57 BIA BIA cm kg X DEXA BC-418 FFM BIA LR ANN LR r 2 =.897 RMSE=1.678 kg ANN r 2 =.996 RMSE=0.328 kg ANN LR LR ANN DEXA

Similar documents
香港促進健康飲食及體能活動參與的行動計劃書

sedentary lifestyle Blair Connelly, 1996; King Senn, Health People American College of Sports Medic

體適能與身體組成

untitled

, %, 3.01%, BMI BMI 24 BMI 28 85cm 80cm ii

Microsoft Word - A doc

kg

中國傳統醫學及養生保健學說中,與經脈及穴道有密不可分的關係

作 组 即 着 手 编 写 中 国 成 人 超 重 和 肥 胖 症 预 防 与 控 制 指 南 在 广 泛 征 求 相 关 学 科 专 家 意 见 的 基 础 上, 经 七 次 修 改, 形 成 指 南 终 稿 希 望 本 指 南 能 够 为 推 动 中 国 肥 胖 防 治 工 作, 控 制 慢 性

~ 10 2 P Y i t = my i t W Y i t 1000 PY i t Y t i W Y i t t i m Y i t t i 15 ~ 49 1 Y Y Y 15 ~ j j t j t = j P i t i = 15 P n i t n Y

18 A B S 17.44±1() ±6.26( ) 54.23±5.5( ) 6.42±1.51() m 30m t α =.05 ( )AB 1 5 (p>.05)( )AB 1 5 (p<.05)( )A (p>.05)( )B (p<.05)( )A B

(Microsoft Word - 11-\261i\256m\253i.doc)

壹 緒 論 由 於 作 者 任 教 於 大 專 軍 事 校 院, 依 校 規 規 定 學 生 於 第 八 學 期 必 須 通 過 3000 公 尺 跑 步 測 驗 限 定 14 分 鐘 的 及 格 標 準 始 得 畢 業 ; 因 此 探 討 提 升 中 長 距 離 與 長 距 離 跑 步 能 力 的

中國傳統醫學及養生保健學說中,與經脈及穴道有密不可分的關係

目 錄 一 引 言... 1 二 研 究 生 學 位 論 文 寫 作 流 程 進 入 學 位 論 文 寫 作 階 段 的 前 提 選 題 及 確 定 指 導 老 師 選 題 申 請 開 題 報 告 學 位 論 文 寫 作...2

Microsoft Word - 09 ¹B°Ê»PÅé�«±±¨î.doc

Leisure Participation Type Differences And Leisure Satisfaction Differences Between Various Body Mass Indices: A Correlation Study To Taiwan s College


相 关 报 道 近 年 来 临 床 上 运 用 多 种 针 灸 疗 法 治 疗 肥 胖 及 其 引 起 的 并 发 症, 如 高 脂 血 症 糖 尿 病 高 血 压 及 痛 经 等, 均 获 得 满 意 疗 效. caused by sedentary lifestyle and genetic f

( s y s t e m ) ( s t r e s s ) (stress model) ( s y s t e m ) [ ] [ 5 ] C o x [ 3 ] 1 [ 1, 2 ] [ 6-8 ] [ 9 ] Tw Fam Med Res 2003 Vol.1 No.1 23

THE APPLICATION OF ISOTOPE RATIO ANALYSIS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER A Dissertation Presented By Chaoyong YANG Supervisor: Prof.D

度 身 體 活 動 量 ; 芬 蘭 幼 兒 呈 現 中 度 身 體 活 動 量 之 比 例 高 於 臺 灣 幼 兒 (5) 幼 兒 在 投 入 度 方 面 亦 達 顯 著 差 異 (χ²=185.35, p <.001), 芬 蘭 與 臺 灣 幼 兒 多 半 表 現 出 中 度 投 入 與 高 度

untitled

Vocabulary Development in Armenian Children Attending Armenian-English Bilingual Preschools

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m +

Time Estimation of Occurrence of Diabetes-Related Cardiovascular Complications by Ching-Yuan Hu A thesis submitted in partial fulfillment of the requi

UDC Empirical Researches on Pricing of Corporate Bonds with Macro Factors 厦门大学博硕士论文摘要库

Microsoft Word - 01李惠玲ok.doc

1 引言

<4D F736F F D B35DA977A5BFBD54AABAB942B0CAB16AABD72DBDD7AA52B942B0CAB16AABD7AABAB4FAB671A4E8AA6BBB50B942A5CE>

2015医学版第六期

PowerPoint プレゼンテーション

ii

( )

Dan Buettner / /

Part VI: Sports Injuries, Treatment and Precautions – Learning Outcomes

<4D F736F F D203236A448C5E9A774A4F4B671B5FBA6F4C0B3A5CEA9F3B942B0CA2E646F63>


國家圖書館典藏電子全文

Microsoft Word doc

P. C Evelyn. M. Duvall 2 quality of life cabana

< F63756D656E D2D796E2D31C6DABFAF2D31D6D0D2BDD2A9CFD6B4FABBAF2D C4EA2DB5DA38C6DA2D30362DC3F1D7E5D2BDD2A92E6D6469>

<4D F736F F D203031A5F4BAFBB747A277BC76C554A46BA9CABE72BE70A677A5FEA65DAFC02E646F63>

國立中山大學學位論文典藏.PDF

第 11 輯 13~23 頁 ( ) 國 小 學 童 身 體 質 量 指 數 發 展 分 析 前 言 國 小 學 童 年 齡 約 為 6 至 12 歲, 介 於 兒 童 及 青 少 年, 正 是 身 體 快 速 生 長 時 期, 身 體 生 長 最 容 易 被 觀 察 的 就 是 長 得

259 I

協助短腸症病患接受居家靜脈營養之照護經驗 腫瘤 及因疾病本身的變化 需反覆切除腸子 [3] 或行廣泛性的腸切除所造成的 一般來說 殘 必然增加 進而提升營養的利用率及疾病之治 留小腸的長度小於100公分 急性期時都需要使 癒率 當病患病情穩定 不需再接受其他治療 用全靜脈營養注射來提供營養 患者才能

SVM OA 1 SVM MLP Tab 1 1 Drug feature data quantization table

(2005 (2006, (2006 ( , ( ,,,,,, ( (ASFR ASFR : x, B x x, P f x x (1 (2 4,, , 2 1 :, 1 2, 20-29

<4D F736F F D D31332DA655B0CFB9EAAC49A5AEA8E0B942B0CAB943C0B8BDD2B57BB27BAA70A4C0AA522D2D2DBBB2A46A >

<4D F736F F D203031B4CEB279B942B0CAA6D9A44FBB50C5E9AFE0B056BD6D2E646F63>


STEAM STEAM STEAM ( ) STEAM STEAM ( ) 1977 [13] [10] STEM STEM 2. [11] [14] ( )STEAM [15] [16] STEAM [12] ( ) STEAM STEAM [17] STEAM STEAM STEA

Q & A

既 設 建 築 物 汙 水 處 理 設 施 生 化 需 氧 量 三 O 化 學 需 氧 量 一 OO 流 量 大 於 二 五 O 立 方 公 尺 / 日 懸 浮 固 體 三 O 大 腸 桿 菌 群 二 OO OOO 生 化 需 氧 量 五 O 既 設 建 築 物 指 中 華 民 國 九 化 學 需

Journal of Curriculum Studies September, 2013, Vol. 8, No. 2, pp From the Development Trend of University to Study High School Curriculum Refor

United Nations ~ ~ % 2010

Microsoft Word - A _ doc

- 29-

To Construct a Forecasting Model of Unscheduled Emergency Department Revist within72 Hours Student: Fei-Chen LAI Advisor: Prof. Chin-Yin Huang Departm

66 臺 中 教 育 大 學 學 報 : 人 文 藝 術 類 Abstract This study aimed to analyze the implementing outcomes of ability grouping practice for freshman English at a u

國立中山大學學位論文典藏.PDF

作 主 动 追 求 知 识 获 取 技 能, 在 心 理 和 生 理 上 都 非 常 积 极 的 个 体 (Zimmerman & Pons, 1986) 在 此 期 间, 自 我 效 能 感 (self-efficacy) 自 我 控 制 (self-control) 自 我 管 理 (self-

第六篇

Experimental design: 實驗設計:

%

彩色

405 急 性 心 肌 梗 死 是 临 床 较 为 常 见 的 心 血 管 疾 病, 病 情 危 急, 病 死 率 高 [1] 随 着 经 皮 冠 状 动 脉 介 入 治 疗 (percutaneous coronary intervention,pci) 技 术 在 急 性 心 肌 梗 死 急 诊

Microsoft PowerPoint - Chapter 2 and 3

Microsoft Word - 7-針刺.doc

third in 20 years. The student population will be in the range of million before Keywords education age population family planning

天 主 教 輔 仁 大 學 社 會 學 系 學 士 論 文 小 別 勝 新 婚? 久 別 要 離 婚? 影 響 遠 距 家 庭 婚 姻 感 情 因 素 之 探 討 Separate marital relations are getting better or getting worse? -Exp

VJTRGF+DFGirlStd-W5-ETen-B5-H Adobe CNS1 3

标题

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

报 告 1: 郑 斌 教 授, 美 国 俄 克 拉 荷 马 大 学 医 学 图 像 特 征 分 析 与 癌 症 风 险 评 估 方 法 摘 要 : 准 确 的 评 估 癌 症 近 期 发 病 风 险 和 预 后 或 者 治 疗 效 果 是 发 展 和 建 立 精 准 医 学 的 一 个 重 要 前

标题

5-25袁宏钧.indd

运 动 干 预 对 老 年 糖 尿 病 - 域 型 患 者 生 命 质 量 的 影 响 重 糖 尿 病 并 发 症 袁 无 肝 尧 肾 等 脏 器 功 能 损 害 袁 血 压 180~105 mmhg 袁 心 电 图 正 常 曰 渊 6 冤 能 按 照 课 题 组 安 排 空 余 时 间 袁 坚 持

11.xps

<4D F736F F D20322EA764AC57C0732DA668B443C5E9B1D0BEC7A4E8AED7B9EFB0EAA470B4BCAFE0BBD9C3AABEC7A5CDAEC9B6A1B7A7A9C0BEC7B2DFA6A8AEC4A4A7BC76C5545FA7EF32>

ARCLE No.2

國立高雄大學數位論文典藏

2000 3,,,,,,, (Marriage Market) (Mary Ann Lamanna and Agnes Riedmann,1991) [1 ],,,,,,,, (Marriage Squeeze),,, 11112,,,, : (1),, ;,,,, (2

劃 定 都 市 更 新 地 區 防 災 評 估 指 標 建 立 之 研 究 - 以 台 北 市 大 同 區 之 更 新 地 區 為 例 摘 要 民 國 八 十 八 年 台 灣 所 發 生 的 九 二 一 大 地 震 與 近 年 來 中 國 的 四 川 強 震 日 本 的 311 大 地 震, 皆 突

第 一 章 前 言 肥 胖 在 現 代 人 當 中 愈 來 愈 常 見, 現 在 平 均 每 三 個 人 就 有 一 人 過 重 ( 衛 生 福 利 部 國 民 健 康 署 2014), 而 世 界 衛 生 組 織 指 出 肥 胖 人 口 已 從 1980 年 以 來 增 長 近 一 倍, 2014

13-4-Cover-1

240 生 异 性 相 吸 的 异 性 效 应 [6] 虽 然, 心 理 学 基 础 研 [7-8] 究 已 经 证 实 存 在 异 性 相 吸 异 性 相 吸 是 否 存 在 于 名 字 认 知 识 别 尚 无 报 道 本 实 验 选 取 不 同 性 别 的 名 字 作 为 刺 激 材 料, 通

902314B038027

Journal of Curriculum Studies September, 2013, Vol. 8, No. 2, pp A Study of the Relationship between Senior High School Curriculum and the Mult

by mild (22.7%). Inhaled corticosteroids, systemic corticosteroids, and antibiotics were applied to 94.8% (292 cases), 74.7% (230 cases), and 90.9% (2

國家圖書館典藏電子全文

別 則 為 9.8% 12.1% 27.6% 及 32%, 過 重 的 情 況 隨 著 年 齡 增 加 而 上 升 停 經 後 婦 女 多 屬 中 央 型 肥 胖, 研 究 指 出 婦 女 在 更 年 期 後 代 謝 症 候 群 的 盛 行 率 會 急 速 上 升 (Rosano, Vitale,

第一章

untitled

- MP <34 P<0.001 UA UA/MCA MCA P<0.05 UA UA/MCA UtA PI RI P<0.05 UtA 24 BP 24 MP III

基于因子分析法对沪深农业类上市公司财务绩效实证分析

untitled

運動表現與媒體曝光率關聯性探討-以民生報報導中華職棒為例

谢 辞 仿 佛 2010 年 9 月 的 入 学 发 生 在 昨 天, 可 一 眨 眼, 自 己 20 多 岁 的 两 年 半 就 要 这 么 匆 匆 逝 去, 心 中 真 是 百 感 交 集 要 是 在 古 代, 男 人 在 二 十 几 岁 早 已 成 家 立 业, 要 是 在 近 代, 男 人

Transcription:

National Taiwan College of Physical Education THE APPLICATION OF BIOELECTRICAL IMPEDANCE ANALYSIS BY NEURAL NETWORKS APPLIED IN EVALUATION OF BODY COMPOSITION IN ELITE ATHLETES

57 BIA BIA 24 20.3 1.9 173.6 5.6 cm 66.1 5.3 kg X DEXA BC-418 FFM BIA LR ANN LR r 2 =.897 RMSE=1.678 kg ANN r 2 =.996 RMSE=0.328 kg ANN LR LR ANN DEXA FFM bias 0 kg BC-418 DEXA bias= - 0.628 kg LR ANN BC-418 LR BC-418 ANN DEXA FFM 2 S.D. 3.357 3.958 0.656 kg ANN LR BC-418 BC-418 X I

Wang, Chia-Wei (2010). The application of bioelectrical impedance analysis by neural networks applied in evaluation of body composition in elite athletes, Unpublished master, National Taiwan College of Physical Education. Abstract Bioelectrical impedance analysis (BIA) can estimate body composition easily, rapidly and non-invasively. Some papers have indicated that the accuracy of predictive equations of BIA mainly depend on the equations itself, even, the specific subjects need specified equation. The purpose of this study was to estimate body composition of the football players with the BIA measurement compared to Dual-energy X ray absorptiometry (DEXA). Method: Subjects, 24 football players of National Taiwan College of Physical Education, with mean age at 20.3±1.9 years, mean height at 173.6 5.6 cm and mean weight at 66.1 5.3 kg. To evaluate the accuracy of predictive fat-free mass (FFM) of body composition by bioelectrical impedance analyser (BC-418), DEXA, as criteria method, was compared. By the measured data as factors including the bioelectrical impedance values (Z) of hand-to-foot modulation by BIA in right side, gender, age, height, and weight, the predictive equation by traditional linear regression analysis (LR) for FFM by DEXA was gained, also, the ANN predictive model created. Result: The lower r 2 and greater RMSE in LR (r 2 =.897 and RMSE=1.678 kg) than in ANN (r 2 =.996 and RMSE=0.328 kg) were gained. ANN is better than LR. The biases that FFM of LR and ANN compare to DEXA are about 0 kg. The bias that FFM of BC-418 compares to DEXA is -0.628 kg. LR and ANN are better than BC-418. The FFM s range of bias (2 SD.) of FFM of LR, BC-418 and ANN compared to DEXA are 3.357, 3.958 and 0.656 kg, respectively. ANN is better than LR and BC-418. Conclusion: To estimate body composition of football players, ANN is more applicable than LR and estimated equation of BC-418. Keywords: Bioelectrical impedance analysis (BIA), Artificial neural network (ANN), Dual-energy X-ray absorptiometry (DEXA), fat-free mass (FFM), football player II

99 7 III

IV...I... II...III... IV... VI...VII...1...2...4...4...4...4...6...6...7...9...16...18 BIA...28...30...35...35...35...36...39 FFM...39 FFM...41...44...48

...50 V

2-1...10 2-2 BIA...22 4-1...39 4-2 1~10 r 2...40 4-3 DEXA FFM...43 4-4 DEXA BC-418 %BF T...44 4-5 DEXA %BF...47 VI

2-1...9 2-2 DEXA...14 2-3...19 2-4...20 2-5...21 2-6...21 2-7...31 2-8...33 4-1 1~10 r 2...40 4-2 FFM...41 4-3 BC-418 FFM...42 4-4 ANN FFM...42 4-5 %BF...45 4-6 BC-418 %BF...46 4-7 ANN %BF...46 VII

health-related fitness body composition molecular (Wang, Pierson, & Heymsfield, 1992) fat mass, FM fat-free mass, FFM Wilmore, 1983 2 (Grundy, 2004; Hubert, Feinleib, McNamara, & Castelli, 1983; Taylor & Baranowski, 1991 1

(Kerruish et al., 2002; Misra et al., 2003; Probst, Goris, Vandereycken, & Coppenolle, 2001) Kireilis Cureton (1947) Body mass index, BMI Brozek, Grande, Anderson Keys (1963) 4 1 Clarys, Martin Drinkwater (1984) 25 12 13 underwater weighting, UWW gold standard (Pollock et al., 1976) skinfolds, SF 2

(Jackson & Pollock, 1978) bioelectrical impedance analysis, BIA (Powell et al., 2001) X dual-energy X-ray absorptiometry, DEXA X Prior (1997) DEXA DEXA percent of body fat mass, %BF 0.4%BF DEXA (Kohrt, 1998; Mazess, Barden, Bisek, & Hanson, 1990; Svendsen, Haarbo, Hassager, & Christiansen, 1993) Kohrt (1995) DEXA DEXA 20 (V. Heyward, 2001) DEXA DEXA BIA DEXA BIA 3

DEXA BIA BIA Backpropagation, BP DEXA BIA DEXA body composition 4

bioelectrical impedance analysis, BIA resistance, R R V ρ L²/R V ρ L R fat-free mass, FFM percentage of body fat, %BF 100% 5

BIA 1/5 obesity (Grundy, 2004; Hubert et al., 1983; Taylor & Baranowski, 1991) 1 9 Kireillis Cureton (1947) 6

(Rico-Sanz, 1998) (Ostojic, 2003; Tsunawake et al., 2003) 2-C two-component molecular model fat mass, FM fat-free mass, FFM 3-C three-component tissue model fat mass, FM bone mineral mass, BMM bone-free lean tissue mass, LTM 3-C three-component cellular model extracellular solids, ECS extracellular fluid, ECF body cell mass 7

fluid metabolic model fat extracellular solids, ECS extracellular fluid, ECF intracellular solids, ICS intracellular fluid, ICF 2-1 2-C densitometry hydrometry SF BIA 3-C X DEXA 8

ECS Fat Fat Fat Bone mineral ECF ECS Fat-free mass Bone-free lean Body cell ECF ICS tissue mass ICF 2-C 3-C 3-C Fluid molecular tissue cellular metabolic model model model model 2-1 anthropometry densitometry skinfolds hydrometry -40 potassium-40 BIA X DEXA near-infrared 9

interactance, NIR neutron activation analysis, NAA computerized tomography, CT magnetic resonance imaging, MRI Nieman 2-1 2-1 BMI 2 2 1 SKF 2 3 3 HD 3 4 4 BIA 3 3 2 TBW 4 3 3 TBP 4 3 4 DEXA 4 4 2 CT 5 3 4 NIR 3 3 2 MRI 5 3 4 ( Nie man, 1 9 9 5 ) BMI = body mass index; SKF = skinfolds; HD = hydrodensitometry; BIA = bioelectrical impedance analysis; TBW = total body water; TBP = total body potassium; DEXA = dual-energy X-ray absorptiometry; CT = computerized tomography; MRI = magnetic resonance imaging; 1 = ;2 = ; 3 = ; 4 = ; 5 = 10

reference methods field reference methods CT MRI NAA DEXA (V. Heyward, 2001) densitometry 2-C FM FFM FM FFM 1.Hydrodensitometry hydrostastic weighing, HD residual volume, RV density of body, Db Goldman and Buskirk equation Db = 11

%BF (Brozek et al., 1963) (Siri, 1956) FM FFM 2.Air displacement plethymography ADP 2-C (Brozek et al., 1963; Siri, 1956) 1.FM 0.901g/cc. 2.FFM 1.10g/cc. 3. Fat FFM 4. FM FFM 5. FM FFM 73.8% 19.4% 6.8% hydrometry total body water; TBW TBW 2-C FFM X dual-energy X-ray absorptiometry, 12

DEXA 3-C bone mineral mass, BMM bone-free lean tissue mass, LTM fat mass, FM DEXA X X pixel bone mineral mass soft-tissue mass ; lean soft-tissue FM X BMM LTM FM (Bell, Cobner, & Evans, 2000) 2-2 13

Pixels containing bone Pixels not containing bone Bone mineral Soft-tissue mass Lean soft-tissue Fat BMM LTM FM FFM 2-2 DEXA Prior 1997 DEXA DEXA %BF 0.4%BF DEXA 20 TBW Kohrt (1995) DEXA DEXA (Kohrt, 1998; Mazess et al., 1990; Svendsen et al., 1993) DEXA field methods BIA SKF SKF BIA 14

anthropometry ab C = hip C = (Tran & Weltman, 1989) skinfolds 1915 chest triceps subscapular midaxillary suprailiac abdomoinal thigh 10% Σ 3SKF (Jackson & Pollock, 1978) Fat FFM Siri (1956) Brozek (1963) BIA BIA 1960 15

2-2 FFM FM anthropometric equations 1960~1970 Db total body potassium, TBP NAA CT MRI BIA %BF (Riendeau, Welch, Crisp, Crowley, & Brockett, 1958) Cureton, Hensley Tiburzi (1979) %BF 12-0.58 50-0.73-0.67 Ostojic (2003) 16

Houston (1981) %BF (Davis, Brewer, & Atkin, 1992) V O 2max (Tsunawake et al., 2003) %BF FFM 17

(Tahara et al., 2006) BIA resistance, R length, L cross sectional area, A R A L R=ρ L / A ρ resistivity R=ρ / V V=ρ / R 2-3 18

A 2-3 reactance, R impedance, Z R ICW ECW R ICW ECW ECW ICW 2-4 19

R R ICW ECW 2-4 BIA 2-5 50KHz R Z 2-6 ECW ICW R TBW FFM R R TBW 20

2-5 2-6 FFM %BF 2-2 BIA BIA 21

2-2 BIA R^2 SEE 132 Fornetti et al. DEXA; 2-C FFM=0.282 HT +0.415 BW - 0.037 R +0.096 Xc -9.734 0.96 1.1kg 18-27 Hortobagyi, Israel, Houmard, O'Brien et al. HD; 2-C AA:%BF=- 46.6 + 1.576 BMI + 0.071 R - 1.753 ψ CA:%BF=- 12.6 + 1.601 BMI - 2.389 ψ 0.80 2.6%BF 0.92 2.1%BF 40 44 Oppliger,Nielson, Hoegh et al. HD; 2-C FFM=1.949+0.701 BW + 0.186 HT^2/R 0.96 1.9kg 110 Yannakoulia et al. DEXA; 2-C FFM=0.247 BW +0.214 HT^2/R -0.191 HT -14.96 0.83 1.5kg 42 DEXA=Dual-energy X-ray absorptiometry HD=Hydrodensitometry 2-C= Two-component molecular model HT=height cm ; BW=body weight kg ; R=resistance Ω ; Xc= reactance Ω ; ψ=phase angle; AA= African American CA= Caucasian American (V. H. Heyward & Wagner, 2004) 22

BIA BIA (V. Heyward, 2001) BIA (V. H. Heyward & Wagner, 2004) TBW FFM FM (Bunt, Lohman, & Boileau, 1989) 1. RV Db BIA 2. 23

10% FM FFM BIA DEXA SKF BIA FM 1.7 kg 2.8 kg FFM 1.7 kg 2.6 kg SKF BIA Stewart & Hannan, 2000 3. CT MRI BIA BIA Z (Malavolti et al., 2003) %BF FM FFM DEXA 24

%BF FM FFM DEXA BIA BIA 60% (Kushner, Gudivaka, & Schoeller, 1996) (Deurenberg, Weststrate, Paymans, & van der Kooy, 1988; Oshima & Shiga, 2006) 25

1. 2. 3. 4. 5. (V. H. Heyward & Wagner, 2004) 1. 48 2. 12 3. 4. 4 5. 30 6. %BF (Jackson, Pollock, Graves, & Mahar, 1988) 1. TBW 2. 26

3. 4. BIA BIA (Webster & Barr, 1993) (Jackson et al., 1988) BIA BIA FFM (Pichard, Kyle, Gremion, Gerbase, & Slosman, 1997; Webster & Barr, 1993) 27

BIA BIA BIA BIA (Powell et al., 2001) BIA 3853 (Kyle et al., 2001) BIA BIA BIA FFM FFM FFM FM Davis %BF %BF FFM (Davis et al., 1992) BIA SKF BIA BIA BIA BIA FFM %BF (Saunder, Blevins, & Broeder, 1998) BIA 28

BIA %BF SKF BIA (Houtkooper, Mullins, Going, Brown, & Lohman, 2001; Stewart & Hannan, 2000) FFM 2.9 kg 6.3 kg BIA FFM (Oppliger, Nielsen, Shetler, Crowley, & Albright, 1992) Lukasku, Bolonchuk, Siders Hall (1990) 18 74 SEE=2.0 kg Houtkooperet (2001) %BF 4.4%BF 2-2 BIA Eckerson, Housh Johnson (1992) 19 40 SEE=1.70 kg DEXA FFM 2.3 kg (De Lorenzo et al., 2000) 29

1940 Warren McCulloch Walter Pitts 1950 Frank Rosenblatt perceptron network Bernard Widrow Ted Hoff (1960) Widrow-Hoff learning rule Least Mean Square algorithm, LMS 1960 James Anderson (1972) 1980 Backpropagation algorithm David Rumelhart James McClelland 30

Feed-Forward Back-Propagation weights biases Inputs b Σ n f Transfer function a output 2-7 31

inputs output target weights bias neuron McCulloch & Pitts (1943) transfer function n Hard Limit hardlim Log-Sigmoid logsig 2-7 32

2-8 (Ahmed, 2005) 33

(Ripley, 1998) Bottaci (1997) 334 5 9, 12, 15, 18, 21 24 80% 12 90% 79% 75% Tafeit, Möller, Sudi Reibnegger (1999) Linder, Mohamed, Lorenzo Pöppl (2003) 34

24 18 26 26.7 50% 4 2 X DEXA GE Lunar Prodigy DEXA en Core2003 Version 7.0 35

20 BMM FM FFM 0.5 BIA Tanita, BC-418 Current source electrode Detect electrode 50kz 800µA FM FFM %BF DEXA FFM BC-418 %BF FFM Excel DEXA FFM Pearson r cofficient of determination, r 2 root mean square error, RMSE 36

linear weights biases r r 2 RMSE Matlab 2009a log-sigmoid linear neural network toolbox Baysian Regluation BR 1000 multi-start methods weights biases output DEXA FFM target RMSE r 2 RMSE log-sigmoid linear f ( x) = x target output i i r 2 RMSE FFM Bland-Altman plot 37

BIA FFM DEXA 38

FFM 24 18 26 160 181 55 74 4-1 4-1 18 26 20.3 1.9 160 181 173.6 5.6 55 74 66.1 5.3 DEXA FFM Excel linear age = Ht = Wt = Z = Pearson r = 0.947 = 0.897 RMSE = 1.679 r 2 hidden neuron, HN 1000 800 4-2 r 2 39

=.918.999 r 2 =.897 RMSE = 0.066 1.492kg RMSE = 1.678kg r 2 1 r 2 1 4-1 4-2 1~10 r 2 1 2 3 4 5 6 7 8 9 10 r 2 0.918 0.966 0.986 0.998 0.996 0.998 0.996 0.998 0.999 0.999 RMSE 1.492 0.961 0.625 0.234 0.328 0.183 0.301 0.210 0.066 0.095 r^2 1 0.96 0.92 Linear regression 0.88 0 2 4 6 8 10 number of neurons 4-1 1~10 r 2 r 2 --- r 2 40

FFM BC-418 Bland- Altman plot DEXA FFM X FFM DEXA FFM difference Y FFM DEXA-FFM FFM DEXA-FFM BC-418 %BF FFM DEXA-FFM bias bias+2 SD. bias 2 SD. 4-2 4-3 4-4 difference FFM of LR-DEXA(kg) 4 2 0-2 -4 bias+2 SD.=3.357 bias=0 bias-2 SD.=-3.357 48 54 60 66 72 DEXA-FFM(kg) 4-2 FFM LR = linear regression DEXA = dual-energy X-ray absorptiometry = LR-DEXA FFM bias = LR-DEXA FFM 2 SD. = 41

difference-ffm of BC-418(kg) 4 0-4 bias+2 SD.=3.690 bias=-0.268 bias-2 SD.=-4.226 48 52 56 60 64 68 72 DEXA-FFM(kg) 4-3 BC-418 FFM BC-418 = DEXA = dual-energy X-ray absorptiometry = BC418-DEXA FFM bias = BC418-DEXA FFM 2 SD. = difference FFM of ANN-DEXA(kg) 1.2 0.8 bias+2 SD.=0.660 0.4 bias=0.004 0-0.4 bias-2 SD.=-0.652-0.8 48 52 56 60 64 68 72 DEXA-FFM(kg) 4-4 ANN FFM ANN = DEXA = dual-energy X-ray absorptiometry = ANN-DEXA FFM bias = LR-DEXA FFM 2 SD. = 42

4-3 DEXA FFM FFM LR BC-418 ANN bias 0.000-0.268 0.004 2 SD. 3.357 3.958 0.656 bias + 2 SD. 3.357 3.690 0.660 bias - 2 SD. -3.357-4.226-0.652 ANN = BC-418 = DEXA = dual-energy X-ray absorptiometry bias = DEXA FFM 2 SD. = 4-2 4-3 4-4 4-3 FFM DEXA bias 0 BC-418 FFM -0.268kg FFM Oppliger (1992) BIA FFM Pichard (1997) FFM FFM BC-418 2SD. 3.357 3.958kg 2 SD.=0.656 FFM BC-418 DXEA FFM 43

BC-418 %BF 2-C FM FFM FFM FM %BF BC-418 24 %BF DEXA %BF BC-418 10.1583 DEXA 9.8001 T α =.05 t=-0.620 p=.541.05 4-2 4-4 DEXA BC-418 %BF T Paired Differences DEXA BC418 Mean 97.5% Confidence Interval of the Difference Lower Upper -.35826-1.74333 1.02681 -.620 23.541 t df Sig. (2-tailed) DEXA = dual-energy X-ray absorptiometry BC-418 = α =.05 T DEXA BC-418 %BF BC-418 %BF Bland- Altman plot DEXA %BF X %BF DEXA FFM difference Y 44

%BF DEXA-%BF BC-418 %BF DEXA-%BF %BF DEXA-%BF bias bias+2 SD. bias-2sd. 4-5 4-6 4-7 difference %BF of LR-DEXA(%) 8 bias+2 SD.=5.156 4 0 bias=-0.013-4 bias-2 SD.=-5.184-8 4 8 12 16 20 24 DEXA %BF(%) 4-5 %BF LR = linear regression DEXA = dual-energy X-ray absorptiometry = LR-DEXA %BF bias = LR-DEXA %BF 2 SD. = 45

difference %BF of BC-418(%) 8 4 0-4 -8 4 8 12 16 20 24 DEXA %BF of whole body(%) bias+2 SD.=5.945 bias=0.358 bias-2sd.=-5.228 4-6 BC-418 %BF BC-418 = DEXA = dual-energy X-ray absorptiometry = BC418-DEXA %BF bias = BC418-DEXA %BF 2 SD. = difference %BF of ANN-DEXA(%) 1.5 1 0.5 0-0.5-1 bias+2 SD.=0.916 bias=0.005 bias-2 SD.=-0.905 4 8 12 16 20 24 DEXA %BF(%) 4-7 ANN %BF ANN = DEXA = dual-energy X-ray absorptiometry = ANN-DEXA %BF bias = LR-DEXA %BF 2 SD. 46

4-5 DEXA %BF %BF LR BC-418 ANN bias -0.013 0.358 0.005 2 SD. 5.170 5.587 0.910 bias + 2 SD. 5.157 5.945 0.916 bias - 2 SD. -5.183-5.228-0.905 ANN = BC-418 = DEXA = dual-energy X-ray absorptiometry bias = DEXA %BF 2 SD. = 4-5 4-6 4-7 %BF DEXA %BF bias 0 BC-418 %BF bias DEXA %BF 0.358% 4-4 Oppliger 1992 BIA %BF Hodgdon & Fitzgerald, 1987 Pichard 1997 %BF BC-418 2 SD.=5.587% 2 SD.=5.170% 2S.D.=0.910% %BF BC-418 DEXA %BF 47

BIA V. H. Heyward & Wagner, 2004; Kyle et al., 2004 Oppliger 1992 BIA FFM %BF BC-418 %BF DEXA %BF bias 0.358% BC-418 %BF FFM DEXA FFM bias -0.268kg FFM %BF DEXA 0 DEXA FFM bias 0 2 SD. 3.357kg 2 SD. 0.656kg FFM DEXA %BF bias 0 2 SD. 5.170% 2 SD. 0.910% %BF 48

49

Ahmed, F. E. (2005). A r t i f i c i a l n e u r a l n e t w o r k s f o r d i a g n o s i s a n d survival prediction in colon cancer. Molecular Cancer 4 (29), 1-12. Bell, W., Cobner, D. M., & Evans, W. D. (2000). Prediction and validation of fat-free mass in the lower limbs of young adult male Rugby Union players using dual-energy X-ray absorptiometry as the criterion measure. Ergonomics, 43(10), 1708-1717. Bottaci, L., Drew, P. J., Hartley, J. E., Hadfield, M. B., Farouk, R., Lee, P. W., et al. (1997). Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. The Lancet, 350(9076), 469-472. Brozek, J., Grande, F., Anderson, J. T., & Keys, A. (1963). Densimetric analysis of body composition: Revision of some equantitative assumption. Annals of New York Academy of Science, 110, 113-140. Bunt, J. C., Lohman, T. G., & Boileau, R. A. (1989). Impact of total body water fluctuation on estimation of body fat from body density. Medicine & Science in Sports & Exercise, 21(1), 96-100. Clarys, J. P., Martin, A. D., & Drinkwater, D. T. (1984). Gross tissue weights in the human body by cadaver dissection. Human Biology, 56(3), 459-473. Cureton, K. J., Hensley, L. D., & Tiburzi, A. (1979). Body 50

fatness and performance differences between men and women. Rearch Quarterly, 50(3), 333-340. Davis, J. A., Brewer, J., & Atkin, D. (1992). Pre-season physiological characteristics of English first and second division soccer players. Journal of Sports Sciences, 10(6), 541-547. De Lorenzo, A., Bertini, I., Iacopino, L., Pagliato, E., Testolin, C., & Testolin, G. (2000). Body composition measurement in highly trained male athletes. Journal of Sports Medicine and Physical Fitness, 40, 178-183. Deurenberg, P., Weststrate, J. A., Paymans, I., & van der Kooy, K. (1988). Factors affecting bioelectrical impedance measurements in humans. European Journal of Clinical Nutrition, 42(12), 1017-1022. Eckerson, J. M., Housh, T. J., & Johnson, G. O. (1992). Validity of bioelectrical impedance equations for estimating fat-free weight in lean males. Medicine & Science in Sports & Exercise, 24(11), 1298-1302. Grundy, S. M. (2004). Obesity, Metabolic Syndrome, and Cardiovascular Disease. The Journal of Clinical Endocrinology and Metabolism, 89(6), 2595-2600. Heyward, V. (2001). Asep methods recommendation: Body composition assessment. Journal of Exercise Physiology online, 4(4), 1-12. Heyward, V. H., & Wagner, D. R. (2004). Applied body composition assessment. (2nd ed.). Champaign, IL: 51

Human Kinetics. Hodgdon, J. A., & F i t z g e r a l d, P. I. ( 1 9 8 7 ). Va l i d i t y o f I m p e d a n c e Predictions at Various Levels of Fatness. Human Biology, 59(2), 281-289. Houston, M. E. (1981). The effect of rapid weight loss on Physiological functions in wreslters. Phys. Sports Med., 9, 73-78. Houtkooper, L. B., Mullins, V. A., Going, S. B., Brown, C. H., & Lohman, T. G. (2001). Body composition profiles of elite American heptathletes. International Journal of Sport Nutrition and Exercise Metabolism, 11, 162-173. Hubert, H. B., Feinleib, M., McNamara, P. M., & Castelli, W. P. (1983). Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circrulation, 67(5), 968-977. Jackson, A. S., & Pollock, M. L. (1978). Generalizerd equations for prediction body density of men. British Journal of Nutrition, 40(3), 497-504. Jackson, A. S., Pollock, M. L., Graves, J. E., & Mahar, M. T. (1988). Reliability and validity of bioelectrical impedance in determining body composition. Journal of Applied Physiology, 64(2), 529-534. Kerruish, K. P., O'Connor, J., Humphries, I. R., Kohn, M. R., Clarke, S. D., Briody, J. N., et al. (2002). Body composition in adolescents with anorexia nervosa. 52

American Journal of Clinical Nutrition, 75(1), 31-37. Kireilis, R. W., & Cureton, T. K. (1947). The relationships of external fat to physical education activities and fitness tests. Research Quarterly, 18, 123-134. Kohrt, W. M. (1995). Body composition by DXA : tried and true? Medicine and Science in Sports and Exercise, 27(10), 1349-1353. Kohrt, W. M. (1998). Preliminary evidence that DEXA provides an accurate assessment of body composition Journal of Applied Physiology, 84(1), 372-377. Kushner, R. F., Gudivaka, R., & Schoeller, D. A. (1996). Clinical characteristics influencing bioelectrical impedance analysis measurements. American Journal of Clinical Nutrition, 64, 423S-427S. Kyle, U. G., Bosaeus, I., Lorenzo, A. D. D., Deurenberg, P., Elia, M., Gómez, J. M., et al. (2004). Bioelectrical impedance analysis-part II: utilization in clinical practice. Clinical Nutrition, 23(6), 1430-1453. Kyle, U. G., Gremion, G., Genton, L., Slosman, D. O., Golay, A., & Pichard, C. (2001). Physical activity and fat-free and fat mass by bioelectrical impedance in 3853 adults. Medicine and Science in Sports and Exercise, 33(4), 576-584. Linder, R., Mohamed, E. I., Lorenzo, A. D., & Pöppl, S. J. (2003). The capabilities of artificial neural networks in body composition research Acta Diabetologica, 40, 53

s9-s14. Lukasku, H. C., Bolonchuk, W. W., Siders, W. A., & Hall, C. B. (1990). Body composition assessment of athletes using bioelectrical impedance measurements. Journal of sports medicine and physical fitness, 30(4), 434-440. Malavolti, M., Mussi, C., Poli, M., Fantuzzi, A. L., Salvioli, G., Battistini, N., et al. (2003). Cross-calibration of eight-polar bioelectrical impedance analysis versus dual-energy X-ray absorptiometry for the assessment of total and appendicular body composition in healthy subjects aged 21-82 years. Annals of Human Biology, 30(4), 380-391. Mazess, R., Barden, H., Bisek, J., & Hanson, J. (1990). Dual-energy X-ray absorptiometry for total-body and regional bone-mineral and soft-tissue composition. The American Journal of Clinical Nutrition, 51, 1106-1112. Misra, M., Soyka, L. A., Miller, K. K., Grinspoon, S., Levitsky, L. L., & Klibanski, A. (2003). Regional body composition in adolescents with anorexia nervosa and changes with weight recovery. American Journal of Clinical Nutrition, 77(6), 1361-1367. Nieman, D. C. (1995). Fitness and Sports Medicine (Vol. 3rd. ed.).palo Alto, CA: Bull Publishing Company. Oppliger, R. A., Nielsen, D. H., Shetler, A. C., Crowley, E. T., & Albright, J. P. (1992). Body composition of collegiate football players: Bioelectrical impedance and skinfolds 54

compared to hydrostatic weighing. Journal of Orthopaedic & Sports Physical Therapy, 15, 187-192. Oshima, Y., & Shiga, T. (2006). Within-day variability of whole-body and segmental bioelectrical impedance in a standing position. European Journal of Clinical Nutrition, 60(8), 938-941. Ostojic, S. M. (2003). Seasonal altertions in body composition and sprint performance of elite soccer players. Journal of Exercise Physiology online, 6(3), 11-14. Pichard, C., Kyle, U. G., Gremion, G., Gerbase, M., & Slosman, D. O. (1997). Body composition by x-ray absorptiometry and bioelectrical impedance in female runners. Medicine and Science in Sports and Exercise, 29(11), 1527-1534. Pollock, M. L., Hickman, T., Kendrick, Z., Jackson, A., Linnerud, A. C., & Dawson, G. (1976). Prediction of body density in young and middleage men. Journal of Applied Physiology, 40, 300-304. Powell, L. A., Nieman, D. C., Melby, C., Cureton, K., Schmit, D., Howley, E. T., et al. (2001). Assessment of Body Composition Change in a Community-Based Weight Management Program. Journal of the American College of Nutrition, 20(1), 26-31. Prior, B. M., Cureton, K. J., Modlesky, C. M., Evans, E. M., Sloniger, M. A., Saunders, M., et al. (1997). In vivo validation of whole body composition estimates from dual-energy X-ray absorptiometry Journal of Applied 55

Physiology, 83(2), 623-630. Probst, M., Goris, M., Vandereycken, W., & Coppenolle, H. V. (2001). Body composition of anorexia nervosa patients assessed by underwater weighing and skinfold-thickness measurements before and after weight gain. American Journal of Clinical Nutrition, 73(2), 190-197. Rico-Sanz, J. (1998). Body composition and nutritional assessments in soccer. International Journal of Sport Nutrition, 8(2), 113-123. Riendeau, R. P., Welch, B. E., Crisp, C. E., Crowley, L. V., & Brockett, J. E. (1958). Relationships of body fat to motor fitness test scores. Rearch Quarterly, 29, 200-203. Ripley, R. M. (1998). Neural Networks for Breast Cancer Prognosis.Unpublished doctoral dissertation, University of Oxford, Wellington Square, Oxford, United Kingdom. Saunder, M. J., Blevins, J. E., & Broeder, C. E. (1998). Effects of hydration changes on bioelectrical impedance in endurance trained individuals. Medicine & Science in Sports & Exercise, 30, 885-892. S i r i, W. E. (1956). Body composition from fluid spaces and density. Techniques for measuring body composition 223-244. Stewart, A. D., & Hannan, W. J. (2000). Prediction of fat and fat-free mass in male athletes using dual X-ray absorptiometry as the reference method. Journal of Sports Sciences, 18, 263-274. 56

Svendsen, O., Haarbo, J., Hassager, C., & Christiansen, C. (1993). Accuracy of measurements of body composition by dual-energy X-ray absorptiometry in vivo. American Journal of Clinical Nutrition, 57, 605-608. Tafeit, E., Möller, R., Sudi, K., & Reibnegger, G. (1999). The determination of three subcutaneous adipose tissue compartments in non-insulin-dependent diabetes mellitus women with artificial neural networks and factor analysis. Artificial Intelligence in Medicine, 17(2), 181-193. Tahara, Y., Moji, K., Tsunawake, N., Fukuda, R., Nakayama, M., Nakagaichi, M., et al. (2006). Physique, Body Composition and Maximum Oxygen Consumption of Selected Soccer Players of Kunimi High School, Nagasaki, Japan. Journal of Physiological Anthropology, 25(4), 291-297. Taylor, W., & Baranowski, T. (1991). Physical activity, cardiovascular fitbess, and adiposity in children. Research Quarterly for Exercise and Sport, 62(2), 157-163. Tran, Z. V., & Weltman, A. (1989). Generalized equation for predicting body density of women from girth measurements. Medicine & Science in Sports & Exercise, 21(1), 101-104. Tsunawake, N., Tahara, Y., Moji, K., Muraki, S., Minowa, K., & Yukawa, K. (2003). Body Composition and Physical Fitness of Female Volleyball and Basketball Players of 57

the Japan Inter-high School Championship Teams. Journal of Physiological Anthropology and Applied Human Science, 22(4), 195-201. Wang, Z. M., Pierson, R. N., & Heymsfield, S. B. (1992). The five-level model: a new approach to organizing body-composition research. The American Journal of Clinical Nutrition, 56, 19-28. Webster, B. L., & Barr, S. I. (1993). Body composition analysis of female adolescent athletes: comparing six regression equations. Medicine & Science in Sports & Exercise, 25(5), 648-653. Wilmore, J. H. (1983). Appetite and body composition consequent to physical activity. Rearch Quarterly for Exercise and Sport, 54, 415-425. 58