➀ ➁ ➂ ➃ Lecture on Stochastic Processes (by Lijun Bo) 2

Size: px
Start display at page:

Download "➀ ➁ ➂ ➃ Lecture on Stochastic Processes (by Lijun Bo) 2"

Transcription

1 Stochastic Processes

2 ➀ ➁ ➂ ➃ Lecture on Stochastic Processes (by Lijun Bo) 2

3 (Stationary Processes) X = {X t ; t I}, n 1 t 1,..., t n I, n F n (t 1,..., t n ; x 1,..., x n ) = F n (t 1 + τ,..., t n + τ; x 1,..., x n ), τ R t i + τ I (i = 1,..., n) : 3

4 ( ) : X = {X n ; n N}, X 1,..., X n,... E[X 1 ] = 0 D(X 1 ) = σ 2 > 0, X = {X n ; n N} ( ) (Strong Sense White Noise) ( ) k 1,..., k n m (k i + m N, i = 1,..., n), P(X k1 x 1,..., X kn x n ) = n P(X k i=1 i x i ) = n P(X k i=1 i +m x i ) = P(X k1 +m x 1,..., X kn +m x n ). 4

5 严格意义下的(离散时间)白噪声的样本轨道: X1 N (0, 1) 5

6 , X = {X t ; t 0}, F 1 (t 1 ; x 1 ) = F 1 (x) t 1, τ, F 2 (t 1, t 2 ; x 1, x 2 ) = F 2 (t 1 + τ, t 2 + τ; x 1, x 2 ) = F 2 (0, t 2 t 1 ; x 1, x 2 ), t 2 > t 1. 6

7 Proof: τ = t 1, F 1 (t 1 ; x 1 ) = P(X t1 x 1 ) = P(X t1 +τ x 1 ) = P(X 0 x 1 ). F 2 (t 1, t 2 ; x 1, x 2 ) = F 2 (t 1 + τ, t 2 + τ; x 1, x 2 ) = F 2 (0, t 2 t 1 ; x 1, x 2 ). 7

8 X = {X t ; t 0},, t, m X (t) = xf 1 (t; dx) = xf 1 (dx) := m X, R X (s, t) = x 1 x 2 F (s, t; dx 1, dx 2 ) = R 2 = R X (0, t s) := R X (t s). R 2 x 1 x 2 F (0, t s; dx 1, dx 2 ) 8

9 (Wide-Sense Stationary Process) X = {X t ; t I}, (1) m X (t) = m X ( ), t I, (2) R X (s, t) = R X (t s), s, t, t s I, X 9

10 (1) (2) X = {X t ; t I}, X Proof: X,, X τ, ϕ X (t 1 + τ,..., t n + τ; u 1,..., u n ) n = exp i u k m X (t k + τ) 1 n 2 = exp i k=1 n u k m X (t k ) 1 2 k=1 = ϕ X (t 1,..., t n ; u 1,..., u n ). n k,l=1 k,l=1 u k u l C X (t k + τ, t l + τ) u k u l C X (t k, t l ) 10

11 (3) : X = {X t ; t 0}, X m X (t) = 0, t 0, σ 2, s = t, C X (s, t) = 0, s t, 11

12 Proof: R X (u) = σ 2, u = 0, 0, u 0, R X (s, t) = R X (t s). 12

13 X = {X t ; t 1}, (Moving Averages): Y t = X t + X t 1 2 Y = {Y t ; t 1}, 13

14 Proof: (1) m Y (t) = m X(t) + m X (t 1) 2 = 0, t 1. 14

15 (2) R Y (s, t) = [ Xt + X t 1 E 2 X t + X t 1 2 ] = 1 4 [R X(s, t) + R X (s, t 1) + R X (s 1, t) + R X (s 1, t 1)] σ 2 4, s = t 1 σ 2 2, s = t = σ 2 4, s = t + 1 0, s = t + 2 0, 15

16 R Y (s, t) = R Y (u) = σ 2 2, s = t σ 2 4, s t = 1 0, otherwise. σ 2 2, u = 0 σ 2 4, u = 1 0, otherwise. R X (s, t) = R X (t s). 16

17 X = {X t ; t I} ( ), : (1) (2) (3) R X (0) = E[ X t 2 ] m X 2 0. R X (τ) = R X ( τ). R X (τ) R X (0). (4) R X (t s), n 1, t 1,..., t n I α 1,..., α n n α k α l R X (t l t k ) 0. k,l=1 17

18 Proof: (1) R X (0) = E[X t X t ] = E[ X t 2 ] = D X (t) + m X 2 m X 2 0. (2) R X (τ) = E[X t X t+τ ] = E[X t+τ X t ] = R X (t (t + τ)) = R X ( τ). (3) R X (τ) = E[X t X t+τ ] E[ X t X t+τ ] E 1/2 [ X t 2 ]E 1/2 [ X t+τ 2 ] = R 1/2 X (0)R1/2 X (0) = R X(0). 18

19 (4) n n n α k α l R X (t l t k ) = α k α l E[X tk X tl ] = E α k X tk α l X tl k,l= k,l=1 [ n ] n = E α k X tk α k X tk k=1 k=1 n 2 = E α k X tk 0. k=1 k,l=1 19

20 X = {X t ; t I} ( ), X R X (τ) τ = 0, τ R X (τ) Proof:. R X (τ) τ = 0, E [ X t0 +τ X t0 2] [ ] = E (X t0 +τ X t0 )(X t0 +τ X t0 ) = R X (t 0 + τ, t 0 + τ) R X (t 0 + τ, t 0 ) R X (t 0, t 0 + τ) + R X (t 0, t 0 ) = R X (0) R X ( τ) R X (τ) + R X (0) (1) 0, τ 0. X t 0 20

21 . X, (1) E [ X t0 +τ X t0 2] = R X (0) R X ( τ) R X (τ) + R X (0) 0, τ 0. lim τ 0 R X (τ) = R X (0). R X (τ) τ = 0, τ R X (τ) R X (τ) τ = 0, X, τ 0 R, 21

22 R X (τ) R X (τ 0 ) = E[Xt X t+τ ] E[X t X t+τ0 ] E[ X t (X t+τ X t+τ0 ) ] ( E[ X t 2 ] ) 1/2 (E[ Xt+τ X t+τ0 ]) 1/2 = (R X (0)) 1/2 (E[ X t+τ X t+τ0 ]) 1/2 0, τ τ 0. 22

23 X = {X t ; t I} ( ), (1) X R X (τ) τ = 0, (2) X R X (τ) τ = 0, (3) X, X = { dx t dt ; t I}, m X (t) = 0 R X (τ) = R X (τ). 23

24 Proof: 3.3.2( Page71): X t 0 s R X(t 0, t 0 ), t R X(t 0, t 0 ), 2 s t R X(t 0, t 0 ) 2 t s R X(t 0, t 0 ) X, R X (s, t) = R X (t s), s R R X (t 0 + h, t 0 ) R X (t 0, t 0 ) X(t 0, t 0 ) = lim h 0 h R X ( h) R X (0) = lim = R h 0 h X(0). t R X(t 0, t 0 ) = R X (0). 24

25 , 2 t s R X(t 0, t 0 ) = lim h,k 0 = lim h,k 0 R X (t 0 + h, t 0 + k) R X (t 0 + h, t 0 ) R X (t 0, t 0 + k) + R X (t 0, t 0 ) hk R X (k h) R X ( h) R X (k) + R X (0) hk = lim h 0 R X ( h) R X (0) h 2 s t R X(t 0, t 0 ) = R X (0). = R X(0). 25

26 (2) (1) (3) m X (t) = 0 R X (t, t + τ) = R X (τ) = R X (τ). m X (t) = dm X(t) dt = dm X dt = 0. 2 R X (t, t + τ) = s t R X(t, t + τ) R X (t + k, t + τ + h) R X (t, t + τ + h) R X (t + k, t + τ) + R X (t, t + τ = lim h,k 0 hk = lim h,k 0 R X (τ + h k) R X (τ + h) R X (τ k) + R X (τ) hk = lim h 0 R X (τ + h) + R X (τ) h = R X(τ). 26

27 R X (τ k) R X (τ) k R X(τ), k 0. 27

28 X = {X t ; t I} ( ), t I, X t dx t dt, Cov(X t, dx t dt ) = 0. Proof: X = {X t ; t I} ( ), R X (τ) = R X ( τ). X, R X (τ), R X( τ) = R X(τ). R X (0) = R X (0) R X (0) = 0. E[X t dx t dt ] = t R X(s, t) s=t = t R X(t s) s=t = R X(0) = 0. dx t Cov(X t dt ) = E[X dx t t dt ] m Xm X (t) = 0. 28

29 X = {X t ; t I}, t I, X t dx t dt Proof:, X t dx t dt X t dx t dt, (X t, dx t dt ) h, ( X t, X ) t+h X t h = (X t, X t+h ) 1 1 h 0 1 h X, (X t, X t+h ) ( X t, X ) t+h X t h. 29

30 , l.i.m h 0 X t+h X t h = dx t dt,,(x t, dx t dt ) 30

31 X = {X t ; t [a, b]} ( < a < b < ),f(t), b a f(t)x t dt, g(t), [ b ] b E g(s)x s ds f(t)x t dt = a a b b a a g(s)f(t)r X (t s)dsdt. 31

32 Proof: f(s)f(t)r X (t s) [a, b] [a, b], b b a a f(s)f(t)r X (t s)dsdt ( Page76 77), 32

33 X = {X t ; t I} Y = {Y t ; t I}, R XY (s, t) = R XY (t s), s, t I, (X, Y ) R Y X (s, t) = R Y X (t s), s, t I. 33

34 (X, Y ), Z t = X t + Y t Z = {Z t ; t I} Proof: (1) (2) τ R, m Z (t) = E[Z t ] = m X + m Y ( ). R Z (t, t + τ) = E [ Z t Z t+τ ] = E[(Xt + Y t )(X t+τ + Y t+τ )] = R X (t, t + τ) + R XY (t, t + τ) + R Y X (t, t + τ) + R Y (t, t + τ) = R X (τ) + R XY (τ) + R Y X (τ) + R Y (τ). R Z (τ) = R X (τ) + R XY (τ) + R Y X (τ) + R Y (τ), R Z (t, t + τ) = R Z (τ). 34

35 (X, Y ), R XY (τ) (1) R XY (τ) = R XY ( τ). (2) R XY (τ) 2 R X (0)R Y (0), R Y X (τ) 2 R X (0)R Y (0). 35

36 Proof: (1) R XY (τ) = E[X t Y t+τ ] = E[Y t+τ X t ] = R Y X (t + τ, t) = R Y X ( τ). (2) R XY (τ) 2 = E[Xt Y t+τ ] 2 E[ X t 2 ]E[ Y t+τ 2 ] = R X (0)R Y (0). 36

37 X = {X t ; t R}, l.i.m T 1 2T T T X t dt, ( X t ) X R 37

38 X = {X t ; t R}, l.i.m T 1 2T T T X t X t+τ dt, ( X t X t+τ ) X R 38

39 X = {X t ; t R}, P( X t = m X ) = 1, X X = {X t ; t R}, P( X t X t+τ = R X (τ)) = 1, τ R, X X, X, X 39

40 X = {X t ; t R}, X 1 2T ( lim 1 τ ) C X (τ)dτ = 0. T 2T 2T 2T 40

41 Proof: E[ X t ] = lim T [ 1 T 2T E T X t dt ] = m X, P( X t = m X ) = 1 E [ X t m X 2] = 0 D( X t ) = 0 ( lim D 1 T 2T T T X t dt ) = 0. 41

42 D ( 1 2T T T X t dt ) = = = = 1 4T 2 E [ 1 T 4T 2 E 1 4T 2 E 1 4T 2 = 1 2T T [ T T T T T T T T 2T 2T T 2 (X t m X )dt (X s m X )ds T T T (X t m X )dt (X s m X )(X t m X )dsdt C X (t s)dsdt ( 1 τ 2T ) C X (τ)dτ. ] ] 42

43 X = {X t ; t R}, X lim T 1 T 2T 0 ( 1 τ 2T ) C X (τ)dτ = 0. Proof: X,, C X (τ) = C X ( τ). 43

44 X = {X t ; t R}, lim τ C X (τ) = 0, X Proof: lim τ C X (τ) = 0, ε > 0, T 1 > 0, τ T 1, C X (τ) < ε. 2T > T 1, 1 2T ( 1 τ ) C X (τ)dτ 2T 2T 2T 1 2T C X (τ) dτ = 1 T1 C X (τ) dτ + 1 C X (τ) dτ 2T 2T 2T T 1 2T T 1 τ 2T 1 2T 2T 1C X (0) + 1 2T 2(2T T 1)ε T 1 T C X(0) + 2ε. 44

45 T = max{ T 1 2, T 1 ε C X(0)}, T > T, 1 2T ( 1 τ ) C X (τ)dτ 2T 2T T 1 T C X(0) + 2ε < 3ε. 2T 45

46 I = [0, ) X = {X t ; t 0}, X t = l.i.m T 1 T T 0 X t dt. I = R, X 1 T ( lim 1 τ ) C X (τ)dτ = 0. T + T T T X, lim T + 2 T T 0 ( 1 τ T ) C X (τ)dτ = 0. 46

47 X t = A cos(t) + B sin(t) (t R), A B E[A] = E[B] = 0 D(A) = D(B) = σ 2. X = {X t ; t R} Proof: (1) X 1. m X (t) = E[X t ] = cos(t)e[a] + sin(t)e[b] = 0 = m X. 2. R X (t, t + τ) = E[X t X t+τ ] = (E[ A 2 ]) cos(t) cos(t + τ) + (E[ B 2 ]) sin(t) sin(t + τ) +(E[AB]) cos(t) sin(t + τ) + (E[BA]) sin(t) sin(t + τ) = σ 2 cos(τ) := R X (τ). 47

48 C X (τ) = R X (τ) = σ 2 cos(τ), 1 2T = σ2 T 2T 2T 2T 0 = σ2 sin(2t ) T ( 1 τ 2T ( 1 τ 2T ) C X (τ)dτ ) cos(τ)dτ + σ2 (cos(2t ) 1) 2T 2 0, T. 48

49 X = {X t ; t R} τ R, Y t = X t X t+τ, t R. Y = {Y t ; t R}, X Y 49

50 X Y ( τ R), X 1 2T ( lim 1 u ) (RY (u) R X (τ) 2) du = 0. T + 2T 2T 2T X Y ( τ R), lim T + 1 2T 2T 0 ( 1 u 2T ) (RY (u) R 2 X(τ) ) du = 0. 50

51 Proof: C Y (u) = R Y (u) R X (τ) 2. C Y (u) = R Y (u) m Y 2 = R Y (u) E[Y t ] 2 = R Y (u) E[X t X t+τ ] 2 = R Y (u) R X (t, t + τ) 2 = R Y (u) R X (τ) 2. 51

52 I = [0, ) X = {X t ; t 0} Y = {X t X t+τ ; t 0, t + τ 0}, X X t X t+τ = Y t = l.i.m T + 1 T T 0 X t X t+τ dt. X 1 T ( lim 1 u ) (RY (u) R X (τ) 2) du = 0. T + T T T X, Y, lim T + 2 T T 0 ( 1 u T ) (RY (u) R 2 X(τ) ) du = 0. 52

53 ( PAGE ) X = {X t ; t R}, lim R X(τ) = 0, τ X Proof: Y t = X t X t+τ = X t X t+τ τ R, m Y (t) = E[X t X t+τ ] = R X (τ) = m Y. R Y (t, t + u) = E[Y t Y t+u ] = E[X t X t+τ X t+u X t+u+τ ] = E[X t X t+τ ]E[X t+u X t+u+τ ] + E[X t X t+u ]E[X t+τ X t+u+τ ] +E[X t X t+u+τ ]E[X t+τ X t+u ] = RX(τ) 2 + RX(u) 2 + R X (u + τ)r X (u τ) := R Y (u). ( PAGE ) 53

54 lim C Y (u) = 0. u C Y (u) = R Y (u) m Y 2 = RX(τ) 2 + RX(u) 2 + R X (u + τ)r X (u τ) m Y 2 RX(τ) 2 m Y 2 = 0, u ( Page111) 54

55 ( ) X = (X 1, X 2,..., X n ) N(b, C) n, b = (b 1,..., b n ) = (E[X 1 ],..., E[X n ]), C = (C ij ) = (E[X i X j ]) 1 i,j n. n X k : r 1 + r r N = k. M 1,...,N (X) := E [X r 1 1 Xr 2 2 Xr N N ], (a) k, k M 1,...,N (X b) = 0. (b) k = 2m, k M 1,...,N (X b) = (C ij C κl C xz ). ( ) 55

56 b = 0. E[X 1 X 2 X 3 X 4 ] = C 12 C 34 + C 13 C 24 + C 14 C 23 = E[X 1 X 2 ]E[X 3 X 4 ] + E[X 1 X 3 ]E[X 2 X 4 ] (2m 1)! +E[X 1 X 4 ]E[X 2 X 3 ], 2 m 1 (m 1)!. m E[Xi 4 ] = E[X i X i X i X i ] = 3Cii. 2 E[Xi 3 X j ] = E[X i X i X i X j ] = 3CiiC 2 ij. E[Xi 2 Xj 2 ] = C ii C jj + 2Cij. 2 E[Xi 2 X j X k ] = C ii C jk + 2C ij C ik. 56

57 ϕ(τ) : R C,, n 1, t 1,..., t n λ 1,, λ n ϕ n k,l=1 α k α l ϕ(t k t l ) 0. Bochner-Khintchine( ) ϕ(τ) ϕ(τ), ϕ(0) = 1. 57

58 (Wiener-Khintchine ) X = {X t ; t R}, R X (τ) R X (τ) = 1 2π e ixτ df X (x), i = 1, τ R, F X (x) R,,, F X () = 0, F X (+ ) = 2πR X (0). X F X (x), S X (x) F X (x) = x S X (x) X S X (y)dy, 58

59 Proof: (1) R X (0) = 0, F X (0) = 0. (2) R X (0) > 0, f(τ) = R X(τ) R X (0). X 4.2.1( Page104) f(τ), f(0) = 1, f(τ). Bochner-Khintchine( ) G(x) f(τ) = R X(τ) R X (0) = e ixτ dg(x). F X (x) = 2πR X (0)G(x). 59

60 X = {X t ; t R} R X (τ) R, R X (τ) dτ <, S X (x) = e ixτ R X (τ)dτ, x R. Wiener-Khintchine R X (τ) = 1 2π e ixτ df X (x) = 1 2π e ixτ S X (x)dx. 60

61 Proof: R X (τ) R, e ixτ R X (τ)dτ R X (τ) dτ <. R X (τ) Fourier S X (x) = Fourier, e ixτ R X (τ)dτ. R X (τ) = 1 2π e ixτ S X (x)dx. Wiener-Khintchine, df X (x) = S X (x)dx. 61

62 Wiener-Khintchine {X n ; n = 0, ±1, ±2,... }, R X (n, n + m) = E[X n X n+m ] = R X (m), m Z, Wiener-Khintchine R X (m) = 1 2π π π e ixm df X (x), F X (x) [ π, π],,, F X ( π) = 0, F X (π) = 2πR X (0). 62

63 X F X (x), S X (x) F X (x) = x π S X (y)dy, x [ π, π], S X (x) X 63

64 {X n ; n = 0, ±1, ±2,... } R X (m) <, m Z S X (x) = e ixm R X (m), m Z Wiener-Khintchine R X (m) = 1 2π π π e ixm df X (x) = 1 2π π π e ixm S X (x)dx. 64

65 ( 4.4.2PAGE116) {X n ; n = 0, ±1, ±2,... } E[X n ] = 0, E[X m X n ] = σ 2 σ 2, m = n δ m,n = 0, otherwise, m, n = 0, ±1, ±2,.... {C n ; n = 0, ±1, ±2,... } C n <, C n 2 <. n Z n Z Y n = C k X n k. k Z Y = {Y n ; n = 0, ±1, ±2,... } ( 4.4.2PAGE116) 65

66 Proof: (1) Y m Y (n) = E[Y n ] = C k E[X n k ] = 0. k Z [ ] R Y (n, n + m) = E[Y n Y n+m ] = E C k X n k C l X n+m l = k,l Z k Z C k C l E [ X n k X n+m l ] = σ 2 C k C l δ n k,n+m l k,l Z = σ 2 C k C l δ n k,n+m l l k=m,k,l Z l Z = σ 2 C k C k+m δ n k,n k = σ 2 C n C n+m = R Y (m). k Z n Z 66

67 (2) R Y (m) R Y (m) = σ 2 C n C n+m σ 2 m Z m Z n Z C n C n+m m,n Z = σ ( 2 2 C n C m = σ 2 C n ) <. m,n Z n Z (3) 4.4.4(Page116) Y S Y (x) = m Z e ixm R Y (m) = σ 2 m Z e ixm n Z C n C n+m = σ 2 2 e ix(l k) C k C l = σ 2 C k e ixk k,l Z k Z. 67

68 x = {x t ; t R} F x (y) = Parseval, e iyt x t dt, y R. x 2 t dt = 1 2π F x (y) 2 dy. F x (y) 2 68

69 x2 t dt =, x t R ( ) lim T 1 2T T T x 2 t dt <. Parseval, x t, t T x T (t) = 0, t > T R, Fourier F x (y; T ) = e iyt x T (t)dt = T T e iyt x t dt. 69

70 Parseval 2T, T, lim T 1 2T T T x 2 t dt = 1 2π lim T 1 2T F x(y; T ) 2 dy. S x (y) = lim T 1 2T F x(y; T ) 2 = lim T 1 2T T T e iyt x t dt 2. X = {X t ; t 0}, lim T 1 2T E [ F X (y; T ) 2] = lim T 1 2T E T T 2 e iyt X t dt 70

71 X [ lim E 1 T 2T X T T X t 2 dt ] 71

72 X = {X t ; t 0} R X (τ), X, S X (y) = = lim T e iyτ R X (τ)dτ 1 2T E T T 2 e iyt X t dt = lim T 1 2T E [ F X (y; T ) 2]. 72

73 Proof: 1 T 2 [ 2T E e iyt X t dt = 1 T 2T E T T e iys X s ds T T e iyt X t dt ] R T X(τ) = = 1 2T = = 2T 2T T T T T ( 1 u 2T e iy(t s) R X (t s)dsdt e iyτ R T X(τ)dτ, ( 1 τ ) R X (τ)1 { τ 2T }. 2T ) e iyu R X (u)du 73

74 (T ), e iyτ R X (τ), 1 T 2 lim T 2T E e iyt X t dt = lim e iyτ R X(τ)dτ T T T = = e iyτ = S X (y). lim T RT X(τ)dτ e iyτ R X (τ)dτ 74

75 X = {X t ; t 0}, R X (τ), X, Proof: R X (τ), X, S X (y) = e iyτ R X (τ)dτ = lim T 1 2T E [ F X (y; T ) 2]. 1 lim T 2T E [ F X (y; T ) 2], S X (y) X,R X (τ) S X (y) = e iyτ R X (τ)dτ = e iyτ R X ( τ)dτ = S X ( y). 75

76 1 2π S X (y)dy = R X (0). R X (τ), S X (0) = R X (τ)dτ. Proof: : S X (x) = R X (τ) = 1 2π e ixτ R X (τ)dτ e ixτ S X (x)dx. 76

77 R X (τ) = a cos(ατ) X = {X t ; t R} S X (y) 77

78 Dirac Delta Dirac Delta δ(x) +, x = 0 δ(x) = 0, x 0, δ(x)dx = 1. δ, ( ) 1 p σ (x) = exp x2 2πσ 2 2σ 2 δ(x), as σ 0. 78

79 Dirac Delta f(τ)δ(τ t)dτ = f(t), f(τ)δ(τ)dτ = f(0). δ(x) Fourier e iyτ δ(τ)dτ = 1, Fourier 1 2π e iyτ dy = δ(τ). 79

80 : R X (τ) = a cos(ατ) X = {X t ; t R} S X (y) Answer: S X (y) = = a 2 = aπ e iyτ R X (τ)dτ = a ( 1 2π e iyτ ( e iατ + e iατ ) dτ e i(y α)τ dτ + 1 2π = aπ[δ(y a) + δ(y + a)]. e iyτ cos(ατ)dτ ) e i(y+α)τ dτ 80

81 X = {X t ; t R} Y = {Y t ; t R} ( X, Y R XY (t, t + τ) = R XY (τ)) R XY (τ), S XY (y) = e iyτ R XY (τ)dτ, y R X Y 81

82 X = {X t ; t R} Y = {Y t ; t R} R XY (τ), S XY (y) = lim T 1 [ ] 2T E F X (y; T )F Y (y; T ), F X (y; T ) = T T e iyt X t dt, F Y (y; T ) = T T e iyt Y t dt. 82

83 (1) S XY (y) = S Y X (y). (2) R XY (τ) S XY (τ) Fourier (3) X Y, y Re(S XY (y)),y Im(S XY (y)) (4) S XY (y) 2 S X (y)s Y (y), S Y X (y) 2 S X (y)s Y (y). 83

84 Proof: (1) S XY (y) = lim T = lim T 1 [ ] 2T E F X (y; T )F Y (y; T ) 1 [ ] 2T E F Y (y; T )F X (y; T ) (2), S XY (y) Fourier = S Y X (y). R XY (τ) = 1 2π e iyτ S XY (y)dy. 84

85 (3), S XY (y) = = e iyτ R XY (τ)dτ R XY (τ) cos(yτ)dτ i R XY (τ) sin(yτ)dτ Re(S XY (y)) = R XY (τ) cos(yτ)dτ = R XY (τ) cos( yτ)dτ = Re(S XY ( y)) Im(S XY (y)) = R XY (τ) sin(yτ)dτ = R XY (τ) sin(yτ)dτ = Im(S XY ( y) 85

86 (4) Cauchy Schwarz S XY (y) 2 = lim T = lim T lim T = S X (y)s Y (y). 1 [ ] 2 2T E F X (y; T )F Y (y; T ) 1 [ ] 2 4T 2 E F X (y; T )F Y (y; T ) 1 2T E [ F X (y; T ) 2] lim T 1 2T E [ F Y (y; T ) 2] 86

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2 Stochastic Processes stoprocess@yahoo.com.cn 111111 ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2 : Stochastic Processes? (Ω, F, P), I t I, X t (Ω, F, P), X = {X t, t I}, X t (ω)

More information

DS Ω(1.1)t 1 t 2 Q = t2 t 1 { S k(x, y, z) u } n ds dt, (1.2) u us n n (t 1, t 2 )u(t 1, x, y, z) u(t 2, x, y, z) Ω ν(x, y, z)ρ(x, y, z)[u(t 2, x, y,

DS Ω(1.1)t 1 t 2 Q = t2 t 1 { S k(x, y, z) u } n ds dt, (1.2) u us n n (t 1, t 2 )u(t 1, x, y, z) u(t 2, x, y, z) Ω ν(x, y, z)ρ(x, y, z)[u(t 2, x, y, u = u(t, x 1, x 2,, x n ) u t = k u kn = 1 n = 3 n = 3 Cauchy ()Fourier Li-Yau Hanarck tcauchy F. JohnPartial Differential Equations, Springer-Verlag, 1982. 1. 1.1 Du(t, x, y, z)d(x, y, z) t Fourier dtn

More information

( )

( ) ( ) * 22 2 29 2......................................... 2.2........................................ 3 3..................................... 3.2.............................. 3 2 4 2........................................

More information

koji-13.dvi

koji-13.dvi 26 13 1, 2, 3, 4, 5, 6, 7 1 18 1. xy D D = {(x, y) y 2 x 4 y 2,y } x + y2 dxdy D 2 y O 4 x 2. xyz D D = {(x, y, z) x 1, y x 2, z 1, y+ z x} D 3. [, 1] [, 1] (, ) 2 f (1)

More information

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P. () * 3 6 6 3 9 4 3 5 8 6 : 3. () ; () ; (3) (); (4) ; ; (5) ; ; (6) ; (7) (); (8) (, ); (9) ; () ; * Email: huangzh@whu.edu.cn . () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) :

More information

:

: : : 4.1....................... 1 4.1.1............... 1 4.2........... 10 4.2.1............... 10 4.2.2..... 14 4.2.3................ 18 4.2.4................ 24 4.3...................... 26 4.3.1..............

More information

untitled

untitled 4 y l y y y l,, (, ) ' ( ) ' ( ) y, y f ) ( () f f ( ) (l ) t l t lt l f ( t) f ( ) t l f ( ) d (l ) C f ( ) C, f ( ) (l ) L y dy yd π y L y cosθ, π θ : siθ, π yd dy L [ cosθ cosθ siθ siθ ] dθ π π π si

More information

《分析化学辞典》_数据处理条目_1.DOC

《分析化学辞典》_数据处理条目_1.DOC 3 4 5 6 7 χ χ m.303 B = f log f log C = m f = = m = f m C = + 3( m ) f = f f = m = f f = n n m B χ α χ α,( m ) H µ σ H 0 µ = µ H σ = 0 σ H µ µ H σ σ α H0 H α 0 H0 H0 H H 0 H 0 8 = σ σ σ = ( n ) σ n σ /

More information

untitled

untitled 995 + t lim( ) = te dt =. α α = lim[( + ) ] = e, α α α α = t t t t te dt = tde = te α α e dt = αe e, =, e α = αe α e α, α =. y z = yf, f( u) z + yz y =. z y y y y y y z = yf + y f = yf f, y y y y z y =

More information

Cauchy Duhamel Cauchy Cauchy Poisson Cauchy 1. Cauchy Cauchy ( Duhamel ) u 1 (t, x) u tt c 2 u xx = f 1 (t, x) u 2 u tt c 2 u xx = f 2 (

Cauchy Duhamel Cauchy Cauchy Poisson Cauchy 1. Cauchy Cauchy ( Duhamel ) u 1 (t, x) u tt c 2 u xx = f 1 (t, x) u 2 u tt c 2 u xx = f 2 ( Cauchy Duhamel Cauchy CauchyPoisson Cauchy 1. Cauchy Cauchy ( Duhamel) 1.1.......... u 1 (t, x) u tt c 2 u xx = f 1 (t, x) u 2 u tt c 2 u xx = f 2 (t, x) 1 C 1 C 2 u(t, x) = C 1 u 1 (t, x) + C 2 u 2 (t,

More information

untitled

untitled arctan lim ln +. 6 ( + ). arctan arctan + ln 6 lim lim lim y y ( ln ) lim 6 6 ( + ) y + y dy. d y yd + dy ln d + dy y ln d d dy, dy ln d, y + y y dy dy ln y+ + d d y y ln ( + ) + dy d dy ln d dy + d 7.

More information

微积分 授课讲义

微积分 授课讲义 2018 10 aiwanjun@sjtu.edu.cn 1201 / 18:00-20:20 213 14:00-17:00 I II Taylor : , n R n : x = (x 1, x 2,..., x n ) R; x, x y ; δ( ) ; ; ; ; ; ( ) ; ( / ) ; ; Ů(P 1,δ) P 1 U(P 0,δ) P 0 Ω P 1: 1.1 ( ). Ω

More information

996,,,,,,, 997 7, 40 ; 998 4,,, 6, 8, 3, 5, ( ),, 3,,, ;, ;,,,,,,,,,

996,,,,,,, 997 7, 40 ; 998 4,,, 6, 8, 3, 5, ( ),, 3,,, ;, ;,,,,,,,,, ,, AB,, ( CIP) /, 000 ( /, ) ISBN 704009448 F47 CIP ( 000) 86786 55 00009 0064054588 ht tp www hep edu cn ht tp www hep com cn 006404048 787960/ 6 05 370 000 730,, 996,,,,,,, 997 7, 40 ; 998 4,,, 6, 8,

More information

x y z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.1. (X, Y ) 3.2 P (x 1 < X x 2, y 1 < Y y 2 ) = F (x 2, y 2 ) F (x 2, y 1 ) F (x 1, y 2

x y z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.1. (X, Y ) 3.2 P (x 1 < X x 2, y 1 < Y y 2 ) = F (x 2, y 2 ) F (x 2, y 1 ) F (x 1, y 2 3 3.... xy z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.. (X, Y ) 3.2 P (x < X x 2, y < Y y 2 ) = F (x 2, y 2 ) F (x 2, y ) F (x, y 2 ) + F (x, y ) 3. F (a, b) 3.2 (x 2, y 2) (x, y 2) (x 2, y ) (x,

More information

WL100014ZW.PDF

WL100014ZW.PDF A Z 1 238 H U 1 92 1 2 3 1 1 1 H H H 235 238 92 U 92 U 1.1 2 1 H 3 1 H 3 2 He 4 2 He 6 3 Hi 7 3 Hi 9 4 Be 10 5 B 2 1.113MeV H 1 4 2 He B/ A =7.075MeV 4 He 238 94 Pu U + +5.6MeV 234 92 2 235 U + 200MeV

More information

untitled

untitled 998 + + lim =.. ( + + ) ( + + + ) = lim ( ) = lim = lim =. lim + + = lim + = lim lim + =. ( ) ~ 3 ( + u) λ.u + = + + 8 + o = + 8 + o ( ) λ λ λ + u = + λu+ u + o u,,,! + + + o( ) lim 8 8 o( ) = lim + =

More information

95

95 95 96 http://www.ee.ncnu.edu.tw/announce/board.php?action=view&seqno=410 or QR 5K // 0 K 5K 5K // K 5K ------ 94 93 92 91 ( ) ( ) ( ) A e ( ) d st D L[ f ( t)] f ( t) e dt F( s) dx 0

More information

M ( ) K F ( ) A M ( ) 1815 (probable error) F W ( ) J ( ) n! M ( ) T ( ) L ( ) T (171

M ( ) K F ( ) A M ( ) 1815 (probable error) F W ( ) J ( ) n! M ( ) T ( ) L ( ) T (171 1 [ ]H L E B ( ) statistics state G (150l--1576) G (1564 1642) 16 17 ( ) C B (1623 1662) P (1601--16S5) O W (1646 1716) (1654 1705) (1667--1748) (1687--H59) (1700 1782) J (1620 1674) W (1623 1687) E (1656

More information

untitled

untitled 4 6 4 4 ( n ) f( ) = lim n n +, f ( ) = = f( ) = ( ) ( n ) f( ) = lim = lim n = = n n + n + n f ( ), = =,, lim f ( ) = lim = f() = f ( ) y ( ) = t + t+ y = t t +, y = y( ) dy dy dt t t = = = = d d t +

More information

3978 30866 4 3 43 [] 3 30 4. [] . . 98 .3 ( ) 06 99 85 84 94 06 3 0 3 9 3 0 4 9 4 88 4 05 5 09 5 8 5 96 6 9 6 97 6 05 7 7 03 7 07 8 07 8 06 8 8 9 9 95 9 0 05 0 06 30 0 .5 80 90 3 90 00 7 00 0 3

More information

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

More information

Ps22Pdf

Ps22Pdf ) ,,, :,,,,,,, ( CIP) /. :, 2001. 9 ISBN 7-5624-2368-7.......... TU311 CIP ( 2001) 061075 ( ) : : : : * : : 174 ( A ) : 400030 : ( 023) 65102378 65105781 : ( 023) 65103686 65105565 : http: / / www. cqup.

More information

80000 400 200 X i X1 + X 2 + X 3 + + X n i= 1 x = n n x n x 17 + 15 + 18 + 16 + 17 + 16 + 14 + 17 + 16 + 15 + 18 + 16 = 12 195 = = 1625. ( ) 12 X X n i = = 1 n i= 1 X f i f Xf = f n i= 1 X f ( Xf). i i

More information

幻灯片 1

幻灯片 1 Digital Signal Processing mailfzh@nwpu.edu.cn /gary/ 1. FT FT. 3. 4. DFT 5. 6. DFT 7. 1. FT FT (FS) (FT) ( ) xt () Dirichlet (, ), 1 T () = ( Ω), ( Ω ) = () T T jkωt jkωt xt X k e X k xte dt e jkω t k

More information

1 2 1.1............................ 2 1.2............................... 3 1.3.................... 3 1.4 Maxwell.................... 3 1.5.......................... 4 1.6............................ 4

More information

dn = kn ( 5 1) dt t = 2 303 1 k tg N 0. ( 5 2) N S m + M v = V (5 3) K S dx = µ X dt 5 4 S µ = µ m K + S ( 5 5) S ds 1 dx 1 = = µ X ( 5 6) dt Y dt Y x/ s x/ s ds 1 = + + ( ) dt Y X mx 1 dp

More information

S = 1 2 ( a + b) h a b = a 1 a b = a 1 b b 2 2 πr 2r π π 2 = ( - 2)r 2 2 = - 2 = 57 2r 2r 2 6 5 7 4 3 6 5 4 3 3 4 5 6 7 7 5 7 6 1 1 1 1 1 2 3 5 7 7. 2 3 4 6 12 3 4 12 12 1

More information

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. ()

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. () ! # % & & &! # % &! ( &! # )! ) & ( +,! (# ) +. + / 0 1 2 3 4 4 5 & 6!!!.! (!,! (! & 7 6!. 8 / 6 7 6 8! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. () , 4 / 7!# + 6 7 1 1 1 0 7!.. 6 1 1 2 1 3

More information

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

5 (Green) δ

5 (Green) δ 2.............................. 2.2............................. 3.3............................. 3.4........................... 3.5...................... 4.6............................. 4.7..............................

More information

PowerPoint Presentation

PowerPoint Presentation 1 1 2 3 4 2 2004 20044 2005 2006 5 2007 5 20085 20094 2010 4.. 20112116. 3 4 1 14 14 15 15 16 17 16 18 18 19 19 20 21 17 20 22 21 23 5 15 1 2 15 6 1.. 2 2 1 y = cc y = x y = x y =. x. n n 1 C = 0 C ( x

More information

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ .................................2.......................... 2.3.......................... 2.4 d' Alembet...................... 3.5......................... 4.6................................... 5 2 5

More information

Lecture #4: Several notes 1. Recommend this book, see Chap and 3 for the basics about Matlab. [1] S. C. Chapra, Applied Numerical Methods with MATLAB

Lecture #4: Several notes 1. Recommend this book, see Chap and 3 for the basics about Matlab. [1] S. C. Chapra, Applied Numerical Methods with MATLAB Chapter Lecture #4: Several notes 1. Recommend this book, see Chap and 3 for the basics about Matlab. [1] S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists. New York: McGraw-Hill,

More information

bingdian001.com

bingdian001.com 7 8 4 3. cos f ( ) a b,, ( A) ab B ab ( C) ab D ab A cos lm lm, f ( ) a a a b ab. a A. f ( ) ' ( A) f () f ( ) B f () f ( ) ( C ) f () f ( ) D f () f ( ) f ( ) f ( ) C f ( ) f f ( ) f ' ( ), () ( ) ()

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

untitled

untitled + lim = + + lim = + lim ( ) + + + () f = lim + = + = e cos( ) = e f + = e cos = e + e + + + sin + = = = = = + = + cos d= () ( sin ) 8 cos sin cos = ( ) ( sin ) cos + d= ( + ) = cos sin cos d sin d 4 =

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

3.1 ( ) (Expectation) (Conditional Mean) (Median) Previous Next

3.1 ( ) (Expectation) (Conditional Mean) (Median) Previous Next 3-1: 3.1 ( )........... 2 3.1.1 (Expectation)........ 2 3.1.2............. 12 3.1.3 (Conditional Mean)..... 17 3.1.4 (Median)............ 22 Previous Next First Last Back Forward 1 1.. 2. ( ): ( ), 3.

More information

UDC

UDC CECS 102:2002 Technical specification for steed structure of light-eight Buildings ith gabled frames 2003 1 Technical specification for steed structure of light-eight Buildings ith gabled frames CECS102:2002

More information

% %! # % & ( ) % # + # # % # # & & % ( #,. %

% %! # % & ( ) % # + # # % # # & & % ( #,. % !!! # #! # % & % %! # % & ( ) % # + # # % # # & & % ( #,. % , ( /0 ) %, + ( 1 ( 2 ) + %, ( 3, ( 123 % & # %, &% % #, % ( ) + & &% & ( & 4 ( & # 4 % #, #, ( ) + % 4 % & &, & & # / / % %, &% ! # #! # # #

More information

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) ! # % & # % ( ) & + + !!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) 6 # / 0 1 + ) ( + 3 0 ( 1 1( ) ) ( 0 ) 4 ( ) 1 1 0 ( ( ) 1 / ) ( 1 ( 0 ) ) + ( ( 0 ) 0 0 ( / / ) ( ( ) ( 5 ( 0 + 0 +

More information

.1 LTI LTI.1 LTI y (n) () + a n-1 y (n-1) () + + a 1 y (1) () + a 0 y () = b m f (m) () + b m-1 f (m-1) () + + b 1 f (1) () + b 0 f () -

.1 LTI LTI.1 LTI y (n) () + a n-1 y (n-1) () + + a 1 y (1) () + a 0 y () = b m f (m) () + b m-1 f (m-1) () + + b 1 f (1) () + b 0 f () - .1 LTI.3 0-0+.4. -1 .1 LTI LTI.1 LTI y (n) () + a n-1 y (n-1) () + + a 1 y (1) () + a 0 y () = b m f (m) () + b m-1 f (m-1) () + + b 1 f (1) () + b 0 f () - .1 LTI y()( ) = y h ()( ) + y p ()( y (n) +a

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

-2 4 - cr 5 - 15 3 5 ph 6.5-8.5 () 450 mg/l 0.3 mg/l 0.1 mg/l 1.0 mg/l 1.0 mg/l () 0.002 mg/l 0.3 mg/l 250 mg/l 250 mg/l 1000 mg/l 1.0 mg/l 0.05 mg/l 0.05 mg/l 0.01 mg/l 0.001 mg/l 0.01 mg/l () 0.05 mg/l

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 . ttp://www.reej.com 4-9-9 4-9-9 . a b { } a b { }. Φ ϕ ϕ ϕ { } Φ a b { }. ttp://www.reej.com 4-9-9 . ~ ma{ } ~ m m{ } ~ m~ ~ a b but m ~ 4-9-9 4 . P : ; Φ { } { ϕ ϕ a a a a a R } P pa ttp://www.reej.com

More information

2007 GRE Math-Sub Nov 3, 2007 Test time: 170 minutes

2007 GRE Math-Sub Nov 3, 2007 Test time: 170 minutes 2007 GRE Math-Sub Nov 3, 2007 Test time: 170 minutes ... zqs... 10 66 60... fz zqs vonneumann vonneumann sub... Bless by Luobo June 21, 2008 1. 2. g(x) = e 2x+1, cos 3x 1 lim x 0 x 2 g(g(x)) g(e) lim x

More information

G(z 0 + "z) = G(z 0 ) + "z dg(z) dz z! # d" λ "G = G(z 0 ) + #cos dg(z) ( & dz ) * nv #., - d+ - - r 2 sin cosds e / r # ddr 4.r 2 #cos! "G = G(z 0 )

G(z 0 + z) = G(z 0 ) + z dg(z) dz z! # d λ G = G(z 0 ) + #cos dg(z) ( & dz ) * nv #., - d+ - - r 2 sin cosds e / r # ddr 4.r 2 #cos! G = G(z 0 ) 2005.7.21 KEK G(z 0 + "z) = G(z 0 ) + "z dg(z) dz z! # d" λ "G = G(z 0 ) + #cos dg(z) ( & dz ) * nv #., - d+ - - r 2 sin cosds e / r # ddr 4.r 2 #cos! "G = G(z 0 ) + #cos dg(z) ( & dz ) * nv 2+ + ds -

More information

Microsoft PowerPoint - FE11

Microsoft PowerPoint - FE11 - - 郑振龙陈蓉厦门大学金融系课程网站 http://efinance.org.cn Email: zlzheng@xmu.edu.cn aronge@xmu.edu.cn BSM BSM BSM Copyright 01 Zheng, Zhenlong & Chen, Rong, XMU BSM BSM BSM Copyright 01 Zheng, Zhenlong & Chen, Rong,

More information

x iy x y 2 2 + value I / 2 0 R X 2 2 + é t S = vdt 2 t l é x iy i x y x = 1, ( é ü 3 17320508 =. é é 2EvM ü

More information

1938 (Ph.D) 1940 (D.Sci) 1940 (Kai-Lai Chung) Lebesgue-Stieltjes [6] ( [22]) 1942 (1941 ) 1945 J. Neyman H. Hotelling ( ) (University of Cali

1938 (Ph.D) 1940 (D.Sci) 1940 (Kai-Lai Chung) Lebesgue-Stieltjes [6] ( [22]) 1942 (1941 ) 1945 J. Neyman H. Hotelling ( ) (University of Cali 1910 9 1 1 () 1925 1928 () (E. A. Poe) 1931 1933 1934 (Osgood, 1864-1943) ( ) A note on the indices and numbers of nondegenerate critical points of biharmonic functions, 1935 1936 (University College London)

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

诺赫德(报批).doc

诺赫德(报批).doc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 * 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 ³ 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

More information

10-03.indd

10-03.indd 1 03 06 12 14 16 18 é 19 21 23 25 28 30 35 40 45 05 22 27 48 49 50 51 2 3 4 é é í 5 é 6 7 8 9 10 11 12 13 14 15 16 17 18 19 é 20 21 22 23 ü ü ü ü ü ü ü ü ü 24 ü 25 26 27 28 29 30 31 32 33 34 35 36 37 38

More information

第四章 数值积分与数值微分

第四章   数值积分与数值微分 Newto Cotes Romerg Guss 5 -- . Newto-Leieize d F F, -- I I. d d A A R[ ] I I R[ R[],,, L,,, L A A ] -- . d A m m m m -- -- 5 m m,,,, L m m m m A d L L m m d d d L m m A A A L d d M m d A A A -- 6 m m A

More information

(4) (3) (2) (1) 1 B 2 C 3 A 4 5 A A 6 7 A B 8 B 9 D 1 1 0 1 B A A 1 A 1 2 3 C 1 A 1 A 1 B 1 A 1 B 1 2 2 2 2 2 4 5 6 7 8 9 0 1 2 3 4 A A B B A A D B B C B D A B d n 1 = ( x x ) n ij ik jk k= 1 i, j

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

: Previous Next First Last Back Forward 1

: Previous Next First Last Back Forward 1 7-3: : 7.3.................. 1 7.3.1.............. 2 7.3.2..... 8 7.3.3.............. 12 Previous Next First Last Back Forward 1 7.3,, (X 1,, X n )., H 0 : X F Karl Pearson χ 2. : F ˆF n, D( ˆF n, F ),

More information

( )... ds.....

( )... ds..... ...... 3.1.. 3.1.. 3.1: 1775. g a m I a = m G g, (3.1) m I m G. m G /m I. m I = m G (3.2)............. 1 2............ 4.................. 4 ( )... ds..... 3.2 3 3.2 A B. t x. A B. O. t = t 0 A B t......

More information

m0 m = v2 1 c 2 F G m m 1 2 = 2 r m L T = 2 π ( m g 4 ) m m = 1 F AC F BC r F r F l r = sin sinl l F = h d G + S 2 = t v h = t 2 l = v 2 t t h = v = at v = gt t 1 l 1 a t g = t sin α 1 1 a = gsinα

More information

《太平广记》第二册

《太平广记》第二册 !! "" """""""""""""""""! # """""""""""""""""!$ # """"""""""""""""" # """""""""""""""""! # """""""""""""""""" $% #! """"""""""""""""" ($ # %& ( ################# $ $ " ################# $ ################

More information

cumcm0110.PDF

cumcm0110.PDF :,,, Matlab R = 29.9003 2.4% 400 Z 200 0 400 400 200 200 X 0 0 Y /20 µ m z z = 0 z = 99 2/20 3/20 Q Q ( x, y ) R z Z 0 0 0 0 O ( x, y, z ) z = x = φ ( t) y = ϕ ( t) ( 2 2 n n ) Q ( ) Q z n = { ϕ ϕ 2 φ

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

More information

untitled

untitled 00, + lim l[ ] =. ( + lim[ ] = lim[ ] ( + i e ( = ( + lim l[ ] = l e = ( 4 (, (, (, 0 d f d D= D + D, d f d + d f d =. 0 D = (, 0,, 4 D = (,, 4 D ( D =, 0,. 4 0 0 4 ( + ( = ( d f, d d f, d d f, d. - =

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

( ) 1 2 1 3 1 11 1 12 1 n( n 1) 2 2 1 2 4 100 1 3 4 5 6 7 8 9 10 11 12 6 1 3 7 9 11 8 8 6 7 10 13 14 15 16 18 20 21 23 24 8 4 1 5 11 1 1 2 1 100 3 1 3 2 1. 2. 3.

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

1.500 m X Y 0.200 m 0.200 m 0.200 m 0.200 m 0.200 m 0.000 m m 1.100 m m m 0.150 m 0.150 m 2 24.5 N/ 3 18.0 N/ 3 30.0 0.60 ( ) qa 88.11 N/ 2 0.0 N/ 2 20.000 20.000 15.000 15.000 X(m) Y(m) (kn/m 2 ) 1.000

More information

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ Ⅰ Ⅱ 1 2 Ⅲ Ⅳ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

( ) : ( ) (CIP) /.. :,003. () ISBN O4 44 CIP (00) : : 7 : 7007 : (09 ) : : :850 mm 68 mm / 3 :0.5 :60 :00 0

( ) : ( ) (CIP) /.. :,003. () ISBN O4 44 CIP (00) : : 7 : 7007 : (09 ) :   : :850 mm 68 mm / 3 :0.5 :60 :00 0 ( ) ( ) : ( ) (CIP) /.. :,003. () ISBN 7 56 448 0.... O4 44 CIP (00) 007344 : : 7 : 7007 : (09 )8493844 : www.nwpup.com : :850 mm 68 mm / 3 :0.5 :60 :00 003 3 :0 006 000 :3: 00 00, ( ),,,,,,,, 003 8 (

More information

1. PDE u(x, y, ) PDE F (x, y,, u, u x, u y,, u xx, u xy, ) = 0 (1) F x, y,,uu (solution) u (1) u(x, y, )(1)x, y, Ω (1) x, y, u (1) u Ω x, y, Ωx, y, (P

1. PDE u(x, y, ) PDE F (x, y,, u, u x, u y,, u xx, u xy, ) = 0 (1) F x, y,,uu (solution) u (1) u(x, y, )(1)x, y, Ω (1) x, y, u (1) u Ω x, y, Ωx, y, (P 2008.9-2008.12 Laplace Li-Yau s Harnack inequality Cauchy Cauchy-Kowalevski H. Lewy Open problems F. John, Partial Differential Equations, Springer-Verlag, 1982. 2002 2008 1 1. PDE u(x, y, ) PDE F (x,

More information

F.L.Wright1869 1959 A.Schoenberg1874 1951 M.Chagall1887 JohnvonNeu-mann1903 1957 ONeugebauer1899 5876 A 0 TLodge1558 1625 TKyd,1558 1594 G Peele1558 1597 JLyly 1554 16O6 CMarlowe

More information

untitled

untitled 梦飞翔考研工作室友情提供 QQ:83659 000 () d. 0. 000 d d t tdt si cos 0 0 0 + y + 3z (,, ). y + z. 6 F, y, z + y + 3z F F F y z (,,),,, y (,,),, 8, z (,,),, 6. y + z 6 3 y + 3y 0. C y C +. 梦飞翔考研工作室 QQ:83 p y p C 3.

More information

ϕ ϕ R V = 2 2 314 6378 1668 0 T =. 24 = 2 R cos32 33931 V = = = 1413. 68 32 T 24 2 R cos90 V = = 0 90 T ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ 1

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

第9章 排队论

第9章  排队论 9, 9. 9.. Nt () [, t] t Nt () { Nt ( ) t [, T]} t< t< t< t + N ( ( t+ ) i+ N( t) i, N( t) i,, N( t) i N + + N ( ( t ) i ( t ) i ) (9-) { Nt ( ) t [, T)} 9- t t + t, t,, t t t { Nt ( ) t [, T] } t< t,,

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

005 1 1.. 3. 1-1 - total quality management, TQM 1961 3 1931 199 0 50 1961 6sigma 4 14 1 3 4 5 6 7 8 9 10 11 1 13 14 19511 6 1 3 4 5 6 5 - - a) b) c) 6 1 1 3 4 5 6 7 8 1 3 4 5 6 3 4 1) ) 3) 4) - 3 - 5)

More information

ο HOH 104 31 O H 0.9568 A 1 1 109 28 1.01A ο Q C D t z = ρ z 1 1 z t D z z z t Qz = 1 2 z D z 2 2 Cl HCO SO CO 3 4 3 3 4 HCO SO 2 3 65 2 1 F0. 005H SiO0. 032M 0. 38 T4 9 ( K + Na) Ca 6 0 2 7 27 1-9

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

untitled

untitled f ( ) tan e, > = arcsin a = ae, a = tan e tan lim f ( ) = lim = lim =, arcsin + + + lim f = lim ae = a, y e ( ) =

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

12天 本 會103年 模 範 郵 工 董 麗 珍 趙 美 珍 2人 參 加 梁 周昆法 歐陽陪興 林青豊 林秀蓮 曾文俊 甯鎮美 鄭麗娟 周肖梅 陳宏 103 年 11 月 23 日 板 橋 分 會 假 西 湖 渡 假 益 周 錦 燕 等12人 奉 准 升 遷 申 請 中 華 郵 政 村 舉 辦2

12天 本 會103年 模 範 郵 工 董 麗 珍 趙 美 珍 2人 參 加 梁 周昆法 歐陽陪興 林青豊 林秀蓮 曾文俊 甯鎮美 鄭麗娟 周肖梅 陳宏 103 年 11 月 23 日 板 橋 分 會 假 西 湖 渡 假 益 周 錦 燕 等12人 奉 准 升 遷 申 請 中 華 郵 政 村 舉 辦2 總公司分會 王瑞春 103 年 9 月 13 14 日總會假新竹市立高商 辦 理 103 年 中 華 郵 政 工 會 球類錦標賽 本會組桌 球隊 羽球隊 保齡球 隊 慢速壘球隊參加 桌球隊 羽球隊獲得全 區 甲 組 第4名 慢 速 壘 球 隊 獲 得 全 區 乙 組 第 2名 103 年 9 月 27 日 本 會 辦 理 王 功 搭 鐵 牛 車 103年11月22日婦女工作委員會暨郵工運動委員會 聯合假臺北市建

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

(r s) {φ r1, φ r2,, φ rn } {φ s1, φ s2,, φ sn } u r (t) u s (t). F st ι u st u st k 1 ι φ i q st i (6) r β u r β u r u r(t) max u st r φ

(r s) {φ r1, φ r2,, φ rn } {φ s1, φ s2,, φ sn } u r (t) u s (t). F st ι u st u st k 1 ι φ i q st i (6) r β u r β u r u r(t) max u st r φ 3 351 1) 2) ( 100083)... TU311.3 doi 10.6052/1000-0879-13-151 A. [1-3]. 180.. [4]..... 2013 04 18 1 2013 05 23. 1 N mü(t) + c u(t) + ku(t) ι sin θt (1) m, c k N N m u(t) u(t) ü(t) N ι N θ. (ω i, φ i ).

More information

32 G; F ; (1) {X, X(i), i = 1, 2,..., X, (2) {M(t), t α Poisson, t ; (3) {Y, Y (i), i = 1, 2,..., Y, (4) {N(t), t β Poisson, t ; (5) {W (t), t, σ ; (6

32 G; F ; (1) {X, X(i), i = 1, 2,..., X, (2) {M(t), t α Poisson, t ; (3) {Y, Y (i), i = 1, 2,..., Y, (4) {N(t), t β Poisson, t ; (5) {W (t), t, σ ; (6 212 2 Chinese Journal of Applied Probability and Statistics Vol.28 No.1 Feb. 212 Poisson ( 1,, 211; 1 2,3 2 2,, 2197) ( 3,, 2197) Poisson,,.,. : :,,,,. O211.9. 1., ( 1 6]). 4] Cai Poisson,, 6] Fang Luo

More information

... II... III A A A.2...

... II... III A A A.2... ICS 13.200 X XX DZ DZ Specfcaton of desgn and constructon for landslde stablzaton - - - - 1 ... II... III 1... 1 2... 1 3... 1 4... 3 5... 4 6... 7 7... 12 8... 18 9... 24 10... 28 11... 32 12... 35 13...

More information

特 进 它 描 我 而 它 汇 元 也 摘 要 本 论 文 是 以 地 处 黄 河 上 游 " 汉 藏 走 廊 " 一 个 信 奉 伊 斯 兰 教 的 小 民 族 拉 族 近 八 百 年 时 光 中 " 雕 刻 传 统 " 为 主 题 的 历 史 民 族 志 考 察 报 告 五 个 月 左 右 田

特 进 它 描 我 而 它 汇 元 也 摘 要 本 论 文 是 以 地 处 黄 河 上 游  汉 藏 走 廊  一 个 信 奉 伊 斯 兰 教 的 小 民 族 拉 族 近 八 百 年 时 光 中  雕 刻 传 统  为 主 题 的 历 史 民 族 志 考 察 报 告 五 个 月 左 右 田 此 B 学 校 代 码 1 0 0 5 2 学 号 0 9 0 7 1 中 央 民 族 大 学 博 士 学 位 论 文 ^ 史 镜 像 中 的 " 救 拄 ^ " (X 蕞 走 廊 " 一 个 小 民 族 營 造 传 统 的 ^ 史 人 真 学 考 # 姓 名 常 海 燕 指 导 教 师 王 铭 铭 院 系 部 所 ) 民 专 业 人 族 学 与 社 会 学 学 院 类 学 完 成 日 期 2 0

More information

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 & ! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ

More information

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % #! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5, # # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( 0 2 3 ( & +. 4 / &1 5, !! & 6 7! 6! &1 + 51, (,1 ( 5& (5( (5 & &1 8. +5 &1 +,,( ! (! 6 9/: ;/:! % 7 3 &1 + ( & &, ( && ( )

More information

é é ô é é é é ä ü ü é é Éé é Jacquard Loom 21 1 1 1 2 1 3 2 2 2 + + +Λ é é 1 3 3 a 5 5 3 2 Johann BernoulliActa Erudit.LeipzigJune1696, pp.269ff.jacobbernoulliactaerudit. LeipzigMay,1697, pp. 211ff.EulerMethodusInveniendi

More information

B = F Il 1 = 1 1 φ φ φ B = k I r F Il F k I 2 = l r 2 10 = k 1 1-7 2 1 k = 2 10-7 2 B = ng Il. l U 1 2 mv = qu 2 v = 2qU m = 2 19 3 16. 10 13. 10 / 27 167. 10 5 = 5.0 10 /. r = m ν 1 qb r = m ν qb

More information

1-1 + 1 + + 2 + + 3 + 4 5 + 6 + 7 8 + 9 + 1-2 1 20000 20000 20000 20000 2 10000 30000 10000 30000 3 5000 5000 30000 4 10000 20000 10000 20000 5 3000 3000 20000 6 3000 3000 20000 7 5000 15000 8 5000 15000

More information

SB All Chinese_ITMU

SB All Chinese_ITMU SB240 ( 問 題 編 號 :2380) (000) 運 作 開 支 據 綱 領 指, 消 防 處 由 2015 年 3 月 31 日 預 算 設 有 的 10 245 個 非 首 長 級 職 位, 增 至 2016 年 3 月 31 日 的 10 390 個, 增 幅 為 145 個, 相 關 新 聘 請 的 職 位 類 別 及 工 作 性 質 為 何? 同 時, 現 有 消 防 處 設 有

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information