➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2

Size: px
Start display at page:

Download "➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2"

Transcription

1 Stochastic Processes

2 ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2

3 : Stochastic Processes? (Ω, F, P), I t I, X t (Ω, F, P), X = {X t, t I}, X t (ω) : I Ω R, I, : I = [0, ), I = {0} N, I = [0, ) R 3

4 : State Space (t, ω), X t (ω) : Sample Path ω Ω, t X t (ω) X 4

5 1. : Simple Branching Process 5

6 Z n n ( ) Z n,j n j (i.i.d. ) Z n+1 = Z n,1 + Z n,2 + + Z n,zn. Z = {Z n ; n {0} N} 6

7 2. Poisson : Poisson Process N = {N t ; t 0} Poisson, (1) N 0 = 0, (2) t > 0, r.v. N t λt Poisson, P(N t = n) = (λt)n e λt, n {0} N. n! (3) t > s > 0, r.v.s N t N s N t s, (N u ; u s). Poisson M/M/1 M/G/1 7

8 3. Poisson : Compound Poisson Risk Process X = {X t ; t 0} Poisson, X t = x + ct N t i=1 U i, ( 0 U i = 0) i=1 x c N = {N t ; t 0} -Poisson ([0, t] ) (U i ; i 1) - (i.i.d. ) N. 8

9 Poisson 9

10 4. : Brownian Motion (Wiener Process) W = {W t ; t 0} ( ), (1) W 0 = 0, (2) t > 0, r.v. W t N(0, t), (3) t > s > 0, r.v.s W t W s W t s, (W u ; u s) Bachelier (1900), Einstein (1905) and Wiener (1923,1924). (µ σ2 X = {e 2 )t+σw t ; t 0} X = { W t ; t 0}. 10

11 11

12 5. : Stochastic Differential Equation (SDE) (Itô) dx t = b(x t )dt + σ(x t )dw t, X 0 = x. ( ) X = {X t ; t 0} σ2 (µ X = {e 2 )t+σw t ; t 0} SDE: dx t X t = µdt + σdw t, X 0 = x > 0. Black and Scholes SDE Black-Scholes 12

13 6. : Martingale X = {X t ; t 0}, E[X t X u, u s] = X s, t > s. W Poisson Ñ = {N t λt; t 0} Itô (Non-arbitrary Pricing Theory) 13

14 7. Lévy : Lévy Process Lévy W, Poisson N Poisson Lévy Lévy 14

15 α- (α-stable process) 15

16 : Finite-Dimensional Distribution Function? X = {X t ; t I} (Ω, F, P) t 1, t 2,, t n I, F n (t 1,..., t n ; x 1,..., x n ) = P(X t1 x 1,..., X tn x n ), x i S (i = 1, 2,..., n), X X, F = {F n (t 1,..., t n ; x 1,..., x n ); x i S, t i I, i = 1,..., n, n N}. 16

17 1. ( : symmetry). (i 1,..., i n ) (1,..., n) (permutation), F n (t i1,..., t in ; x i1,..., x in ) = F n (t 1,..., t n ; x 1,..., x n ). 2. ( : Consistent). m < n, F m (t 1,..., t m ; x 1,..., x m ) = F n (t 1,..., t m, t m+1,..., t n ; x 1,..., x m, +,..., + ). 17

18 F? X,, (F n, n N), X F n? 18

19 Answer: YES! Daniell (1918), Kolmogorov (1933). ( Brownian Motion). 19

20 : Characteristic Function X = {X t ; t I} (Ω, F, P), t 1,..., t n I, [ ( )] n ϕ(t 1,..., t n ; u 1,..., u n ) = E exp i u k X tk, i = 1, u i R, X Fourier k=1 20

21 1. W 2 F 2 (t 1, t 2 ; x 1, x 2 ) n ϕ(t 1,..., t n ; u 1,..., u n ) 21

22 Answer: Let 0 t 1 < t 2 <. Then F 2 (t 1, t 2 ; x 1, x 2 ) = P(W t1 x 1, W t2 x 2 ) = P(W t1 x 1, W t2 W t1 + W t1 x 2 ) = = = = P(W t1 x1 x1 P(W t1 x 1, W t2 W t1 + W t1 x 2, W t1 dy) P(W t1 x 1, W t2 W t1 + W t1 x 2 W t1 dy) dy) P(W t2 W t1 x 2 y W t1 dy)ϕ t1 (y)dy ϕ t2 t 1 (x 2 y)ϕ t1 (y)dy. 22

23 Let 0 t 1 < < t n < and Y 1 := W t1, Y 2 := W t2 W t1,..., Y n := W tn W tn 1. Then they are independent, and W t2 = Y 1 + Y 2,..., W tn = n Y i. i=1 Consequently, ϕ(t 1,..., t n ; u 1,..., u n ) = E [exp (i((u 1 + u n )Y 1 + (u 2 + u n )Y u n Y n ))] = E [exp (i(u 1 + u n )Y 1 )] E [exp (iu n Y n )] = e 1 2 (u 1+ u n ) 2 t 1 e 1 2 u2 n (t n t n 1 ). 23

24 X = {X t ; t I} (Ω, F, P) 1. : Mean Function m X (t) = E[X t ], t I. 2. : Mean Square Deviation Function Φ X (t) = E[ X t 2 ], t I. 3. : Variance Function D X (t) = Var[X t ] = E[ X t m X (t) 2 ] = Φ X (t) m 2 X(t), t I. 24

25 4. : Correlation Function R X (s, t) = E[X s X t ], s, t I. 5. : Covariance Function C X (s, t) = Cov(X s, X t ) = E[(X s m X (s))(x t m X (t))] = R X (s, t) m X (s)m X (t), s, t I. 25

26 1. W 2. Poisson N 3. Poisson X 26

27 1. Answer: Note that W t N(0, t). Then for all t > 0, m W (t) = E[W t ] = 0 Φ W (t) = E[ W t 2 ] = t D W (t) = Φ W (t) m 2 W (t) = t R W (s, t) = E[W s W t ] = E[W s (W t W s )] + E[ W s 2 ] = E[W s ]E[W t W s ] + s = s, if s < t = E[W t ]E[W s W t ] + t = t, if t < s = s t, for all s, t 0 C W (s, t) = R W (s, t) m W (s)m W (t) = s t, for all s, t 0. 27

28 2. Poisson Answer: Note that N t Poisson(λt). Then for all t > 0, m N (t) = E[N t ] = λt Φ N (t) = E[ N t 2 ] = λt(1 + λt) D N (t) = Φ N (t) m 2 N(t) = λt R N (s, t) = E[N s N t ] = E[N s (N t N s )] + E[ N s 2 ] = E[N s ]E[N t s ] + λs(1 + λs) = λs(1 + t), if s < t = E[N t ]E[N s t ] + λt(1 + λt) = λt(1 + s), if t < s = λs t(1 + s t), for all s, t 0 C N (s, t) = R N (s, t) m N (s)m N (t) = λs t(1 + s t) λ 2 st, for all s, t 0. 28

29 3. Poisson Answer: Note that Then [ Nt ] E U i i=1 X t = u + ct = E = = [ E [ Nt i=1 N t i=1 U i, U i N t ]] = {U i, i 1} i.i.d.. E n=0 [ Nt i=1 [ n ] E U i N t = n P(N t = n) n=0 i=1 [ n ] E U i P(N t = n) = E [U 1 ] n=0 i=1 = E [U 1 ] m N (t) = λte [U 1 ], U i N t = n ] P(N t = n) np(n t = n) n=0 29

30 and E N t i=1 2 U i = = E n=0 n i,j=1 [ n E n=0 + n=0 i=1 U i U j P(N t = n) U 2 i ] P(N t = n) n E[U i ]E[U j ]P(N t = n) i j = λte[u 2 1 ] + E 2 [U 1 ] P 2 np(n t = n) n=0 = λte[u 2 1 ] + (Φ N (t) m N (t))e 2 [U 1 ]. 30

31 Let M t = N t i=1 U i. Then R M (s, t) = E[M s M t ] = E[M s (M t M s )] + E[ M s 2 ] = E[M s ]E[M t s ] + E[ M s 2 ], if s < t = E[M t ]E[M s t ] + E[ M t 2 ], if t < s. 31

32 : 2-DIM STOCHASTIC PROCESS X = {X t ; t I} Y = {Y t ; t I} (Ω, F, P), X = (X, Y ) (Ω, F, P) X : Joint Finite-Dimensional Distribution Function t 1,..., t m, t 1,..., t n I x 1,..., x m S X, y 1,..., y n S Y, F m,n (t 1,..., t m, x 1,..., x m ; t 1,..., t n, y 1,..., y n ) = P(X t1 x 1,..., X tm x m, Y t 1 y 1,..., Y t n y n ) X : 2-DIM STOCHASTIC PROCESS 32

33 (X, Y ) : Independence of Stoch. Processes F X m F Y n X Y, (X, Y ) F m,n : F m,n (t 1,..., t m, x 1,..., x m ; t 1,..., t n, y 1,..., y n ) = F X m (t 1,..., t m, x 1,..., x m )F Y n (t 1,..., t n, y 1,..., y n ), X Y. : 2-Dim Brownian Motion W 1 = {W 1 t ; t 0} W 2 = {W 2 t ; t 0}, (W 1, W 2 ). 33

34 (X, Y ) : (Cross) Correlation Function R XY (s, t) = E(X s Y t ), s, t I. : (Cross) Covariance Function C XY (s, t) = E[(X s m X (s))(y t m Y (t))] = R XY (s, t) m X (s)m Y (t), s, t I. Problem: R W 1 W 2(s, t) =? C W 1 W 2(s, t) =? (X, Y ) 34

35 N 1 = {N 1 (t); t 0} N 2 = {N 2 (t); t 0} λ 1 > 0 λ 2 > 0 Poisson N = N 1 + N 2 = {N 1 (t) + N 2 (t); t 0} Poisson λ 1 + λ 2 35

36 Answer: (1) N 0 = N 1 (0) + N 2 (0) = 0. 36

37 (2) For each t > 0 and n {0} N, P(N t = n) = P(N 1 (t) + N 2 (t) = n) = = = = n m=0 n m=0 n m=0 n m=0 P(N 2 (t) = n m, N 1 (t) = m) P(N 2 (t) = n m)p(n 1 (t) = m), (λ 1 t) n m e λ 1t (n m)! = 1 n! e (λ 1+λ 2 )t n m=0 = 1 n! e (λ 1+λ 2 )t (λ 1 + λ 2 ) n t n (λ 2 t) m e λ 2t m! P(N 1 (t) + N 2 (t) = n, N 1 (t) = m) n! (n m)!m! (λ 1t) n m (λ 2 t) m 37

38 (3) t > s > 0, N t N s = (N 1 (t) N 1 (s)) + (N 2 (t) N 2 (s)) = N 1 (t s) + N 2 (t s) = N t s. N 1 (t) N 1 (s) (N 1 (u); u s) N 2 (t) N 2 (s) (N 2 (u); u s), N 1 N 2, N t N s (N 1 (u) + N 2 (u); u s) 38

39 : Complex-Valued Stoch. Process? X = {X t ; t I} Y = {Y t ; t I} (Ω, F, P) Z t = X t + iy t, i = 1, Z = {Z t ; t I} (Ω, F, P) 39

40 m Z (t) = E[Z t ] = E[X t ] + ie[y t ] = m X (t) + im Y (t). Φ Z (t) = E[ Z t 2 ] = E[ X t 2 ] + E[ Y t 2 ] = Φ X (t) + Φ Y (t). 40

41 D Z (t) = E[ Z t m Z (t) 2 ] = E[ (X t m X (t)) + i(y t m Y (t)) 2 ] = D X (t) + D Y (t). R Z (s, t) = E[Z s Z t ] = E[(X s iy s )(X t + iy t )] = R X (s, t) + R Y (s, t) + i(r XY (s, t) R Y X (s, t)). 41

42 C Z (s, t) = E [ ] (Z s m Z (s))(z t m Z (t)) = E{[(X s m X (s)) i(y s m Y (s))] [(X t m X (t)) + i(y t m Y (t))] } = C X (s, t) + C Y (s, t) + i(c XY (s, t) C Y X (s, t)). Prove: Φ Z (t) = R Z (t, t), C Z (s, t) = R Z (s, t) m Z (s)m Z (t). 42

43 Z 1 = {Z 1 (t); t I} Z 2 = {Z 2 (t); t I}, (Z 1, Z 2 ) R Z1 Z 2 (s, t) = E [ ] Z 1 (s)z 2 (t). C Z1 Z 2 (s, t) = E [ ] (Z 1 (s) m Z1 (s))(z 2 (t) m Z2 (t)). 43

44 ( P50: 2.6.1) : Z t = n X k e i(ω 0t+Φ k ), i = 1, t R, k=1 ω 0 > 0, n N, X 1,..., X n, Φ 1,..., Φ n, E[X k ] = 0, D(X k ) = σ k > 0, Φ k U[0, 2π] (k = 1, 2,..., n). Z = {Z t ; t R} m Z (t) R Z (s, t) (s, t R) ( P50: 2.6.1) 44

45 Answer: [ n ] m Z (t) = E X k e i(ω 0t+Φ k ) = k=1 n E[X k ]E k=1 [ e i(ω 0t+Φ k ) ] = 0, E[X k ] = 0. 45

46 Answer: [ n ] n R Z (s, t) = E X k e i(ω 0s+Φ k ) X l e i(ω 0t+Φ l ) k=1 [ n = E X k e i(ω 0s+Φ k ) k=1 = e iω0(t s) E n k,l=1 [ n = e iω0(t s) E k=1 [ n = e iω0(t s) E l=1 ] n X l e i(ω 0t+Φ l ) l=1 X k X l e i(φ k Φ l ) X 2 k ] ] + e iω0(t s) E Xk 2 k=1 k=1 = e iω 0(t s) n X k X l e i(φ k Φ l ) k l n σk. 2 46

47 : Second-Moment Process X = {X t ; t I} (Ω, F, P) ( ), Φ X (t), X Φ X (t) = E[ X t 2 ] <, t I, Prove: (Hint: Cauchy-Schwarz ) 1. X m X (t) (E[ X t ] < )? 2. X R X (s, t) (E[ X s X t ] < )? 47

48 (1) : R X (s, t) = R X (t, s), s, t I. (2) : n 1, t 1,..., t n I λ 1,..., λ n, n k=1 n R X (t k, t l ) λ k λ l 0. l=1 48

49 ( ): Gaussian Process X = {X t ; t I} (Ω, F, P), n 1 t 1,..., t n I, (X t1,..., X tn ) n, X ( ) : n (X t1,..., X tn ) n (X t1,..., X tn ) n : f(x) = 1 (2π) n/2 C 1/2 e 1 2 (x b) T C 1 (x b), x = (x 1,..., x n ) T, b = (E[X t1 ],..., E[X tn ]) T C n n (X t1,..., X tn ) 49

50 W ( Wiener ) Proof: : X = (W t1, W t2,..., W tn ), Y = (W t1, W t2 W t1,..., W tn W tn 1 ). X = YA, 50

51 A = n n Y n N(0, C), 0 = (0, 0,..., 0) T, 51

52 C = t t 2 t t n t n 1 n n X N(0, A T CA). n N(0, A T CA) 52

53 X = {X t ; t 0} (Ω, F, P), t 1 < t 2 t 3 < t 4, [ ] E (X t2 X t1 )(X t4 X t3 ) = 0, X 53

54 X = {X t ; t [a, b]} X a = 0, : (1) R X (s, t) = Φ X (s t), (2) C X (s, t) = D X (s t) + m X (s t) 2 m X (s)m X (t), (3) t Φ X (t). 54

55 Proof: (1) a s t b, R X (s, t) = E[X s X t ] = E[X s (X t X s + X s )] = E[X s (X t X s )] + E[ X s 2 ] = E[(X s X a )(X t X s )] + Φ X (s), (X a = 0) = Φ X (s t). (2) C X (s, t) = R X (s, t) m X (s)m X (t). 55

56 Proof: (3) a s t b, 0 E[ X s X t 2 ] = E [ ] (X s X t )(X s X t ) = Φ X (s) + Φ X (t) R X (s, t) R X (t, s) = Φ X (s) + Φ X (t) Φ X (s) Φ X (s) = Φ X (t) Φ X (s). 56

57 X = {X t ; t 0} (Ω, F, P), n 3 t 1 < t 2 < < t n, X t2 X t1, X t3 X t2,..., X tn X tn 1, X 57

58 , 58

59 Proof: : Y 1 = X t1, Y 2 = X t2 X t1,..., Y n = X tn t n 1. (Y 1,..., Y n ) : ϕ(t 1,..., t n ; u 1,..., u n ) = E [e i(u 1X t1 + +u n X )] t n ] = E [e i(u 1+ +u n )Y 1 +i(u 2 + +u n )Y 2 + +iu n Y n = ϕ Y1 (u u n )ϕ Y2 (u u n ) ϕ Yn (u n ) = ϕ Xt1 (u u n )ϕ Xt2 X t1 (u u n ) ϕ Xt n X t n 1 (u n ). 59

60 Poisson : N = {N t ; t 0}, t > 0, N t t N (1) N 0 = 0, (2) N t {0} N, t > 0 ( S = {0} N), (3) 0 s < t, N t N s ( ), (4) 0 s < t, N t N s (s, t] 60

61 61

62 Poisson N = {N t ; t 0} λ > 0 Poisson, : (1) t, Poisson (t, t + t] λ t + o( t), P(N t+ t N t = 1) = λ t + o( t). (2) t, Poisson (t, t + t] o( t), P(N t+ t N t 2) = o( t). Prove: P(N t+ t N t = 0) = 1 λ t + o( t). 62

63 Proof: Poisson, P(N t+ t N t = 1) = P(N t = 1) = λ te λ t = λ t (1 + (λ t) + (λ t)2 2! + (λ t)3 3! ) + = λ t + (λ t) 2 + (λ t)3 2! = λ t + o( t). + 63

64 P(N t+ t N t 2) = P(N t 2) = P(N t = 2) + P(N t = 3) + = (λ t)2 2! = o( t). e λ t + (λ t)3 3! e λ t + 64

65 N = {N t ; t 0} : (1),(2), λ > 0 Poisson Proof: : t > 0, N t λt Poisson 65

66 p 0 (t) = P(N t = 0). (1) (2), p 0 (t + t) = P(N t+ t = 0)., t 0, p 0 (t) = e λt. p 0 (t + t) = P(N t+ t N t + N t = 0) = P(N t+ t N t + N t = 0, N t = 0) = P(N t+ t N t = 0, N t = 0) = P(N t+ t N t = 0)p 0 (t) = (1 λ t + o( t))p 0 (t). p 0 (t + t) p 0 (t) t = λp 0 (t) + o( t). t p 0(t) = λp 0 (t), p 0 (0) = 1. 66

67 p k (t + t) = P(N t+ t = k), k 1. p k (t + t) = P(N t+ t = k) = P(N t = k, N t+ t N t = 0) +P(N t = k 1, N t+ t N t = 1) k + P(N t = k i, N t+ t N t = i) i=2 = p k (t)p 0 ( t) + p k 1 (t)p 1 ( t) + o( ). t 0, p k (t + t) p k (t) t = λp k (t) + λp k 1 (t) + o( t). t p k(t) + λp k (t) = λp k 1 (t), p 1 (0) = 1, p 0 (t) = e λt, k = 2, 3,

68 p k (t) = (λt)k k! e λt, k = 1, 2,

69 Poisson N = {N t ; t 0} λ Poisson τ 0 = 0, τ 1 = min{t > 0; N t = 1}, τ 2 = min{t > τ 1 ; N t = 2},, τ n = min{t > τ n 1 ; N t = n}, {τ 0, τ 1,..., τ n,... } Poisson 69

70 T 1 = τ 1 τ 0, T 2 = τ 2 τ 1,..., T n = τ n τ n 1,... {T 1, T 2,..., T n,... } Poisson : {T 1, T 2,..., T n,... } λ 70

71 Proof: Poisson T 1,..., T n... (1) T 1 : t 0, F 1 (t) = P(T 1 t) = 1 P(T 1 > t) = 1 P(τ 1 > t) = 1 P(N t = 0) = 1 e λt. (2) T n (n 2): t 0 s 1,..., s n 1 0, F n (t) = P(T n t) = 1 P(T n > t) = 1 P(T n > t T 1 = s 1,..., T n 1 = s n 1 ) = 1 P(N t+s1 + +s n 1 N s1 + +s n 1 = 0) = 1 P(N t = 0) = 1 e λt. 71

72 , Poisson τ n Γ(n, λ) Γ(α, β) β α Γ(α) f(t) = tα 1 e βt, t 0, 0, t < 0. Proof: n λ Γ(n, λ) 72

73 Prove: For 0 s < t, P(τ 1 s N t = 1) = s t. 73

74 Tau_1 s t 74

75 : PAGE 59: N = {N t ; 0} λ > 0 Poisson, (τ 1,..., τ n ) N t = n (0, t) n U 1,..., U n U (1) < < U (n), : (τ 1,..., τ n ) N t = n n! t, 0 u f (n) (u 1,..., u n ) = n 1 < < u n < t, 0, otherwise. : PAGE 59:

76 Proof: h 1,..., h n > 0 0 u 1 < τ 1 < u 1 +h 1 < u 2 < τ 2 < u 2 +h 2 < < u n < τ n < u n +h n t, 76

77 P( n k=1(u k < τ k u k + h k ) N t = n) = P( n k=1 (N u k +h k N uk = 1), N t = n) P(N t = n) = P(N h 1 = 1,, N hn = 1, N t = n) P(N t = n) = P(N h 1 = 1,, N hn = 1, N t n k=1 N h k = 0) P(N t = n) = P(N h 1 = 1,, N hn = 1, N t n k=1 h = 0) k P(N t = n) n k=1 = P(N h k = 1)P(N t n k=1 h = 0) k P(N t = n) = n! t n h 1 h n. 77

➀ ➁ ➂ ➃ Lecture on Stochastic Processes (by Lijun Bo) 2

➀ ➁ ➂ ➃ Lecture on Stochastic Processes (by Lijun Bo) 2 Stochastic Processes stoprocess@yahoo.com.cn 111111 ➀ ➁ ➂ ➃ Lecture on Stochastic Processes (by Lijun Bo) 2 (Stationary Processes) X = {X t ; t I}, n 1 t 1,..., t n I, n F n (t 1,..., t n ; x 1,..., x

More information

Stochastic Processes (XI) Hanjun Zhang School of Mathematics and Computational Science, Xiangtan University 508 YiFu Lou talk 06/

Stochastic Processes (XI) Hanjun Zhang School of Mathematics and Computational Science, Xiangtan University 508 YiFu Lou talk 06/ Stochastic Processes (XI) Hanjun Zhang School of Mathematics and Computational Science, Xiangtan University hjzhang001@gmail.com 508 YiFu Lou talk 06/04/2010 - Page 1 Outline 508 YiFu Lou talk 06/04/2010

More information

32 G; F ; (1) {X, X(i), i = 1, 2,..., X, (2) {M(t), t α Poisson, t ; (3) {Y, Y (i), i = 1, 2,..., Y, (4) {N(t), t β Poisson, t ; (5) {W (t), t, σ ; (6

32 G; F ; (1) {X, X(i), i = 1, 2,..., X, (2) {M(t), t α Poisson, t ; (3) {Y, Y (i), i = 1, 2,..., Y, (4) {N(t), t β Poisson, t ; (5) {W (t), t, σ ; (6 212 2 Chinese Journal of Applied Probability and Statistics Vol.28 No.1 Feb. 212 Poisson ( 1,, 211; 1 2,3 2 2,, 2197) ( 3,, 2197) Poisson,,.,. : :,,,,. O211.9. 1., ( 1 6]). 4] Cai Poisson,, 6] Fang Luo

More information

《分析化学辞典》_数据处理条目_1.DOC

《分析化学辞典》_数据处理条目_1.DOC 3 4 5 6 7 χ χ m.303 B = f log f log C = m f = = m = f m C = + 3( m ) f = f f = m = f f = n n m B χ α χ α,( m ) H µ σ H 0 µ = µ H σ = 0 σ H µ µ H σ σ α H0 H α 0 H0 H0 H H 0 H 0 8 = σ σ σ = ( n ) σ n σ /

More information

M ( ) K F ( ) A M ( ) 1815 (probable error) F W ( ) J ( ) n! M ( ) T ( ) L ( ) T (171

M ( ) K F ( ) A M ( ) 1815 (probable error) F W ( ) J ( ) n! M ( ) T ( ) L ( ) T (171 1 [ ]H L E B ( ) statistics state G (150l--1576) G (1564 1642) 16 17 ( ) C B (1623 1662) P (1601--16S5) O W (1646 1716) (1654 1705) (1667--1748) (1687--H59) (1700 1782) J (1620 1674) W (1623 1687) E (1656

More information

第9章 排队论

第9章  排队论 9, 9. 9.. Nt () [, t] t Nt () { Nt ( ) t [, T]} t< t< t< t + N ( ( t+ ) i+ N( t) i, N( t) i,, N( t) i N + + N ( ( t ) i ( t ) i ) (9-) { Nt ( ) t [, T)} 9- t t + t, t,, t t t { Nt ( ) t [, T] } t< t,,

More information

( )

( ) ( ) * 22 2 29 2......................................... 2.2........................................ 3 3..................................... 3.2.............................. 3 2 4 2........................................

More information

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P. () * 3 6 6 3 9 4 3 5 8 6 : 3. () ; () ; (3) (); (4) ; ; (5) ; ; (6) ; (7) (); (8) (, ); (9) ; () ; * Email: huangzh@whu.edu.cn . () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) :

More information

3978 30866 4 3 43 [] 3 30 4. [] . . 98 .3 ( ) 06 99 85 84 94 06 3 0 3 9 3 0 4 9 4 88 4 05 5 09 5 8 5 96 6 9 6 97 6 05 7 7 03 7 07 8 07 8 06 8 8 9 9 95 9 0 05 0 06 30 0 .5 80 90 3 90 00 7 00 0 3

More information

x y z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.1. (X, Y ) 3.2 P (x 1 < X x 2, y 1 < Y y 2 ) = F (x 2, y 2 ) F (x 2, y 1 ) F (x 1, y 2

x y z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.1. (X, Y ) 3.2 P (x 1 < X x 2, y 1 < Y y 2 ) = F (x 2, y 2 ) F (x 2, y 1 ) F (x 1, y 2 3 3.... xy z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.. (X, Y ) 3.2 P (x < X x 2, y < Y y 2 ) = F (x 2, y 2 ) F (x 2, y ) F (x, y 2 ) + F (x, y ) 3. F (a, b) 3.2 (x 2, y 2) (x, y 2) (x 2, y ) (x,

More information

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

95

95 95 96 http://www.ee.ncnu.edu.tw/announce/board.php?action=view&seqno=410 or QR 5K // 0 K 5K 5K // K 5K ------ 94 93 92 91 ( ) ( ) ( ) A e ( ) d st D L[ f ( t)] f ( t) e dt F( s) dx 0

More information

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

More information

untitled

untitled 4 y l y y y l,, (, ) ' ( ) ' ( ) y, y f ) ( () f f ( ) (l ) t l t lt l f ( t) f ( ) t l f ( ) d (l ) C f ( ) C, f ( ) (l ) L y dy yd π y L y cosθ, π θ : siθ, π yd dy L [ cosθ cosθ siθ siθ ] dθ π π π si

More information

:

: : : 4.1....................... 1 4.1.1............... 1 4.2........... 10 4.2.1............... 10 4.2.2..... 14 4.2.3................ 18 4.2.4................ 24 4.3...................... 26 4.3.1..............

More information

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ .................................2.......................... 2.3.......................... 2.4 d' Alembet...................... 3.5......................... 4.6................................... 5 2 5

More information

untitled

untitled 995 + t lim( ) = te dt =. α α = lim[( + ) ] = e, α α α α = t t t t te dt = tde = te α α e dt = αe e, =, e α = αe α e α, α =. y z = yf, f( u) z + yz y =. z y y y y y y z = yf + y f = yf f, y y y y z y =

More information

996,,,,,,, 997 7, 40 ; 998 4,,, 6, 8, 3, 5, ( ),, 3,,, ;, ;,,,,,,,,,

996,,,,,,, 997 7, 40 ; 998 4,,, 6, 8, 3, 5, ( ),, 3,,, ;, ;,,,,,,,,, ,, AB,, ( CIP) /, 000 ( /, ) ISBN 704009448 F47 CIP ( 000) 86786 55 00009 0064054588 ht tp www hep edu cn ht tp www hep com cn 006404048 787960/ 6 05 370 000 730,, 996,,,,,,, 997 7, 40 ; 998 4,,, 6, 8,

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

1938 (Ph.D) 1940 (D.Sci) 1940 (Kai-Lai Chung) Lebesgue-Stieltjes [6] ( [22]) 1942 (1941 ) 1945 J. Neyman H. Hotelling ( ) (University of Cali

1938 (Ph.D) 1940 (D.Sci) 1940 (Kai-Lai Chung) Lebesgue-Stieltjes [6] ( [22]) 1942 (1941 ) 1945 J. Neyman H. Hotelling ( ) (University of Cali 1910 9 1 1 () 1925 1928 () (E. A. Poe) 1931 1933 1934 (Osgood, 1864-1943) ( ) A note on the indices and numbers of nondegenerate critical points of biharmonic functions, 1935 1936 (University College London)

More information

untitled

untitled 6 20 90 BellCore Ethernet variable bit rate VBR fractal self-similarity 994 IEEE/ACM Transactions on Networking On the self-similarity nature of Ethernet traffic extended version LAN WAN CCSN/SS7 ISDN

More information

koji-13.dvi

koji-13.dvi 26 13 1, 2, 3, 4, 5, 6, 7 1 18 1. xy D D = {(x, y) y 2 x 4 y 2,y } x + y2 dxdy D 2 y O 4 x 2. xyz D D = {(x, y, z) x 1, y x 2, z 1, y+ z x} D 3. [, 1] [, 1] (, ) 2 f (1)

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

ⅠⅡⅢ Ⅳ

ⅠⅡⅢ Ⅳ ⅠⅡⅢ Ⅳ ! "!"#$%&!!! !"#$%& ()*+,!"" *! " !! " #$%& ( Δ !"#$%& ()*+,!"" * !! " #$%& ( !"#$%& ()*+,!"" * !! " #$%& ( !"#$%& ()*+,!"" * !! " #$%& (! # !"#$%& ()*+,!"" * !! " #$%& ( 1 1 !"#$%& ()*+,!"" *

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

07-3.indd

07-3.indd 1 2 3 4 5 6 7 08 11 19 26 31 35 38 47 52 59 64 67 73 10 18 29 76 77 78 79 81 84 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

458 (25),. [1 4], [5, 6].,, ( ).,,, ;,,,. Xie Li (28),,. [9] HJB,,,, Legendre [7, 8],.,. 2. ( ), x = x x = x x x2 n x = (x 1, x 2,..., x

458 (25),. [1 4], [5, 6].,, ( ).,,, ;,,,. Xie Li (28),,. [9] HJB,,,, Legendre [7, 8],.,. 2. ( ), x = x x = x x x2 n x = (x 1, x 2,..., x 212 1 Chinese Journal of Applied Probability and Statistics Vol.28 No.5 Oct. 212 (,, 3387;,, 372) (,, 372)., HJB,. HJB, Legendre.,. :,,, Legendre,,,. : F83.48, O211.6. 1.,.,,. 199, Sharpe Tint (199),.,

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 . ttp://www.reej.com 4-9-9 4-9-9 . a b { } a b { }. Φ ϕ ϕ ϕ { } Φ a b { }. ttp://www.reej.com 4-9-9 . ~ ma{ } ~ m m{ } ~ m~ ~ a b but m ~ 4-9-9 4 . P : ; Φ { } { ϕ ϕ a a a a a R } P pa ttp://www.reej.com

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

Cauchy Duhamel Cauchy Cauchy Poisson Cauchy 1. Cauchy Cauchy ( Duhamel ) u 1 (t, x) u tt c 2 u xx = f 1 (t, x) u 2 u tt c 2 u xx = f 2 (

Cauchy Duhamel Cauchy Cauchy Poisson Cauchy 1. Cauchy Cauchy ( Duhamel ) u 1 (t, x) u tt c 2 u xx = f 1 (t, x) u 2 u tt c 2 u xx = f 2 ( Cauchy Duhamel Cauchy CauchyPoisson Cauchy 1. Cauchy Cauchy ( Duhamel) 1.1.......... u 1 (t, x) u tt c 2 u xx = f 1 (t, x) u 2 u tt c 2 u xx = f 2 (t, x) 1 C 1 C 2 u(t, x) = C 1 u 1 (t, x) + C 2 u 2 (t,

More information

ο HOH 104 31 O H 0.9568 A 1 1 109 28 1.01A ο Q C D t z = ρ z 1 1 z t D z z z t Qz = 1 2 z D z 2 2 Cl HCO SO CO 3 4 3 3 4 HCO SO 2 3 65 2 1 F0. 005H SiO0. 032M 0. 38 T4 9 ( K + Na) Ca 6 0 2 7 27 1-9

More information

Ps22Pdf

Ps22Pdf ()63,,, POI SSO N MARKOV BROWN, ( CIP ) /, :, 7 ISBN 7-3 - 3673 - - 6 CIP ()397 : : : (54, 8 ) : : : : : 787 9 : 3 5 : : : : I SBN 7-3 - 3673 - / O74 : 5 8,, ,,,,,,,,,,,,,, ( ),,,,,,,,,,,!, ( ) 3 3 4 6

More information

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % #! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

幻灯片 1

幻灯片 1 Digital Signal Processing mailfzh@nwpu.edu.cn /gary/ 1. FT FT. 3. 4. DFT 5. 6. DFT 7. 1. FT FT (FS) (FT) ( ) xt () Dirichlet (, ), 1 T () = ( Ω), ( Ω ) = () T T jkωt jkωt xt X k e X k xte dt e jkω t k

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

1-1 + 1 + + 2 + + 3 + 4 5 + 6 + 7 8 + 9 + 1-2 1 20000 20000 20000 20000 2 10000 30000 10000 30000 3 5000 5000 30000 4 10000 20000 10000 20000 5 3000 3000 20000 6 3000 3000 20000 7 5000 15000 8 5000 15000

More information

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) ! # % & # % ( ) & + + !!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) 6 # / 0 1 + ) ( + 3 0 ( 1 1( ) ) ( 0 ) 4 ( ) 1 1 0 ( ( ) 1 / ) ( 1 ( 0 ) ) + ( ( 0 ) 0 0 ( / / ) ( ( ) ( 5 ( 0 + 0 +

More information

005 1 1.. 3. 1-1 - total quality management, TQM 1961 3 1931 199 0 50 1961 6sigma 4 14 1 3 4 5 6 7 8 9 10 11 1 13 14 19511 6 1 3 4 5 6 5 - - a) b) c) 6 1 1 3 4 5 6 7 8 1 3 4 5 6 3 4 1) ) 3) 4) - 3 - 5)

More information

untitled

untitled ISSN -985, CODEN RUXUEW E-mail: jos@iscas.ac.cn Journal of Software, Vol., No.6, June, pp.353 363 http://www.jos.org.cn doi:.374/sp.j...348 Tel/Fax: +86--656563 by Institute of Software, the Chinese Academy

More information

P r = 1 + ecosθ 2 V = V + V 1 2 2V1V2 cosθ 2 2 = ( V V ) + 2V V ( 1 cos θ) 1 2 1 2 40000 V = 0. 5( / ) 24 60 60 λ m = 5100A = 0.51 Å 2 u e d s 3 1 e uud udd 3 2 3 e 1 3 e V = 2 9. 8 2000 = 198 V

More information

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 & ! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ

More information

2 R A B,, : A B,,.,,,.,,., (random variable),, X Y Z..,., ( 1.1),. 1.1 A B A B A, B ; A B A = B A B A B A B (intersection) A B A B (union) A B A B = A

2 R A B,, : A B,,.,,,.,,., (random variable),, X Y Z..,., ( 1.1),. 1.1 A B A B A, B ; A B A = B A B A B A B (intersection) A B A B (union) A B A B = A ,?,,,,,.,,. 1.1. 1.1.1. (random phenomenon),., (random experiment), trial(,, experiment trials).,, (sample space), Ω ;, (sample point), ω,, ω 1, ω 2,, ω n., (random event, ), (subset).., Ω, (sure event);,

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

1 2 1.1............................ 2 1.2............................... 3 1.3.................... 3 1.4 Maxwell.................... 3 1.5.......................... 4 1.6............................ 4

More information

Lecture #4: Several notes 1. Recommend this book, see Chap and 3 for the basics about Matlab. [1] S. C. Chapra, Applied Numerical Methods with MATLAB

Lecture #4: Several notes 1. Recommend this book, see Chap and 3 for the basics about Matlab. [1] S. C. Chapra, Applied Numerical Methods with MATLAB Chapter Lecture #4: Several notes 1. Recommend this book, see Chap and 3 for the basics about Matlab. [1] S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists. New York: McGraw-Hill,

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

<3230313630383038B9C9B6ABB4F3BBE1CDB6C6B1D0C5CFA22E786C7378>

<3230313630383038B9C9B6ABB4F3BBE1CDB6C6B1D0C5CFA22E786C7378> 300331.SZ 苏 大 维 格 2016-8-5 2016-8-22 2016-8-16 2016-8-22 可 以 网 络 投 票 365331 000672.SZ 上 峰 水 泥 2016-7-30 2016-8-15 2016-8-10 2016-8-15 可 以 网 络 投 票 360672 603111.SH 康 尼 机 电 2016-8-2 2016-8-30 2016-8-24 2016-8-30

More information

; < 5 6 => 6 % = 5

; < 5 6 => 6 % = 5 ! # % ( ),,. / 0. 1, ) 2 3, 3+ 3 # 4 + % 5 6 67 5 6, 8 8 5 6 5 6 5 6 5 6 5 6 5 9! 7 9 9 6 : 6 ; 7 7 7 < 5 6 => 6 % = 5 Δ 5 6 ; Β ;? # Ε 6 = 6 Α Ε ; ; ; ; Φ Α Α Ε 0 Α Α Α Α Α Α Α Α Α Α Α Α Α Β Α Α Α Α Α

More information

DS Ω(1.1)t 1 t 2 Q = t2 t 1 { S k(x, y, z) u } n ds dt, (1.2) u us n n (t 1, t 2 )u(t 1, x, y, z) u(t 2, x, y, z) Ω ν(x, y, z)ρ(x, y, z)[u(t 2, x, y,

DS Ω(1.1)t 1 t 2 Q = t2 t 1 { S k(x, y, z) u } n ds dt, (1.2) u us n n (t 1, t 2 )u(t 1, x, y, z) u(t 2, x, y, z) Ω ν(x, y, z)ρ(x, y, z)[u(t 2, x, y, u = u(t, x 1, x 2,, x n ) u t = k u kn = 1 n = 3 n = 3 Cauchy ()Fourier Li-Yau Hanarck tcauchy F. JohnPartial Differential Equations, Springer-Verlag, 1982. 1. 1.1 Du(t, x, y, z)d(x, y, z) t Fourier dtn

More information

W L Gates.Open Lecture The influences of the ocean on climate.scientific lecture at the 28th section of the ECWMO.WMO Bulletin. July1977168 169. WCP 1 WCRP2 WCAP 3 WCIP4 WCDP .. 1991 A Henderson-SellersP

More information

3.1 ( ) (Expectation) (Conditional Mean) (Median) Previous Next

3.1 ( ) (Expectation) (Conditional Mean) (Median) Previous Next 3-1: 3.1 ( )........... 2 3.1.1 (Expectation)........ 2 3.1.2............. 12 3.1.3 (Conditional Mean)..... 17 3.1.4 (Median)............ 22 Previous Next First Last Back Forward 1 1.. 2. ( ): ( ), 3.

More information

私募基金合同

私募基金合同 泰 玥 盈 泰 定 增 1 号 专 项 私 募 基 金 私 募 基 金 合 同 ( 样 本 ) 私 募 基 金 管 理 人 : 泰 玥 众 合 ( 北 京 ) 投 资 管 理 有 限 公 司 私 募 基 金 托 管 人 : 国 泰 君 安 证 券 股 份 有 限 公 司 重 要 提 示 私 募 基 金 管 理 人 承 诺 以 诚 实 信 用 勤 勉 尽 责 的 原 则 管 理 和 运 用 基 金 资

More information

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

More information

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

More information

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

More information

WL100014ZW.PDF

WL100014ZW.PDF A Z 1 238 H U 1 92 1 2 3 1 1 1 H H H 235 238 92 U 92 U 1.1 2 1 H 3 1 H 3 2 He 4 2 He 6 3 Hi 7 3 Hi 9 4 Be 10 5 B 2 1.113MeV H 1 4 2 He B/ A =7.075MeV 4 He 238 94 Pu U + +5.6MeV 234 92 2 235 U + 200MeV

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

More information

工程硕士网络辅导第一讲

工程硕士网络辅导第一讲 < > < R R [ si t R si cos si cos si cos - sisi < si < si < < δ N δ { < δ δ > } www.tsighututor.com 6796 δ < < δ δ N δ { < < δ δ > b { < < b R} b] { b R} [ { > R} { R} } [ b { < b R} ] { b R} { R} X X Y

More information

( ) (! +)! #! () % + + %, +,!#! # # % + +!

( ) (! +)! #! () % + + %, +,!#! # # % + +! !! # % & & & &! # # % ( ) (! +)! #! () % + + %, +,!#! # # % + +! ! %!!.! /, ()!!# 0 12!# # 0 % 1 ( ) #3 % & & () (, 3)! #% % 4 % + +! (!, ), %, (!!) (! 3 )!, 1 4 ( ) % % + % %!%! # # !)! % &! % () (! %

More information

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9 !! #! % & ( ) +,. / 0 1 2 34 5 6 % & +7 % & 89 % & % & 79 % & : % & < < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ

More information

2.1 1980 1992 % 80 81 82 83 84 85 86 87 88 89 90 91 92 81.9 69.5 68.7 66.6 64.7 66.1 65.5 63.1 61.4 61.3 65.6 65.8 67.1 5.0 12.0 14.2 10.9 13.0 12.9 13.0 15.0 15.8 13.8 10.9 12.7 17.3 13.1 18.6 17.1 22.5

More information

1. PDE u(x, y, ) PDE F (x, y,, u, u x, u y,, u xx, u xy, ) = 0 (1) F x, y,,uu (solution) u (1) u(x, y, )(1)x, y, Ω (1) x, y, u (1) u Ω x, y, Ωx, y, (P

1. PDE u(x, y, ) PDE F (x, y,, u, u x, u y,, u xx, u xy, ) = 0 (1) F x, y,,uu (solution) u (1) u(x, y, )(1)x, y, Ω (1) x, y, u (1) u Ω x, y, Ωx, y, (P 2008.9-2008.12 Laplace Li-Yau s Harnack inequality Cauchy Cauchy-Kowalevski H. Lewy Open problems F. John, Partial Differential Equations, Springer-Verlag, 1982. 2002 2008 1 1. PDE u(x, y, ) PDE F (x,

More information

第一章合成.ppt

第一章合成.ppt plsun@mail.neu.edu.cn 1. 2. 3. 4. 5. 1. Mathematical Statistics R.V.Hogg ( 1979) 2. Statistics -The Conceptual Approach G. R. Iversen, ed ( - 2000) 3. Mathematical Statistics and Data Analysis J. A. Rice

More information

ABP

ABP ABP 2016 319 1 ABP A. D. Aleksandrov,I. Y. Bakelman,C. Pucci 1 2 ABP 3 ABP 4 5 2 Ω R n : bounded C 0 = C 0 (n) > 0 such that u f in Ω (classical subsolution) max Ω u max u + C 0diam(Ω) 2 f + L Ω (Ω) 3

More information

untitled

untitled / ux ( [ x ρ + x ρ ] ρ ux ( ρux ( ρ ρ( x ρ + x ρ 3 u ( δ δ x(, ( (, δ δ + ρ δ (, ρ u( v(, / ( δ + δ δ α δ δ x( α, α (( α,( α δ δ ( α + ( α δ δ (, δ δ ( + ( x(, δ δ x(, ( + δ δ ( + ( v( α, α α α δ δ / δ

More information

untitled

untitled 1-1-222 1-1-1 1-1-2 1-1-3 1-1-4 1-1-5 1-1-6 1-1-7 1-1-8 1-1-9 1-1-10 1-1-11 1-1-12 1-1-13 1-1-14 1-1-15 1-1-16 1-1-17 1-1-18 1-1-19 1-1-20 1-1-21 1-1-22 1-1-23 1-1-24 1-1-25 1-1-26 1-1-27 1-1-28 1-1-29

More information

中国土壤氡概况第一章.doc

中国土壤氡概况第一章.doc i 2003~2005 γ 500 18 ( ) ( ) (CIP) /. 2006 ISBN 7-03-016791-0 I. II. III. - - IV. S153.6 CIP (2006) 003453 2006 8 787 1092 1/16 * 2006 8 18 1/4 4 1~1 800 411 000 48.00 ( ) ii iii iv (GB 50325 2001) 5 2003

More information

99710b43ZW.PDF

99710b43ZW.PDF v = at s = 1 2 2 v = 2 π r a = v 2 = 4 π 2 r T r T 2 a 2 R = 2 R r g v 1 2 2 g = 9.8 r = 60R a = 9.8 = 0.0027 60 F = G Mm r 2 m

More information

Π Ρ! #! % & #! (! )! + %!!. / 0% # 0 2 3 3 4 7 8 9 Δ5?? 5 9? Κ :5 5 7 < 7 Δ 7 9 :5? / + 0 5 6 6 7 : ; 7 < = >? : Α8 5 > :9 Β 5 Χ : = 8 + ΑΔ? 9 Β Ε 9 = 9? : ; : Α 5 9 7 3 5 > 5 Δ > Β Χ < :? 3 9? 5 Χ 9 Β

More information

.., + +, +, +, +, +, +,! # # % ( % ( / 0!% ( %! %! % # (!) %!%! # (!!# % ) # (!! # )! % +,! ) ) &.. 1. # % 1 ) 2 % 2 1 #% %! ( & # +! %, %. #( # ( 1 (

.., + +, +, +, +, +, +,! # # % ( % ( / 0!% ( %! %! % # (!) %!%! # (!!# % ) # (!! # )! % +,! ) ) &.. 1. # % 1 ) 2 % 2 1 #% %! ( & # +! %, %. #( # ( 1 ( ! # %! % &! # %#!! #! %!% &! # (!! # )! %!! ) &!! +!( ), ( .., + +, +, +, +, +, +,! # # % ( % ( / 0!% ( %! %! % # (!) %!%! # (!!# % ) # (!! # )! % +,! ) ) &.. 1. # % 1 ) 2 % 2 1 #% %! ( & # +! %, %. #(

More information

# % & ) ) & + %,!# & + #. / / & ) 0 / 1! 2

# % & ) ) & + %,!# & + #. / / & ) 0 / 1! 2 !!! #! # % & ) ) & + %,!# & + #. / / & ) 0 / 1! 2 % ) 1 1 3 1 4 5 % #! 2! 1,!!! /+, +!& 2! 2! / # / 6 2 6 3 1 2 4 # / &!/ % ). 1!!! &! & 7 2 7! 7 6 7 3 & 1 2 % # ) / / 8 2 6,!!! /+, +! & 2 9! 3 1!! % %

More information

B = F Il 1 = 1 1 φ φ φ B = k I r F Il F k I 2 = l r 2 10 = k 1 1-7 2 1 k = 2 10-7 2 B = ng Il. l U 1 2 mv = qu 2 v = 2qU m = 2 19 3 16. 10 13. 10 / 27 167. 10 5 = 5.0 10 /. r = m ν 1 qb r = m ν qb

More information

: p Previous Next First Last Back Forward 1

: p Previous Next First Last Back Forward 1 7-2: : 7.2......... 1 7.2.1....... 1 7.2.2......... 13 7.2.3................ 18 7.2.4 0-1 p.. 19 7.2.5.... 21 Previous Next First Last Back Forward 1 7.2 :, (0-1 ). 7.2.1, X N(µ, σ 2 ), < µ 0;

More information

C35N32.dvi

C35N32.dvi 數 學 傳 播 35 卷 3 期, pp. 11-21 數 學 的 詩 篇 一 一 Fourier 分 析 林 琦 焜 深 入 研 究 大 自 然 是 所 有 數 學 發 現 最 富 饒 的 來 源, 不 僅 對 於 決 定 良 好 的 目 標 有 好 處, 也 有 助 於 排 除 含 糊 的 問 題 無 用 的 計 算 這 是 建 立 分 析 學 本 身 的 手 段, 也 協 助 我 們 發 現

More information

UDC

UDC CECS 102:2002 Technical specification for steed structure of light-eight Buildings ith gabled frames 2003 1 Technical specification for steed structure of light-eight Buildings ith gabled frames CECS102:2002

More information

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ Ⅰ Ⅱ 1 2 Ⅲ Ⅳ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

非线性系统控制理论

非线性系统控制理论 AIsdo 985 5 6 Fobeus Albeo Isdo Nolea Cool Ssems Spe-Vela 989 He Njmeje Aja Va de Sca Nolea Damcal Cool Ssems Spe-Vela 99 988 4 99 5 99 6J-JESloe 99 7 988 4 6 5 8 6 8 7 8 9 4 9 9 9 4 5 6 7 Dsbuos 8 Fobeus

More information

d y dy P x Q x y 0. dx dx d d P x Q x C C 1y1 y dx dx d d P x Q x C 1y 1 dx dx d d P x Q x C y 0. dx dx d x 1dx F. ox1 dt dt d x1 1dx1 x 0 1 F 1 dt dt d x 1dx x 0 F dt dt d y 1dy y F 0 1 F1 y x1 x. dt

More information

微积分 授课讲义

微积分 授课讲义 2018 10 aiwanjun@sjtu.edu.cn 1201 / 18:00-20:20 213 14:00-17:00 I II Taylor : , n R n : x = (x 1, x 2,..., x n ) R; x, x y ; δ( ) ; ; ; ; ; ( ) ; ( / ) ; ; Ů(P 1,δ) P 1 U(P 0,δ) P 0 Ω P 1: 1.1 ( ). Ω

More information

建築工程品質管理案例研討

建築工程品質管理案例研討 1.1...2-1 1.2...2-2 1.3...2-2 2.1...2-3 2.2...2-3 2.3...2-8 3.1...2-11 3.2...2-12 3.3...2-15 3.4...2-16 3.5...2-17 4.1...2-19 4.2...2-19 4.3...2-22 4.4...2-24 4.5...2-26 4.6...2-28 5.1...2-29 5.2...2-32

More information

: 29 : n ( ),,. T, T +,. y ij i =, 2,, n, j =, 2,, T, y ij y ij = β + jβ 2 + α i + ɛ ij i =, 2,, n, j =, 2,, T, (.) β, β 2,. jβ 2,. β, β 2, α i i, ɛ i

: 29 : n ( ),,. T, T +,. y ij i =, 2,, n, j =, 2,, T, y ij y ij = β + jβ 2 + α i + ɛ ij i =, 2,, n, j =, 2,, T, (.) β, β 2,. jβ 2,. β, β 2, α i i, ɛ i 2009 6 Chinese Journal of Applied Probability and Statistics Vol.25 No.3 Jun. 2009 (,, 20024;,, 54004).,,., P,. :,,. : O22... (Credibility Theory) 20 20, 80. ( []).,.,,,.,,,,.,. Buhlmann Buhlmann-Straub

More information

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; <

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; < ! # %& ( )! & +, &. / 0 # # 1 1 2 # 3 4!. &5 (& ) 6 0 0 2! +! +( &) 6 0 7 & 6 8. 9 6 &((. ) 6 4. 6 + ( & ) 6 0 &6,: & )6 0 3 7 ; ; < 7 ; = = ;# > 7 # 0 7#? Α

More information

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5, # # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( 0 2 3 ( & +. 4 / &1 5, !! & 6 7! 6! &1 + 51, (,1 ( 5& (5( (5 & &1 8. +5 &1 +,,( ! (! 6 9/: ;/:! % 7 3 &1 + ( & &, ( && ( )

More information

m0 m = v2 1 c 2 F G m m 1 2 = 2 r m L T = 2 π ( m g 4 ) m m = 1 F AC F BC r F r F l r = sin sinl l F = h d G + S 2 = t v h = t 2 l = v 2 t t h = v = at v = gt t 1 l 1 a t g = t sin α 1 1 a = gsinα

More information

untitled

untitled 00, + lim l[ ] =. ( + lim[ ] = lim[ ] ( + i e ( = ( + lim l[ ] = l e = ( 4 (, (, (, 0 d f d D= D + D, d f d + d f d =. 0 D = (, 0,, 4 D = (,, 4 D ( D =, 0,. 4 0 0 4 ( + ( = ( d f, d d f, d d f, d. - =

More information

( ) t ( ) ( ) ( ) ( ) ( ) t-

( ) t ( ) ( ) ( ) ( ) ( ) t- (Statistics). (Descriptive Statistics). (Inferential Statistics) (Inductive Statistics) ( ) t ( ) ( ) ( ) ( ) ( ) t- ( ) ( ) ( )? ( ) ( )? ( ) )?( t ) ( )? ( ) ( ) ( ) ( ) ( ) ( )? ( ) ( ) ( )? ( )?( t

More information

F.L.Wright1869 1959 A.Schoenberg1874 1951 M.Chagall1887 JohnvonNeu-mann1903 1957 ONeugebauer1899 5876 A 0 TLodge1558 1625 TKyd,1558 1594 G Peele1558 1597 JLyly 1554 16O6 CMarlowe

More information

80000 400 200 X i X1 + X 2 + X 3 + + X n i= 1 x = n n x n x 17 + 15 + 18 + 16 + 17 + 16 + 14 + 17 + 16 + 15 + 18 + 16 = 12 195 = = 1625. ( ) 12 X X n i = = 1 n i= 1 X f i f Xf = f n i= 1 X f ( Xf). i i

More information

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. &

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. & !! # % & ( ) +,.% /.0.% 1 2 3 / 5,,3 6 7 6 8 9 6!! : 3 ) ; < < = )> 2?6 8 Α8 > 6 2 Β 3Α9 Α 2 8 Χ Δ < < Ε! ; # < # )Φ 5 Γ Γ 2 96 Η Ι ϑ 0 Β 9 Α 2 8 Β 3 0 Β 9 Β ΦΚ Α 6 8 6 6 Λ 2 5 8 Η Β 9 Α 2 8 2 Μ 6 Ν Α

More information