458 (25),. [1 4], [5, 6].,, ( ).,,, ;,,,. Xie Li (28),,. [9] HJB,,,, Legendre [7, 8],.,. 2. ( ), x = x x = x x x2 n x = (x 1, x 2,..., x

Similar documents
32 G; F ; (1) {X, X(i), i = 1, 2,..., X, (2) {M(t), t α Poisson, t ; (3) {Y, Y (i), i = 1, 2,..., Y, (4) {N(t), t β Poisson, t ; (5) {W (t), t, σ ; (6

微 分 方 程 是 经 典 数 学 的 一 个 重 要 分 支, 常 用 来 描 述 随 时 间 变 化 的 动 态 系 统, 被 广 泛 应 用 于 物 理 学 工 程 数 学 和 经 济 学 等 领 域. 实 际 上, 系 统 在 随 时 间 的 变 化 过 程 中, 经 常 会 受 到 一 些

: 29 : n ( ),,. T, T +,. y ij i =, 2,, n, j =, 2,, T, y ij y ij = β + jβ 2 + α i + ɛ ij i =, 2,, n, j =, 2,, T, (.) β, β 2,. jβ 2,. β, β 2, α i i, ɛ i

微积分 授课讲义

Vol. 36 ( 2016 ) No. 6 J. of Math. (PRC) HS, (, ) :. HS,. HS. : ; HS ; ; Nesterov MR(2010) : 90C05; 65K05 : O221.1 : A : (2016)

普通高等学校本科专业设置管理规定

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m +

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

,, :, ;,,?, : (1), ; (2),,,, ; (3),,, :,;; ;,,,,(Markowitz,1952) 1959 (,,2000),,, 20 60, ( Evans and Archer,1968) ,,,

Corporate Social Responsibility CSR CSR CSR 1 2 ~ CSR 6 CSR 7 CSR 8 CSR 9 10 ~ CSR 14 CSR CSR 2013 A A 23.

untitled

untitled

Introduction to Hamilton-Jacobi Equations and Periodic Homogenization

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2


f 2 f 2 f q 1 q 1 q 1 q 2 q 1 q n 2 f 2 f 2 f H = q 2 q 1 q 2 q 2 q 2 q n f 2 f 2 f q n q 1 q n q 2 q n q n H R n n n Hessian

08-01.indd

Microsoft PowerPoint - FE11

穨溪南-5.PDF

No. : Bloch 683 µ, Bloch B ω B µ Bloch B ω,0 B µ,0,. Bloch Bloch [6 10]. [5] D n, Bloch Bloch., C,.,. ).1 f B log U n ), f + n ) f Blog., z > 1 e e =

中国主权资产负债表风险分析

Chinese Journal of Applied Probability and Statistics Vol.25 No.4 Aug (,, ;,, ) (,, ) 应用概率统计 版权所有, Zhang (2002). λ q(t)

国有大型能源企业财务风险内部控制研究

M ( ) K F ( ) A M ( ) 1815 (probable error) F W ( ) J ( ) n! M ( ) T ( ) L ( ) T (171

untitled


untitled

: 459,. (2011),, Zhu (2008). Y = Xθ + ε, (1.1) Y = (y 1,..., y n ) T, ε = (ε 1,..., ε n ) T, θ = (θ 1,..., θ p ) T, X n p, X i X i, E(ε) = 0, Var (ε)

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin

G(z 0 + "z) = G(z 0 ) + "z dg(z) dz z! # d" λ "G = G(z 0 ) + #cos dg(z) ( & dz ) * nv #., - d+ - - r 2 sin cosds e / r # ddr 4.r 2 #cos! "G = G(z 0 )

untitled

202,., IEC1123 (1991), GB8051 (2002) [4, 5],., IEC1123,, : 1) IEC1123 N t ( ). P 0 = , P 1 = , (α, β) = (0.05, 0.05), N t = [4]. [6

elections. In addition, the positive CARs exist during the full event date that indicates the election bull run do happen in Taiwan. When incumbent go


第四章 模型求解

105年公務員申領或侵占小額款項

國立屏東教育大學碩士班研究生共同修業要點

Probabilities of Default RMI PDs CVI 7-8 KMV 9 KMV KMV KMV 1. KMV KMV DPT DD DD DD DPT Step 1 V E = V A N d 1 - e rt DN d 2 1 d 1 = ln V A



Vol. 15 No. 1 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb O21 A

Stochastic Processes (XI) Hanjun Zhang School of Mathematics and Computational Science, Xiangtan University 508 YiFu Lou talk 06/

铁皮石斛有几种图片 何时吃石斛好 怎么形容石斛粉好好吃 2227如何吃石斛

Ashdgsahgdh

DS Ω(1.1)t 1 t 2 Q = t2 t 1 { S k(x, y, z) u } n ds dt, (1.2) u us n n (t 1, t 2 )u(t 1, x, y, z) u(t 2, x, y, z) Ω ν(x, y, z)ρ(x, y, z)[u(t 2, x, y,

1. PDE u(x, y, ) PDE F (x, y,, u, u x, u y,, u xx, u xy, ) = 0 (1) F x, y,,uu (solution) u (1) u(x, y, )(1)x, y, Ω (1) x, y, u (1) u Ω x, y, Ωx, y, (P

- 2 -

untitled

MRS-GARCH MRS-GARCH Bernanke and Gertler (1999) ; ; Cecchetti (2000) ( ) Gray (1996) MRS-GARCH (2001) 500 t- Gray t- S t S t S t =1 ; 90 S t =2 Hamilt

第9章 排队论

不确定性环境下公司并购的估价:一种实物期权.doc

95

Microsoft Word - 07.docx

SVM OA 1 SVM MLP Tab 1 1 Drug feature data quantization table

《分析化学辞典》_数据处理条目_1.DOC

stexb08.dvi

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

Microsoft Word - A _ doc

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ

Microsoft Word - Raymond _2012_ - Democracy _HKEJM_.doc

untitled



Alexander & Wyeth Dercon 1995 ECM - Johansen Goodwin 1992 VEC Asche 1999 Gonzalez 2001 ECM Goodwin

Lecture #4: Several notes 1. Recommend this book, see Chap and 3 for the basics about Matlab. [1] S. C. Chapra, Applied Numerical Methods with MATLAB

02303.doc

标题

92

Insurance Market

ebookg 38-28

4. 计 算 积 分 : ż ż βi fdl = f(x(t), y(t), z(t)) a x 1 (t) 2 + y 1 (t) 2 + z 1 (t) 2 dt L i α i ż ż βi 或 者 在 二 维 情 形 中 fdl = f(x(t), y(t)) a x 1 (t) 2 +

招生宣传册

1 CAPM CAPM % % Wippern, aGebhardt Lee Swaminathan % 5.10% 4.18% 2 3 1Gebhardt Lee Swa

5 (Green) δ

WL100014ZW.PDF

untitled

标题


ii

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

602 31,,.,,,,. HEV,.,, HEV,,,.,,. 2 (Basic assumptions) HEV, : 1) P ice (t), (continuously variable transmission, CVT) ω ice (t), T ice (t), 10 ; 2) (


VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen

UDC The Establishment of Fractional BSDE : : : : : 厦门大学博硕士论文摘要库


Microsoft Word - 33-p skyd8.doc

:,,,,,, : 1990,,?,,,,, 2000 (,2004) :1990,,,,,2000, (,2008),,,,,,,,, 1990,,,, 4, 10, ( ) 90,,,,, 2000,,, ,2000,, % % ;,

➀ ➁ ➂ ➃ Lecture on Stochastic Processes (by Lijun Bo) 2

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

Microsoft Word - 06会计学( ).doc

ECONOMIST v y = 0 m = π (3) 1 2 [ ( SNA) 4 2. ( ) ( SNA) (2 ) ( 3 )

邱顯比、林清珮、楊宗庭

untitled

深圳股票市场稳定性研究报告


诺赫德(报批).doc

投影片 1

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

2015 年 第 12 期 17 贷 资 产 证 券 化 进 入 常 态 化 的 稳 健 发 展 轨 道, 是 我 国 政 府 学 者 及 业 内 人 士 应 予 关 注 的 问 题 ( 一 ) 流 动 性 相 关 研 究 综 述 资 产 证 券 化 产 生 于 20 世 纪 60 年 代 末 的

Transcription:

212 1 Chinese Journal of Applied Probability and Statistics Vol.28 No.5 Oct. 212 (,, 3387;,, 372) (,, 372)., HJB,. HJB, Legendre.,. :,,, Legendre,,,. : F83.48, O211.6. 1.,.,,. 199, Sharpe Tint (199),., [2 6]. Leippold, Trojani Vanini (24), ; Chiu Li (26) ; Xie Li (28),, ; (25), ; (11YJC796) (21821) (9JCYBJC18). 211 2 18, 211 5 5.

458 (25),. [1 4], [5, 6].,, ( ).,,, ;,,,. Xie Li (28),,. [9] HJB,,,, Legendre [7, 8],.,. 2. ( ), x = x x = x 2 1 + x2 2 + + x2 n x = (x 1, x 2,..., x n ), E( ), [, T ]. (W 1 t, W 2 t,..., W n t ) (Ω, F, P, {F t } t T ) n, {F t } t T (W 1 t, W 2 t,..., W n t ). L 2 (Ω, F, P) Hilbert. [, T ] n + 1,,, t P t, P t : dp t = P t r t dt, P = p >, (2.1) r t > t. n,, t i Pt i, i = 1, 2,..., n, Pt i : dpt i = Pt [b i i tdt + n ] σ ij t dw j t, P i = p i >, (2.2) j=1 b t = (b 1 t, b 2 t,..., b n t ) σ t = (σ ij ) n n., σ t = (σ ij ) n n : σ t σ t >, t [, T ], r t, b t, σ t [, T ] Borel-.

: 459 t = w > l (l R), t = x = w l >. L t t, L t dl t = L t [u t dt + v t dw t ], W t (Ω, F, P, {F t } t T ), u t, v t t. W t W j t, ρj t, j = 1, 2,..., n, ρ t = (ρ 1 t, ρ 2 t,..., ρ n t ), W t = (Wt 1, Wt 2,..., Wt n ) ρ tρ t = 1, L t : dl t = L t [u t dt + v t ρ tdw t ], L = l >. (2.3) t i π i t, i = 1, 2,..., n, t [, T ], π t = (πt 1, πt 2,..., πt n ), X t t, t πt = X t n πt. i,, π t X t : dx t = (X t n πt i ) dp t P t + n πt i dpt i Pt i dl t L t. dx t = [r t X t + B tπ t u t ]dt + (π tσ t v t ρ t)dw t, X = x >, (2.4) B t = (b 1 t r t, b 2 t r t,..., b n t r t ). θ t θ t = σ 1 t B t. π t Γ = {π t : t T }., : Max E(U(X T )), (2.5) π t Γ U( ) (, + ), π t = (π 1 t, π 2 t,..., π n t ).,. :,, U(x) = x β /β, β < 1, β ;,, U(x) = e βx, β > ;, U(x) = ln x.

46 1 : (i),, Xie Li (28) ; (ii) HJB Legendre, Xie Li (28). 3. [9], H(t, x) H(t, x) = H(t, x) HJB : sup E(U(X T ) X t = x), {π t Γ} { H t + sup (r t x + B tπ t u t )H x + 1 } π t 2 (π tσ t v t ρ t) 2 H xx =. H(T, x) = U(x), H t, H x, H xx H(t, x) t x x. HJB HJB 3.1 π t = (σ t σ t) 1( H x H xx B t + σ t ρ t v t ). (3.1) H t + (r t x u t + θ tρ t v t )H x 1 2 θ t 2 H2 x =, (3.2) H xx ( dxt = r t X t u t θ t 2 H ) x + θ H tρ t v t dt θ H x t dw t. (3.3) xx H xx, HJB (3.2) : H(t, x) = (x g(t))β f(t), (3.4) β g(t ) =, f(t ) = 1. : H t = (x g(t))β β H x = (x g(t)) β 1 f(t), f(t) (x g(t)) β 1 ġ(t)f(t), H xx = (β 1)(x g(t)) β 2 f(t).

: 461 (3.2) (x g(t)) β β [ f(t) β ] + βr t f(t) 2(β 1) θ t 2 f(t) (x g(t)) β 1 [ġ(t)f(t) (r t g(t) u t + θ tρ t v t )f(t)] =. f(t) β + βr t f(t) 2(β 1) θ t 2 f(t) =, f(t ) = 1, ġ(t)f(t) (r t g(t) u t + θ tρ t v t )f(t) =, g(t ) =. { ( β f(t) = exp βr s t 2(β 1) θ s 2) } ds, (3.5) { t } g(t) = exp r z dz (u s θ sρ s v s )ds. (3.6) t,, (2.5) : 3.1 g(t) (3.6). s U(x) = x β /β, β < 1 β, (2.5) π t = (σ t σ t) 1( X t g(t) 1 β B t + σ t ρ t v t ), (3.7) (3.7) (3.3), EXt t = X e [rz [1/(β 1)] θz 2 ]dz + t, [ t e s [rz [1/(β 1)] θz 2 ]dz (θ sρ s v s u s ) + g(s) β 1 θ s 2] ds. EXT = X e [rz [1/(β 1)] θz 2 ]dz + [ T e s [rz [1/(β 1)] θz 2 ]dz (θ sρ s v s u s ) + g(s) β 1 θ s 2] ds. (3.8) 3.1 U(x) = x β /β, β < 1 β,, u t = v t = ρ t =, (2.5) π t = X t 1 β (σ tσ t) 1 B t, EXT = X e [rt [1/(β 1)] θt 2]dt. (3.9)

462 2 (3.7), (2.5), [X t /(1 β)](σ t σ t) 1 B t,, (σ t σ t) 1 {[ g(t)/(1 β)]b t + σ t ρ t v t },,., (3.7) X t, t. 3.2, (3.2) : H(t, x) = exp { βxe t r zdz + h(t) }, h(t ) =. H t = H ( βxr t e t r zdz + ḣ(t)), H x = H ( βe t r ) zdz, H xx = H ( βe t r ) zdz 2. (3.2) 1 H(t, x) [ḣ(t) 2 θ t 2 + (u t θ tρ ] T t v t )βe t r zdz =. ḣ(t) 1 2 θ t 2 + (u t θ tρ t v t )βe t r zdz =, h(t ) =. h(t) =, : 3.2 t (u s θ sρ T T s v s )βe s rzdz ds t 1 2 θ s 2 ds. U(x) = e βx, β >, (2.5) πt = (σ t σ t) 1( 1 β B te t r zdz + σ t ρ t v t ). (3.1) (3.3) dxt = (r t Xt u t + 1 β θ t 2 e ) T t r zdz + θ tρ t v t dt + 1 β θ te t r zdz dw t. X t = X e t rzdz + t t 1 + β θ se t r zdz dw s., EX T = X e rzdz + (θ sρ s v s u s )e s t rzdz ds + 1 β θ s 2 ds + t 1 β θ s 2 e t r zdz ds (θ sρ s v s u s )e s T rzdz ds. (3.11)

: 463 3.2 U(x) = e βx, β >, u t = v t = ρ t =, πt = 1 β (σ tσ t) 1 B t e T t r zdz, EXT T T = X e rzdz + 1 β θ s 2 ds. (3.12) 3, (2.5) (3.1),,., (3.1) t X t, u t. 3.3 (3.2), Legendre [7, 8],, (3.2),,., Legendre Ĥ(t, z) = sup{h(t, x) zx}, x> g(t, z) = inf {x H(t, x) zx + Ĥ(t, z)}, x> z > x. g(t, z) Ĥ(t, z) g(t, z) = Ĥz(t, z), g(t, z) H(t, x). H x (t, x) = z : g(t, z) = x, Ĥ(t, z) = H(t, g) zg. H(T, x) = U(x), T Legendre : Ĥ(T, z) = sup{u(x) zx}, x> : g(t, z) = inf {x U(x) zx + Ĥ(T, x)}. x> g(t, z) = (U ) 1 (z). H x = z, H t = Ĥt, H xx = 1. (3.13) Ĥ zz (3.13) (3.2), z, g t (r t g u t + θ tρ t v t ) r t zg z + 1 2 θ t 2 z 2 g zz + θ t 2 zg z =, (3.14) g t, g z, g zz g(t, z) t z z.

464 g(t, z) = 1 z., (3.14) : g(t, z) = 1 a(t) + b(t), a(t ) = 1, b(t ) =. z g(t, z) : g t (t, z) = 1 z ȧ(t) + ḃ(t), g z(t, z) = 1 z 2 a(t), g zz(t, z) = 2 z 3 a(t). (3.14) z 1 z ȧ(t) + ḃ(t) r tb(t) + u t θ tρ t v t =. ȧ(t) =, a(t ) = 1, ḃ(t) r t b(t) + u t θ tρ t v t =, b(t ) =. a(t) = 1, b(t) = t { t exp s } r z dz (u s θ sρ s v s )ds. π t = (σ t σ t) 1[ H x H xx B t + σ t ρ t v t ] = (σ t σ t) 1 [zĥzzb t + σ t ρ t v t ] = (σ t σ t) 1 [ zg z B t + σ t ρ t v t ] = (σ t σ t) 1[ 1 z a(t)b t + σ t ρ t v t ] = (σ t σ t) 1 [(g b(t))b t + σ t ρ t v t ] = (σ t σ t) 1 [(x b(t))b t + σ t ρ t v t ]. : 3.3 π t = (σ t σ t) 1[( X t U(x) = ln x, (2.5) t { t exp, (3.15), X t s } ] r z dz (u s θ sρ s v s )ds )B t + σ t ρ t v t. (3.15) dxt = [r t X t u t + θ t 2 (X t b(t)) + θ tρ t v t ]dt θ t dw t. H xx { EXt t } = X exp (r s + θ s 2 )ds + t H x { t } exp (r z + θ z 2 )dz (θ sρ s v s u s θ s 2 b(s))ds. s

: 465, { EXT T } = X exp (r s + θ s 2 )ds 3.3 + exp { s } (r z + θ z 2 )dz (θ tρ s v s u s θ s 2 b(s))ds. (3.16), u t = v t = ρ t =, (2.5) { πt = X t (σ t σ t) 1 B t, EXT T } = X exp (r s + θ s 2 )ds. (3.17) 4 (3.15),, (2.5) β =. 4., (2.5),. 1 x = 1,, T = 1., u t =.25, v t =.5, ρ 1 t =.3, ρ 2 t =.5, ρ 3 t =.81. r t =.2, b t = {.12,.22,.18},.23.34.46 σ t =.34.58.61..46.61.25, β =.2. β, u t, v t. 1, β β -.5 -.2.2.3.35.4 π 1 t 18.5 225.67 338.59 386.99 416.77 451.52 π 2 t 119.2 148.64 222.69 254.43 273.96 296.75 πt 3 14.62 13.78 196.17 224.2 241.45 261.57 πt i 44.15 55.1 757.47 865.62 932.18 19.83 π t 595.85 494.9 242.53 134.37 67.82-9.83 EX T 181.5 197.44 1138.31 1156.29 1167.5 118.71

466 2, u t u t -.5 -.2.25.5 3. 5. πt 1 338.85 338.75 338.59 338.51 337.67 337. πt 2 222.86 222.79 222.69 222.64 222.9 221.65 πt 3 196.32 196.27 196.18 196.13 195.64 195.25 πt i 758.3 757.8 757.47 757.28 755.4 753.9 πt 241.97 242.2 242.53 242.72 244.6 246.1 EX T 1139.2 1138.85 1138.31 1138.2 1135.6 1132.69 3, v t v t -2.5 -.2.25 2.5 5. 8. πt 1 339.43 338.79 338.66 338.3 337.33 336.49 πt 2 219.32 221.91 222.41 224.94 227.75 231.12 πt 3 196.13 196.17 196.17 196.2 196.24 196.28 πt i 754.9 756.87 757.25 759.18 761.32 763.89 πt 245.11 243.13 242.75 24.82 238.68 236.11 EX T 1137.68 1138.16 1138.26 1138.74 1139.27 1139.91 : (a1) 1, 3 πt β i ;, π t β ; EX T β ; 1, β =.4, {451.52, 296.75, 261.57}, πt = 9.83 <, 9.83. (a2) 2, 3 πt u i t ; πt u t ; EX T u t. (a3) 3, πt v i t ; πt v t ; EX T v t,. 2 x, T, r t, b t, σ t, u t, v t, ρ 1 t, ρ 2 t, ρ 3 t 1,, β =.1, β, u t, v t. : (b1) 4, 3 πt β i ;, π t β ; EX T

: 467 4, β β 1/2 1/15 1/12.1.3.1 πt 1 531.26 398.42 318.71 265.57 88.45 26.45 πt 2 349.3 261.92 29.65 174.8 58.65 17.99 πt 3 37.66 23.73 184.57 153.8 51.22 15.32 πt i 1187.96 891.6 712.93 594.17 198.32 59.77 πt -187.96 18.94 287.7 45.83 81.69 94.23 EX T 1195.58 1151.7 1125.37 117.81 149.3 128.82 5, u t u t -2. -.25.25 1. 5. 1. πt 1 265.57 265.57 265.57 265.57 265.57 265.57 πt 2 174.8 174.8 174.8 174.8 174.8 174.8 πt 3 153.8 153.8 153.8 153.8 153.8 153.8 πt i 594.17 594.17 594.17 594.17 594.17 594.17 πt 45.83 45.83 45.83 45.83 45.83 45.83 EX T 111.9 118.32 117.81 117.6 113.2 197.96 6, v t v t -1-2.5 3. 5. 1. πt 1 267.98 266.15 265.57 264.1 264.54 263.39 πt 2 162.8 171.94 174.8 177.66 179.95 185.66 πt 3 155.26 154.15 153.8 153.45 153.17 152.47 πt i 586.4 592.24 594.17 596.11 597.66 61.53 πt 413.96 47.76 45.83 43.89 42.34 398.47 EX T 115.87 117.35 117.81 118.28 118.65 119.57 β ; β = 1/2, πt = 187.96 <, 187.96. (b2) 5,, πt π i t u t ; EX T u t,. (b3) 6,, πt v i t ; πt v t ; EX T v t.

468 3 x, T, r t, b t, σ t, u t, v t, ρ 1 t, ρ 2 t, ρ 3 t 1,, u t, v t, T. 7, u t u t -1. -5..25 3. 5. 1. πt 1 273.64 272.31 27.9 27.16 269.62 268.28 πt 2 18.1 179.22 178.29 177.81 177.46 176.58 πt 3 158.47 157.7 156.88 156.45 156.14 155.37 πt i 612.22 69.22 66.7 64.42 63.22 6.22 πt 387.78 39.78 393.93 395.58 396.78 399.77 EX T 1125.37 1119.64 1113.61 111.46 118.16 112.42 8, v t v t -1-5.5 2 5 1 πt 1 272.79 271.9 27.9 27.63 27.9 269.18 πt 2 165.95 171.83 178.29 18.6 183.58 189.46 πt 3 158.4 157.49 156.88 156.72 156.38 155.83 πt i 596.79 61.21 66.7 67.4 61.5 614.47 πt 43.21 398.79 393.93 392.6 389.95 385.53 EX T 1111.4 1112.45 1113.61 1113.93 1114.56 1115.61 9, T T.25.5 1 2 5 1 πt 1 27.93 27.92 27.9 27.86 27.73 27.55 πt 2 178.32 178.31 178.29 178.27 178.19 178.7 πt 3 156.9 156.89 156.88 156.86 156.79 156.68 πt i 66.14 66.12 66.7 65.98 65.71 65.3 πt 393.86 393.88 393.93 394.2 394.29 394.7 EX T 127.27 155.28 1113.61 124.12 1712.56 2932.85 : (c1) 7, 3 πt u i t ;, πt u t ; EX T u t.

: 469 1, r t r t.1.1.2.5.1.14 πt 1 321.82 297.67 27.9 19.35 56.19-51.13 πt 2 191.82 185.4 178.29 156.85 121.17 92.62 πt 3 18.5 169.11 156.88 12.44 59.62 1.96 πt i 693.7 652.18 66.7 467.64 236.98 52.45 πt 36.3 347.82 393.93 532.36 763.2 947.55 EX T 1119.96 1116.48 1113.61 1111.16 1127.72 116.25 (c2) 8, 3 πt v i t ; πt v t ; EX T v t. (c3) 9,. πt π i t T, EX T T (c4) 1, r t. r t ;, π t r t ; EX T r t. 5. πt i,,, HJB Lengdre, Xie Li (28).,.,.! [1] Sharpe, W.F. and Tint, L.G., Liabilities - A new approach, The Journal of Portfolio Management, 16(2)(199), 5 1. [2] Leippold, M., Trojani, F. and Vanini, P., A geometric approach to multiperiod mean variance optimization of assets and liabilities, Journal of Economic Dynamics and Control, 28(6)(24), 179 1113.

47 [3] Chiu, M.C. and Li, D., Asset and liability management under a continuous-time mean-variance optimization framework, Insurance: Mathematics and Economics, 39(3)(26), 33 355. [4] Xie, S., Li, Z. and Wang, S., Continuous-time portfolio selection with liability: Mean-variance model and stochastic LQ approach, Insurance: Mathematics and Economics, 42(3)(28), 943 953. [5],,,, 25(9)(25), 42 48. [6],,,, 25(8)(25), 5 54. [7] Xiao, J., Zhai, H. and Qin, C., The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts, Insurance: Mathematics and Economics, 4(2)(27), 32 31. [8] Gao, J.W., Stochastic optimal control of DC pension funds, Insurance: Mathematics and Economics, 42(3)(28), 1159 1164. [9] Yong, J. and Zhou, X.Y., Stochastic Controls: Hamiltonian Systems and HJB Equations, New York: Springer-Verlag, 1999. Optimal Control for Utility Portfolio Selection with Liability Chang Hao (Department of Mathematics, Tianjin Polytechnic University, Tianjin, 3387 ) (School of Management, Tianjin University, Tianjin, 372 ) Rong Ximin (School of Science, Tianjin University, Tianjin, 372 ) In this paper we use stochastic optimal control theory to investigate a dynamic portfolio selection problem with liability process, in which the liability process is assumed to be a geometric Brownian motion and completely correlated with stock prices. We apply dynamic programming principle to obtain Hamilton-Jacobi-Bellman (HJB) equations for the value function and systematically study the optimal investment strategies for power utility, exponential utility and logarithm utility. Firstly, the explicit expressions of the optimal portfolios for power utility and exponential utility are obtained by applying variable change technique to solve corresponding HJB equations. Secondly, we apply Legendre transform and dual approach to derive the optimal portfolio for logarithm utility. Finally, numerical examples are given to illustrate the results obtained and analyze the effects of the market parameters on the optimal portfolios. Keywords: Liability process, dynamic portfolio selection, dynamic programming principle, Legendre transform, power utility, exponential utility, logarithm utility. AMS Subject Classification: 93E2, 91B28, 6H3.