16 29 km ,, t, 1.56 t 71.2%, ( 1) 4511km , 144 /km %,, t [16],, t,, t, 9.2 km 2

Similar documents
m 3 /a t /a m 3 /a t /a 4 t 6 t 8 t t 10 t 8 t 3

mm 400 mm 15 mm EOF mm/10a Fig. 1 Distributions

59 [1] [2] [3] A A ( 4 ) A A [4]

31 17 www. watergasheat. com km 2 17 km 15 km hm % mm Fig. 1 Technical route of p

(1) ( 1965 ),, 1952 [9] 2.1 (2) 1 53 (E i ), 2 (P i ) (G E (G P, 31 (Q i ) 3, : G E (x,y)= (E i Q(x i, y i )) E i G P (x,y)=

ZUBAN.dvi

1556 地 理 科 学 进 展 30 卷 他 关 于 农 村 住 房 结 构 与 抗 震 性 能 的 研 究, 则 多 是 从 工 程 抗 灾 的 角 度, 研 究 某 种 构 造 类 型 的 房 屋, 力 图 找 到 传 统 房 屋 的 结 构 失 误 和 新 建 房 屋 中 存 在 的 问 [

Microsoft Word - 1--齐继峰_new_.doc

~ ~ ~

IPCC CO (IPCC2006) 1 : = ( 1) 1 (kj/kg) (kgc/gj) (tc/t)

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

Microsoft Word - 刘 慧 板.doc

1 GIS 95 Y = F y + (1 F) (1) 0 0 Y0 kg/hm 2 /day F y 0 y c kg/hm 2 /day [12] y m 20 kg/hm 2 /hour Y = cl cn ch G [ F( y ) T m yo + (2) (1 F)(

by industrial structure evolution from 1952 to 2007 and its influence effect was first acceleration and then deceleration second the effects of indust

: ;,, 0 0, 60, 0 80,, 76 78, (Deregulation),,,, (Open Sky), (ACI),006.%.8%,.7% 008,, 000, ( ), ( )0, / 6, ; 8, ;, ; 7, ; 06, 6, 006 0, ( ) 0,.%; 0 60,

~ a 3 h NCEP ~ 24 3 ~ ~ 8 9 ~ km m ~ 500 m 500 ~ 800 m 800 ~ m a 200

亚临界大容量电站锅炉过热器系统阻力

第16卷 第2期 邯郸学院学报 年6月

15韦智超

Journal of Arid Meteorology Vol. 28 No. 4 Dec a

Microsoft Word - 荆红卫 板.doc

274 28, [2,3 ],,,,,,,, /, : (O ECD) PSR ( Pressure2State2Response) [47 ], [812 ], MA [2,3,13 ], 1990 (O ECD) PSR, ; ; / PSR, [1417 ] (MA) 2000, 2005,

a a a km m 3 /s 3 ~ 24 4 km

85% NCEP CFS 10 CFS CFS BP BP BP ~ 15 d CFS BP r - 1 r CFS 2. 1 CFS 10% 50% 3 d CFS Cli


4期

km <.5 km.5 < 1. km 4 1 km ~ % 23.3 % 23.3 % 36.5 %.5 km 64.5 % 7 % /%

( ) [11 13 ] 2 211,,, : (1),, 1990 ( ) ( ),, ; OD, ( ) ( ) ; , ( ), (2) 50 %,, 1999 ( ) ( ) ; (3),,

be invested on the desilting of water sources and to paved canals with cement mortar while drinking water project can focus on the improvement of wate

Dan Buettner / /

CONTENTS 目 录 大 事 要 闻 2 两 学 一 做 5 科 研 动 态 8 交 流 合 作 14 队 伍 建 设 17 人 才 培 养 19 运 行 管 理 21

Scoones World Bank DFID Sussex IDS UNDP CARE DFID DFID DFID 1997 IDS

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte

Microsoft Word 叶然_new_.doc

論元人戰爭劇與戰爭場面的喜劇精神

<4D F736F F D20A3B0A3B9A3AEB9D8CBA731302DBBF9D3DA436F70756C61BAAFCAFDB5C4D6E9BDADC1F7D3F2BAD3B4A8BEB6C1F7B7E1BFDDD4E2D3F62E646F63>

3 : , 1981, [2 ], 1990,,, (1),,, [8,9 ] 1986, [10,11 ], Fig11 General process of hydrological basin study of PRC,,, (, [12 60 ] ),,,,

1 VLBI VLBI 2 32 MHz 2 Gbps X J VLBI [3] CDAS IVS [4,5] CDAS MHz, 16 MHz, 8 MHz, 4 MHz, 2 MHz [6] CDAS VLBI CDAS 2 CDAS CDAS 5 2

92

[1] [2] [ 1] [ 2]

4 : 255 [ 2, 4 7 ] [ 8 11 ],,,, [ 12 ] Koldewey , [ 13 ],,, NCEP Koldewey, NCEP 2,, 1231km, 107km Koldewey ( N, E, 11m) A lfre

United Nations ~ ~ % 2010

畜牧 动物医学 蚕 蜂

Oates U

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

:,; ;, ( ) 25,, 80 90, 90,,,,,,, ( ), ( ), %,, , ,, ( ),,, ;,,,,,,,,,, ( ) , , 3395,3400, 20 % 30 %,

3 : 505.,,,,,,,,,, 21 [1,2 ] , 21,, 21,, : [3 ]. 1. 3,, 10, 2 ( ),,, ; ; 40, [4 ]. 46, : (1),, (2) 16,,,,, (3) 17, (4) 18,, (5) 19,, (6) 20

1 : 97,,, ; , , ; :, h 15. 2, h ,, 1,, 3, : 1 1 d, 2 2 d;, , , 0812

京都大学防災研究所年報 第56号(平成24年度)

,,,,,,,,,, ; (),,,,,,,, 1862,1864 8,,() () () () () () (), :,,,,,,,,,,,,,,,, 95 %,, 1.,,, 20 (1838 ) (1873 ), ( )

2 决 (1) (2) (3) 408AD-537AD AD-509AD 2.66 ( 1990) 衆 ( ) 6.5 1) 1)

2011第1期第二部分

has become a rarity. In other words, the water resources that supply the needs in Taiwan depend crucially on the reservoirs built at least more than t


5 期 付 业 勤 等 : 一 带 一 路 战 略 与 海 南 中 国 旅 游 特 区 发 展 647 基 础 上 提 出 相 关 对 策 以 期 拓 展 一 带 一 路 战 略 的 研 究 内 容 与 范 围, 为 海 南 旅 游 业 的 国 际 化 发 展 提 供 理 论 借 鉴 1 一 带 一

: 3 : , , ,, , :, ( Ravallion Chen, 2004 ; Khan Riskin, 2005,Yue et al, 2006),, (,2003 ;,200

Bairoch, ) (Angus Maddison,1926 ) (Bairoch, 1976, 1981), 1960, , 220, 228 ; , 447, 310, 178 (1993) (1988) Peter Brecke (

资源 环境 生态 土壤 气象

12M [4] 1.1 研究区域 LandsatTM ~99 E 37 ~38 N m km mm [5] mm

电力信息化2013年第1期.indb

Fig. 1 Layout of Zipingpu Concrete Face Rock-fill Dam Fig. 2 Typical section of Zipingpu Concrete Face Rock-fill Dam gal

N E LaCoste ±7 µgal ±10 µgal (1 Gal = 0.01 m/s 2 ) Kringe [8] ξ η = 1 2π

A B A 18 A a 2007b

13-15 Lagrange 3. 1 h t + hu + hv = 0 1 x y hu + t x hu gh 2 ( ) + y huv = - gh z 0 ( + x u u 2 2 槡 + v + W C ) 2 x + fhv + z h x 2hv u ( t x )

,,,,,,, :,,,,, ;,,,,,, : N = Y pr, dn N = dy Y - dpr pr, Y, N, pr,, (1),, ( : / ) :,, : t pr = e 1980 t = 1,t 9

48 東華漢學 第20期 2014年12月 後 卿 由三軍將佐取代 此後 中大夫 極可能回歸原本職司 由 於重要性已然不再 故而此後便不見 中大夫 記載於 左傳 及 國 語 關鍵詞 左傳 中大夫 里克 丕鄭 卿

Microsoft Word tb 赵宏宇s-高校教改纵横.doc

~ 10 2 P Y i t = my i t W Y i t 1000 PY i t Y t i W Y i t t i m Y i t t i 15 ~ 49 1 Y Y Y 15 ~ j j t j t = j P i t i = 15 P n i t n Y

SWAN min TITAN Thunder Identification Tracking Analysis SWAN TITAN and Nowcasting 19 TREC Tracking Radar Echo by Correlaction T


中国主权资产负债表风险分析

cm /s c d 1 /40 1 /4 1 / / / /m /Hz /kn / kn m ~

4 : ,,,, 2000,, [3 ] [4 ] 1995, [5 ] [6 11 ],,,, 2, : (1) 21,,,, (2), 5, 2000, [12 ] (3),, (4),,,, (5),,, , 86,, 60 86,,,, 17 ( 1)

VIC Variable Infiltration Capacity % 88% Fig. 1 1 Main paddy rice cropping regions in China

% % % % % % ~

720 () 2009,,, , ( ) (6 8 ), ( 5) ( 6).,,119 E, 150 km., 25. 5, 25,., 5b. 3 ROMS 3. 1 ROMS, S,.,,,, [ 9 ]. 1/ 32 ( ),25, 18 s, 180 s

(ICL),, 5 ( ), 40,, , [2,15-19], 3, (THI) (WCI) ( 1) 1 Tab.1 THI WCI and ICL grade standard,, ( ); 3, ;, 1 1, Fig.1 Structur


ULC ULC ULC ULC 1. 88

<4D F736F F D20B8DFB9B0B0D3B0D3F5E0D3A6C1A6CAB5B2E2D3EBBCC6CBE3BDE1B9FBB2EED2ECD4ADD2F2B7D6CEF62DD5C5B9FAD0C22E646F6378>

successful and it testified the validity of the designing and construction of the excavation engineering in soft soil. Key words subway tunnel

ph ph ph Langmuir mg /g Al 2 O 3 ph 7. 0 ~ 9. 0 ph HCO - 3 CO 2-3 PO mg /L 5 p

m m m ~ mm

θ 1 = φ n -n 2 2 n AR n φ i = 0 1 = a t - θ θ m a t-m 3 3 m MA m 1. 2 ρ k = R k /R 0 5 Akaike ρ k 1 AIC = n ln δ 2

TGF-β AngⅡ B SD ~ 220g SPF. SCXK No SYXK ~ 25 40% ~ 70% OR37G-C

%

Schumpeter Mensch Freeman Clark Schumpeter Mensch 1975 technological stalemate 2000 Van Dujin 1977 OECD 1992 Freeman 1982 Van

概述

:,,,, ;,,,,, Becker Tomes(1986), ( ), ( ),, ;,,,, , (CNHS) , ( ),CHNS,, CHNS :CHNS,, 30 %, 30 %, 30 % (1992),

142 () Fig. 2 Tracks of typhoon 35 m/ s.,. NASA QuikSCA T L3 (10 m ),, km, 25 km,20, 2 m/ s (320 m/ s) 10 %(2030 m/ s)., ()


cm hpa hpa 2 45 N hpa ~ 12 Fig. 1 The observed rainfall distribution of Shanxi

/ No


SWAT Jain et al km 2 Onstad & Jamieson 1970 Faith et al Li et al / 2009 SWAT Srinivasan & Arnold 1994 Saleh

/ OA FAS /BAS /ACS /AFC

穨1-林聖欽.doc

29期xx(copy)

738 29,, ( ),, , , 112 (1) : [ 13 ], Q, : Q = CI/ FI (1) Q ; CI ( ) ; FI ( ), 100 ; Q = 1, ; Q < 1, ; Q > 1, [14

Microsoft Word 任 辉_new_.doc

Transcription:

29 1 2010 01 PROGRESS IN GEOGRAPHY Vol.29, No.1 Jan., 2010 1,2 1 1,2 1,2 (1. 100101; 2. 100049) : 1956-2007, :1 1994-2002 1.43 t/a 91.2% ;2003-2007 4.50 t/a 14.1%, 39.8% 46.2% 2 1983-2000 0.48 t/a 74.7% ;2001-2007 1.183 t/a 3 1985-1993 0.827 t/a 81.4% ;1994-2007 1.285 t/a 29.6% 42.1%, 23.4% 4.9% : ; ; ; 1,,,, ; 1984,,, [1-4] [5-6] [7-9], [10-12], [13-15] 1982, 100.5 2 :2009-05; : 2009-07. (2007SHZ0901034) : (1983-), : (1963-) E-mail: shicx@igsnrr.ac.cn 015~022

16 29 km 2 1984,, 1985-2007 0.45 t, 1.56 t 71.2%, ( 1) 4511km 8 1 53 1.45 1.26, 144 /km 2 20 35%,,1998 15.68 t [16],,2003 2.2 t,,2007 0.53 t, 9.2 km 2 5.5 5.17 t(1950-1992) 10.3% t 43.7% 26.1% (1956-2002) 35.1% 94.6%,, ;, 1956-2007 32.8%,,2003-2007 - ( 1950 1953 ) 3 1956-1984 34% 1985-2007 13.5% 2000 2.03 t 92% 8% 90 35.2 km 2, 20 80 1.36 t( ) 4 4.1 2, Mann-Kendall 0.01,,,6 80 90, 2000 1956-1999 2.55 t, 58.4%,2000-2007 29.8% 1.79 t 81%, 1, Fig.1 The upper Yangtze River drainage basin

1 : 17 Mann-Kendall, - 0.05, 3a 1956-2007,, -,, -, ; 1982, - 1982 [13-14], 2000, 40-50, 2000 [17-19] 6 1956-2007 1956-1982

18 29 1983-2000 2001-2007 1956-1982, - 4.2 -, 1983-2000, - 2001-2007, (Qw)- (Qs), P 0.05 P 0.01: 3 b (1956-1984): c -, Q s =3586.2e 0.0019 Q w R 2 =0.6442 (1985-1993): - ( 3 ), Q s =1018.5e 0.0028 Q w R 2 =0.7484

1 : 19 (1994-2007): Q s =221.11e 0.0040 Q w R 2 =0.5846 (1956-1982): Q s =3864.6e 0.0012 Q w R 2 =0.7128 (1983-2000): Q s =7370.4e 0.0009 Q w R 2 =0.5604 (2001-2007): Q s =2536.3e 0.0012 Q w R 2 =0.8144 (1950-1993): Q s =13297e 0.0003 Q w R 2 =0.4308 (1994-2002): Q s =5389.3e 0.0004 Q w R 2 =0.6190 (2003-2007): Q s =13.691e 0.0015 Q w R 2 =0.9426,,2001-2007 1.18 t/a 1998 -, - 17.1%, 1998-2000 [22] ;, 2000 ( 21.25%, ), 1989 ;, ( ) ;, 1 4.3 4.3.1 (1983-2000) 4%(56.4 m 3 /a), 20.3% (0.480 t/a) 25.3% [13-14,20-21] (2001-2007) 5%(74.9 m 3 /a), 2001-2004, 0.126 t [21] 10.7% 1 ( t/a %) Tab.1 Sediment decrease in monitoring periods at main hydrological stations in the upper Yangtze River (Unit: 100 million tons per year, %) 1985-1993 1994-2007 1983-2000 2001-2007 1994-2002 2003-2007 23.3 34.5-25.3-14.1 8.8 14.1 76.7 42.1-74.7-37.7 91.2 39.8 23.4 100.0 46.2 0.790 1.264-0.646 1.298 1.964 4.313 0.827 1.285-0.480 1.183 1.430 4.495 0.193 0.443-0.121-0.167 0.126 0.632 0.634 0.541-0.359-0.446 1.304 1.787 0.301 1.183 2.076

20 29 90, t, 23.4% 21, 5410 t 42.1% 2001-2005 0.7 km 2000-2001 41% 4.3.3,90 (1994-2002) 1.43 t (1950-1993) 98 5.16 t 27.7% 4.3.2 (1985-1993) 21.4% 1997 7.3%(51.7 m 3 /a) 53.0%(0.827 t/ a) ; (1994-2007), 82.5%(1.285 t/a), 8050 t 56.3%; (2003-2007) 4.495 t [26] 34.5%, 80, 2.168 t, [23] 80 54.9%; 15.7% - 7.6%, 8.8%, 81.4% 70.4% 4.7% 4.9%, 39.8%; 80 46.2%, ;90 4542 5 1200 t/a [24] 18.9% ; 1984-1992, 1956-2007 3, 36.0% 21.6% : 42.4%, - [25] (1994-2002) 96 1.43 t/a ; (2003-2007) 4.50 t/a, 3010

1 : 21 2002, 263:56-71. (1983-2000) [9] Chen Zhongyuan, Li Jiufa, Shen Huanting. Yangtze River 0.48 t/a of China: historical analysis of discharge variability and sediment flux. Geomorphology, 2001, 41(2-3): 77-91. (2001-2007) 1.183 t/a [10] Walling DE, Fang D. Recent trends in the suspended sediment loads of the world s rivers. Global and Planetary Change, 2004, 39(1-2): 111-126. (1985-1993) [11] Zhang Qiang, Xu Chongyu, Becker Stefan. Sediment and 0.827 t/a runoff changes in the Yangtze River basin during past 50, years. Journal of Hydrology, 2006, 331: 511-523. (1994-2007) [12]., 2008, 27 (4): 800-810. [13]..,2002, 4: 56-59. [14]..,2008, 27(2): 332-342. [1] Zhu Y M, Lu X X, Zhou Y. Sediment flux sensitivity to [15]. climate change: A case study in the Longchuanjiang., 2004, 15(4): 420-426. catchment of the upper Yangtze River, China. Global and [16]. Planetary Change, 2008, 60(3-4): 429-442. (2001-2005). : [2] Wilkinson, B H, McElroy, et al. The impact of humans on,2008.9. 165-166. continental erosion and sedimentation. Geological Society [17],. of America Bulletin, 2007, 119(1-2): 140-156..,2005, 36(1): 22-30. [3] Xu J X. The water fluxes of the Yellow River to the sea in [18],. the past 50 years, in response to climate change and human activities. Environmental Management, 2005, 35 (5):., 2008, 25(2): 16-20. [19]. 620-631.., 2005,14(5): 589-594. [4] Dai S B, Yang S L, Li M. The sharp decrease in suspended sediment supply from China's rivers to the sea: anthro- [20] Lu X X. Spatial variability and temporal change of water discharge and sediment flux in the lower Jinsha tributary: pogenic and natural causes. Hydrological Sciences Journal-Journal -des Sciences Hydrologiques, 2009, 51 (1): impact of environmental changes. River research and applications, 2005, 21: 229-243. 135-146. [21]. [5] Lu X X, Higgitt D L. Recent Changes of Sediment Yield., 2008,19(4): 475-482. in the Upper Yangtze, China. Environmental Management, [22]. 1998, 22(5): 697-709.. ( ), [6] Lu X X, Higgitt. D L. Sediment yield variability in the 2008, 40(6): 37-42. upper Yangtze, China. Earth Surface Process and Land- [23],.. forms, 1999, 24(12): 1077-1093. [7] Xu Kehui, Milliman J D. Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam. Geomorphology, 2009, 104(3-4): 1-8. [8] Yang Shilun, Zhao Qingying, Belkin IgorM. Temporal variation in the sediment load of the Yangtze River and the influences of human activities. Journal of Hydrology,, 2007, 25(2): 153-159. [24],,,.., 2008, 4(2): 1-8. [25].., 2006, 24(4): 385~394. [26],,.., 2006, 61(5): 461-470.

22 29 Impact of Human Activities on Recent Changes in Sediment Discharge of the Upper Yangtze River DU Jun 1,2, SHI Changxing 1, ZHANG Shouhong 1,2, ZHANG Luan 1,2 (1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; 2. Graduate School of Chinese Academy of Sciences, Beijing 100049, China) Abstract: The upper Yangtze River is the main sediment source of the Yangtze River basin and its sediment yield is closely related with its ecological environment. In recent decades, as human activities intensified strongly, sediment yield in the upper Yangtze River underwent profound changes. Using annual runoff-sediment records in the period of 1956-2007, this paper made a quantitative analysis of characteristics and causes of changes in sediment discharge of main stream and tributaries of the upper Yangtze River in different periods based on double mass curves and empirical models. Our findings are: 1. The relationship between runoff and sediment load of the main stream and tributaries of the upper Yangtze River had obvious phase characteristics, which reflected the impacts of different kinds and intensities of human activities on fluvial sediment yield and transport. The sediment discharge of the upper Yangtze River in 1994-2002 reduced 143 million tons per year and the contribution from human activities accounted for 91.2%. The main decrease was from the Jialing River. The sediment load in 2003-2007 was lowered by 450 million tons per year, of which 14.1% was induced by the reduction of runoff, 39.8% by sustaining human activities appearing in the earlier period, and 46.2% by sediment trapping in the Three Gorges Reservoir and by the decrease of sediment load in the Jinsha River. 2. The sediment discharge of the Jinsha River in the period of 1983-2000 increased by 48 million tons per year, of which 74.7% was associated with human activities, mainly construction of projects. In the period of 2001-2007, the annual sediment load of the Jinsha River was reduced by 118.3 million tons per year, all due to human activities, including various types of reservoirs among which Ertan Reservoir was the biggest one, soil and water conservation practices and decrease of sediment yield from construction projects. 3. The sediment load of the Jaling River decreased by 82.7 million tons per year in 1985-1993, of which 81.4% was related to human activities, such as the changes in rural socio-economic factors and construction of reservoirs. The reduction of sediment load reached 128.5 million tons per year in the period of 1994-2007, of which the decrease of natural runoff accounted for 29.6%, the sustaining human activities appearing in the earlier period for 42.1%, the newly-built reservoirs, such as Baozhusi reservoir, and soil and water conservation project for 23.4%, and human-induced runoff reduction for 4.9%. Key words: upper Yangtze River; sediment discharge variation; period division;influencing factors :.., 2010,29(1):15-22.