标题

Similar documents

TWSTFT : (GNSS ) GEO ( ) TWSTFT UTC 1ns [8] 1 (PPS) Fig.1 PPS MeasurementMethod ( ) CV : TWSTFTCV (GNSS ) GPS GLONASS 5 GEO 6 2 3~5ns [9]

GeomaticsandInformationScienceofWuhanUniversity Vol.38No.4 Apr.2013 : (2013) :A GRACE GPS 1 1,2 3 1 (1, 129,430079) (2,

自然科学版 预处理 视盘粗定位 视盘垂直坐标的粗定位 视盘水平坐标的粗定位

第 05 期 董房等 : 一种卫星遥测在线状态监测及分析系统的设计 WEB 1 2 总体功能及组成 2.1 总体功能 1 2 3Web 2.2 结构组成 Web WEB WEB 2.3 系统各模块接口关系

é ê

第 期 房建成等 动态定位的强跟踪卡尔曼滤波研究

40 3 :GPS ~127 GPS,T 16%,,S 1 S 2 S ,3 UNAVCO % [5] 2 GPS, Tab.2 StatisticsforNon-integer-hourDataBlocks ingpsbroadcaste

标题


第 卷 第 期 年 月 半 导 体 学 报! " # $%&'%' $!&' #% #$1 /#1 $'! / ?/ ?/ / 3 0,?/ ) * +!!! '!,!! -. & ' $! '! 4% %&1)/1(7%&)03 (% )

1 BDS GNSS GNSS BDS [1] [2] BDS (GEO) (IGSO) (MEO) GEO MEO BDS BDS ICD (Interface Control Document) [2] [2, 3] GPS WAAS (Wide Area Augme

第 期 徐娴英等 服务质量测量方法改进与应用

Microsoft Word - 03-李敏-new.doc

气溶胶光学厚度 的测量原理 Ê

第 60 卷第 3 期天文学报 Vol.60 No 年 5 月 ACTA ASTRONOMICA SINICA May, 2019 doi: /j.cnki 北斗卫星导航系统 SISURE 初步评估 谢慧 1,2 宋淑丽 1

标题

第 03 期 刘高军等 : 基于 CNONIX 的 XML 与 EXCEL 相互转换技术研究 XML XML CNONIX XML EXCEL EXCEL EXCEL EXCEL CNONIXEXCEL XML EXCEL CNONIX XML EXCEL CNONIX 1 CNONIX 数据元分析

第 5 期徐博, 等 : 伪卫星辅助北斗定位精度方法 57 卫星, 可以有效提高 BDS 接收机的南北方向和垂直方向的定位精度 目前全球导航卫星系统 (GlobalNavigation SateliteSystem,GNSS) 技术已走入多模多频时代, 可用的卫星更多, 可以有效解决单 BDS 南北

7 北京大学学报 医学版 # +94* 4 ' % 论著!! "# $ #% %"&!%'!! $ "( )& * $ +,-.)/ ) 01 " * ). " 2")3 )01 ( /" 433% /1 " 0 "51 " -.)/$ 6',)") 4.))%) 0

标题


目 录 一 基 金 当 事 人... 4 二 基 金 的 依 据 目 的 和 原 则... 6 三 基 金 托 管 人 对 基 金 管 理 人 的 业 务 监 督 和 核 查... 7 四 基 金 管 理 人 对 基 金 托 管 人 的 业 务 核 查 五 基 金 财 产 的 保 管..

北斗航空论坛报告.ppt [兼容模式]

( ) JOURNALOFTONGJIUNIVERSITY(NATURALSCIENCE) Vol.46No.10 Oct.2018 : X(2018) DOI: /j.issn x

Microsoft Word - n doc

数字带通 带阻 高通滤波器的设计 把一个归一化原型模拟低通滤波器变换成另一个所需类型的模拟滤波器, 再将其数字化 直接从模拟滤波器通过一定的频率变换关系完成所需类型数字滤波器的设计 先设计低通型的数字滤波器, 再用数字频率变化方法将其转换成所需类型数字滤波器

第 期 曹 源 等 形式化方法在列车运行控制系统中的应用

Fig1 Theforceappliedtothetrainwhenrunning :w = w j +w q (3) :w = w = w 0 +w j (4) w i 121 基本阻力 w r = 600 R ( N/kN) (8) :R : [2] w s [3] w s =0

南通大学学报 社会科学版 第 卷 第 期 双月刊 年 月出版!"# " < ABC DE c AB ^ " M F GE PQ M ""# = 摘要! "#$ %&' (!)*+,!-*.# /.01 # $ 89 :; /.012 # ' $ <= ABCD E /.01 F

第 期 甘金华等 强力霉素人工抗原的合成与抗体制备 材料与方法 试剂及溶液

第 期 高克宁等 网站分类体系包装器

第 36 卷第 7 期 2011 年 7 月 武汉大学学报 信息科学版 GeomaticsandInformationScienceofWuhanUniversity Vol.36No.7 July2011 文章编号 : (2011) 文献标志码 :A 犌犖犛犛实

标题

<4D F736F F D203639CEE4BABAB4F3D1A72DCAA9B4B3>

PowerPoint 演示文稿

58 卷天文学报 4 期 Navigation Satellite System) 的 ISB 与接收机类型强相关, 相同类型接收机的 ISB 也十分相近, 残余的微小差异可能与天线延迟 线缆延迟和不同测站硬件设备的热效应有关. Chen 等 [11] 证明了 ISB 与坐标参数不相关, 可以被钟差


材料导报 研究篇 年 月 下 第 卷第 期 种球的制备 单步溶胀法制备分子印迹聚合物微球 洗脱处理 种子溶胀聚合机理 种球用量的影响

附件1:

44 仪 器 仪 表 学 报第 卷 双频码相组合法 #%;)$ 电离层残 4 差法和 )9 方法等 但是这些方法都有其各自的局限性 比如多项式拟合法和高次差法受观测数据采样率影响较大 对于小周跳很难探测 双频码相组合法与电离层残差法对特殊周跳组合不够敏感 不能确定周跳发生的频率 )9 方法利用 组合


标题

第 期 赵金莲等 荧光光谱法分析花茶对羟自由基 诱导的 氧化损伤的保护作用!!!!!!!! 花茶冲泡方法 荧光扫描方法 # 稳定性试验方法 重复性试验方法

39 3 : ( )TR μ ( A B; ) - ( )TR σ O A B= U F O (O UO F)U O O ( ) F O TR φ TR φ (τ)=τ Q O U F : O = U F Q : =U F Q O 1= ( )τ Q O-UO 2=O-FO 12=O-(



标题

40 9 : 1275 VTEC VTEC 3 [3] (30 N100 E) VTEC VTEC 15d 3 VTEC VTEC (IQR) 2 (M) M ±1.5IQR 4 5 M VTEC VTEC VTEC ; ~8 4 18~20 95% VTEC VTEC 2h [3

Microsoft Word - A doc

Fig. 1 Layout of Zipingpu Concrete Face Rock-fill Dam Fig. 2 Typical section of Zipingpu Concrete Face Rock-fill Dam gal

说 明 根 据 上 海 市 公 共 信 用 信 息 归 集 和 使 用 管 理 办 法 ( 沪 府 令 38 号 ) 和 上 海 市 地 方 标 准 全 过 程 信 用 管 理 要 求 第 3 部 分 : 应 用 清 单 编 制 指 南 相 关 要 求, 本 市 公 共 信 用 信 息 应 用 事

审计署关于北京市密云县2012年机构运转支出情况的审计调查结果

2014zb9

(

中華民國山岳協會所屬隊會登山途徑說明

2009年总站工作计划-2009-0102

600247物华股份_ bnbqw.PDF

39 7 : ASDFieldSpec?3 2) (350~2500 : nm) 50 W, 25, 15, (root mean square error of 40cm 15cm 10,cross-validation,RMSECV) (R 2 cv) ; (350~399nm

第 期 黄雪莲等 响应面优化绿色木霉菌培养基 材料与方法 菌种 仪器与试剂 菌种的活化 单因素试验 响应面优化试验 优化工艺的验证 数据处理 结果与分析

目 录 一 基 金 托 管 协 议 当 事 人... 2 二 基 金 托 管 协 议 的 依 据 目 的 和 原 则... 4 三 基 金 托 管 人 对 基 金 管 理 人 的 业 务 监 督 和 核 查... 5 四 基 金 管 理 人 对 基 金 托 管 人 的 业 务 核 查 五

南通大学学报 社会科学版 第 卷 第 期 双月刊 年 月出版 3 9 S ^ 9 F = S ]( ^ >? 67 = D ^ E Y GH I 摘要!"#$%&' ()*+,-./* :; 1 < #D.E? FGAH!" BI7JK LM.NO F

<4D F736F F D20B5C2C1A6CEF7D0C2BDAEBDBBCDA8D4CBCAE4BCAFCDC5B9C9B7DDD3D0CFDEB9ABCBBECAD7B4CEB9ABBFAAB7A2D0D0B9C9C6B1D5D0B9C9CBB5C3F7CAE9A3A8C9CFBBE1B8E C4EA33D4C23235C8D5B1A8CBCDA3A92E646F63>

南通大学学报 社会科学版 第 卷 第 期 双月刊 年 月出版!!' C!! 摘 要!"#$ %& '" ()*+#,-./01,!/0 ", "789:, ; <=>?$& BC "/D?E, D F"GH,IJ KLD"MN& +,O, D, PQRST


, ( ) :,, :,, ( )., ( ) ' ( ),, :,,, :,, ;,,,,,, :,,,, :( ) ;( ) ;( ),,.,,,,,, ( ), %,. %,, ( ),,. %;,

标题

;P i ;N A 0 ;erf ;P N ; ξ d (4) LEP= COG- W (4) 2 d = 4c γah ( +h/ R) cos2 ( ξ) - 6 c dr γ 2 a ( h ( +h/ R ) 2( ξ) 燄 σ () dr= ( LEP- track ) d

Microsoft Word - ~ doc

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen

! %! &!! % &

Microsoft Word 聂雪梅.doc

不对称相互依存与合作型施压 # # ( # ( %

θ 1 = φ n -n 2 2 n AR n φ i = 0 1 = a t - θ θ m a t-m 3 3 m MA m 1. 2 ρ k = R k /R 0 5 Akaike ρ k 1 AIC = n ln δ 2

¹ º» ¹ ¹ ¹ ª ¹ ¹¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ º»


第 29 卷第 9 期 Vol. 29 NO. 9 重庆工商大学学报 ( 自然科学版 ) J Chongqing Technol Business Univ. Nat Sci Ed Sept X * ABAQUS 1 2

untitled

GeomaticsandInformationScienceofWuhanUniversity Vol.38No.4 Apr.2013 : (2013) :A 1 1,2 1 (1, 129,430079) (2, 129,430079)


基 础 实 室 4 计 算 机 网 络 唐 爱 红 专 业 机 房 PROTEL 联 想 同 方 电 脑 180 台 唐 爱 红 MATLAB 计 算 机 网 络 电 工 电 子 技 能 训 练 室 电 子 基 本 技 能 示 波 器 毫 伏 表 雕 刻 机 图 示 仪 电 子 实 训 台 电 工

畢業典禮第一次籌備會議程

LLSS companium

数字信号处理 第五章06 IIR数字滤波器-频率变换2.ppt [兼容模式]

标题

1

39 10 : PWM Fig.1 Flow ChartofCrowd MonitoringApproachBasedonPWM (pixel)d r (mm) 2(b) Q r A D r (1) : D r = H/ cosθ = H/ cos rε f (1) ε CCD Q r

4 期宋超等 : 利用多模卫星导航系统加快 PPP 的收敛速度 363 星导航系统的数据, 增加观测卫星的个数. 本文仅探讨后者, 即使用多模卫星导航系统增加观测卫星个数. 关于多模卫星导航系统的定位, 国内外有许多研究 [8 9]. 有利用多模卫星导航系统进行组合单点定位 [1 11], 也有利用

2002 6,116 :1990..,8 20 :.,9.,. 21, ,50 ( ).,.,15..,3.,.,9 g g g..,10..,100..,4.. g g g,6 }..,3. 250

% %

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin

赵燕菁 #!!!

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

#COMP_NAME_CN#

标题

一 课 程 负 责 人 情 况 姓 名 吴 翊 性 别 男 出 生 年 月 基 本 信 息 学 位 硕 士 职 称 教 授 职 务 所 在 院 系 理 学 院 数 学 与 系 统 科 学 系 电 话 研 究 方 向 数 据 处 理 近 三 年 来

<95BD90AC E E F1816A93648E718D CA48B868F8A8CA48B8694AD955C89EF8D A E706466>

[8], Fig. FPLLSchematics. [8],,, [8],,, ±500Hz,,,, [3,8] ±90,,temptemp ;ωofωop Fig. LoopFilterSchematicsforFPLL FLL PLL y(), NCO z(), z() ;B ;T

( ) [11 13 ] 2 211,,, : (1),, 1990 ( ) ( ),, ; OD, ( ) ( ) ; , ( ), (2) 50 %,, 1999 ( ) ( ) ; (3),,

!!

Transcription:

第 45 卷第 1 期测绘学报 Vol.45,No.1 2016 年 1 月 ActaGeodaeticaetCartographicaSinica January,2016 引文格式 : 肖玉钢, 姜卫平, 陈华, 等. 北斗卫星导航系统的毫米级精度变形监测算法与实现 [J]. 测绘学报,2016,45(1):16G21.DOI:10. 11947/j.AGCS.2016.20140649. XIAO Yugang,JIANG Weiping,CHEN Hua,etal.Researchand RealizationofDeformation Monitoring Algorithm with MilimeterLevelPrecisionBasedonBeiDouNavigationSateliteSystem[J].ActaGeodaeticaetCartographicaSinica,2016,45 (1):16G21.DOI:10.11947/j.AGCS.2016.20140649. 北斗卫星导航系统的毫米级精度变形监测算法与实现 肖玉钢 1, 姜卫平 2, 陈华 1, 袁鹏 2, 席瑞杰 1 1. 武汉大学测绘学院, 湖北武汉 430079;2. 武汉大学卫星导航定位技术研究中心, 湖北武汉 430079 ResearchandRealizationofDeformationMonitoringAlgorithm withmilimeter LevelPrecisionBasedonBeiDouNavigationSateliteSystem XIAOYugang 1,JIANG Weiping 2,CHENHua 1,YUANPeng 2,XIRuijie 1 1.SchoolofGeodesyandGeomatics,WuhanUniversity,Wuhan430079,China;2.ResearchCenterofGNSS,Wuhan University,Wuhan430079,China Abstract:The deformation monitoring algorithm with milimeterlevel precision based on BeiDou NavigationSateliteSystem (BDS)wasresearched.TheTurboEdit methodwasimprovedtodetectsmal cycleslips,e.g.1cycle.focusingonbdsconstelation,a moreeficientalgorithm usedtoconstruct doublegdiferencedobservationswasdeveloped.thebootstrap+decisionfunctionmethodwasutilizedto improvetheprobabilityofbiasesfixing.basedontheimprovedalgorithmabove,adeformationmonitoring softwarebasedonbds wasachieved.afterwards,theavailabilityofbdsinthefieldofdeformation monitoringwasanalyzedintermsofsatelitesdistributionandprecisionandaccuracyofsolutions,utilizing theobservationsacquiredfromtheexperimentalplatform.theconclusionwasdrawnthatcurentlybdsis similartogpsintermsofsatelitesdistributioninthetestarea.theprecisionofshortbaselinesderived frombdsisbeterthan1mmforthehorizontalcomponents,beterthan2mmfortheverticalcomponents, whichisstilalitlelowerthangps. Key words:beidou Navigation Satelite System;deformation monitoring;software achievement; precisionanalysis Foundationsupport:NationalHighGtechResearchandDevelopmentProgramofChina(No.2012AA12A209); NationalNaturalScienceFoundationofChina(No.41374033) 摘要 : 研究了北斗卫星导航系统 (BeiDouNavigationSateliteSystem,BDS) 毫米级精度变形监测算法. 首先改进了 TurboEdit 方法, 以能够探测到 1 周的小周跳 ; 针对 BDS 星座结构给出更为高效的独立双差观测值搜索方法 ; 对于模糊度固定, 采用决策函数和序贯模糊度固定相结合的方法. 在此基础上, 研制了 BDS 变形监测软件. 最后, 利用变形监测试验平台的实测数据, 从星座分布 解算精度等方面分析了 BDS 在变形监测中应用的可行性. 结果表明, 目前在试验区域内 BDS 与 GPS 在卫星几何分布等方面基本相当.BDS 的短基线解算精度略低于 GPS, 但仍可达到平面 1mm 以内 高程 2mm 以内的精度水平. 关键词 : 北斗卫星导航系统 ; 变形监测 ; 软件实现 ; 精度分析中图分类号 :P228 文献标识码 :A 文章编号 :1001G1595(2016)01G0016G06 基金项目 : 国家 863 计划 (2012AA12A209); 国家自然科学基金 (41374033) 随着各种大型结构体的大量涌现以及滑坡 泥石流等地质灾害的频繁发生, 变形监测研究的 重要性日益突出, 变形监测理论和技术方法也在 迅速发展. 全球卫星导航系统 (GNSS) 具有全天 候 高精度等优点, 早在 20 世纪 80 年代中后期, 就被作为一种变形监测技术手段.1995 年以来,

第 1 期 肖玉钢, 等 : 北斗卫星导航系统的毫米级精度变形监测算法与实现 17 GNSS 被用于监测滑坡 大坝等缓慢变形, 如在 Pacoima 清江隔河岩等大坝建立的 GPS 变形监测系统, 对 GPS 用于高精度变形监测的可行性进行了分析, 精度达毫米级. 结果表明,GPS 解算 [1G4] 所得变形量与水库蓄水量具有高度一致性. 为降低变形监测系统的建设成本, 文献 [5] 提出了一机多天线变形监测系统, 采用附加的多天线转换开关实现一台接收机与多个天线的时分单通连接. 同时, 考虑到监测特点 ( 如监测站坐标已知 ), 文献 [6 8] 提出了 无周跳无模糊度 的变形监测方法. 对于桥梁 高大建筑物等结构体的动态变形, 适宜采用实时监测系统进行, 文献 [9] 研制了 GPS 变形监测数据处理软件 GPSMON, 定位精度为亚厘米级 ; 文献 [10] 集成 GPS 加速度计 伪卫星等技术, 建立了桥梁变形实时监测系统. 同时, Geo++ Leica Trimble 等测量仪器公司也开发了 GPS 变形监测系统, 并得到了广泛的应用. 中国自 20 世纪 80 年代开始研制北斗系统, [11] 并实施了系统建设的 三步走 规划.2012 年底, 北斗卫星导航系统空间信号接口控制文件正式公布, 标志着北斗区域导航定位系统的正式建 基线解算方法, 并针对变形监测特点, 采用可靠的数据处理策略, 研制开发了一套基于 BDS 的变形监测软件平台. 同时, 本文基于配备了三维精度测试系统的变形监测试验平台, 利用在中国中部某地区采集的实测数据, 从卫星分布 解算结果的内 外符合精度等多方面对北斗系统在变形监测中的可用性进行了探讨分析, 并与 GPS 解算结果进行了比较. 1 系统算法与实现为探讨利用现有北斗星座进行变形监测的可行性, 本文研制了变形监测软件, 其数据处理流程如图 1 所示. 本软件目标为实现 BDS 变形监测数据的准实时 ( 采用时段解模式 ) 高精度处理, 故软件采用广播星历进行解算. 已有研究表明, 在短基线条件下, 广播星历误差对基线解算结果的 [15] 影响较小, 可忽略不计. 软件同时具有 BDSG GPS 联合解算能力, 但已有研究表明目前 BDS 与 GPS 高精度解算结果之间存在由于天线相位中 [16] 心改正等原因引起的系统偏差, 因此本文仅针对 BDS 单模结果分析. 成. 目前 BDS 在轨卫星 16 颗, 其中工作卫星 14 颗, 包括 5 颗 GEO 卫星,5 颗 IGSO 卫星及 4 颗 MEO 卫星. 预计到 2020 年左右, 将建成覆盖全球的北斗卫星导航系统. 已有研究表明, 北斗二代系统的卫星钟性能 测距精度等与 GPS 基本处 [12G13] 于同一水准. 在变形监测中, 尤其对于滑坡 大坝等变形体的监测, 受观测环境所限, 测站往往遮挡严重, 从而影响卫星的几何构型, 降低变形监测的精度及 可靠性.BDS 由于其特殊的星座设计 (5 颗 GEO 卫星以及 5 颗 IGSO 卫星的存在 ), 即使在目前尚未完成全球构网的情况下, 在我国大部分区域其卫星可见数也大于 GPS 等系统. 随着 BDS 卫星的逐步入轨, 这一优势会更加明显. 虽然 BDS 与 GPS 等类似, 但其在信号结构 卫星分布 卫星类 [14] 型等方面还存在较大的不同. 同时, 利用多种系统进行监测也可以提高监测结果的精度和可靠性. 此外, 针对 BDS 变形监测应用的研究也可以拓展我国北斗系统的应用空间, 验证北斗系统在高精度导航定位领域的可用性. 因此, 研究利用 BDS 及联合其他系统进行变形监测具有重要的科学和现实意义. 本文首先基于双差模型研究了 BDS 高精度 图 1 数据处理流程 Fig.1 Dataprocessingflowchart 软件包含了从数据处理到结果输出整个流程, 主要包括数据准备 法方程形成与叠加 模糊度固定 时间序列结果分析等 4 部分. (1) 数据准备主要包括两方面, 一是根据广播星历计算卫星位置 ; 二是将观测数据进行周跳探测与标记. 周跳探测采用改进的 TurboEdit 方 [17G18] 法, 利用 MW LG 组合观测值以及 LC 观测

18 January2016Vol.45No.1AGCS htp: xb.sinomaps.com 值的双差残差分别探测周跳. 结果表明, 上述周跳探测策略基本不受电离层活动及观测条件的影响, 可以探测到 1 周的小周跳, 从而大幅减小了残差编辑的工作量, 缩短了数据解算时间. 为避免周跳错误修复而引起的灾难性后果, 本文对周跳采取只探测 标记而不修复的策略, 对所有周跳引入模糊度参数进行估计. (2) 形成双差观测方程, 进行法方程叠加, 并 [19] 将模糊度映射为双差模糊度. 双差观测值选取采用参考站 G 参考星以及全局搜索相结合的方法. 若某历元观测存在参考站或参考星, 则采用参考站 G 参考星法, 否则采用全局搜索法, 在当前历元所有观测值中最大限度地搜索函数独立的双差观测值. 考虑到 BDS 星座的特殊性, 在选择参考星时首选 GEO 卫星, 若由于环境遮挡任何一颗 GEO 卫星均不为参考星, 则依次选择 IGSO MEO 卫星为参考星. 根据基线长度, 解算时既可采用单频观测值, 也可利用双频观测值形成无电离层组合以消除电离层误差的一阶影响. 形成法方程时需考虑的误差主要有对流层改正 地球自转改正 天线相位 [20] 中心改正 潮汐负载改正等, 其他误差认为在双差过程中得到消除. 对流层改正采用 Saastamoinen 模型, 剩余对流层影响采用分段线性模型估计.BDS 卫星天线相位中心采用 MGEX (multiggnssexperiment) 公布的模型, 接收机天线相位中心改正模型未知, 在系统中以 0 代替. 求解法方程后得到浮点解, 此时需进行残差编辑, 对可能存在的周跳和坏值进行标记, 然后重新形成法方程, 直到残差编辑没有周跳或坏值为止. (3) 模糊度固定采用决策函数和序贯模糊度 [19] 固定相结合的方法进行. 首先计算每个模糊度可以被固定的概率, 并固定对应最大概率的模糊度, 再更新法方程, 重复上述程序, 直到模糊度全部被固定或没有模糊度可以被固定. 结果表明, 在变形监测应用中, 由于基线一般较短, 采用此模糊度固定策略基本可将所有的北斗双差模糊度固定. 将上述过程得到的整数模糊度回代法方程解算得到模糊度固定解. (4) 时间序列分析在频域与时域进行. 频域分析主要研究原始变形信号中各地球物理效应及 GNSS 技术类误差的影响, 通过设计滤波器从原始结果中提取真正的变形信息. 时域分析通过对变形时间序列进行 ARIMA 建模以分析变形的内在联系, 预测变形的发展情况. 2 数据分析 2.1 数据采集为了分析利用北斗系统进行变形监测的精度和可靠性, 本文搭建了模拟变形平台, 利用实测数据从内 外符合精度等多个角度出发对试验结果进行了讨论. 试验采用的仪器为 TrimbleNetR9 型接收机, 天线型号为 TRM29659.00. 此类型接收机可同时接收 GPS 以及 BDS 信号, 满足系统间的兼容与互操作要求. 本次试验共布设 3 个测站 (JZ01 JC01 JC02), 位于中国中部某城市. 所有测站均为土层观测墩, 高出地面 3 m. 其中 JZ01 站基座深 8m, 为钢筋混凝土结构,JC01 JC02 站基座深 3m, 为钢结构. 各测站视野开阔,10 高度角以上基本不存在遮挡物. 测站间基线长度如表 1 所示.3 个测站均配置有强制对中标志. 另外 JC01 站装有高程精度测试系统,JC02 站装有水平精度测试系统. 两套系统均可以通过旋转螺栓使接收天线在水平或垂直方向上精确移动. 表 1 测站间基线长度 Tab.1 Lengthofbaselines 基线名称 JZ01GJC01 JZ01GJC02 JC01GJC02 长度 /m 29.2 277.1 274.5 本次试验采集了从 2014 年 8 月 7 日至 8 月 10 日 ( 年积日 219 222) 共 4d 的数据. 采样间 隔 30s, 截止高度角 10. 数据采集过程中试验平 台的位移量如表 2 所示. 其中 JC01 JC02 站分 别在垂直 水平方向 (NS 方向 ) 上移动. 在此过 程中 JZ01 站保持不动. 表 2 试验平台位移量 Tab.2 Displacementsofexperimentalplatform mm DOY N E U 219 0 0 0 220 1 0 1 221 2 0 2 222 3 0 3 2.2 数据质量 与 GPS 相比,BDS 具有自己的独特性, 其包 含 5 颗地球静止轨道卫星 (GEO) 和 5 颗倾斜地 球同步轨道卫星 (IGSO). 地球静止轨道卫星与 测站相对静止, 而倾斜地球同步轨道卫星与测站

第 1 期 肖玉钢, 等 : 北斗卫星导航系统的毫米级精度变形监测算法与实现 19 的相对位置变化也与 GPS 卫星等不同, 因此有必要对各测站能观测到的北斗卫星数及其 GDOP 值进行分析. 试验中 3 个测站相距较近, 能观测到的卫星数也十分相似, 故此处以 JZ01 站为例分析能观测到的北斗卫星数. 分析中选用 JZ01 站 219 日 GPS 时 4~24 时的观测数据. 结果如图 2 所示, 横坐标是以历元形式表示的观测时间, 共 2400 历元的观测数据. 由图 2 可知,JZ01 站在分析时段内最少可观测到 7 颗北斗卫星, 最多 12 颗, 其数量均多于 GPS( 最少 6 颗, 最多 11 颗 ). 这主要是由北斗卫星导航系统特殊的星座设计引起的. 随着 BDS 星座的逐步完善, 其在亚太地区卫星可见性方面的优势会更加明显. 2.3 定位精度本文主要从基线解算中误差 基线各分量重复性以及变形监测试验系统调整前后基线分量较差等方面来分析和讨论 BDS 基线解算精度. 为了对比分析, 本文将 GPS 解算的结果作为参考值.GPS 数据的解算利用 DDMS [4] 软件进行. 解算时段长度为 4h. 由于每天 9 时 ( 北京时间 ) 左右调整变形监测试验系统的位移量, 因此舍弃第一个时段 (8~12 时 ) 的数据, 每天只统计 5 个时段的结果. 下述对基线解算中误差 重复性的讨论均基于年积日 219 日, 基线 (JZ01GJC02) 的结果进行. GPS 与 BDS 每个测段的基线分量中误差如图 4 所示, 其中横坐标表示不同系统 (BDS 与 GPS) 不同时段 (1~5 时段 ) 所对应的解算结果. 由图 4 可看出, 在本试验的基线长度和观测环境条件下,BDS 的基线水平分量精度 0.7mm 左右, 高程分量精度 1.5mm 左右, 略低于 GPS 的结果精度. 与 GPS 类似, 利用 BDS 解算得到的高程分量精度约是水平分量的一半. 同时需要注意的是,BDS 的 N 方向精度明显低于 E 方向, 这与文献 [21] 的结论一致, 这可能主要是由 BDS 的星座结构引起的. 图 2 JZ01 站卫星可见性 Fig.2 SatelitevisibilityforsiteJZ01 几何精度因子是衡量定位精度的重要系数, 代表 GNSS 测距误差造成的接收机与卫星间的距离矢量放大因子. 图 3 为 JZ01 站 BDS 与 GPS 在分析时段内的 GDOP 值序列. 结合图 2 可看 出, 与 GPS 相比, 虽然 BDS 在卫星可见数方面略占优势, 但其 GDOP 值的平均值在观测时段内大于 GPS. 与 BDS 相比,GPS 的 GDOP 值变化更频繁.GDOP 值序列的断续表示系统可见星数的变化, 由此引入更多的模糊度参数需要解算, 增加数据处理负担. 图 4 基线分量中误差 Fig.4 Standarddeviationsofbaselinecomponents 表 3 各系统基线分量重复性 Tab.3 Repeatabilityofbaselinecomponentsderivedfrom GPSandBDS 系统 N 分量 E 分量 U 分量 L 分量 GPS 0.2 0.2 1.0 0.1 BDS 0.9 0.4 1.4 0.9 表 3 为利用 5 个测段的结果统计得到的各系 图 3 JZ01 站 BDS 与 GPSGDOP 值对比 Fig.3 ComparisonofGDOPatsiteJZ01forGPS andbdsrespectively 统对应基线分量的重复性. 由表 3 可得到与图 4 类似的结果, 即 BDS 的 E 方向精度最高,N 方向次之, 高程分量精度最低, 约为水平分量的一半. 表 4 为各系统所对应的平台实际调整量与解算结果的较差统计. 由表 4 中较差平均值可看出, 解算结果存在明显的系统误差. 通过对不同

20 January2016Vol.45No.1AGCS htp: xb.sinomaps.com 系统 不同调整量所对应的较差平均值取平均后可得此系统误差约为水平方向 0.7mm, 高程方向 0.5mm. 后用测微器 ( 可精确至 0.01mm) 的量测结果证实了上述系统误差的存在, 且两种手段所得 系统误差值具有较好的一致性. 推断此系统误差由试验平台自带的刻度误差引入, 是由于试验平台的制造工艺产生的. 因此下述对基线分量较差的分析均是根据去除系统误差后的结果进行的. 表 4 平台实际调整量与解算结果较差统计 Tab.4 Diferencebetweentheplatformadjustmentsandtheestimatedresults mm 实际调整量 最大值最小值平均值标准差 水平垂直水平垂直水平垂直水平垂直 1 2 3 GPS 0.9 1.4 0.1-0.4 0.5 0.4 0.3 0.7 BDS 1.5 1.7 0.5-0.6 0.8 0.5 0.4 0.8 GPS 0.9 1.0 0.6-0.5 0.7 0.3 0.2 0.6 BDS 0.8 0.4 0.5-1.1 0.6 0.2 0.1 0.6 GPS 0.9 1.1 0.6-0.2 0.7 0.6 0.1 0.6 BDS 1.2 1.7 0.6 0.2 0.9 0.7 0.2 0.6 图 5 为试验平台调整前后各测段基线分量较差. 由图 5 可以看出, 对于 3mm 的变形, 无论此变形发生在水平方向或高程方向, 基于目前星座的 BDS 均可轻易识别. 当此变形为 2mm 时, 水平方向仍可轻易识别, 但高程方向的较差已不十分明显. 进一步, 当变形量为 1mm 时, 水平方向仍可以分离出此变形, 但高程方向的基线分量较差表现出较大的随机性, 已不足以提供明确的变形信息. 因此, 结合本文上述对基线分量估值中误差以及重复性的讨论, 认为基于目前的 BDS 以及本文所实现的变形监测软件平台可达到水平 1mm, 高程 2mm 左右的监测精度. 同时由图 5 也可以看出, 目前的 BDS 解算精度略低于 GPS. 结合本文前述对 BDS 数据质量的分析, 认为其由试验区域内 BDS 较大的 GDOP 值引起. 虽然试验中 BDS 的可见星数等与 GPS 基本相当, 但不完善的星座结构导致 BDS 较大的 GDOP 值, 从而造成 BDS 的解算精度略低于 GPS. 但可以预测, 随着北斗系统星座的逐步构建, 这一差距会逐渐缩小, 最终接近甚至在某些区域超过 GPS 精度. 3 结论本文主要分析了基于目前的北斗星座进行高精度变形监测的可行性. 通过实测数据分析与讨论, 得到如下结论 :1 在试验区域 ( 中国中部某城市 ), 目前 BDS 卫星可见数略大于 GPS. 但由于 BDS 星座的特殊设计, 其对应的 GDOP 值略差于 GPS;2 通过分析变形监测试验平台的实测数据, 认为目前 BDS 在短基线条件下能够达到平面 1mm 以内, 高程 2mm 以内的精度水平, 可满足 大部分变形监测工程的需要. 总之, 目前的北斗卫星导航系统能够满足高精度变形监测工程的需求, 可以在生产实践中推广应用. 注 : 上 中 下图分别对应年积日 220 221 222 日的结果, 虚线表示平台实际位移值. 图 5 试验平台调整前后各测段基线分量较差 Fig.5 Diferenceofbaselinecomponentsbeforeand afteradjustingtheexperimentalplatform 参考文献 : [1] HUDNUT K W,BEHRJA.ContinuousGPSMonitoring ofstructuraldeformationatpacoimadam,california[j]. SeismologicalResearchLeters,1998,69(4):299G308. [2] BEHRJA,HUDNUT K W,KING N E.Monitoring StructuralDeformationatPacoimaDam,CaliforniaUsing ContinuousGPS[C] Proceedingsofthe11thInternational TechnicalMeetingoftheSateliteDivisionoftheInstitute ofnavigation.nashvile,tennessee:[s.n.],1998:59g68. [3] 姜卫平, 刘经南.GPS 技术在隔河岩大坝监测中的应用研究 [J]. 武汉测绘科技大学学报,1998,23(S1):48G49. JIANG Weiping,LIU Jingnan.Studyon Applicationof GPSinthe Geheyan Dam Deformation Monitoring[J].

第 1 期 肖玉钢, 等 : 北斗卫星导航系统的毫米级精度变形监测算法与实现 21 Journalof WuhanTechnicalUniversityofSurveyingand Mapping,1998,23(S1):48G49. [4] 姜卫平, 刘鸿飞, 刘万科, 等. 西龙池上水库 GPS 变形监测系统研究及实现 [J]. 武汉大学学报 ( 信息科学版 ), 2012,37(8):949G952. JIANG Weiping,LIU Hongfei,LIU Wanke,etal.CORS DevelopmentforXilongchiDam Deformation Monitoring [J].GeomaticsandInformationScienceofWuhanUniversity, 2012,37(8):949G952. [5] DING X L,CHEN Y Q,HUANG D F,etal.Slope MonitoringUsing GPS:A MultiGantenna Approach[J]. GPS World,2000,11(3):52G55. [6] 李征航, 张小红, 朱智勤. 利用 GPS 进行高精度变形监测的新模型 [J]. 测绘学报,2002,31(3):206G210. LIZhenghang,ZHANG Xiaohong,ZHU Zhiqin.A New ModelofHighAcuracyDeformationMonitoringwithGPS[J]. ActaGeodaeticaetCartographicaSinica,2002,31(3):206G210. [7] 王新洲, 花向红, 邱蕾.GPS 变形监测中整周模糊度解算的新方法 [J]. 武汉大学学报 ( 信息科学版 ),2007,32(1):24G26. WANG Xinzhou,HUA Xianghong,QIU Lei.A New MethodforIntegerAmbiguityResolutioninGPSDeformation Monitoring[J].Geomatics and Information Science of WuhanUniversity,2007,32(1):24G26. [8] 张小红, 李征航, 徐绍铨. 高精度 GPS 形变监测的新方法及模型研究 [J]. 武汉大学学报 ( 信息科学版 ),2001,26 (5):451G454. ZHANG Xiaohong,LIZhenghang,XUShaoquan.ANew ModelforHighAccuracyDeformation MonitorwithGPS [J].GeomaticsandInformationScienceofWuhanUniversity, 2001,26(5):451G454. [9] 陈永奇,JAMESL. 单历元 GPS 变形监测数据处理方法的研究 [J]. 武汉测绘科技大学学报,1998,23(4):324G 328,363. CHEN Yongqi,JAMESL.DevelopmentoftheMethodology forsingleepochgpsdeformationmonitoring[j].journal of Wuhan Technical University of Surveying and Mapping,1998,23(4):324G328,363. [10] MENGXiaolin,ROBERTSG W,COSSERE,etal.RealG timebridge Deflectionand Vibration Monitoring Usingan Integrated GPS/Accelerometer/Pseudolite System [C] Proceedings of the 11th International Symposium on Deformation Measurements, International Federation of Surveyors (FIG ), Commission 6GEngineering Surveys, WorkingGroup6.1.Santorini:[s.n.],2003. [11] 杨元喜. 北斗卫星导航系统的进展 贡献与挑战 [J]. 测绘学报,2010,39(1):1G6. YANG Yuanxi.Progress,ContributionandChalengesof COMPASS/BeiDouSateliteNavigationSystem[J].Acta GeodaeticaetCartographicaSinica,2010,39(1):1G6. [12] SHIChuang,ZHAO Qile,HU Zhigang,etal.Precise Relative Positioning Using Real Tracking Data from COMPASSGEOandIGSOSatelites[J].GPSSolutions, 2013,17(1):103G119. [13] STEIGENBERGERP,HUGENTOBLER U,HAUSCHILD A,etal.OrbitandClock AnalysisofCOMPASSGEOand IGSO Satelites[J].Journalof Geodesy,2013,87(6): 515G525. [14] 中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件 2.0[EB/OL].(2013G12G27)[2014G11G15]. htp: www.beidou.gov.cn. ChinaSateliteNavigationOfice.BeiDouNavigationSatelite SystemSignalinSpaceInterfaceControlDocument2.0[EB/ OL].(2013G12G27)[2014G11G15].htp: www.beidou.gov.cn. [15] 姜卫平, 刘经南, 叶世榕.GPS 形变监测网基线处理中系统误差的分析 [J]. 武汉大学学报 ( 信息科学版 ),2001,26 (3):196G199,238. JIANG Weiping,LIUJingnan,YEShirong.TheSystematical ErrorAnalysisofBaselineProcessinginGPSNetwork[J]. GeomaticsandInformationScienceofWuhanUniversity, 2001,26(3):196G199,238. [16] 施闯, 赵齐乐, 李敏, 等. 北斗卫星导航系统的精密定轨与定位研究 [J]. 中国科学 ( 地球科学 ),2012,42(6):854G861. SHIChuang,ZHAO Qile,LIMin,etal.PreciseOrbit DeterminationofBeiDouSateliteswithPrecisePositioning[J]. ScienceChina(EarthScience),2012,55(7):1079G1086. [17] BLEWITTG.AnAutomaticEditingAlgorithmforGPSData [J].GeophysicalResearchLeters,1990,17(3):199G202. [18] 吴继忠, 施闯, 方荣新.TurboEdit 单站 GPS 数据周跳探测方法的改进 [J]. 武汉大学学报 ( 信息科学版 ),2011,36(1): 29G33. WUJizhong,SHIChuang,FANG Rongxin.Improving thesingle Station Data Cycle Slip Detection Approach TurboEdit[J].Geomatics and Information Science of WuhanUniversity,2011,36(1):29G33. [19] DONG D N,BOCK Y.GlobalPositioningSystem NetworkAnalysiswithPhaseAmbiguityResolution Applied tocrustaldeformationstudiesin California[J].Journalof GeophysicalResearch,1989,94(B4):3949G3966. [20] 魏子卿, 葛茂荣.GPS 相对定位的数学模型 [M]. 北京 : 测绘出版社,1998:56G85. WEIZiqing,GE Maorong.RelativePositioning Mathematics Modelin Global Positioning System [M ].Beijing: Surveyingand MappingPress,1998:56G85. [21] HE HB,LIJL,YANG YX,etal.PerformanceAssessG mentof SingleGand DualGfrequency BeiDouGGPS SingleG epochkinematicpositioning[j].gpssolutions,2014,18 (3):393G403. ( 责任编辑 : 宋启凡 ) 收稿日期 :2014G12G08 修回日期 :2015G07G08 第一作者简介 : 肖玉钢 (1984 ), 男, 博士生, 研究方向为 GNSS 高精度定位定轨算法. Firstauthor:XIAOYugang(1984 ),male,phdcandig date,majorsin positioning and orbit determination algorithmforgnsswithhighprecision. EGmail:ygxiao@whu.edu.cn 通信作者 : 姜卫平 Corespondingauthor:JIANG Weiping EGmail:wpjiang@whu.edu.cn