<4D F736F F D D35205A BEF9CFE0B4DFBBAFD1A7CAF5BBE1B5DAD2BBC2D6CDA8D6AA2E646F63>

Similar documents
Microsoft Word - ED-774.docx

H 2 SO ml ml 1. 0 ml C 4. 0 ml - 30 min 490 nm 0 ~ 100 μg /ml Zhao = VρN 100% 1 m V ml ρ g

Microsoft Word - TIP006SCH Uni-edit Writing Tip - Presentperfecttenseandpasttenseinyourintroduction readytopublish

Total Synthesis of Candicanoside A, a Potent Antitumor Saponin Bearing a Rearranged Steroidal Side Chain

240 生 异 性 相 吸 的 异 性 效 应 [6] 虽 然, 心 理 学 基 础 研 [7-8] 究 已 经 证 实 存 在 异 性 相 吸 异 性 相 吸 是 否 存 在 于 名 字 认 知 识 别 尚 无 报 道 本 实 验 选 取 不 同 性 别 的 名 字 作 为 刺 激 材 料, 通

5-25袁宏钧.indd

Microsoft Word - Supporting Information clear

度 身 體 活 動 量 ; 芬 蘭 幼 兒 呈 現 中 度 身 體 活 動 量 之 比 例 高 於 臺 灣 幼 兒 (5) 幼 兒 在 投 入 度 方 面 亦 達 顯 著 差 異 (χ²=185.35, p <.001), 芬 蘭 與 臺 灣 幼 兒 多 半 表 現 出 中 度 投 入 與 高 度

Microsoft Word doc

by industrial structure evolution from 1952 to 2007 and its influence effect was first acceleration and then deceleration second the effects of indust

THE APPLICATION OF ISOTOPE RATIO ANALYSIS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER A Dissertation Presented By Chaoyong YANG Supervisor: Prof.D

931-33FR-E 1,2,3,4- BTCA DP FR-E BTCA DP X- DP60 Ea kJ/mol kJ/mol lna

1. General Information Unless otherwise noted, all reagents, catalysts and solvents were purchased from commercial suppliers and used without further

大纲正文.doc

382 25,,, 4.2 g 96% m.p.139~140 ( [21] :138~139 ), (4- )-2,2 6,2 - (L), [17], 2.5 mmol 1-(2- )-, 2.5 mmol 1-(2- )-(4- ) -1-2,2 6,2 (25.0 mmol),

OncidiumGower Ramsey ) 2 1(CK1) 2(CK2) 1(T1) 2(T2) ( ) CK1 43 (A 44.2 ) CK2 66 (A 48.5 ) T1 40 (

中 文 摘 要 芦 荟 和 金 银 花 抗 菌 成 分 提 取 及 其 对 棉 织 物 的 整 理 中 文 摘 要 随 着 生 活 水 平 的 提 高 和 健 康 环 保 意 识 的 增 强, 人 们 对 棉 织 物 卫 生 保 健 功 能 的 要 求 越 来 越 高, 故 对 棉 织 物 进 行

Table of Contents 1. General General procedure and product characterization data for Table ,3-Dione substrates characterization da

Shanghai International Studies University THE STUDY AND PRACTICE OF SITUATIONAL LANGUAGE TEACHING OF ADVERB AT BEGINNING AND INTERMEDIATE LEVEL A Thes


12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe

<4D F736F F D205F FB942A5CEA668B443C5E9BB73A740B5D8A4E5B8C9A552B1D0A7F75FA6BFB1A4ACFC2E646F63>

畜牧 动物医学 蚕 蜂

國家圖書館典藏電子全文

助 剂 改 善 其 止 血 效 果 1 实 验 1.1 原 料 和 试 剂 家 蚕 蛹 经 过 提 取 蛹 油 蛋 白 质 后 剩 余 的 残 渣 ( 主 要 成 分 为 蛹 皮 ), 烘 干 除 杂 粉 碎 后 待 用 ; 壳 聚 糖 ( 成 都 市 科 龙 化 工 试 剂 厂 ), 脱 乙 酰

Microsoft Word - 第四組心得.doc

22期xin

PCA+LDA 14 1 PEN mL mL mL 16 DJX-AB DJ X AB DJ2 -YS % PEN

A VALIDATION STUDY OF THE ACHIEVEMENT TEST OF TEACHING CHINESE AS THE SECOND LANGUAGE by Chen Wei A Thesis Submitted to the Graduate School and Colleg

<4D F736F F D20B8BDBCFEA3BAB9ABCABEC4DAC8DD2DB9FDB6C9BDF0CAF4D1F5BBAFCEEFC4C9C3D7BDE1B9B9D0C2D3B1B5C4CDE2B3A1D7F7D3C3CFECD3A6CCD8D0D4BCB0BBFAC0EDD1D0BEBF2E646F6378>

Microsoft Word tb 赵宏宇s-高校教改纵横.doc

1 1. M J M M J M J M M J

2005 5,,,,,,,,,,,,,,,,, , , 2174, 7014 %, % 4, 1961, ,30, 30,, 4,1976,627,,,,, 3 (1993,12 ),, 2

國立中山大學學位論文典藏

标题

59-81

电 话 随 访 对 初 产 妇 产 褥 期 母 乳 喂 养 行 为 及 意 向 的 影 响 The effect of telephone follow-up on breastfeeding behaviors and intentions of new mothers during the po

Microsoft Word - 7-針刺.doc

Hyperascyrones A–H, Polyprenylated Spirocyclic Acylphloroglucinol Derivatives from Hypericum ascyron Linn

Technical Acoustics Vol.27, No.4 Aug., 2008,,, (, ) :,,,,,, : ; ; : TB535;U : A : (2008) Noise and vibr

activities than commercial antibacterial agents. Moreover, "Extract Cleanser was safe to organisms as the result of toxicity evaluation identified by

864 现 代 药 物 与 临 床 Drugs & Clinic 第 31 卷 第 6 期 2016 年 6 月 of apoptosis related factors, decrease the incidence of adverse reactions, which is of great

Journal of Chinese Literature of Providence University Vol. 4, Dec 2013, pp Chinese Literature Department, Providence University The Study of L

地質調査研究報告/Bulletin of the Geological Survey of Japan

36(4) (2004) Journal of Soil and Water Conservation, 36(4) (2004) earthworms dig soil on surface and prevent plants to grow. But until D

( 三 ) 產 業 實 習 組 撰 寫 赴 大 陸 產 業 實 習 構 想 與 規 劃 (1,000 字 ) 具 良 好 學 習 意 願 與 工 作 態 度 部 份 跨 國 企 業 需 具 備 外 語 能 力 五 研 習 課 程 * 參 見 附 件 二 六 獎 助 對 象 研 習 期 間 將 有 陸


~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

Leaflet-chemistry-chem-chris suen 2016.xdw

s 15 contact s W Si 3 N μm N / m 4 AFM 95% AFM WPOJ UPOJ WPOJ UPOJ 260 ~ 280 nm WPOJ-DS UPOJ-DS 1 cm 1 cm DEAE-ce

Syngene GBOXHR Retsch MM400 KQ DE Eppendorf Table 1 The sources of Astragali Radix and Hedysarum Radix No. 1 AMM2011_NMGTY Astr


<453A5CCAB3C6B7BFC6D1A73131C4EA3134C6DA5C3134C6DA5C3032B7D6CEF6>

mm ~

标题


Microsoft Word - Electronic Supplementary Information.doc

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

Microsoft Word 葉一隆.doc

%

Microsoft Word - HC20138_2010.doc

168 健 等 木醋对几种小浆果扦插繁殖的影响 第1期 the view of the comprehensive rooting quality, spraying wood vinegar can change rooting situation, and the optimal concent

論 文 摘 要 本 文 乃 係 兩 岸 稅 務 爭 訟 制 度 之 研 究, 蓋 稅 務 爭 訟 在 行 訴 訟 中 一 直 占 有 相 當 高 的 比 例, 惟 其 勝 訴 率 一 直 偏 低, 民 87 年 10 月 28 日 行 訴 訟 法 經 幅 修 正 後, 審 級 部 分 由 一 級 一

, GC/MS ph GC/MS I

蒋 哲等 基于 CVM 的有机农业认知程度和消费意愿研究 201 (P 0.000). On the basis of these results, enhancing publicity, pricing reasonably, focusing on high- income groups ar

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

4. 每 组 学 生 将 写 有 习 语 和 含 义 的 两 组 卡 片 分 别 洗 牌, 将 顺 序 打 乱, 然 后 将 两 组 卡 片 反 面 朝 上 置 于 课 桌 上 5. 学 生 依 次 从 两 组 卡 片 中 各 抽 取 一 张, 展 示 给 小 组 成 员, 并 大 声 朗 读 卡

~ ~ ~

03施琅「棄留臺灣議」探索.doc

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3


中 國 學 研 究 期 刊 泰 國 農 業 大 學 บ นทอนเช นก น และส งผลก บการด ดแปลงจากวรรณกรรมมาเป นบทภาพยนตร และบทละคร โทรท ศน ด วยเช นก น จากการเคารพวรรณกรรมต นฉบ บเป นหล

Microsoft Word doc

600 现 代 药 物 与 临 床 Drugs & Clinic 第 31 卷 第 5 期 2016 年 5 月 were significantly decreased, but the levels of IL-12 in two groups were significantly increa

医学科研方法

Microsoft Word - 1王志宇.doc

SHIMPO_表1-表4

2 :XYZ-2 213, I = n FCV (, F :, C, V : ), H + Na + ( ),H +, 2,,, ( ) ( ) :, 1 ;, ( Fig 1 Diagram of the electrochemical ), H +, suppressor 1) Suppress

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm

Molecules 2017, 22, 236; doi: /molecules S1 of S21 Supplementary Materials: Bioactive Stilbenes from Cortex Mori Radicis, and Their Neur

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流

SHIMPO_表1-表4

Microsoft Word - 11月電子報1130.doc

13-4-Cover-1

弘健医用膜产品介绍 妇产科


Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip


211 better than those in the control group, with significant difference between two groups (P < 0.05). The ocular hypertension of patients in the cont

instillation therapy combined with Western medicine can reduce the levels of ALT, TBA, ALP, TBIL, DBIL and GGT, and improve the anti-cmv-igm negative

18 A B S 17.44±1() ±6.26( ) 54.23±5.5( ) 6.42±1.51() m 30m t α =.05 ( )AB 1 5 (p>.05)( )AB 1 5 (p<.05)( )A (p>.05)( )B (p<.05)( )A B

第一章 出口退税制改革的内容

南華大學數位論文

doc

~ a 3 h NCEP ~ 24 3 ~ ~ 8 9 ~ km m ~ 500 m 500 ~ 800 m 800 ~ m a 200

國立桃園高中96學年度新生始業輔導新生手冊目錄

第16卷 第2期 邯郸学院学报 年6月

untitled

果葡糖浆中5-HMF生成影响因素及其去除方法

跨越文藝復興女性畫像的格局—

Transcription:

2012 Chinese Journal of Catalysis Vol. 33 No. 12 ticle ID: 0253-9837(2012)12-1950-08 DI: 10.1016/S1872-2067(11)60470-1 ticle: 1950 1957 Solvent-ree Selective Cross-Aldol Condensation of Ketones with omatic Aldehydes Efficiently Catalyzed by a Reusable Supported Acidic Ionic Liquid Abolghasem DAVDNIA *, Ghazaleh YASSAGI Department of Chemistry, Mashhad anch, Islamic Azad University, Mashhad, Iran Abstract: A newly prepared catalyst consisting of acidic ionic liquid 1-(4-sulfonic acid)butylpyridinium hydrogen sulfate supported on silica was used to catalyze the cross-aldol condensation of ketones with aromatic aldehydes under solvent-free conditions. The highly active and selective catalyst gave good to excellent yields of the desired cross-aldol products without the occurrence of any self-condensation reactions. Reaction times were short, the procedure and work-up were simple, and no volatile or hazardous organic solvents were necessary. Moreover, the catalyst could be reused at least four times with only a slight reduction in activity. Key words: cross-aldol condensation, solvent-free condition, supported acidic ionic liquid; ketone; aromatic aldehyde CLC number: 643 Document code: A Received 15 August 2012. Accepted 23 cotober 2012. *Corresponding author. Tel: +98-511-8435000; ax: +98-511-8424020; E-mail: adavoodnia@mshdiau.ac.ir; adavoodnia@yahoo.com This work was supported by Islamic Azad University, Mashhad anch. English edition available online at Elsevier ScienceDirect (http://www.sciencedirect.com/science/journal/18722067). The aldol condensation, in which an enol or enolate ion reacts with a carbonyl compound and subsequent dehydration forms a conjugated enone, is an important method for the formation of carbon-carbon bonds. or example, cross-aldol condensations between ketones and aromatic aldehydes (also referred to as aisen-schmidt condensations) are useful for the preparation of α,α'-bisarylidene cycloalkanones and chalcones. ylidene cycloalkanones are important precursors for potentially bioactive pyrimidine derivatives [1], 2,7-disubstituted tropones [2], cytotoxic analogs [3], and monomers for liquid-crystalline polymers [4]. ylidene cycloalkanones have also been reported to possess significant biological activities, including antiangiogenic activity [5], quinine reductase-inducing activity [6], and cholesterol-lowering activity [7]. urthermore, they have been used as key starting materials for the synthesis of a new class of spiropyrrolidine antimicrobial and antifungal agents [8], tetraazadispiro[4.1.4.3]tetradeca-2,9-dien-6-ones [9], tricyclic thiazolo[3,2-a]thiapyrano[4,3-d]pyrimidines (which are potential anti-inflammatory agents) [10], and other heterocyclic compounds [11]. Chalcone natural products are potentially important synthetic intermediates for the preparation of flavonoids [12] and various heterocyclic compounds [13,14]. They also exhibit biological activities, including antimitotic [15], antimalarial [16], anticancer [17], and anti-inflammatory activity [18]. Aldol and cross-aldol condensations are traditionally catalyzed by strong acids or bases such as [19,20], p-toluenesulfonic acid [21], and potassium or sodium hydroxide [22,23]. owever, the presence of a strong acid or base often induces the reverse reaction as well as self-condensation reactions, and thus the yields of the desired products can be low. Recently, researchers have performed the reaction in ionic liquids [24,25]. owever, the use of homogeneous catalysts complicates product separation and catalyst recovery [26,27], and thus there have been efforts to replace homogeneous catalysts with easy-to-handle, noncorrosive, reusable, and environmentally friendly heterogeneous catalysts. or example, aldol condensations have been carried out with heterogeneous catalysts such as B 3 -Et 2 [28], Mg(S 4 ) 2 [29], sulfamic acid [30], Yb(Tf) 3 [31], In 3 [32], hydrotalcite [33], a fluoroalkylated 1,4-disubstituted [1,2,3]triazole organocatalyst [34], bis(p-methoxyphenyl)telluroxide [35], Cp 2 Zr 2 in combination with metal salts [36], NaAc [37], silica chloride [38], a sulfonated carbon nanocage [39], sulfated zirconia [40], polystyrene-supported sulfonic acid [41], cetyl trimethyl ammonium bromide [42], and K-Al 2 3 [43]. Although these methods may be effective, some of them require long reaction times and give low yields, are complicated by side reactions, require hazardous solvents or catalysts or expensive catalysts, or contribute to environmental pollution. These finding prompted us to search for new species to cleanly and efficiently catalyze the aldol condensation under environmentally friendly conditions in high

www.chxb.cn A. DAVDNIA et al.: Cross-Aldol Condensation of Ketones Catalyzed by Supported Acidic Ionic Liquid 1951 yields and short reaction times. As part of our research on the development of reusable catalysts for the synthesis of organic compounds [44 54], we recently prepared a new solid acidic catalyst by impregnating silica (Aerosil 300) with ionic liquid 1-(4-sulfonic acid)butylpyridinium hydrogen sulfate. This reusable heterogeneous catalyst, designated [PYC 4 S 3 ][S 4 ]/ A300Si 2, showed high catalytic activity in the synthesis of 2,3-dihydroquinazolin-4(1)-ones [55]. These results encouraged us to explore the use of this catalyst for the cross-aldol condensation of ketones with aromatic aldehydes. 1a C 3 1b or + C 2 [PYC 4 S 3 ][S 4 ]/A300Si 2 solvent-free, 130 o C 3a-3g 4a-4k or 3 C C 3 1c 5a-5d Scheme 1. Cross-aldol condensation of ketones with aromatic aldehydes catalyzed by [PYC 4 S 3 ][S 4 ]/A300Si 2. 1 Experimental 1.1 Preparation of [PYC 4 S 3 ][S 4 ]/A300Si 2 The catalyst [PYC 4 S 3 ][S 4 ]/A300Si 2 (cat. 2) was prepared by an impregnation method. Silica (Aerosil 300, 1.0 g) was added to a solution of [PYC 4 S 3 ][S 4 ] (0.75 g) in methanol (20 ml). The mixture was stirred at room temperature for 20 h to adsorb the ionic liquid on the surface of the support. The methanol was removed with a rotary evaporator, and the resulting solid powder was washed with cold chloroform and dried in vacuo at 100 C for 120 min [55]. The amount of + in the [PYC 4 S 3 ][S 4 ]/ A300Si 2 was determined by acid-base titration to be 1.5 mmol/g. 1.2 General procedure for cross-aldol condensation of ketones with aromatic aldehydes In a round-bottomed flask equipped with a reflux condenser, a mixture of acetophenone (1a, 1 mmol) or cyclohexanone (1b, 1 mmol) or acetone (1c, 1 mmol), an aromatic aldehyde 2 (1 mmol for acetophenone and 2 mmol for cyclohexanone and acetone), and [PYC 4 S 3 ][S 4 ]/ A300Si 2 (cat. 2, 0.07 g) was heated in an oil bath at 130 C for 25 40 min. After completion of the reaction, which was monitored by thin-layer chromatography, the reaction mixture was cooled to room temperature, and hot chloroform was added. The catalyst was insoluble in hot chloroform and could therefore be collected by a simple filtration. The filtrate was heated in vacuo to evaporate the solvent. The solid residue was collected and recrystallized from ethanol to give the desired product in high yield. lting points were recorded on a Stuart SMP3 melting point apparatus. IR spectra were obtained with a Tensor 27 uker spectrophotometer on K disks. 1 NMR (400 Mz) spectra were recorded with a uker 400 spectrometer. 3c ( = 4-C 6 4 ). 1 NMR (400 Mz, CD 3 ): 7.39 (d, 2, J = 8.3 z, arom-), 7.45 7.65 (m, 6, arom- & C vinyl ), 7.76 (d, 1, J = 15.7 z, C vinyl ), 8.03 (d, 2, J = 7.7 z, arom-). 3d ( = 4-C 6 4 ). 1 NMR (400 Mz, CD 3 ): 7.12 (t, 2, J = 8.6 z, arom-), 7.46 (d, 1, J = 15.7 z, C vinyl), 7.49 7.68 (m, 5, arom-), 7.78 (d, 1, J = 15.7 z, C vinyl ), 8.02 (d, 2, J = 7.2 z, arom-). 3e ( = 4-C 6 4 ). 1 NMR (400 Mz, CD 3 ): 2.43 (s, 3, C 3 ), 7.26 (d, 2, J = 8.0 z, arom-), 7.48 7.66 (m, 6, arom- & C vinyl ), 7.83 (d, 1, J = 15.6 z, C vinyl ), 8.05 (d, 2, J = 7.6 z, arom-). 3f ( = 2-2 NC 6 4 ). 1 NMR (400 Mz, CD 3 ): 7.35 (d, 1, J = 15.6 z, C vinyl ), 7.50 7.85 (m, 6, arom-), 8.00 8.13 (m, 3, arom-), 8.17 (d, 1, J = 15.6 z, C vinyl ). 4b ( = 4-C 6 4 ). 1 NMR (400 Mz, CD 3 ): 1.83 (quin, 2, J = 6.0 z, C 2 ), 2.91 (t, 4, J = 6.0 z, 2C 2 ), 7.35 (d, 4, J = 8.4 z, arom-), 7.56 (d, 4, J = 8.4 z, arom-), 7.74 (s, 2, 2C vinyl ). 4d ( = 4-C 6 4 ). 1 NMR (400 Mz, CD 3 ): 1.80 (quin, 2, J = 6.1 z, C 2 ), 2.89 (t, 4, J = 6.1 z, 2C 2 ), 7.35 7.43 (m, 8, arom-), 7.73 (s, 2, 2C vinyl ). 4e ( = 4-C 6 4 ). 1 NMR (400 Mz, CD 3 ): 1.81

1952 催化学报 Chin. J. Catal., 2012, 33: 1950 1957 (quin, 2, J = 6.2 z, C 2 ), 2.90 (t, 4, J = 6.2 z, 2C 2 ), 7.10 (t, 4, J = 8.6 z, arom-), 7.45 (dd, 4, J = 8.6, 5.5 z, arom-), 7.75 (s, 2, 2C vinyl ). 4k ( = 3-2 NC 6 4 ). 1 NMR (400 Mz, CD 3 ): 1.90 (quin, 2, J = 6.0 z, C 2 ), 3.00 (t, 4, J = 6.0 z, 2C 2 ), 7.64 (t, 2, J = 8.0 z, arom-), 7.79 (d, 2, J = 7.6 z, arom-), 7.84 (s, 2, 2C vinyl ), 8.24 (d, 2, J = 8.0 z, arom-), 8.35 (s, 2, arom-). 5b ( = 4-C 6 4 ). 1 NMR (400 Mz, CD 3 ): 7.03 (d, 2, J = 15.9 z, C vinyl ), 7.39 (d, 4, J = 8.1 z, arom-), 7.54 (d, 4, J = 8.1 z, arom-), 7.68 (d, 2, J = 15.9 z, C vinyl ). 1.3 Reuse of the catalyst The catalyst recovered by filtration was washed with cold chloroform, dried in vacuo at 100 C for 120 min, and reused. The catalyst could be reused at least four times with only a slight reduction in the catalytic activity. 2 Results and discussion To optimize the aldol reaction conditions, we used the reaction of acetophenone (1a, 1 mmol) and 4-chlorobenzaldehyde (1 mmol) as the model ketone and aromatic aldehyde, respectively, to afford product 3c. We investigated the effect of the ionic liquid loading on the silica support, the catalyst amount, the solvent, and the temperature (Table 1). irst, we confirmed that the reaction did not proceed at all in the absence of catalyst (entry 1). Then we varied the ionic liquid loading on the catalyst (0.5 (cat. 1), 0.75 (cat. 2), and 1.0 g (cat. 3) of ionic liquid per gram of silica support in methanol). No self-condensation reactions were observed with any of these three catalysts. The fastest reaction and the highest yield were obtained with cat. 2 (entry 21), so we used it to study the effects of the other parameters on the model reaction. Using cat. 2, we evaluated the reaction in various solvents. Refluxing Et, AcEt, C 3, or C 2 2 gave moderate yields of the desired product (Table 1, entries 32 35). The product yield in refluxing 2 was low even after 200 min of reaction (entry 31), whereas a relatively good yield was obtained in refluxing C 3 CN after 75 min (entry 36). To our surprise, when the reaction was performed under solvent-free conditions, the product was obtained in excellent yield after only 30 min at 130 C (entry 21). The reaction temperature also strongly influenced the reaction. No reaction occurred at room temperature in the presence of cat. 2 (Table 1, entries 8 and 9). Increasing the reaction temperature markedly enhanced both the yield and the reaction rate: the reaction was complete within 30 min at Table 1 ptimization of reaction conditions for synthesis of 3c catalyzed by [PYC 4 S 3 ][S 4 ]/A300Si 2 Entry Catalyst Catalyst Time Isolated Solvent T/ C amount (g) (min) yield (%) 1 solvent-free 130 120 None 2 cat. 1 0.05 solvent-free 110 80 61 3 cat. 1 0.05 solvent-free 130 60 70 4 cat. 1 0.07 solvent-free 110 75 72 5 cat. 1 0.07 solvent-free 130 30 80 6 cat. 1 0.10 solvent-free 110 75 73 7 cat. 1 0.10 solvent-free 130 30 78 8 cat. 2 0.05 solvent-free r.t. 120 none 9 cat. 2 0.07 solvent-free r.t. 120 none 10 cat. 2 0.02 solvent-free 90 60 69 11 cat. 2 0.02 solvent-free 110 60 71 12 cat. 2 0.02 solvent-free 120 30 74 13 cat. 2 0.02 solvent-free 130 30 79 14 cat. 2 0.05 solvent-free 90 60 71 15 cat. 2 0.05 solvent-free 110 60 76 16 cat. 2 0.05 solvent-free 120 30 77 17 cat. 2 0.05 solvent-free 130 30 84 18 cat. 2 0.07 solvent-free 90 60 80 19 cat. 2 0.07 solvent-free 110 60 86 20 cat. 2 0.07 solvent-free 120 30 89 21 cat. 2 0.07 solvent-free 130 30 94 22 cat. 2 0.10 solvent-free 130 30 93 23 cat. 3 0.05 solvent-free 110 60 77 24 cat. 3 0.05 solvent-free 130 30 83 25 cat. 3 0.07 solvent-free 110 60 88 26 cat. 3 0.07 solvent-free 130 30 93 27 cat. 3 0.10 solvent-free 130 30 91 28 cat. 1 0.07 AcEt reflux 90 50 29 cat. 1 0.07 C 3 reflux 120 31 30 cat. 1 0.07 C 3 CN reflux 120 44 31 cat. 2 0.07 2 reflux 200 24 32 cat. 2 0.07 Et reflux 120 43 33 cat. 2 0.07 AcEt reflux 60 55 34 cat. 2 0.07 C 3 reflux 90 45 35 cat. 2 0.07 C 2 2 reflux 60 61 36 cat. 2 0.07 C 3 CN reflux 75 72 37 cat. 3 0.07 AcEt reflux 60 56 38 cat. 3 0.07 C 3 reflux 90 47 39 cat. 3 0.07 C 3 CN reflux 80 71 Reaction conditions: substrates were acetophenone (1 mmol) and 4-chlorobenzaldehyde (1 mmol) and cat. 1, cat. 2, and cat. 3 were prepared by stirring 0.5, 0.75, and 1.0 g of [PYC 4 S 3 ][S 4 ], respectively, with 1.0 g silica in methanol for 20 h as described in the experimental section. 130 C, and the yield was 94% (entry 21). We also investigated the effect of the solvent used to prepare cat. 2. We prepared cat. 2 with acetonitrile or chloroform as the solvent, instead of methanol, with stirring at room temperature for 20 h. We then tested the performance of the resulting catalysts in the synthesis of 3c and found

www.chxb.cn A. DAVDNIA et al.: Cross-Aldol Condensation of Ketones Catalyzed by Supported Acidic Ionic Liquid 1953 that the solvent in the preparation method of cat. 2 had no effect on the rate or yield of the aldol condensation. To evaluate the substrate scope of the optimized reaction conditions, we carried out cross-aldol condensations with acetophenone, cyclohexanone, and acetone and a series of aromatic aldehydes (Table 2). omatic aldehydes with electron-donating or -withdrawing substituents reacted efficiently and relatively quickly with acetophenone, cyclohexanone, and acetone, to give condensation products 3a 3g, 4a 4k, and 5a 5d, respectively, in high yields. In all cases, only one stereoisomer was produced, as indicated by 1 NMR spectroscopy. Large coupling constants between the two vinylic protons in 3a 3g and 5a 5d indicated that the compounds were E stereoisomers. n the basis of previously reported results [24,29 31,37 43], however, we determined that 4a 4k also had the E configuration (as shown in Scheme 1). n the other hand, we were unable to carry out selective monocondensation from only one side of cyclo- Table 2 Cross-aldol condensation of ketones with aromatic aldehydes catalyzed by [PYC 4 S 3 ][S 4 ]/A300Si 2 Entry Ketone Aldehyde Product a Time (min) Isolated yield (%) m.p. (ºC) 1 3a 30 89 83 85 C 3 2 3 4 5 6 C 3 C 3 C 3 C 3 C 3 N 2 N 2 3b 35 85 117 120 3c 30 94 112 115 3d 35 91 87 88 3e 40 82 90 92 3f 30 89 121 122 7 C 3 2 N N 2 3g 30 85 141 142 8 4a 30 90 116 118 9 4b 25 92 164 165 10 4c 25 85 106 108 11 4d 25 92 145 147 12 4e 25 93 157 158 (To be continued)

1954 催化学报 Chin. J. Catal., 2012, 33: 1950 1957 Table 2 (Continued) Entry Ketone Aldehyde Product a Time (min) Isolated yield (%) m.p. (ºC) 13 4f 30 89 161 163 14 4g 35 88 143 145 15 4h 30 84 166 167 16 4i 35 87 252 255 2 N 2 N N 2 N 2 N 2 N 2 17 4j 25 92 158 159 18 2 N 2 N N 2 4k 35 85 198 199 19 3 C C 3 5a 35 85 117 119 20 3 C C 3 5b 30 87 192 193 21 3 C C 3 5c 35 84 175 177 22 3 C C 3 5d 40 84 128 129 Reaction conditions: acetophenone or cyclohexanone or acetone (1 mmol), aromatic aldehyde (1 mmol for acetophenone and 2 mmol for cyclohexanone and acetone), and [PYC 4 S 3 ][S 4 ]/A300Si 2 (cat. 2, 0.07 g) at 130 ºC under solvent-free conditions. a All the products were characterized by IR spectroscopy and by comparison of their melting points with those of authentic samples. The structures of some products were confirmed by 1 NMR spectroscopy. hexanone and acetone, and thin-layer chromatography indicated that the reactions produced mixtures of products, which we did not identify. We compared the results we obtained using [PYC 4 S 3 ][S 4 ]/A300Si 2 as a heterogeneous catalyst with previously reported results for cross-aldol condensation reactions in the presence of various homogeneous, heterogeneous, and supported catalysts (Table 3). ur reaction conditions showed a shorter reaction time than all the other conditions (except catalysis by K-Al 2 3 with microwave irradiation) and gave high yields of the desired products. We also used our optimized reaction conditions to evaluate the reusability of cat. 2 (ig. 1). After the reaction was complete, the catalyst was recovered as described in the

www.chxb.cn A. DAVDNIA et al.: Cross-Aldol Condensation of Ketones Catalyzed by Supported Acidic Ionic Liquid 1955 Table 3 Comparison of catalyst performance in cross-aldol condensations of ketones with aldehydes Catalyst Conditions Solvent T/ºC ther Time (min) Yield (%) Ref. Ionic liquid (for some cases: r.t. 60 180 86 96 24 Et) Ionic liquid r.t. 960 2880 78 96 25 Mg(S 4 ) 2 60 120 480 82 96 29 Sulfamic acid 80 150 1440 77 94 30 Yb(Tf) 3 90 240 720 88 97 31 luoroalkylated 1,4-disubstituted Et reflux 600 1200 66 96 34 [1,2,3]triazole organocatalyst NaAc glacial Ac 120 N 2 atmosphere 180 480 81 93 37 Silica chloride 100-110 120 900 65 95 38 Sulfonated carbon nanocage 70 30 120 72 92 39 Sulfated zirconia 170 240 63 96 40 Polystyrene-supported sulfonic acid C 3 reflux 240 360 75 94 41 Cetyl trimethyl ammonium bromide 2 60 Na 360 480 80 98 42 K-Al 2 3 MW at 450 W 2 5 min 75 90 43 K-Al 2 3 C 3 CN reflux 480 840 40 55 43 [PYC 4 S 3 ][S 4 ]/A300Si 2 (cat. 2) 130 25 40 min 84 94 this work experimental section and was then reused for a similar reaction. We found that the catalyst could be used at least five times with only a slight reduction in activity. urthermore, the T-IR spectra of the recovered catalysts (ig. 2(2) (5)) were almost identical to the spectrum of the fresh catalyst (ig. 2(1)), indicating that the structure of the catalyst was unchanged by the reaction. 100 95 Transmittance (5) (4) (3) (2) (1) Yield (%) 90 85 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm 1 ) ig. 2. T-IR spectra of fresh catalyst (cat. 2, run 1, (1)) and recovered catalysts (cat. 2, runs 2 5, (2) (5), respectively) for the synthesis of 3c. 80 1 2 3 4 5 Reaction cycle ig. 1. Effect of recycling on catalytic performance of [PYC 4 S 3 ][S 4 ]/A300Si 2 (cat. 2) in the synthesis of 3c. To confirm that the ionic liquid interacted strongly with the silica support under the optimal reaction conditions, we added hot chloroform to the reaction mixture 10 min after the first run and then filtered the mixture. When the reaction was resumed with the filtrate, in the absence of any externally added catalyst, no increase in conversion was observed after 1 h, indicating that the active catalyst was a heterogeneous solid catalyst. 3 Conclusions We showed that [PYC 4 S 3 ][S 4 ]/A300Si 2 efficiently catalyzed the cross-aldol condensation of ketones with aromatic aldehydes under solvent-free conditions. The method was fast and high yielding, the work-up was easy, and only one product was formed, as indicated by thin-layer chromatography and 1 NMR spectroscopy. In addition, the reaction was environmentally friendly because it was solvent free, and the use of the solid acidic supported catalyst eliminated the need for soluble inorganic acids and thus

1956 催化学报 Chin. J. Catal., 2012, 33: 1950 1957 reduced waste. Moreover, the catalyst could be easily recycled by filtration and reused at least four times with only a slight reduction in activity. Acknowledgements The authors express their gratitude to the Islamic Azad University, Mashhad anch for its financial support. References 1 Deli J, Lorand T, Szabo D, oldesi A. armazie, 1984, 39: 539 2 Leonard N J, Miller L A, Berry J W. J Am Chem Soc, 1957, 79: 1482 3 Dimmock J R, Padmanilayam M P, Zello G A, Neinaber K, Allen T M, Santos C L, De ercq E, Balzarini J, Manavathu E K, Stables J P. Eur J d Chem, 2003, 38: 169 4 Gangadhara, Kishore K. Polymer, 1995, 36: 1903 5 Robinson T P, Ehlers T, ubbard R B, Bai X, biser J L, Goldsmith D J, Bowena J P. Bioorg d Chem Lett, 2003, 13: 115 6 Dinkova-Kostova A T, Abeygunawardana C, Talalay P. J d Chem, 1998, 41: 5287 7 Piantadosi C, all I, Irvine J L, Carlson G L. J d Chem, 1973, 16: 770 8 Raj A A, Raghunathan R, Sridevi Kumari M R, Raman N. Bioorg d Chem, 2003, 11: 407 9 Girgis A S, Ibrahim Y A, Mishriky N, Lisgarten J N, Potter B S, Palmer R A. Tetrahedron, 2001, 57: 2015 10 Rovnyak G, Shu V, Schwartz J. J eterocycl Chem, 1981, 18: 327 11 Amarasekara A S. Tetrahedron Lett, 2005, 46: 2635 12 Drexler M T, Amiridis M D. J Catal, 2003, 214: 136 13 Karthikeyan M S, olla B S, Kumari N S. Eur J d Chem, 2007, 42: 30 14 Rateb N M. osphorus, Sulfur Silicon Relat Elem, 2007, 182: 2393 15 Ducki S, orrest R, adfield J A, Kendall A, Lawrence N J, McGown A T, Rennison D. Bioorg d Chem Lett, 1998, 8: 1051 16 Mishra N, ora P, Kumar B, Mishra L C, Bhattacharya A, Awasthi S K, Bhasin V K. Eur J d Chem, 2008, 43: 1530 17 Wattenberg L W, Coccia J B, Galbraith A R. Cancer Lett, 1994, 83: 165 18 Dimmock J R, Elias D W, Beazel M A, Kandepu N M. Curr d Chem, 1999, 6: 1125 19 Sipos G, Sirokman. Nature, 1964, 202: 489 20 Kozlov N G, Basalaeva L I. Russ J Gen Chem, 2004, 74: 926 21 Le Gall E, Texier-Boullet, amelin J. Synth Commun, 1999, 29: 3651 22 Li J T, Chen G, Wang J X, Li T S. Synth Commun, 1999, 29: 965 23 Sivakumar P M, Seenivasan S P, Kumar V, Doble M. Bioorg d Chem Lett, 2007, 17: 1695 24 Wan Y, Chen X M, Pang L L, Ma R, Yue C, Yuan R, Lin W, Yin W, Bo R C, Wu. Synth Commun, 2010, 40: 2320 25 Yang S D, Wu L Y, Yan Z Y, Pan Z L, Liang Y M. J Mol Catal A, 2007, 268: 107 26 Jana S K. Catal Surv Asia, 2005, 9: 25 27 Davoodnia A, eravi M M, Rezaei-Daghigh L, Tavakoli-oseini N. Chin J Chem, 2010, 28: 429 28 Narender T, Papi Reddy K. Tetrahedron Lett, 2007, 48: 3177 29 Salehi P, Khodaei M M, Zolfigol M A, Keyvan A. Monatsh Chem, 2002, 133: 1291 30 Rostami A, Ahmad-Jangi. Chin Chem Lett, 2011, 22: 1029 31 Wang L, Sheng J, Tian, an J, an Z, Qian C. Synthesis, 2004, 18: 3060 32 Deng G, Ren T. Synth Commun, 2003, 33: 2995 33 Sharma S K, Parikh P A, Jasra R V. J Mol Catal A, 2007, 278: 135 34 Zhu Y W, Yi W B, Cai C. J luorine Chem, 2011, 132: 71 35 Zheng M, Wang L, Shao J, Zhong Q. Synth Commun, 1997, 27: 351 36 Nakano T, Irifune S, Umano S, Inada A, Ishii Y, gawa M. J rg Chem, 1987, 52: 2239 37 Motiur Rahman A M, Jeong B S, Kim D, Park J K, Lee E S, Jahng Y. Tetrahedron, 2007, 63: 2426 38 azarkhani, Kumar P, Kondiram K S, Shafi Gadwal I M. Synth Commun, 2010, 40: 2887 39 Lin P, Li B, Li J, Wang, Bian X, Wang X. Catal Lett, 2011, 141: 459 40 Rawal K, Mishra M K, Dixit M, Srinivasarao M. J Ind Eng Chem, 2012, 18: 1474 41 An L T, Zou J P, Zhang L L. Catal Commun, 2008, 9: 349 42 Shrikhande J J, Gawande M B, Jayaram R V. Catal Commun, 2008, 9: 1010 43 Yadav J S, Reddy B V S, Nagaraju A, Sarma J A R P. Synth Commun, 2002, 32: 893 44 Moghaddas M, Davoodnia A, eravi M M, Tavakoli-oseini N. Chin J Catal, 2012, 33: 706 45 Tavakoli-oseini N, Davoodnia A. Asian J Chem, 2010, 22: 7197 46 eravi M M, Saeedi M, Karimi N, Zakeri M, Beheshtiha Y S, Davoodnia A. Synth Commun, 2010, 40: 523 47 Seifi N, Zahedi-Niaki M, Reza Barzegari M, Davoodnia A, Zhiani R, Kaju A A. J Mol Catal A, 2006, 260: 77 48 Davoodnia A. Asian J Chem, 2010, 22: 1595 49 Norouzi, Davoodnia A, Bakavoli M, Zeinali-Dastmalbaf M, Tavakoli-oseini N, Ebrahimi M. Bull Korean Chem Soc, 2011, 32: 2311 50 Zeinali-Dastmalbaf M, Davoodnia A, eravi M M, Tavakoli-oseini N, Khojastehnezhad A, Zamani A. Bull Korean Chem Soc, 2011, 32: 656 51 Tavakoli-oseini N, Davoodnia A. Chin J Chem, 2011, 29: 203

www.chxb.cn A. DAVDNIA et al.: Cross-Aldol Condensation of Ketones Catalyzed by Supported Acidic Ionic Liquid 1957 52 Khojastehnezhad A, Davoodnia A, Bakavoli M, Tavakoli-oseini N, Zeinali-Dastmalbaf M. Chin J Chem, 2011, 29: 297 53 Mohammadzadeh-Dehsorkh N, Davoodnia A, Tavakoli- oseini N, Moghaddas M. Synth React Inorg t-rg Nano-t Chem, 2011, 41: 1135 54 Davoodnia A, Tavakoli-Nishaburi A, Tavakoli-oseini N. Bull Korean Chem Soc, 2011, 32: 635 55 Yassaghi G, Davoodnia A, Allameh S, Zare-Bidaki A, Tavakoli-oseini N. Bull Korean Chem Soc, 2012, 33: 2724 第十三届全国均相催化学术讨论会第一轮通知 时间 : 2013 年 9 月 25~27 日地点 : 江苏省苏州市承办单位 : 中国科学院兰州化学物理研究所苏州大学材料与化学化工学部 一 会议介绍由中国化学会催化委员会均相催化专业委员会主办, 中国科学院兰州化学物理研究所和苏州大学材料与化学化工学部联合承办的第十三届全国均相催化学术讨论会定于 2013 年 9 月 25~27 日在美丽的城市苏州举行. 本届会议是全国均相催化和相关领域专家学者的一次聚会, 将全面展示两年来我国在这些领域取得的研究成果, 交流和讨论均相催化发展的新趋势和所面临的机遇与挑战, 以推动我国均相催化领域的研究和相关产业向更高的目标迈进. 会议拟邀请著名专家学者与会, 会议组委会热忱欢迎从事均相催化科学研究与技术开发的专家 同行及在读研究生积极投稿, 并莅临本届盛会. 会议期间将颁发第二届 中国均相催化青年奖 和第十三届全国均相催化学术讨论会 优秀墙报奖. 二 会议主办单位 : 均相催化专业委员会主任 : 夏春谷副主任 : 丁奎岭李贤均秘书长 : 孙伟委员 : 包明陈静范青华龚流柱郭灿城贺德华胡信全华瑞茂江焕峰金国新雷爱文李光兴梁永民陆维敏施章杰王公应王向宇吴鹏吴静徐杰夏清华游书力袁友珠周永贵三 征文范围 1. 均相催化剂的设计 合成和表征 ; 2. 均相酸碱催化反应 ; 3. 不对称催化反应 ; 4. 小分子催化 ; 5. 生物催化与仿生催化反应 ; 6. 胶束和胶体催化以及微乳催化反应 ; 7. 纳米催化剂的制备 表征和催化反应 ; 8. 光 电催化反应 ; 9. 生物质催 化转化 ; 10. 均相催化剂的多相化 ; 11. 均相催化的工业应用 ; 12. 与均相催化相关的反应机理 理论和计算化学等. 四 投稿要求及日期关于详细论文摘要的格式要求请登录会议网站查看 : http://13nchc.csp.escience.cn/dct/pag. 论文经评审录用后发出录用通知. 被录用的论文一般不再退回修改, 作者在寄论文摘要时应做好一次性定稿准备, 文责自负. 论文录用与否, 一概不退, 请作者自留底稿. 征文截止日期为 2013 年 6 月 30 日, 请登陆会议网站进行在线投稿或通过 E-mail (13nchc@licp.cas.cn) 发送征文电子版. 五 会议承办单位及联系人中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点实验室地址 : 甘肃省兰州市天水中路 18 号邮编 : 730000 联系人 : 李福伟牛建中电话 : (0931)4968528; (0931)4968126 传真 : (0931)4968129 E-mail: fuweili@licp.cas.cn; njz@licp.cas.cn 苏州大学材料与化学化工学部地址 : 江苏省苏州市工业园区仁爱路 199 号 907 栋邮编 : 215123 联系人 : 王兴旺电话 : (0512)65880378 E-mail: wangxw@suda.edu.cn ( 第十三届全国均相催化学术讨论会组委会 )