矩阵函数

Similar documents
矩阵论 第三章:矩阵分析

6.3 正定二次型

第一章三角函数 1.3 三角函数的诱导公式 A 组 ( ) 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角, 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C 2 ( 中诱导公式 ) ( ) B. cos(

<4D F736F F D20B5DACAAED5C220CBABCFDFD0D4BAAFCAFDA3A8BDB2D2E5A3A92E646F63>

复习 : 线性变换与矩阵 _1 设 V 是数域 K 上 n 维向量空间, ξ1, ξ2... ξ n 是 V 的一组基, 则存在线性空间同构 1 η : V K n a 1 n a 2 α = a iξ i i = 1 a n 线性空间同构保持线性关系, 保持直和分解.

Microsoft PowerPoint - Eng-math-lecture14.ppt [Compatibility Mode]

高等数学A

<4F3A5CBED8D5F3C2DB5CB5DA3130BDB220BED8D5F3BAAFCAFDBCB0C6E4CEA2BBFDB7D62E707074>

Remark:随机变量不只离散和连续两种类型

精勤求学自强不息 Bor to w! (4) 设函数 s k l( ) 收敛, 则 k ( ) (A) (B) (C)- (D)- 答案 C k s k l( ) o( ) k o( ) 6 k ( k) o( ) 6 因为原级数收敛, 所以 k k. 选 C. (5) 设 是 维单位列向量, E

幻灯片 1

1989-2004数学三、四考研试题(线性代数部分3)

슬라이드 1

试卷

<4D F736F F D C4EAC6D5CDA8B8DFB5C8D1A7D0A3D5D0C9FAC8ABB9FACDB3D2BBBFBCCAD4CEC4BFC6D7DBBACDCAD4BEEDBCB0B4F0B0B82DD6D8C7ECBEED2E646F63>

常微分方程

2016考研数学三线性代数题目及试题答案

untitled

lim f(x) lim g(x) 0, lim f(x) g(x),

2014 年全国硕士研究生入学统一考试 数学三试题 一 选择题 :1~8 小题, 每小题 4 分, 共 32 分, 下列每小题给出的四个选项中, 只有一项符合题目要求 的, 请将所选项前的字母填在答题纸... 指定位置上. (1) 设 lim a = a, 且 a 0, 则当 n 充分大时有 ( )

Microsoft PowerPoint - 概率统计Ch02.ppt [Compatibility Mode]


1.3

56,,,,, :,, 1953,, 1953,1953,,1953,,,,,,,,, () ,30118, 34, ;,4912 %,5614 %, 1,1953, 1119, ,, , , 1111 (



2/63 1 非负矩阵 1.1 非负矩阵基本性质 1.2 正矩阵 1.3 非负矩阵的更多性质

一 根据所给图表,回答下列问题。

Microsoft Word - BD-QH2004.doc


<4D F736F F D2036A1A BFBCD1D0CAFDD1A7B6FED5E6CCE2BCB0B4F0B0B8BDE2CEF6A3A8CEC4B6BCB0E6A3A9>


untitled

<4D F736F F D20B5DAD2BBD5C2D0D0C1D0CABD2E646F63>

<4D F736F F D2035A1A BFBCD1D0CAFDD1A7D2BBD5E6CCE2BCB0B4F0B0B8BDE2CEF6A3A8CEC4B6BCB0E6A3A9>

2013年考研数学一试题答案.doc

2006ÄêÈ«¹ú˶ʿÑо¿ÉúÈëѧͳһ¿¼ÊÔÊýѧ¶þÊÔÌâ

. 微积分课程 微积分 2 复习 2019 年 5 月 2 日 暨南大学数学系 吕荐瑞 (lvjr.bitbucket.io)

标题

线性变换的特征值与特征向量 线性变换的特征值与特征向量 本节内容参见蓝以中 特征值与特征向量的计算法 设 V 是数域 K 上的 n 维线性空间,A 是 V 内一个线性变换 我们需要解决下面两个问题 : 决定 K 内所有 A 的特征值 λ 对于属于特征值 λ 的特征子空间 V λ, 找出它的一组基 我

) E F EF F F = = FE = F = F 5 E O E F O O O O O O O O O EFO E F 6 8cm 3cm 5cm cm 3cm 5cm cm 7 5% x + 3 x =

2003年

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

Microsoft Word - 数二答案

PowerPoint Presentation

考 纲 解 读 14 浙 江 省 普 通 高 考 语 文 科 考 纲 研 读 吴 美 琴 今 年 的 考 试 说 明, 我 用 了 八 个 字 进 行 概 括, 那 就 是 稳 中 微 调, 关 注 生 活 稳 中 微 调 :14 年 的 语 文 考 试 说 明 是 近 几 年 来 调 整 幅 度

2006年国家公务员招录考试行测真题(A)

定积分的基本概念问题的提出 Yunming Xio ( 南京大学数学系 ) 微积分 I( 高等数学 ) Autumn / 23

Born to win 2019 年全国硕士研究生入学统一考试数学一试题解析 一 选择题 :1~8 小题, 每小题 4 分, 共 32 分, 下列每小题给出的四个选项中, 只有一项 符合题目要求的, 请将所选项前的字母填在答题纸... 指定位置上. k (1) 当 x 0 时, 若 x tan x与


書本介紹

2019 考研数学三考试真题及答案详解 来源 : 文都教育 一 选择题 :1~8 小题, 每小题 4 分, 共 32 分, 下列每题给出的四个选项中, 只有一个选项是符合题目要 求的. k 1. 当 x 0 时, 若 x - tan x 与 x 是同阶无穷小, 则 k = A. 1. B. 2. C

湖北文都考研官网 : 考研数学二考试真题 ( 完整版 ) 来源 : 文都教育 一 选择题 1~8 小题, 每小题 4 分, 共 32 分, 下列每题给出的四个选项中, 只有一个选项是符合题目要求 的. k 1. 当 x 0 时, x tan x与 x 同阶

Microsoft Word - ex01.doc

第三章矩阵的


untitled

7. 下列矩阵中, 与矩阵 相似的为. A.. C.. B.. D. 8. 设 AB, 为 n 阶矩阵, 记 rx ( ) 为矩阵 X 的秩,( XY?) 表示分块矩阵, 则 A. r( A? AB) r( A). B. r( A? BA) r( A). C. r A B r A r B (? )

参考文献:

(8) 设 A = ( α α α α) 是 阶矩阵 A 为 A 的伴随矩阵 若 ( ) T 是方程组 A = 的一个基础解系 则 A= 的基础解系可为 ( ) (A) α α (B) α α (C) α α α (D) α α α 二 填空题 (9~ 小题 每小题 分 共 分 请将答案写在答题纸

( β ) () () R () R ) β ( ) ( ( β ) () R [ ] C( ) f ( ) g( ) ( f ( ) g( )) f ( ) g( ) d () () C( ) R [ ] R[ ] () 4 H ξ ( ) < H (Hlert) ) ( k β ) ( kβ )

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ

2009ÄêÈ«¹ú˶ʿÑо¿ÉúÈëѧͳһ¿¼ÊÔÊýѧ¶þÊÔÌâ

2019 考研数学一考试真题及答案详解来源 : 文都教育一 选择题 :1~8 小题, 每小题 4 分, 共 32 分 下列每题给出的四个选项中, 只有一个选项是符合题目要求的. k 1. 当 x 0 时, 若 x tan x 与 x 是同阶无穷小, 则 k = A.1. B.2. C.3. D.4.

99710b43ZW.PDF

精勤求学自强不息 Bor to w! (A) t (B) 5 t (C) t 5 (D) t 5 答案 B 从 到 t 这段时间内甲乙的位移分别为 t v (t) v (t) dt, 当 5 t 时满足, 故选 C. t t v (t) dt, v (t) dt, 则乙要追上甲, 则 (5) 设 是

例題. y = x x = 0 y = x 0 li 0 li 0 li = y = x x = 0 = f x) x = a x = a 2

Ps22Pdf

2007 GRE Math-Sub Nov 3, 2007 Test time: 170 minutes

湖北文都考研官网 : 考研数学一考试真题 ( 完整版 ) 来源 : 文都教育 一 选择题 :1~8 小题, 每小题 4 分, 共 32 分 下列每题给出的四个选项中, 只有一个选项是符合题目要求的. k 1. 当 x 0, 若 x tan x与 x 是同阶

untitled

<4D F736F F D BFBCD1D0CAFDD1A7B6FED5E6CCE2BCB0B4F0B0B8BDE2CEF65FCDEAD5FBBEABD7BCB0E65F>

第二节 向量组的线性相关性

07-3.indd

WL100014ZW.PDF

08-01.indd

( )

第一章 线性代数基础

PowerPoint 演示文稿

一、选择:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.

目 录 引言 可交换的线性变换的相关习题及结论 可交换的线性变换的一些讨论 参考文献

PowerPoint Presentation

( ) : ( ) (CIP) /.. :,003. () ISBN O4 44 CIP (00) : : 7 : 7007 : (09 ) : : :850 mm 68 mm / 3 :0.5 :60 :00 0

bingdian001.com

13WuYW_4questions

1 线性空间 基 维数和坐标 3 子空间 4 线性空间的同构 5 线性映射 6 线性映射的像与核 7 线性变换 8 不变子空间 厦门大学数学科学学院网址 :gdjpkc.xmu.edu.c; IP://

PowerPoint 演示文稿


第4章 级 数

Microsoft Word - V1_ _王翔会计习题课二.docx

3.1 ( ) (Expectation) (Conditional Mean) (Median) Previous Next

cos si A ; A si cos 解 由于对任意点 有 y y y y 确定的变换将任意一个点 变成它关于 轴对称 的点 见图.. 图.. 由于对任意点 有 y y y = y y 确定的变换将任意一个点 变成它关于直线 y 对称的点 见图.. 图.. 由于对任意点 有 y y y y 确定的

求出所有的正整数 n 使得 20n + 2 能整除 2003n n 20n n n 20n n 求所有的正整数对 (x, y), 满足 x y = y x y (x, y) x y = y x y. (x, y) x y =

2011年全国硕士研究生入学统一考试数学二试题

<4D F736F F D C4EABFBCD1D0CAFDD1A7C4A3C4E2BEED28CAFDD1A7D2BB29202D20BDE2CEF62E646F6378>

5 (Green) δ

<4D F736F F D C4EABFBCD1D0CAFDD1A7C4A3C4E2BEED28CAFDD1A7B6FE29202D20BDE2CEF62E646F6378>


第 5 期 方彩云 : 涉及极点重数的亚纯函数的唯一性 17 H.X.Yi [3~5],P.Li,C.C.Yang [6],G.Frank 和 M.Reinders [7] 讨论了亚纯函数的情况, 证明了 定理 B 存在一个集合 S,#S=11, 对于任意一对非常数亚纯函数 f 与 g, 如果满足条

<433A5C C41646D696E F725C B746F705CD0C2BDA8CEC4BCFEBCD05C DCAFDB6FEC4A3BFBCD2BBCAD4BEED26B4F0B0B82E646F63>

Transcription:

矩阵函数 矩阵分析 - 研究生课程

矩阵的多项式表示与矩阵的极小多项式 定义 1: 已知 和关于变量 的多项 式 那么我们称 为 的矩阵多项式 n x n 1 n 1 1 0 f( x) a x + a x + L + a x+ a n n n 1 n 1 1 0 f( ) a + a + L + a + a I n n n C 设为一个阶矩阵, 为其 Jordan 标准形, 则 n J

于是有 1 dag(,, L, ) 1 1 r PJP P J J J P Pdag( J ( λ ), J ( λ ), L, J ( λ )) P 1 1 r r 1 n f( ) a + a + L + a + a I n n 1 n 1 1 0 a ( PJP ) + a ( PJP ) + L n 1 n 1 n 1 n 1 + a ( PJP ) + a I 1 1 0 n PaJ ( + a J + L + aj+ ai) P n Pf ( J ) P 1 n 1 1 n 1 1 0 Pdag( f ( J ), f ( J ), L, f ( J )) P 1 r 1

我们称上面的表达式为矩阵多项式 Jordan 表示 其中 J f( ) λ 1 λ O J( λ) ( 1,, L, r) O 1 λ d d λ c λ L c λ k 1 k 1 d 1 k d+ 1 k k k k λ ( λ) O M 1 k 1 O ckλ k λ d d 的

f( J ) 1 ( d 1) f( λ) f ( λ) L f ( λ) ( d 1)! f ( λ ) O M O f ( λ ) f ( λ ) d d 例 1 已知多项式 4 3 f( x) x x + x 1 与矩阵 3 0 8 3 1 6 0 5 求 f( )

解 : 首先求出矩阵的及其相似变换矩阵 P 的 Jordan 标准形 J 1 0 0 J 0 1 1 0 0 1 0 4 1 P 1 3 0 0 0 那么有 1 P 0 1 3 0 0 1 1 0

f ( ) Pf ( J ) P 1 0 1 3 0 4 1 f ( 1) 0 0 1 3 0 0 f( 1) f ( 1) 0 0 1 0 0 0 0 f ( 1) 1 0 f( 1) + 4 f ( 1) 0 8 f ( 1) 3 f ( 1) f( 1) 6 f ( 1) f ( 1) 0 f( 1) 4 f ( 1) 35 0 7 7 1 54 18 0 37

定义 : 已知 和关于变量 的多 项式 n n 1 n 1 1 0 f( x) a x + a x + L + a x+ a n n n C 如果 f( x ) 满足 f( ) O n n, 那么称为矩阵的一个零化多项式 n n C f( ) O n n x f( x) 定理 1: 已知, f ( λ) 为其特征多 项式, 则有 我们称此定理为 Hamlton-Cayley 定理

n n 定义 3: 已知, 在的零化多项式中, 次数最低且首项系数为 1 的零化多项式称为 的最小多项式, 通常记为 m( λ) C 最小多项式的性质 : 已知 (1) 矩阵 的最小多项式是唯一的 () 矩阵的任何一个零化多项式均能被 n n C 整除 (3) 相似矩阵有相同的最小多项式, 那么 m( λ)

如何求一个矩阵的最小多项式? 首先我们考虑 Jordan 标准形矩阵的最小多项式 例 : 已知一个 Jordan 块 J 求其最小多项式 λ 1 λ O O 1 λ d d

d 解 : 注意到其特征多项式为 f ( λ) ( λ λ), 则由上面的定理可知其最小多项式 m( λ) 一定具有如下形状 1 k d m( λ) ( λ λ) k k < d 其中 但是当时 mj ( ) ( J λ I) 0 0 L 1 L 0 0 0 O O L 0 O O 1 O 0 L 0 0 0 k O d d 因此有 m( λ) ( λ λ) d

例 3 : 已知对角块矩阵 dag(,, L, ) 1 r m( λ), m ( λ), L, m ( λ) r, 1 分别为子块,, L, 1 r 的最小多项式, 则 的最小多项式为 即为式 [ ( λ), ( λ), L, ( λ)] m m m 1 r m m m 1 r ( λ), ( λ), L, ( λ) 的最低公倍

例 4 : 求下列矩阵的最小多项式 3 0 8 (1) 3 1 6 0 5 3 () B 1 8 14 3 1 6 (3) C 1 0 3 1 1 4 3 1 0 0 0 3 0 0 (4) D 0 0 3 0 0 0 0 5

解 : (1) 首先求出其 Jordan 标准形为 1 0 0 J 0 1 1 0 0 1 所以其最小多项式为 ( λ + 1) () 此矩阵的 Jordan 标准形为 1 0 0 J 0 3 1 0 0 3 从而其最小多项式为 ( λ 1)( λ 3)

(3) 该矩阵的 Jordan 标准形为 1 0 0 J 0 1 1 0 0 1 故其最小多项式为 ( λ 1) (4) 此矩阵本身就是一个 Jordan 标准形, 所以其最小多项式 ( λ 5)( λ 3)

函数在矩阵谱上的值与矩阵函数 C n n,, L, r r m( λ) 1 m( λ) ( λ λ1) d ( λ λ) d L ( λ λ ) dr r 定义 4: 设, λ λ λ 1 为的个互不相同的特征值, 为其最小多项式且有 其中 d 1( 1, L, r), d m 如果函数 f( x) 具有足够高阶的导数并且下列 m个值 r 1 f f f r ( 1) ( λ), ( ),, d λ L ( λ), 1,, L, 存在, 则称函数 f( x) 在矩阵 的谱上有定义

例 5: 设 又已知 f( x) 容易求得矩阵 1 ( x 3)( x 4) 8 3 6 3 0 4 的最小多项式为 m( λ) ( λ )( λ 1) 并且 f() 1, f(1) 1, f (1) 6 36 5

所以在的谱上有定义 但是如果取 f( x) 3 1 0 B 0 3 0 容易求得矩阵 B 0 0 1 的最小多项式为 m( λ) ( λ 1)( λ 3) 显然不存在, 所以在 B 的谱上无定义 f (3)

定义 5: 设矩阵 f( x) 函数在矩阵的谱上有定义, 如果存在多项式 gx ( ) 且满足 则定义矩阵函数为 f C n n ( ) g ( λ) ( k) λ ( k) d d d 1 m λ λ λ λ λ λ λ r ( ) ( ) 1( ) L ( ) r, 1,, L, r; k 1,, L, d 1 f( ) g( ) 如何求矩阵函数? 矩阵函数的 Jordan 表示, 多项式表示与幂级数表示? 的最小多项式为

C n n J P 为其相似变换矩阵且使得 PJP 1 如果函数 f( x) 在矩阵 的谱上有定义, 那么 定理 : 设, 为矩阵的 Jordan 标准形, 其中 f( ) Pf( J) P 1 Pdag( f ( J ), f ( J ), L, f ( J )) P 1 1 1 ( d 1) f( λ) f ( λ) f ( λ) L L f ( λ)! ( d 1)! f ( λ ) O O O M O O M f( J ) 1 O f ( λ )! f ( λ ) f ( λ ) 我们称此表达式为矩阵函数 f( ) r 1 d d 的 Jordan 表示

例 6 : 设 1 6 1 0 3 1 1 4 求 f( ) 的 Jordan 表示并计算 e, e,sn 解 : 首先求出其 Jordan 标准形矩阵 J 与相似变换矩阵 从而 J P 1 0 0 0 1 1 0 0 1 f( ) 的 Jordan 表示为 P t 1 1 1 0 0 1 1

f ( ) Pf ( J ) P 1 1 f (1) 0 0 1 0 1 1 0 0 f(1) f (1) 1 1 0 1 1 0 0 f (1) 1 1 3 f(1) f (1) f (1) 6 f (1) f (1) f(1) f (1) 3 f (1) f (1) f (1) f(1) + 3 f (1) 当从而有 f( x) e x 时, 可得 f(1) e, f (1) e

当 f x 于是有 ( ) e e 6e e e 0 3e e e 4e e tx 时, 可得 t f(1) e, f (1) te t t t t (1 te ) te 6te e t te t te (1 t) e t te 3te t (1+ 3 t) e t t t

当 f( x) snx 时, 可得 f(1) sn1, f (1) cos1 同样可得 sn1 cos1 cos1 6Cos1 sn cos1 sn1 cos1 3cos1 cos1 cos1 sn1+ 3cos1

例 7 : 设 3 0 8 3 1 6 0 5 求 f( ) 的 Jordan 表示并计算 e t, sn π,cosπ 解 : 首先求出其 Jordan 标准形矩阵似变换矩阵 J P 1 0 0 0 1 1 0 0 1 P J 与相 0 4 1 1 3 0 0 0

从而 f ( ) Pf ( J ) P 1 0 1 3 0 4 1 f ( 1) 0 0 1 3 0 0 f( 1) f ( 1) 0 0 1 0 0 0 0 f ( 1) 1 0 f( 1) + 4 f ( 1) 0 8 f ( 1) 3 f ( 1) f( 1) 6 f ( 1) 当 f( ) 的 Jordan 表示为 f( x) f ( 1) 0 f( 1) 4 f ( 1) tx e t 时, 可得 f(1) e, f (1) te t

于是有 当 f( x) t t t e + 4te 0 8te t t t t e 3te e 6te t t te 0 4te snπ x 时, 可得 f( 1) 0, f ( 1) π 故 4π 0 8π snπ 3π 0 6π π 0 4π 类似可求得 π 0 4π π cos 3π 0 3π π 0 π

矩阵函数的多项式表示 定理 3: 设函数与函数在矩阵 的谱上都有定义, 那么 f( ) g( ) 的充分必要条件是 f( x ) 与 gx ( ) 在 的谱上的值完全相同 设矩阵 C n n f( x ) gx ( ) 的最小多项式为 d d d 1 m λ λ λ λ λ λ λ r ( ) ( ) 1( ) L ( ) r 其中 λ, λ, L, λ 1 r 为矩阵的个互异特征值且 r d 1( 1, L, r), d m r 1

如何寻找多项式使得与所求的矩阵函数完全相同? 根据计算方法中的 Hermte 插值多项式定理可知, 在众多的多项式中有一个次数为 m 1 次的多项式 且满足条件 f( ) px ( ) p ( ) m 1 m m 1 m 1 0 px ( ) a x + a x + L + ax+ a p ( k) λ f ( k) ( ) ( λ), 1,, L, r; k 1,, L, d 1

这样, 多项式 中的系数关系式 确定出来 则我们称 为矩阵函数 m 1 m m 1 m 1 0 px ( ) a x + a x + L + ax+ a p a a a a,,,, m 1 m L 1 0 ( k) λ f ( k) ( ) ( λ) 的多项式表示 完全可以通过, 1,, L, r; k 1,, L, d 1 m 1 m m 1 m 1 0 f( ) a + a + L + a + a I f( )

例 8 : 设 1 0 0 0 0 求 f( ) 0 0 3 的多项式表示并且计算 e t s π π, n,cos 4 4 解 : 容易观察出该矩阵的最小多项式为 mx ( ) ( x 1)( x )( x 3)

这是一个 3 次多项式, 从而存在一个次数为 的多项式 且满足 1 0 px ( ) ax + ax+ a p(1) f(1), p() f(), p(3) f(3) 于是可得 f(1) a + a + a 1 0 f() 4a + a + a 1 0 f(3) 9a + 3a + a 1 0

解得 a f(3) 3 f() + 3 f(1) 0 1 a (3 f (3) 8 f () + 5 f (1)) 1 1 a ( f (3) f () + f (1)) 所以其多项式表示为 f (1) 0 0 ( ) f a + a + a I 0 f() 0 1 0 0 0 f (3)

当 f( x) e tx 时, 可得 t t 3 t f(1) e, f() e, f(3) e 于是有 e t 0 0 e t 0 e t 0 0 0 e 3t 当 f ( x) snπ x 4 时, 可得 f(1), f() 1, f(3)

故有 类似地有 0 0 snπ 0 1 0 4 0 0 0 0 cosπ 0 0 0 4 0 0

例 9 : 设 1 0 0 0 1 求 f( ) 0 0 的多项式表示并且计算 e t, sn π,cosπ 4 解 : 容易观察出该矩阵的最小多项式为 mx ( ) ( x 1)( x ) 这是一个 3 次多项式, 从而存在一个次数为

的多项式且满足 1 0 px ( ) ax + ax+ a p(1) f(1), p() f(), p() f () 于是有 f(1) a + a + a 1 0 f() 4a + a + a f () 4a + a 1 0 1

解得 0 1 a f () 3 f() + 4 f(1) a 3 f () + 4 f() 4 f(1) a f () f() + f(1) 所以其多项式表示为 f (1) 0 0 ( ) 0 () f a + a + a I f f () 1 0 0 0 f ()

当 f( x) e tx 时, 可得 t t t f(1) e, f() e, f () te 于是有 e t 0 0 e 0 e te t t t 0 0 e t 当 f( x) snπ x 时, 可得 f(1) 0, f() 0, f () π

故有 类似地有 0 0 0 snπ 0 0 π 0 0 0 0 0 cosπ 0 0 π 4 4 0 0 0

例 10 : 设 0 0 0 1 0 求 f( ) 0 0 1 的多项式表示并且计算 e t s π π, n,cos 解 : 容易观察出该矩阵的最小多项式为 mx ( ) ( x 1)( x ) 这是一个 次多项式, 从而存在一个次数为 1 的多项式

且满足 px ( ) ax+ a 1 0 p(1) f(1), p() f() 于是有 f(1) a + a 1 0 解得 f() a + a 1 0 a f() + f(1) 0 a f() f(1) 1

所以其多项式表示为 当 f( ) a + a I 1 0 f(1) f() 0 f() f(1) 0 f (1) 0 f() f(1) 0 f() f(1) f( x) e tx 时, 可得 t f(1) e, f() e t 从而可得 e t t t t t e e 0 e e t 0 e 0 t t t t e e 0 e e

当 f ( x) snπ x 时, 可得 f (1) 1, f() 0 故有 同样可以得到 0 snπ 0 1 0 1 0 1 1 0 cosπ 0 0 0 1 0

练习 : 设 1 1 0 0 1 1 求 f( ) 0 0 1 的多项式表示并且计算 e t, sn π,cosπ 4

矩阵函数的幂级数表示 C n n f( x) 定义 6: 设, 一元函数 能够展开成关 于 x 的幂级数 f( x) ck x k 0 并且该幂级数地收敛半径为 R 当矩阵 的谱半径 ρ ( ) < R 时, 我们将收敛矩阵幂级数的和 k cx k k 0 定义为矩阵函数, 一般记为 f( ), 即 k f( ) ck k 0 k

因为当 x <+ 时, 有 1 1 e x 1+ x+ x + L + x n + L! n! 1 1 sn x x x + x 3! 5! ( 1) 1 ( n + 1)! 3 5 n n+ 1 L + x + 1 1 cosx 1 x + x! 4! ( 1) 1 ( n )! 4 n n L + x + L L

当 x < 1 时, 有 (1 x) 1 1 x x x 3 ( 1) n x n + + L + + L 当 1< x 1 时, 有 1 1 ln(1 + x) x x + x 3 3 1 L + ( 1) n x n+ 1 + L n + 1

n n 所以对于任意的矩阵, 当 ρ ( ) < C R 时, 我们有 1 1 e I + + + L + n + L! n! sn 1 1 + 3! 5! 3 5 1 L + ( 1) n n+ 1 + L ( n + 1)!

cos 1 1 I +! 4! 4 1 L + ( 1) n n + L ( n )! ( I ) 1 I 3 ( 1) n n + + + L + + 1 1 1 ln( I + ) + 3 4 + 3 4 L 1 + ( 1) n + 1 n + L n L

由此可以得到一些简单的推论 : (1) () e O n n I n n ee e e I (3) e cos + sn, 1 (4) 1 cos ( e + e ) (5) 1 sn ( e e ) (6) sn( ) sn (7) cos( ) cos (8) sn + cos 1

矩阵指数函数与矩阵三角函数 这里我们主要讨论两种特殊矩阵函数的性质, 即 (1) e t () sn (3) cos k 0 1 t k! ( 1) t t (k + 1)! t k 0 k 0 k k k k ( 1) t ( k)! k k k+ 1 k+ 1

定理 4: 设时, 我们有 n n B, C, 那么当 B B (1) + B B B e e e e e () sn( + B) sn cos B+ cos sn (3) sn sn cos (4) cos( + B) cos cos B sn sn B (5) cos cos sn

证明 : 首先证明第一个等式 ee I 1 1! n! 1 1! n! I + + B 1 +! + B + B + B B n ( + + + L + + L ) n ( I + + + L + + L ) ( ) ( ) 1 ( 3 3 3 3 B B B ) + + + + + L L 3! 1 1 3 I + ( + B) + ( + B) + ( + B) + L L! 3! B e +

现在证明第二个等式 1 ( + B) ( + B) sn( + B) ( e e ) 1 ( B B e e e e ) 1 1 B B ( e e ) ( e + e ) 1 1 B B + ( e + e ) ( e e ) sn cos B+ cos sn B 同样可以证明其余的结论 B 注意 : 这里矩阵与的交换性条件是必不可少的

例 11: 设 那么容易计算 1 1 1 1, B 0 0 0 0 并且 3 L, B B B 3 L 0 + B 0 0 于是有 k k 1 ( + B) ( + B), k 1

故有 显然 1 e e e I + ( e 1) 0 1 e e 1 B e I + ( e 1) B 0 1 B ee B ee e ( e 1) 0 1 e ( e 1) 0 1 + B 1 e 0 e I + ( e 1)( + B ) 0 1 ee B, ee B, e + B 三者互不相等

另外, 关于矩阵的指数函数与三角函数还有下面几个特殊性质 d (1) ( e t ) e t e t dt () e k e k gtr ( ) (3) d (sn t) (cos t) (cos t) dt (4) d (cos t) (sn t) (sn t) dt

例 1 : 设 是一个 Hermte 矩阵, 那么是一个酉矩阵 e 证明 : 由矩阵指数函数公式 可得 e cos + sn H e ( e ) (cos + sn ) H [(cos ) (sn ) ] (cos + sn )(cos sn ) H I

例 13 : 设 是一个实的反对称矩阵 ( 或反 - H 阵 ), 那么为一个正交矩阵 ( 或酉矩阵 ) 证明 : 设为一个实的反对称矩阵, 那么由矩阵指数函数的幂级数表示 可得 e 1 1 e I + + + L + n + L! n!

1 1 1 e ( e ) T ( I + + + 3 L + n + L )! 3! n! 1 1 1 ( I + 3 L + ( 1) n n + L )! 3! n! O ee e n n I 同样可以证明当一个酉矩阵 为一个反 H- 矩阵时, e 为