因果稳定性分析 线性和时不变分析 输入输出关系 线性卷积求解 差分方程求解

More information

Microsoft PowerPoint - Lecture 10 Z变换.ppt

Microsoft PowerPoint - Lecture 10 Z变换.ppt 第 讲 Z 变换 -Trasform 主讲 : 金连文 wi@scut.u.c 数字信号处理 Diita Sia Procssi 本讲主要内容 Z 变换基本概念 有理 Z 变换 Z 变换收敛域 逆 Z 变换 利用 变换来分析和表征 LTI 系统 LTI 系统的传输函数 ( 系统函数 ) 一 概念和性质 3 什么是 变换?() Z 变换是离散时间信号与离散时间系统分析与综合的重要工具, 其作用相当于连续时间信号与系统的拉氏变换分析方法

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 信号与系统 Sigal ad Sym 第六章信号与系统的复频域分析 Chapr 6 Th Complx Frqucy Domai Aalyi of Sigal ad Sym 控制系网络课程平台 :hp://www.c.zju.du.c/cla/igal_ym/ 浙江大学控制科学与工程学系 7/4/4 复习与概述 将输入信号表示成基本信号的线性组合 系统的输出 时域 : 频域 : x x d 时域 a

More information

《数字电路与系统》

《数字电路与系统》 一 课程基本信息 信号与系统 A 课程编号 :2020193 大纲编号 :201601 课程名称 : 信号与系统 A 课程类别 : 专业基础课学分 :4 学时 :68 课堂讲授 :56 上机实验 :12 适用范围 : 电子信息工程专业 通信工程专业预修课程 : 电路 二 课程性质与任务 本课程是电子信息工程专业 通信工程专业所必修的一门重要的专业基础课 课程主要学习确定信号的特性, 线性时不变系统的特性,

More information

图所示 ), 请确定并画出 y( 的频谱 Y(j ) x( cos(5m -5m -3m 3m 5m cos(3m -3m 3m y( X(jω) -m m ω 4 ( 分 ) 一个离散 LTI 系统, 其输入 x [n] 和输出 y[n] 满足下列差分方程 : y [ n] y[ n ] x[ n

图所示 ), 请确定并画出 y( 的频谱 Y(j ) x( cos(5m -5m -3m 3m 5m cos(3m -3m 3m y( X(jω) -m m ω 4 ( 分 ) 一个离散 LTI 系统, 其输入 x [n] 和输出 y[n] 满足下列差分方程 : y [ n] y[ n ] x[ n 计算题 ( 3) 图 4- 所示的系统中, 输入信号及带通滤波器的特性如下, 求输出信号及其频谱 sin( 函数已知 f (, s( cos( H( ) j ( ) f( s( f ( s( 带通滤 y( ) 波器 - - -999 图 4-(a) 图 4-(b) 999 (rad/s) 某 LTI 连续时间系统如图 4- 所示, 已知当 f ( u( 时, 系统的全响应为 y( ( 5e 5e 3

More information

PowerPoint Presentation

PowerPoint Presentation 平稳过程的功率谱密度 在无线电 通信技术等领域的一些问题中, 通常需要分析 平稳过程的频域结构. 为此引入平稳过程的功率谱密度 随机过程引论 西安电子科技大学数学与统计学院冯海林 014 秋 定义 5.4.1 设 ={ t, -

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 信号与系统 Sigls d Sysms 第四章离散时间信号与系统的频域分析 Chpr 4 h Frqucy Domi Alysis of Discr Sigl & Sysm 控制系网络课程平台 :hp://www.cs.zu.du.c/clss/sigl_sysm/ 浙江大学控制科学与工程学系 概述 7 世纪开始离散时间信号的研究 世纪 4 年代, 微电子技术的发展和数字计算机的出现扩展了离散时间信号与系统的应用范围

More information

中国地质大学研究生院

中国地质大学研究生院 中国地质大学研究生院 硕士研究生入学考试 电路 信号与系统 考试大纲 ( 包括电路分析 信号与系统两部分 ) 一 试卷结构 ( 一 ) 内容比例 电路分析 信号与系统 全卷 约 60 分 约 90 分 150 分 ( 二 ) 题型比例 填空题 约 40% 综合题 约 60% 二 考试内容及要求电路分析 ( 一 ) 集总参数的基本概念与基本定律考试内容电路中电流 电压及功率等变量的定义 参考方向的概念,

More information

数据一样, 为何图模糊了, 精度降低? 如何补救?

数据一样, 为何图模糊了, 精度降低? 如何补救? 加分题四 hp://pan.zju.du.cn/har/ 49455455a8db4c97779c7b 数据一样, 为何图模糊了, 精度降低? 如何补救? 托盘没放正, 在 z 平面是倾斜的, 如何处理? 第六章 信号与系统的复频域分析 6. 引言 6. 拉普拉斯变换 6. 常用信号的拉氏变换对 6.3 双边拉氏变换的性质 6.4 周期信号与抽样信号的拉氏变换 6.5 拉氏反变换 6.6 单边拉氏变换及性质

More information

第一章三角函数 1.3 三角函数的诱导公式 A 组 ( ) 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角, 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C 2 ( 中诱导公式 ) ( ) B. cos(

第一章三角函数 1.3 三角函数的诱导公式 A 组 ( ) 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角, 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C 2 ( 中诱导公式 ) ( ) B. cos( 第一章三角函数 1. 三角函数的诱导公式 A 组 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C ( 中诱导公式 ) B. cos( B C) cos A D. sin( B C) sin A sin60 cos( ) sin( 0 )cos( 70 ) 的值等于

More information

类脑计算(神经形态计算)

类脑计算(神经形态计算) 复习 数字滤波器从功能上可分为低通 高通 带通 带阻 理想滤波器的频率响应 数字滤波器的系统函数与冲激响应 3 IIR 滤波器 ( ) 4 第 8 章 IIR 数字滤波器设计 5 8. -z 变换设计 从 S 平面映射到 Z 平面三种常用的方法 : 冲激响应不变法: 从时域的角度出发进行映射 ; 双线性不变法: 从频域角度出发进行映射 ; 3 匹配 z 变换法 : 频域直接映射 6 4 ( 注意 :

More information

数字信号处理 第五章04 IIR数字滤波器-脉冲响应不变变换法.ppt [兼容模式]

数字信号处理 第五章04 IIR数字滤波器-脉冲响应不变变换法.ppt [兼容模式] 数字信号处理 周治国 2015.11 第五章数字滤波器 IIR 数字滤波器 脉冲响应不变变换法 1 从模拟低通滤波器设计数字低通滤波器 (1) 脉冲 / 阶跃响应不变法 (2) 双线性变换法 一 从模拟滤波器设计数字滤波器 2 IIR 数字低通滤波器的频率变换 ( 高通 带通 带阻数字滤波器的设计 (1) 直接由模拟原型到各种类型数字滤波器的转换 (2) 从数字低通滤波器到各种类型数字滤波器的转换

More information

Microsoft PowerPoint - ch8 [兼容模式]

Microsoft PowerPoint - ch8 [兼容模式] 第八章 时域离散系统的实现 王柯俨 8 8. 引言 时域离散系统的实现方式 软件实现 硬件实现 数字滤波器的表示方法 数字滤波器的系统函数 : H ( Y ( = = X( M = 0 b = + a 数字滤波器的表示方法 常系数线性差分方程 : M = + = = 0 yn ( ayn ( bxn ( 均由延迟 乘法 加法实现 滤波器的实现算法 运算结构 网络结构? 计算误差 有限字长效应 计算复杂度

More information

<4D F736F F F696E74202D204C C0EBC9A2CAB1BCE4D0C5BAC5B5C4CAB1D3F2B7D6CEF62E BD6BBB6C15D>

<4D F736F F F696E74202D204C C0EBC9A2CAB1BCE4D0C5BAC5B5C4CAB1D3F2B7D6CEF62E BD6BBB6C15D> 第 讲 离散时间信号的时域分析 Discrete-Time Signals in the Time-Domain 主讲 : 金连文 eelwjin@scut.edu.cn 数字信号处理 Digital Signal Processing 本讲主要内容 离散时间信号的时域表示 离散时间信号的分类 离散时间信号的运算 典型离散信号及其性质 信号的相关分析 概念 一 离散时间信号的时域表示 离散信号 :

More information

幻灯片 1

幻灯片 1 第一类换元法 ( 凑微分法 ) 学习指导 复习 : 凑微分 部分常用的凑微分 : () n d d( (4) d d( ); (5) d d(ln ); n n (6) e d d( e ); () d d( b); ); () d d( ); (7) sin d d (cos ) 常见凑微分公式 ); ( ) ( ) ( b d b f d b f ); ( ) ( ) ( n n n n d f

More information

数字信号处理在航空航天、遥测遥感、生物医学、自动控制、振动工程、通信雷达、水文科学等许多领域有着十分广泛的应用

数字信号处理在航空航天、遥测遥感、生物医学、自动控制、振动工程、通信雷达、水文科学等许多领域有着十分广泛的应用 第一章离散时间信号与系统. 数字信号处理系统的基本组成 我们来讨论模拟信号的数字化处理系统, 此系统先把模拟信号变化为数字信号, 然后用数字技术进行处理, 最后再还原成模拟信号 这一系统的方框图见图所示 X a (t) 前置滤波器 A/D 变换器 X ( 数字信号 Y ( D/A 模拟 (t) 处理器变换器滤波器 Y a 数字信号处理系统的简单方框图当然实际的系统并不一定要包括它的所有框图, 例如有些系统只需数字输出,

More information

A 工程数学 ( 复变与积分变换 A 集 ) 目录 工程数学 ( 复变与积分变换 A 集 ) 目录 A. 复数与复变函数 ( 第一章 ).... 复数.... 复变函数...4 A. 导数 ( 第二章 )...6. 解析函数...6.4 调和函数...8 A. 积分 ( 第三章 )...9. 柯西积分公式解析函数的导数...9 A.4 级数 ( 第四章 )... 4. 泰勒级数... 4.4 罗朗级数...

More information

LN htm

LN htm kaoyan.om 线性系统 一线性系统的概念 1. 线性系统是什么? 线性时不变系统的定义 : (1) 线性 : 若 1 2 产生的输出分别是 y 1 y 2 a1 + b2 产生的输出是 ay ( t 1 ) + by 2( t ) (2) 时不变 : 若 y 产生的输出是 即 ( t τ ) y 的输出是 ( t τ ) 若非特别指出 以后 线性系统 一词总指线性时不变系统 则对任意的常数 a

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 信号与系统 Signls n Sysms 第三章连续时间信号与系统的频域分析 Chpr 3 h rquny Domin Anlysis of Coninuous Signl n Sysm 控制系网络课程平台 :hp://www.s.zu.u.n/lss/signl_sysm/ 浙江大学控制科学与工程学系 本章主要内容 连续时间 LI 系统的特征函数 连续时间周期信号的傅里叶级数表示 3 非周期信号的表示

More information

实验一 信号、系统及系统响应

实验一  信号、系统及系统响应 实验 信号及系统基本特性分析. 实验目的 学习 Mtlb 编程的基本方法 ; 掌握常用函数用法 2 了解不同信号的频域特性, 理解时域特性与频域特性之间的关联性 3 掌握典型信号序列的时域和频域基本特性 4 熟悉理想采样的性质, 了解信号采样前后的频谱变化, 加深对采样定理的理解 5 了解离散系统的时域 / 频域特性及其对输出信号的影响, 掌握系统分析方法.2 实验原理.2. 连续时间信号的采样 采样是从连续时间信号到离散时间信号的过渡桥梁,

More information

<4D F736F F F696E74202D20D0C5BAC5CFB5CDB32DB5DAC8FDD5C2>

<4D F736F F F696E74202D20D0C5BAC5CFB5CDB32DB5DAC8FDD5C2> 第三章 傅里叶变换 3. 引言 时域分析 -> 变换域分析, 要讨论的变换 傅氏变换 复频域分析 L 离散信号的 Z 域变换 信号的分解 - 正交基底函数 的发展 965 年 的内容 周期的模拟信号 S 非周期的模拟信号 离散的非周期序列 今后讨论 3. 周期信号的傅氏级数分析 狭利赫利条件 一个周期内, 周期信号绝对可积 一个周期内, 周期信号的极值数目有限 一个周期内, 周期信号只有有限个间断点

More information

幻灯片 1

幻灯片 1 03 年秋季学期 3 教 05 数字信号处理 第三章离散时间信号和系统的频域分析 第三章离散时间信号和系统的频域分析 3. 周期序列 DFS 的定义 3. 周期序列 DFS 的基本性质 3.3 非周期序列 DTFT 的定义 3.4 序列 DTFT 的基本性质 3.5 周期序列 DTFT 3.6 序列的频域采样 本章主要学习 对于离散时间系统 时域分析方法采用差分方程描述 频域分析方法则用 Z 变换或傅里叶变换这一数学工具

More information

试卷

试卷 竞赛试卷 ( 数学专业 参考答案 一 (5 分 在仿射坐标系中 求过点 M ( 与平面 :3x y + z 平行 且与 x y 3 z 直线 l : 相交的直线 l 的方程 4 解法一 : 先求 l 的一个方向向量 X Y Z 因为 l 过点 M 且 l 与 l 相交 所以有 4 X 3 - Y ( Z..4 分 即 X + Y Z...3 分 又因为 l 与 平行 所以有 联立上述两个方程解得 :

More information

数字信号处理 第三章05.ppt [兼容模式]

数字信号处理 第三章05.ppt [兼容模式] 数字信号处理 周治国 25.9 第三章 离散傅里叶变换 3-6 频域采样 问题 : 采用 DFT 实现了频域取样, 对于任意一个频率特性能否用频率取样的方法去逼近? 研究 :, 限制? 2, 经过频率取样后有什么误差? 3, 如何消除误差? 4, 取样后所获得的频率特性怎样? 一 取样点数的限制 3-6 频域采样 x(n, X( z X( e X( X( e 任一非周期序列 ( 绝对可和 jω jω

More information

<4D F736F F F696E74202D20B8B4BCFE20B5DAC1F9BDB C9E8BCC6>

<4D F736F F F696E74202D20B8B4BCFE20B5DAC1F9BDB C9E8BCC6> IIR DF 设计 Prt 数字信号处理面向专业 : 自动化系授课教师 : 刘剑毅 Buttrworth 模拟低通滤波器设计 幅度平方函数 : H( ) 为滤波器的阶数 为通带截止频率 当 称 H ( ) /时 H( 0) 0lg 3dB H ( ) 为 Buttrworth 低通滤波器的 3 分贝带宽 ) 该型滤波器函数特点 : H( ) 0 H( ) ( ) / 3 H db 3dB 不变性

More information

类脑计算(神经形态计算)

类脑计算(神经形态计算) 第 2 章离散时间信号与系统 1 2.1 离散时间信号 : 序列 在数学上表示成数值的序列一个序列 x 的第 n 个数, 记作 x(n) x = x(n), < n < 其中 n 为整数 可通过对模拟信号的周期 采样来得到 x a t t=nt = x nt, < n < 常称 x(n) 为序列的 第 n 个样本 1 x(n) 仅在 n 为整数时才有定义 2 常将序列 {x(n)} 简记为 x(n)

More information

2013Ä긣½¨Ê¦·¶´óѧ839ͨѶÓëÐÅϢϵͳרҵ×ۺϿ¼ÊÔ´ó¸Ù

2013Ä긣½¨Ê¦·¶´óѧ839ͨѶÓëÐÅϢϵͳרҵ×ۺϿ¼ÊÔ´ó¸Ù 福建师范大学硕士研究生入学考试 通讯与信息系统专业综合通讯与信息系统专业综合 考试大纲 一考查目标通信与信息系统专业综合考试涵盖信号与系统和数字电路两门学科基础课程 要求考生系统掌握上述学科的基本理论 基本知识和基本方法, 能够运用所学的基本理论 基本知识和基本方法分析和解决有关理论问题和实际问题 二 考试形式和试卷结构 1. 试卷满分及考试时间本试卷满分为 150 分, 考试时间为 180 分钟

More information

内容简介 本书系统地论述了信号与线性系统分析的基本理论和方法 全书共分 7 章, 主要内容包括 : 信号与系统的基本概念, 连续时间信号与系统的时域 频域和复频域分析, 离散时间信号与系统的时域和 z 域分析, 系统的状态空间分析 第二版在继承原书编写思想的基础上, 对全书内容进行了全面修订和完善

内容简介 本书系统地论述了信号与线性系统分析的基本理论和方法 全书共分 7 章, 主要内容包括 : 信号与系统的基本概念, 连续时间信号与系统的时域 频域和复频域分析, 离散时间信号与系统的时域和 z 域分析, 系统的状态空间分析 第二版在继承原书编写思想的基础上, 对全书内容进行了全面修订和完善 信 号 与 系 统 ( 第二版 ) 王颖民郭爱 西南交通大学出版社 成都 内容简介 本书系统地论述了信号与线性系统分析的基本理论和方法 全书共分 7 章, 主要内容包括 : 信号与系统的基本概念, 连续时间信号与系统的时域 频域和复频域分析, 离散时间信号与系统的时域和 z 域分析, 系统的状态空间分析 第二版在继承原书编写思想的基础上, 对全书内容进行了全面修订和完善 本书可作为高等院校电气信息类专业

More information

考试要求 1. 理解离散信号的时域特性, 掌握差分方程的经典法解法, 掌握零输入和零状态响应的时域解法 2. 理解并掌握单位序列响应与单位阶跃响应的概念与意义, 掌握单位序列响应与单位阶跃响应的求解方法 ; 3. 理解并掌握卷积和的定义, 掌握卷积和的定义求解方法和图示求解方法 ; 掌握卷积和的性质

考试要求 1. 理解离散信号的时域特性, 掌握差分方程的经典法解法, 掌握零输入和零状态响应的时域解法 2. 理解并掌握单位序列响应与单位阶跃响应的概念与意义, 掌握单位序列响应与单位阶跃响应的求解方法 ; 3. 理解并掌握卷积和的定义, 掌握卷积和的定义求解方法和图示求解方法 ; 掌握卷积和的性质 信号与系统 考试大纲 一 考试的总体要求 要求考生熟练地掌握本课程所讲述的基本概念 基本理论和基本分析方法, 并利用这些经典理论分析 解释和计算一些相关的问题 二 适用专业 电子信息工程 三 考试内容和考试要求 ( 一 ) 信号与系统考试内容信号与系统的基本概念, 信号和系统的描述方法和分类方法, 信号的基本运算, 阶跃函数和冲激函数的定义和性质, 系统模型及其划分, 系统的特性和分析方法 考试要求

More information

zk7

zk7 8- 试求下列函数的 变换 t t t t t 解 t 由移位定理 : t t 8- 试分别用部分分式法 幂级数法和反演积分法求下列函数的 反变换 解 部分分式法 幂级数法 : 用长除法可得 7 δ δ 7 δ Λ * t t t t 反演积分法 [ ] R R [ ] * t δ t 部分分式法 t t t * t δ t δ t 幂级数法 : 用长除法可得 7 9 Λ * t t t 7 t 9

More information

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

PowerPoint Presentation

PowerPoint Presentation 信号的时域分析 连续时间信号的时域描述 连续时间信号的基本运算 离散时间信号时域描述 离散时间信号的基本运算 确定信号的时域分解 连续时间信号的时域描述 典型普通信号 正弦信号 实指数信号 虚指数信号 复指数信号 抽样函数 奇异信号 单位阶跃信号 冲激信号 斜坡信号 冲激偶信号 一 典型普通信号 正弦信号 Asin ω ϕ A: 振幅 ω : 角频率弧度 / 秒 ϕ: 初始相位 sin ω ϕ A

More information

定积分的基本概念问题的提出 Yunming Xio ( 南京大学数学系 ) 微积分 I( 高等数学 ) Autumn / 23

定积分的基本概念问题的提出 Yunming Xio ( 南京大学数学系 ) 微积分 I( 高等数学 ) Autumn / 23 定积分的基本概念内容提要 1 定积分的基本概念 2 定积分的几何意义 3 定积分的基本性质 4 定积分中值定理 5 变限积分及其性质 6 微积分基本公式 Yunming Xio ( 南京大学数学系 ) 微积分 I( 高等数学 ) Autumn 2016 1 / 23 定积分的基本概念问题的提出 Yunming Xio ( 南京大学数学系 ) 微积分 I( 高等数学 ) Autumn 2016 2 /

More information

<4D F736F F D20B5DACAAED5C220CBABCFDFD0D4BAAFCAFDA3A8BDB2D2E5A3A92E646F63>

<4D F736F F D20B5DACAAED5C220CBABCFDFD0D4BAAFCAFDA3A8BDB2D2E5A3A92E646F63> 高等代数第十章双线性函数 第十章双线性函数 10.1 线性函数 1. 设 V 是数域 F 上的一个线性空间, f 是 V 到 F 的一个映射, 若 f 满足 : (1) f( α + β) = f( α) + f( β); (2) f( kα) = kf( α), 式中 α, β 是 V 中任意元素, k 是 F 中任意数, 则称 f 为 V 上的一个线性函数. 2. 简单性质 : 设 f 是 V

More information

7. 系统函数与系统特性 一 连续时间系统函数与系统特性 系统函数的零点 极点及系统的固有频率线性系统的系统函数, 是以多项式之比的形式出现的, 即 m bm b b b N n a a a a D n m m 0 n n 0

7. 系统函数与系统特性 一 连续时间系统函数与系统特性 系统函数的零点 极点及系统的固有频率线性系统的系统函数, 是以多项式之比的形式出现的, 即 m bm b b b N n a a a a D n m m 0 n n 0 本章要点 : 第七章系统函数 系统函数与系统特性 系统的稳定性 信号流图 系统模拟 7. 系统函数与系统特性 一 连续时间系统函数与系统特性 系统函数的零点 极点及系统的固有频率线性系统的系统函数, 是以多项式之比的形式出现的, 即 m bm b b b N n a a a a D n m m 0 n n 0 7. 系统函数与系统特性 系统函数分母多项式 D=0 的根称为系统函数的极点, 而系统函数分

More information

幻灯片 1

幻灯片 1 Digital Signal Processing mailfzh@nwpu.edu.cn /gary/ 1. FT FT. 3. 4. DFT 5. 6. DFT 7. 1. FT FT (FS) (FT) ( ) xt () Dirichlet (, ), 1 T () = ( Ω), ( Ω ) = () T T jkωt jkωt xt X k e X k xte dt e jkω t k

More information

没有幻灯片标题

没有幻灯片标题 第三章 DFT 离散付氏变换 DFS 和 DFT DFS 和 DFT 的性质 Z 变换与 DFS 的关系 FFT IDFT 频谱分析 傅里叶 Fourir, 768-83 法国数学家 物理学家 法国著名数学家 物理学家,87 年当选为科学院院士,8 年任该院终身秘书, 后又任法兰西学院终身秘书和理工科大学校务委员会主席, 主要贡献是在研究热的传播时创立了一套数学理论 傅立叶在 87 年就写成关于热传导的基本论文

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

提纲提纲 1 系统及其性质系统的描述系统的性质 2 时域法分析线性时不变因果系统线性时不变系统的单位冲激响应线性时不变系统的时域法分析 Ji Xiang ( 系统系 ) 第四章信号处理基础 May 8, / 42

提纲提纲 1 系统及其性质系统的描述系统的性质 2 时域法分析线性时不变因果系统线性时不变系统的单位冲激响应线性时不变系统的时域法分析 Ji Xiang ( 系统系 ) 第四章信号处理基础 May 8, / 42 第四章信号处理基础项基 Department of System Science and Engineering Zhejiang University Email: jxiang@zjueducn http://personzjueducn/jxiang May 8, 2018 Ji Xiang ( 系统系 ) 第四章信号处理基础 May 8, 2018 1 / 42 提纲提纲 1 系统及其性质系统的描述系统的性质

More information

untitled

untitled 4 y l y y y l,, (, ) ' ( ) ' ( ) y, y f ) ( () f f ( ) (l ) t l t lt l f ( t) f ( ) t l f ( ) d (l ) C f ( ) C, f ( ) (l ) L y dy yd π y L y cosθ, π θ : siθ, π yd dy L [ cosθ cosθ siθ siθ ] dθ π π π si

More information

第四章 102 图 4唱16 基于图像渲染的理论基础 三张拍摄图像以及它们投影到球面上生成的球面图像 拼图的圆心是相同的 而拼图是由球面图像上的弧线图像组成的 因此我 们称之为同心球拼图 如图 4唱18 所示 这些拼图中半径最大的是圆 Ck 最小的是圆 C0 设圆 Ck 的半径为 r 虚拟相机水平视域为 θ 有 r R sin θ 2 4畅11 由此可见 构造同心球拼图的过程实际上就是对投影图像中的弧线图像

More information

6.3 正定二次型

6.3 正定二次型 6.3 正定二次型 一个实二次型, 既可以通过正交变换化为标准形, 也可以通过拉格朗日配方法化为标准形, 显然, 其标准形一般来说是不惟一的, 但标准形中所含有的项数是确定的, 项数等于二次型的秩 当变换为实变换时, 标准形中正系数和负系数的个数均是不变的 定理 ( 惯性定理 ) 设有二次型 f =x T Ax, 它的秩为 r, 如果有两个实的可逆变换 x=c y 及 x=c z 分别使 f =k

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

3. 引言 3. 连续时间 LI 系统的特征函数 3. 连续时间傅里叶级数 3.3 连续时间傅里叶变换 3.4 连续时间周期信号的傅里叶变换 3.5 连续时间傅里叶变换的性质 3.6 连续时间 LI 系统的频域分析 7/4/ 信号与系统 第三讲 郝然

3. 引言 3. 连续时间 LI 系统的特征函数 3. 连续时间傅里叶级数 3.3 连续时间傅里叶变换 3.4 连续时间周期信号的傅里叶变换 3.5 连续时间傅里叶变换的性质 3.6 连续时间 LI 系统的频域分析 7/4/ 信号与系统 第三讲 郝然 第三章 连续时间信号与系统的频域分析 7/4/ 信号与系统 第三讲 郝然 3. 引言 3. 连续时间 LI 系统的特征函数 3. 连续时间傅里叶级数 3.3 连续时间傅里叶变换 3.4 连续时间周期信号的傅里叶变换 3.5 连续时间傅里叶变换的性质 3.6 连续时间 LI 系统的频域分析 7/4/ 信号与系统 第三讲 郝然 3. 引言 傅里叶的生平和主要贡献 傅里叶 :768 年 3 月 日生于欧塞尔,83

More information

1 线性空间 基 维数和坐标 3 子空间 4 线性空间的同构 5 线性映射 6 线性映射的像与核 7 线性变换 8 不变子空间 厦门大学数学科学学院网址 :gdjpkc.xmu.edu.c; IP://

1 线性空间 基 维数和坐标 3 子空间 4 线性空间的同构 5 线性映射 6 线性映射的像与核 7 线性变换 8 不变子空间 厦门大学数学科学学院网址 :gdjpkc.xmu.edu.c; IP:// 线性空间与线性映射 知识回顾 1 线性空间 基 维数和坐标 3 子空间 4 线性空间的同构 5 线性映射 6 线性映射的像与核 7 线性变换 8 不变子空间 厦门大学数学科学学院网址 :gdjpkc.xmu.edu.c; IP://11.19.180.133 1 线性空间 厦门大学数学科学学院网址 :gdjpkc.xmu.edu.c; IP://11.19.180.133 定义称 V 是数域 F 上的线性空间,

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 数字信号处理 教学内容 掌握离散时间系统的基本特性和离散信号的变换 数字信号的定义和特点 离散系统的普遍关系 线性 时不变 稳定性 因果性 离散卷积 离散信号的 Z 变换和离散时间傅氏变换 DTFT 离散系统的描述 时域 : 差分方程 yn 脉冲响应 hn 变换域 : 传输函数 Hz 频率响应 He jw 掌握离散傅里叶变换原理, 能够应用 DFT 分析信号频谱 离散傅氏级数 DFS 有限长度离散傅氏变换

More information

Microsoft PowerPoint - ch3.ppt [兼容模式]

Microsoft PowerPoint - ch3.ppt [兼容模式] 第三章 离散傅里叶变换 (DFT) 及其快速算法 王柯俨 kywang@mail.xidian.edu.cn http://web.xidian.edu.cn/kywang/teach.html 问题 : 序列的傅里叶变换 Z 变换是时域离散信号及系统分析与 设计的重要数学工具 ; 但变换结果均为连续函数, 无法用计算机进行处理 ; 离散傅里叶变换 (DFT) 对有限长时域离散信号的频谱进 行等间隔采样,

More information

第4章 级 数

第4章  级  数 第 4 章级数 4. 收敛序列与收敛级数 4. 幂级数 4. 泰勒级数 4.4 罗朗级数习题课 4. 收敛序列与收敛级数 收敛序列 收敛数项级数 函数项级数 收敛序列 复数序列 : 指按一定法则有 依次序排成 的一列数. { } L L 定义 4. 若对任意给定的 ε > 总存在着正整数 当 > 时 不等式 成立 则称复数序列 { } < ε { } 否则 称是发散的. 那么 定理 4. 设序列 的充要条件是

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. ()

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. () ! # % & & &! # % &! ( &! # )! ) & ( +,! (# ) +. + / 0 1 2 3 4 4 5 & 6!!!.! (!,! (! & 7 6!. 8 / 6 7 6 8! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. () , 4 / 7!# + 6 7 1 1 1 0 7!.. 6 1 1 2 1 3

More information

第八章 拉普拉斯变换

第八章 拉普拉斯变换 第八章拉普拉斯变换 拉普拉斯变换理论 ( 又称为运算微积分, 或称为算子微积分 ) 是在 19 世纪末发展起来的. 首先是英国工程师亥维赛德 (O.Heaviside) 发明了用运算法解决当时电工计算中出现的一些问题, 但是缺乏严密的数学论证. 后来由法国数学家拉普拉斯 (P.S.Laplace) 给出了严密的数学定义, 称之为拉普拉斯变换方法. 拉普拉斯 (Laplace) 变换在电学 光学 力学等工程技术

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

4.1 the system function( 系统函数 ) The system function is defined as H( z) h[ n] z n n For LTI system, the system function of the system input and output

4.1 the system function( 系统函数 ) The system function is defined as H( z) h[ n] z n n For LTI system, the system function of the system input and output Chapter 4 transform analysis of linear time-invariant system 4.1 the system function 4.2 the frequency response 4.3 the frequency response for rational system function and difference equation 4.4 all-pass

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

WL100014ZW.PDF

WL100014ZW.PDF A Z 1 238 H U 1 92 1 2 3 1 1 1 H H H 235 238 92 U 92 U 1.1 2 1 H 3 1 H 3 2 He 4 2 He 6 3 Hi 7 3 Hi 9 4 Be 10 5 B 2 1.113MeV H 1 4 2 He B/ A =7.075MeV 4 He 238 94 Pu U + +5.6MeV 234 92 2 235 U + 200MeV

More information

Π Ρ! #! % & #! (! )! + %!!. / 0% # 0 2 3 3 4 7 8 9 Δ5?? 5 9? Κ :5 5 7 < 7 Δ 7 9 :5? / + 0 5 6 6 7 : ; 7 < = >? : Α8 5 > :9 Β 5 Χ : = 8 + ΑΔ? 9 Β Ε 9 = 9? : ; : Α 5 9 7 3 5 > 5 Δ > Β Χ < :? 3 9? 5 Χ 9 Β

More information

实验一 信号、系统及系统响应

实验一  信号、系统及系统响应 数字信号处理 课程基本实验 实验 信号及系统基本特性分析. 实验目的 学习 Mtlb 编程的基本方法 ; 掌握常用函数用法 2 了解不同信号的频域特性, 理解时域特性与频域特性之间的关联性 3 掌握典型信号序列的时域和频域基本特性 4 熟悉理想采样的性质, 了解信号采样前后的频谱变化, 加深对采样定理的理解 5 了解离散系统的时域 / 频域特性及其对输出信号的影响, 掌握系统分析方法.2 实验原理.2.

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

, & % # & # # & % & + # & # # # & # % #,

, & % # & # # & % & + # & # # # & # % #, ! # #! % # & # & & ( ( # ) % , & % # & # # & % & + # & # # # & # % #, # % % # % # ) % # % % # % # # % # % # + # % ( ( # % & & & & & & % & & # % # % & & % % % . % # / & & # 0 ) & # % & % ( # # & & & # #

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

微积分 授课讲义

微积分 授课讲义 2018 10 aiwanjun@sjtu.edu.cn 1201 / 18:00-20:20 213 14:00-17:00 I II Taylor : , n R n : x = (x 1, x 2,..., x n ) R; x, x y ; δ( ) ; ; ; ; ; ( ) ; ( / ) ; ; Ů(P 1,δ) P 1 U(P 0,δ) P 0 Ω P 1: 1.1 ( ). Ω

More information

003-电信学院考试大纲

003-电信学院考试大纲 数字信号处理 科目考试大纲 层次 : 博士考试科目代码 :3832 适用招生专业 : 控制理论与控制工程 检测技术与自动化装置 系统工程 模式识别与智能系统 可再生能源发电与智能电网考试主要内容 : 1. 离散时间信号和系统 1 离散时间信号表示 ;2 离散时间信号运算 ;3 离散正弦信号的周期性 ;4 离散时间系统概念与性质 ;5 相关函数 ;6LSI 频率响应 ;7 数字信号处理系统基本概念 2.z

More information

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P. () * 3 6 6 3 9 4 3 5 8 6 : 3. () ; () ; (3) (); (4) ; ; (5) ; ; (6) ; (7) (); (8) (, ); (9) ; () ; * Email: huangzh@whu.edu.cn . () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) :

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

untitled

untitled 5 55-% 8-8 8-5% - 7 7 U- lim lim u k k k u k k k k ` k u k k lim.7. 8 e e. e www.tighuatutor.com 5 79 755 [ e ] e e [ e ] e e e. --7 - u z dz d d dz u du d 8d d d d dz d d d d. 5-5 A E B BA B E B B BA

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

就称之为该系统的状态矢量 状态空间 : 状态矢量所在的空间称为状态空间 状态矢量所包含的状态变量的个数称为状态空间的维数, 也是系统的阶数 状态轨迹 : 在状态空间中状态矢量端点随时间变化而在状态空间中描出的路径或轨迹称为状态轨迹 状态轨迹形象地表明了系统状态随时间的变化规律 对于三维以上的状态矢量

就称之为该系统的状态矢量 状态空间 : 状态矢量所在的空间称为状态空间 状态矢量所包含的状态变量的个数称为状态空间的维数, 也是系统的阶数 状态轨迹 : 在状态空间中状态矢量端点随时间变化而在状态空间中描出的路径或轨迹称为状态轨迹 状态轨迹形象地表明了系统状态随时间的变化规律 对于三维以上的状态矢量 第八章 系统的状态变量分析 主要内容 : 本章介绍状态 状态变量的概念以及描述方法, 并分别给出连续和离散时间系统状态方 程和输出方程的建立和求解方法, 重点论述了其变换域求解方法 重点 : 1. 状态变量与状态方程的基本概念 2. 连续时间系统和离散时间系统状态方程和输出方程的建立与求解变换域的求解 方法 8.1 系统的状态变量分析 状态 : 对于一个动态系统的状态是表示系统的一组最少变量, 被称为状态变量,

More information

矩阵论 第三章:矩阵分析

矩阵论 第三章:矩阵分析 矩阵论 第三章 : 矩阵分析 马锦华 数据科学与计算机学院 中山大学 第三章 : 矩阵分析 3.1 矩阵序列 3.2 矩阵级数 3.3 矩阵函数 3.4 矩阵的微分与积分 3.5 矩阵分析应用举例 2 矩阵序列 定义 3.1: 设有中的矩阵序列 其中 若 m n C lim a a i 1, 2,, m; j 1, 2,, n, ij ij, 收敛于 记为 或 a ij mn 不收敛的矩阵序列称为发散.,

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 & ! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ

More information

, 10, (Poincare) dθ, ( ) 2 1 dθ cos θ = E 2 dt K V V = cos θ E

, 10, (Poincare) dθ, ( ) 2 1 dθ cos θ = E 2 dt K V V = cos θ E 1. l, m, θ,, r, ω d F ml d2 θ dt 2 + rldθ dt + mg sin θ = F cos ω dt d 2 θ dt + r dθ 2 m dt + g l sin θ = F ml cos ω dt ω 0 = g/l, mω0, 2 mlω0 2 MLT β = r/2mω 0, f = F/mlω 2 0 = F/mg, ω 0 /ω 0 = 1, ω =

More information

Microsoft PowerPoint - ch9 [兼容模式]

Microsoft PowerPoint - ch9 [兼容模式] 第九章 多采样率数字信号处理 王柯俨 kwang@mail.idian.edu.cn http://web.idian.edu.cn/kwang/teach.html d /k /t h 1 91 9.1 引言 需要多采样率的场合 : 需求不同 ( 数字电视 数字电话等 非平稳信号的分析 冗余数据的存在 采样率转换 多采样率数字信号处理 2 采样率转换方法 : 方法一 : 间接转换 把离散时间信号

More information

ϕ ϕ R V = 2 2 314 6378 1668 0 T =. 24 = 2 R cos32 33931 V = = = 1413. 68 32 T 24 2 R cos90 V = = 0 90 T ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ 1

More information

统计信号分析与处理 第 2 章随机信号与系统

统计信号分析与处理 第 2 章随机信号与系统 统计信号分析与处理 第 章随机信号与系统 本章内容.1 信号与系统概述. 随机信号通过线性时不变系统.3 随机序列通过线性时不变系统.4 白噪声通过线性时不变系统.5 白噪声序列和平稳随机序列的参数模型.6 随机信号通过线性时变系统.7 随机信号通过非线性系统.8 随机信号的复表示 .1 信号与系统概述.1.1 信号及其分类.1. 系统及其分类 .1.1 信号及其分类 信号概念 : 信号是信息的表现形式,

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 . ttp://www.reej.com 4-9-9 4-9-9 . a b { } a b { }. Φ ϕ ϕ ϕ { } Φ a b { }. ttp://www.reej.com 4-9-9 . ~ ma{ } ~ m m{ } ~ m~ ~ a b but m ~ 4-9-9 4 . P : ; Φ { } { ϕ ϕ a a a a a R } P pa ttp://www.reej.com

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

untitled

untitled 6 + a lim = 8, a =. a l. a a + a a a a lim = lim + = e, a a a e = 8 a= l ( 6,, ), 4 y+ z = 8. + y z = ( 6,, ) 4 y z 8 a ( 6,, ) + = = { } i j k 4,,, s = 6 = i+ j k. 4 ( ) ( y ) ( z ) + y z =. + =, () y

More information

% %! # % & ( ) % # + # # % # # & & % ( #,. %

% %! # % & ( ) % # + # # % # # & & % ( #,. % !!! # #! # % & % %! # % & ( ) % # + # # % # # & & % ( #,. % , ( /0 ) %, + ( 1 ( 2 ) + %, ( 3, ( 123 % & # %, &% % #, % ( ) + & &% & ( & 4 ( & # 4 % #, #, ( ) + % 4 % & &, & & # / / % %, &% ! # #! # # #

More information

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

More information

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

More information

%% &% %% %% %% % () (! #! %!!!!!!!%! # %& ( % & ) +, # (.. /,) %& 0

%% &% %% %% %% % () (! #! %!!!!!!!%! # %& ( % & ) +, # (.. /,) %& 0 !! # # %% &% %% %% %% % () (! #! %!!!!!!!%! # %& ( % & ) +, # (.. /,) %& 0 +! (%& / 1! 2 %& % & 0/ / %& + (.%.%, %& % %& )& % %& ) 3, &, 5, % &. ) 4 4 4 %& / , %& ).. % # 6 /0 % &. & %& ) % %& 0.!!! %&

More information

! + +, ) % %.!&!, /! 0! 0 # ( ( # (,, # ( % 1 2 ) (, ( 4! 0 & 2 /, # # ( &

! + +, ) % %.!&!, /! 0! 0 # ( ( # (,, # ( % 1 2 ) (, ( 4! 0 & 2 /, # # ( & ! # %! &! #!! %! %! & %! &! & ( %! & #! & )! & & + ) +!!, + ! + +, ) % %.!&!, /! 0! 0 # ( ( # (,, # ( % 1 2 ) (, 3 0 1 ( 4! 0 & 2 /, # # ( 1 5 2 1 & % # # ( #! 0 ) + 4 +, 0 #,!, + 0 2 ), +! 0! 4, +! (!

More information

untitled

untitled 4 6 4 4 ( n ) f( ) = lim n n +, f ( ) = = f( ) = ( ) ( n ) f( ) = lim = lim n = = n n + n + n f ( ), = =,, lim f ( ) = lim = f() = f ( ) y ( ) = t + t+ y = t t +, y = y( ) dy dy dt t t = = = = d d t +

More information

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

More information

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ .................................2.......................... 2.3.......................... 2.4 d' Alembet...................... 3.5......................... 4.6................................... 5 2 5

More information

实验二 用双线性变换法设计IIR滤波器

实验二 用双线性变换法设计IIR滤波器 htt://www.elefn.om 电子发烧友 htt://bb.elefn.om 中国科学技术大学电子工程与信息科学系多媒体通信实验室 (Coyright ) 实验三用双线性变换法设计 IIR 滤波器 一 实验目的 了解两种工程上最常用的变换方法: 脉冲响应不变法和双线性变换法 掌握双线性变换法设计 IIR 滤波器的原理及具体设计方法, 熟悉用双线性设计法设计低通 带通和高通 IIR 数字滤波器的计算机程序

More information

2 6 (A, s) = (P u 1 u 2 u n ) x t (s((u 1 ) x t ), s((u 2 ) x t ),, s((u n ) x t )) P A (s x s(t) (u 1), s x s(t) (u 2),, s x s(t) (u n)) P A (A, s x

2 6 (A, s) = (P u 1 u 2 u n ) x t (s((u 1 ) x t ), s((u 2 ) x t ),, s((u n ) x t )) P A (s x s(t) (u 1), s x s(t) (u 2),, s x s(t) (u n)) P A (A, s x 6 1 6.1 ( ). Γ φ Γ = φ Γ = ψ Γ = ψ φ Γ = φ?? θ xθ?? { x(α β), xα} = xβ x α α xα x x x y (α α ) α α α x y {x y, α} = α A s (A, s) = x ys(x) = s(y) t s(t) = s(t ) t t x y α t 1 t 2 α t 1 t 2 (A, s) = α s(t

More information

标题

标题 第 35 卷第 期西南大学学报 ( 自然科学版 ) 3 年 月 Vol.35 No. JouralofSouthwestUiversity (NaturalScieceEditio) Feb. 3 文章编号 :673 9868(3) 69 4 一类积分型 Meyer-KiḡZeler-Bzier 算子的点态逼近 赵晓娣, 孙渭滨 宁夏大学数学计算机学院, 银川 75 摘要 : 应用一阶 DitziaṉTotik

More information

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ ! % & ( ),. / & 0 1 & 2 1 // % & 3 0 4 5 ( 6( ) ( & 7 8 9:! ; < / 4 / 7 = : > : 8 > >? :! 0 1 & 7 8 Α :! 4 Β ( & Β ( ( 5 ) 6 Χ 8 Δ > 8 7:?! < 2 4 & Ε ; 0 Φ & % & 3 0 1 & 7 8 Α?! Γ ), Η % 6 Β% 3 Ι Β ϑ Ι

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

《分析化学辞典》_数据处理条目_1.DOC

《分析化学辞典》_数据处理条目_1.DOC 3 4 5 6 7 χ χ m.303 B = f log f log C = m f = = m = f m C = + 3( m ) f = f f = m = f f = n n m B χ α χ α,( m ) H µ σ H 0 µ = µ H σ = 0 σ H µ µ H σ σ α H0 H α 0 H0 H0 H H 0 H 0 8 = σ σ σ = ( n ) σ n σ /

More information