鋁污泥迴流操作對綜合性工業廢水色度去除之影響

Similar documents
标题

S/L (g/l) 25 1N HNO 3 ph(12-1) ph ph ph 50 (NIEA W449.00B) (NIEA S321.63B) (NIEA W303.51A) (NIEA W305.51A) 夲 1

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3

我国原奶及乳制品安全生产和质量安全管理研究

MBR 1 1# MBR MBR MBR mm mm mm 1 MICRODYN -NADIR BC m μm PLC 2 2 Table 2 Main equipment

36(4) (2004) Journal of Soil and Water Conservation, 36(4) (2004) earthworms dig soil on surface and prevent plants to grow. But until D

Microsoft Word - 北京采暖与PM25的关系研究报告 docx

<4D F736F F D20A46AA4AFACECA7DEA46ABEC7B1D0AE76ACE3A873AD70B565A6A8AA47B3F8A769A4AFACE >

Microsoft Word - 33-p skyd8.doc

was used for the preparation of titanium dioxide modified polyvinylidene fluoride ultrafiltration membrane. Structure and properties of the membrane a

中 文 摘 要 芦 荟 和 金 银 花 抗 菌 成 分 提 取 及 其 对 棉 织 物 的 整 理 中 文 摘 要 随 着 生 活 水 平 的 提 高 和 健 康 环 保 意 识 的 增 强, 人 们 对 棉 织 物 卫 生 保 健 功 能 的 要 求 越 来 越 高, 故 对 棉 织 物 进 行

國立中山大學學位論文典藏.PDF

标题

Microsoft Word 葉一隆.doc

WTO OEM

Microsoft Word tb 赵宏宇s-高校教改纵横.doc

<A448A4E5AAC0B77CBEC7B3F8B2C43132A8F7B2C434B4C15F E706466>

03台塑麥寮六輕廚餘回收機制之研究探討.doc

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.


64

OncidiumGower Ramsey ) 2 1(CK1) 2(CK2) 1(T1) 2(T2) ( ) CK1 43 (A 44.2 ) CK2 66 (A 48.5 ) T1 40 (

水 土 保 持 學 報 47 (3): (2015) Journal of Soil and Water Conservation, 47 (3): (2015) ABSTRACT In this research, it is focused on the

mm ~

Microsoft Word - HC20138_2010.doc

Microsoft Word - 01李惠玲ok.doc

by industrial structure evolution from 1952 to 2007 and its influence effect was first acceleration and then deceleration second the effects of indust

标题


CONTENTS 大 环 保 绿 色 杂 志 国际标准刊号 ISSN Administrator 主管 Sponsor 主办 Edit/publish 编辑 / 出版 Address 社址 Adviser 顾问 4 >> 速览 6 >> 关注 2015 Dec. 第 12 期 (

WATER PURIFICATION TECHNOLOGY April 5th, 0.4 TiO TiO UV-0PC UNICO [0] TiO TiO TiO HNO 00 W TiO TiO TiO >40 nm TiO 0 ml 0 mg / L -. TiO 6 ml 40 ml 60 m

Microsoft Word - 荆红卫 板.doc

Ps22Pdf

THE APPLICATION OF ISOTOPE RATIO ANALYSIS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER A Dissertation Presented By Chaoyong YANG Supervisor: Prof.D

Microsoft Word - 刘 慧 板.doc

* CUSUM EWMA PCA TS79 A DOI /j. issn X Incipient Fault Detection in Papermaking Wa

Oates U

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe

材料與方法

untitled

WTO

Microsoft Word - 刘藤升答辩修改论文.doc

Ansell Gash ~ ~ Rhodes ~ H. Haken 20 90


( s y s t e m ) ( s t r e s s ) (stress model) ( s y s t e m ) [ ] [ 5 ] C o x [ 3 ] 1 [ 1, 2 ] [ 6-8 ] [ 9 ] Tw Fam Med Res 2003 Vol.1 No.1 23

度 身 體 活 動 量 ; 芬 蘭 幼 兒 呈 現 中 度 身 體 活 動 量 之 比 例 高 於 臺 灣 幼 兒 (5) 幼 兒 在 投 入 度 方 面 亦 達 顯 著 差 異 (χ²=185.35, p <.001), 芬 蘭 與 臺 灣 幼 兒 多 半 表 現 出 中 度 投 入 與 高 度

4 : ,,,, 2000,, [3 ] [4 ] 1995, [5 ] [6 11 ],,,, 2, : (1) 21,,,, (2), 5, 2000, [12 ] (3),, (4),,,, (5),,, , 86,, 60 86,,,, 17 ( 1)

Microsoft Word 谢雯雯.doc

~ ~

影響新產品開發成效之造型要素探討

附件1:

Thesis for the Master degree in Engineering Research on Negative Pressure Wave Simulation and Signal Processing of Fluid-Conveying Pipeline Leak Candi

114 鄭國雄 陳俊宏 臺北捷運的新材料 新工法與新技術 累積四分之一世紀的若干標竿分享 一 前言 臺北都會區大眾捷運系統目前已完工通車的路網包括文山內湖線 淡水線 中和線 新店線 南港線 板橋線 土城線 小南門線 南港線東延段 新莊線及蘆洲線等 長度 約 120 公里 計 104 座車站 平常每日

助 剂 改 善 其 止 血 效 果 1 实 验 1.1 原 料 和 试 剂 家 蚕 蛹 经 过 提 取 蛹 油 蛋 白 质 后 剩 余 的 残 渣 ( 主 要 成 分 为 蛹 皮 ), 烘 干 除 杂 粉 碎 后 待 用 ; 壳 聚 糖 ( 成 都 市 科 龙 化 工 试 剂 厂 ), 脱 乙 酰

A VALIDATION STUDY OF THE ACHIEVEMENT TEST OF TEACHING CHINESE AS THE SECOND LANGUAGE by Chen Wei A Thesis Submitted to the Graduate School and Colleg

LH_Series_Rev2014.pdf

Microsoft Word - 11-秦华伟.doc

Microsoft Word - TIP006SCH Uni-edit Writing Tip - Presentperfecttenseandpasttenseinyourintroduction readytopublish

X UDC A Post-Evaluation Research on SINOPEC Refinery Reconstruction and Expanding Project MBA 厦门大学博硕士论文摘要库

标题

<4D F736F F D20A544B0CAABACBAF1ABD8A7F7AABAB0B7B164B7A7A9C0BB50B56FAE69C1CDB6D52E646F63>

IPCC CO (IPCC2006) 1 : = ( 1) 1 (kj/kg) (kgc/gj) (tc/t)

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

, GC/MS ph GC/MS I

~ 10 2 P Y i t = my i t W Y i t 1000 PY i t Y t i W Y i t t i m Y i t t i 15 ~ 49 1 Y Y Y 15 ~ j j t j t = j P i t i = 15 P n i t n Y

1999工業污染防治工程實務技術研討會論文

Chinese oil import policies and reforms 随 着 经 济 的 发 展, 目 前 中 国 石 油 消 费 总 量 已 经 跃 居 世 界 第 二 作 为 一 个 负 责 任 的 大 国, 中 国 正 在 积 极 推 进 能 源 进 口 多 元 化, 鼓 励 替 代

% 6 9 [1] % 97% [2] 2 93% 3 4,, 2


24-2_cover_OK

裝置吸收式熱泵為甲醇燃料電池汽車空調系統之研究

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm

162 方 忠 明 香 港 辦 理 以 大 眾 運 輸 導 向 之 開 發 與 我 國 辦 理 臺 北 都 會 區 捷 運 土 地 開 發 之 探 討 一 香 港 鐵 路 有 限 公 司 (MTR) 與 港 鐵 路 網 1975 年 香 港 政 府 鑑 於 都 市 交 通 的 日 益 繁 忙, 成

劃 定 都 市 更 新 地 區 防 災 評 估 指 標 建 立 之 研 究 - 以 台 北 市 大 同 區 之 更 新 地 區 為 例 摘 要 民 國 八 十 八 年 台 灣 所 發 生 的 九 二 一 大 地 震 與 近 年 來 中 國 的 四 川 強 震 日 本 的 311 大 地 震, 皆 突

前 言 一 場 交 換 學 生 的 夢, 夢 想 不 只 是 敢 夢, 而 是 也 要 敢 去 實 踐 為 期 一 年 的 交 換 學 生 生 涯, 說 長 不 長, 說 短 不 短 再 長 的 路, 一 步 步 也 能 走 完 ; 再 短 的 路, 不 踏 出 起 步 就 無 法 到 達 這 次

ElProScan - 2

國立高雄大學數位論文典藏

南華大學數位論文

/ J J J J See HUAN Q Z.

32

檢 舉 獎 金, 分 別 於 檢 察 官 提 起 公 訴 不 起 訴 處 分 緩 起 訴 處 分 或 經 法 院 判 決 有 罪 確 定 後, 由 受 理 檢 舉 機 關 通 知 檢 舉 人 親 自 具 名 領 取 檢 舉 人 有 數 人 時, 獎 金 平 均 分 配 ; 其 有 先 後 者, 獎

1556 地 理 科 学 进 展 30 卷 他 关 于 农 村 住 房 结 构 与 抗 震 性 能 的 研 究, 则 多 是 从 工 程 抗 灾 的 角 度, 研 究 某 种 构 造 类 型 的 房 屋, 力 图 找 到 传 统 房 屋 的 结 构 失 误 和 新 建 房 屋 中 存 在 的 问 [

政治哲學要跨出去!

66 臺 中 教 育 大 學 學 報 : 人 文 藝 術 類 Abstract This study aimed to analyze the implementing outcomes of ability grouping practice for freshman English at a u

台 灣 人 權 學 刊 第 三 卷 第 三 期 他 還 接 受 教 育 部 的 委 託, 長 年 擔 任 中 央 層 級 的 人 權 教 育 輔 善 團 的 指 導 教 授, 至 今 已 有 多 年 我 雖 然 不 是 很 了 解 為 什 麼 他 可 以 一 邊 承 擔 教 育 部 賦 予 的 任


[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

Schumpeter Mensch Freeman Clark Schumpeter Mensch 1975 technological stalemate 2000 Van Dujin 1977 OECD 1992 Freeman 1982 Van

Microsoft Word _editing

Microsoft PowerPoint - ATF2015.ppt [相容模式]

國立中山大學學位論文典藏.PDF

原 子 层 沉 积 法 在 氧 化 亚 铜 薄 膜 上 沉 积 一 种 或 多 种 氧 化 物 ( 氧 化 钛 TiO 2 氧 化 铝 Al 2O 3 及 氧 化 锌 ZnO 等 ), 对 不 同 保 护 膜 改 性 的 氧 化 亚 铜 薄 膜 进 行 结 构 表 征 和 光 催 化 性 能 测 试

<4D F736F F D20B5DAC8FDB7BDBE57C9CFD6A7B8B6D6AEB7A8C2C98696EE7DCCBDBEBF2E646F63>

untitled

中山大學學位論文典藏

Technical Acoustics Vol.27, No.4 Aug., 2008,,, (, ) :,,,,,, : ; ; : TB535;U : A : (2008) Noise and vibr

國立高雄大學數位論文典藏

untitled

世新稿件end.doc

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

Transcription:

2003 2003/12/19 / 147

2003 2003/12/19 / 148

2003 2003/12/19 / 1 1 2 2 2 1 2 E-mail: ssliu@cc.vit.edu.tw; Tel: 03-4342379 ext.54; Fax: 03-4622232 COD SS 30%~35% (PAC) COD 5% SS 2340mg/l4680 mg/l Sludge Recirculation with Aluminum-group Coagulants Applied in Coagulation Process of the Industrial Wastewater Treatment for Enhancement of Color Removal Shin-shou Liu 1, Tsun-teng Liang 2 1 Instuctror, Departament of Environmental Engineering, Van Nung Institute of Technology 2 Associate processor, Departament of Environmental Engineering, Van Nung Institute of Technology 149

2003 2003/12/19 / Abstract In this study, the jar test experiment was applied for simulating the coagulation process of the wastewater treatment plant with sludge recirculation. The samples of wastewater and sludge were taken from the integrally industrial wastewater treatment plant of Chung-Li, Taiwan. The results showed that with sludge recirculation the enhancement of color removal was enhanced up to 35% compared with no sludge recirculation. And, the color removal enhancement of coagulant aluminum sulfate was approximately two times better than that of coagulant polyaluminum chloride (PACl). At the same moment, the COD was slightly increased about 5%, but the removal of suspended solids was rarely affected by the sludge recirculation. The optimum dosages of return sludge were found approximately between 2340 mg/l and 4680 mg/l with different water samples and different coagulants in the study. Key words: Jar test, sludge recirculation, true color 4000 (Karthikeyan, 2002; Pala and Tokat, 2002) (Koyuncu, 2002) (Kim T., Park, Lee, Shin and Kim S., 2002)UV/H 2 O 2 ( Espinoza and Litter, 2002) (Jung, Yoon, Chung and Lee, 2002) ( 1989) (Chu, W. 1999) COD 150

2003 2003/12/19 / (nuclei) COD SS () (heterogeneous nucleation ) (MLSS) COD 1 A in B in S 1 S 2 B out A out 1 () 151

2003 2003/12/19 / 1 A in 1 S 1 1 B in 1 S 2 () 1 A in 1 S 1 1 B in 1 S 2 (PAC)10% stock solution SG1.19 ((H 2 SO 4 ) 3.14.3H 2 O)7.5% stock solution SG1.30 1 Standard Methods for the Examination of Water and Waste water, 19th Ed., Method 2120E 1. ph COD (mg/l) Color (ADMI) SS(mg/l) (Ain ) (B in ) 1(S 1 ) 1(S 2 ) 7.0 6.8 - - 259 544 - - 536 1220 - - 56 71 46800 8600 () 50mg/l~300mg/l PAC 2 MLSS PAC MLSS y = 201.47Ln(x) - 449.09R 2 =0.98PACl y = 15.22Ln(x)-28.72R 2 =0.99 3 y = 0.007X+5.88R 2 =0.97 () 152

2003 2003/12/19 / 2 SS 3 MLSS 4 PAC150mg/l 1220TCUCOD544mg/l 8660mg/l 0%~35% 0 ~ 3031mg/l 288 TCU 3031mg/l 96TCU 16% 153

2003 2003/12/19 / COD(mg/l) 4 COD () 2 56 5 150mg/l (46800mg/l) 2340 ~ 4680mg/ l COD 4680mg/ l COD 9360 mg/ l 2340mg/ l 5% 6 PAC 150mg/l 2340mg/ l COD 4680mg/ l 4680mg/ l COD PAC 7 PAC 2 154

2003 2003/12/19 / 2 Color (TCU) A in A out Al 2 (SO 4 ) 3 14H 2 O PACl COD (mg/l) 539 259 Color (TCU) 243 (55%) 125 (76%) ( ) COD (mg/l) 99 (62%) 70 (73%) Color (TCU) 86 (84%) 66 (88%) COD (mg/l) 111 (57%) 114 (54%) Al 2 (SO 4 ) 3 14H 2 O 562 1220 544 (54%) 203 (62%) 137 (89%) 227 (58%) B in ~ B out PACl 290 187 96 216 (76%) (65%) (92%) (60%) ( ) % A in A iou B in B ou 1 1. (SS) PAC y = 201.47Ln(x) - 449.09R 2 =0.98 (SS) 2. (PAC) y = 15.22Ln(x)-28.72R 2 =0.99 300mg/lg 58% 3. y = 0.007X+5.88R 2 =0.97 4. 30%~35% 5. 2340mg/l4680 mg/l 6. COD 5% SS 7. PAC 8. 155

2003 2003/12/19 / 1. APHA, AWWA & WPCF, Standard methods for the examination of water and wastewater, 19th edition, Method 2120E, 2-7 to 2-8, APHA, Wahington DC, USA(1989). 2. Pala, A. and Tokat, E., Color removal from cotton textile industry wastewater in an activated sludge system with various additives, Water Research 36, 2920-2925 (2002). 3. Koyuncu, I., Reactive dye removal in dye/salt mixtures by nanofilitration membranes containing vinylsulphone dyes: effect of feed concentration and cross flow velocity, Desalination 143, 243-253(2002). 4. Al-Monmani, F., Touraud, E., Degorce-Dumas, J. R., Roussy J. and Thomas, O. Biodegradability of enhancement of textile dyes and textile wastewater by VUV photolysis, Journal of Photochemistry and Photobiology A: Chemistry 153, 191-197(2002). 5. Jung, J., Yoon, J., Chung, H. and Lee, M., Radition treatment of secondary effluent from a sewage treatment plant, Radiation Physics and Chemistry 65(4-5), 533-537(2002). 6. (1988~1989) 7. Chu, W., Lead metal removal by recycled alum sludge, Water Research 33(13), 3019-3025(1999). 156

2003 2003/12/19 / 1 2 1 2 / 200CMM MEKIPA PGMEPGMEA THC 50-300 ppm O3/ H2O2 ph H2O2/O3 0.35 ~ 0.45THC 1600 0.4 1.7 kg/hr THC 0.1 kg/hr PSI VOCs NOx 157

2003 2003/12/19 / PU 1 PU DMF DMF 1 VOCs 1 158

2003 2003/12/19 / VOC VOC 700-900 / 20-50% 2 GAS PHASE G-L film LIQUID PHASE CO 2 CO 2 Acids Inorganic salts Oxidants Intermediates Wastewater Pollutants VOC odorous Oxidized Intermediates 2 0.38 g/l 1/10 20 99% (3) direct reactions radical reactions H 2 O 2 UVOH - (free radicals) OHradical 2.3 volts 1 2 ozone and OHradical (M -1 sec -1 ) 159

2003 2003/12/19 / H 2 O 2 OH - OHradical H 2 O 2 /O 3 (moles/mole) 0.5 1.4 (3) H 2 O 2 OH radical H 2 O 2 UVOH - OHradical AOP (Advanced Oxidation Processes ) O3/H 2 O 2 1 Oxidant OH Ozone H2O2 KMnO4 HOCl Cl2 ClO2 Potential (volts) 2.33 2.07 1.78 1.56 1.49 1.36 1.27 2 ozone and OH radical (4) Ozone OHradical Alcohols 1-100 10 9-10 Ketones 1-100 10 9-10 Aldehydes 1-10 10 9 Carboxylic Acid 10-5 -10 10 7-9 N-containing organics S-containing organics 10 2-7 10 9-10 10-10 5 10 8-10 3 160

2003 2003/12/19 / 3 ( ) O3 / H2O2 MEKIPA 8L diffuser 3 161

2003 2003/12/19 / 3 3 ozone monitor GC/FIDTOC ph ph meter 4 VOC VOC O 3 OH radical 3 m 0.3 m 400 L 6 3 m 0.24 m 1 in ( k7 ) 274 m2/m3 2 m (OZONIA CFS-1) 80 g H2O2 NaOH H2O2 ph online GC/FID( 9800) UV detector(pci-wedeco MC-400) (Iodometric method) 162

2003 2003/12/19 / 4 PFR(plug flow reactor) CSTR(continue stirred tank reactor) G/L G/L > 0.5 CSTR (5) h/d h/d = 10 CSTR (3) Bubble-ColumnG/L > 0.5h/d = 10 CSTR PFR () 200 CMM( 5) THC 5 THC 50-200 ppm IPAMEKAcetone2-Butanone 1-Methoxy 2-propanolButyl AcetateEthyl Lactate IPA MEK () FH-ER4 OK73 163

2003 2003/12/19 / OK73 30% PGMEA 70%PGMEFH-ER4 45%MEK 55%Ethyl Lactate PGMEA MEK PGMEA 20 4.9 mbarmek 78 mm Hg PGMEA MEK 6 FH-ER4 OK73 1 COD FH-ER4 OK73 250 mg/l ph 9O 3 132 mg/minh 2 O 2 / O 3 1/10 30 FH-ER4 COD 49% OK73 42% OK73 5 200 CMM 1.0 COD(C/C0) 0.8 0.6 1-FH 1-OK 0.4 0.2 0 10 20 30 40 time(min.) 6 FH-ER4 OK73 COD 164

2003 2003/12/19 / () 1. THC (6)(7) ph H 2 O 2 /O 3 THC H 2 O 2 ph ph 10 (inorganic carbon HCO - 3 CO 2-3 ) THC THC H 2 O 2 H 2 O 2 ph H 2 O 2 /O 3 0.35-0.45[4, 5] 8 H 2 O 2 13 g O 3 /g THC 1.1 g O 3 /g THC 60% ~ 70% 2. 8-10 lpm 1-2 CMM 80-90% 4 40% 7 Exhaust 1 MEK Exhaust 2 MEK IPA 7 () 4 1600 180 165

2003 2003/12/19 / 4 2.7 m 5 m 3 m 6 m PLC 3 kg/hr 3 m 30 1200 min 1.6-2.4 kg/hr lpm 120 lpm 250CMM () 8 60~90% 75% H 2 O 2 THC 10% 85% 8 1. MEK IPA 95% 1g MEK IPA 1-2 g 166

2003 2003/12/19 / 2. ph H2O2/O3 THC 5 CMM 15 lpm 95% MEK 25 mg/lipa 13 mg/l 35-70 g/hr 3. 4. VOC 1,800 2,450 (VOC + ) 1,000 1,300, Back Up 800-1,000 1,200 1. 2001 2. (2000) 3. C. Gottschalk, J. A. Libra, A., Saupe, Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and its Application, Wiley-VCH, Germany(2000). 4. Guy Martin and Paul Laffort, Odors and Deodorization in the Environment, VCH Publishers, Inc.(1994). 5. Marinas, B. J., Liang, S., Aieta, E. M., Modeling Hydrodynamics and Ozone Residual Distribution in a Pilot- Scale Ozone Bubble-Diffuser Contactor, Journal AWMA(1993). 6. VOC VOCs (2000) 7. Hsin-Hsien Wu, Shu-Sung Lin and Ching-Chih Lai, Control of Volatile Organic Compounds (VOCs) from Semiconductor Manufacturing Industry by Wet Scrubbing and Ozonation, The Air & Waste Management Association's 94th Annual Conference & Exhibition(2001). 8. Ernst-Martin Billing, Michael E. Mullins and D. W. Hubbard, Behavior of a Packed Column as an Ozonation Reactor for the removal of Trichloroethylene from Water, Proceedings of the 5 th International Symposium Chemical Oxidation: Technologies for the Nineties(1995). 9. Langlais, B., Reckhow, D. A., Brink, D. R. Ozone in water treatment: application and engineering; Lewis Publisher, Inc., MA, USA(1989). 167

2003 2003/12/19 / 1 2 3 1 2 3 77 79 86 3 87 87 88 11 90 586 6.2% 90 91 3 91 923 10.3% 92 6 15 Battery Recycling in Taiwan Hsiung-Wen Chen Director, Bureau of Solid Waste Management, Environmental Protection Administration, Taiwan, R.O.C. 168

2003 2003/12/19 / Abstract Under the Waste Disposal Act of 1988, Taiwan implemented the first extended producer responsibility (EPR) legislation to collect and recycle various municipal wastes. In 1990, mercury-containing batteries and lead acid batteries were listed as products subject to the EPR scheme. Manufacturers, importers and sellers of listed products were required to achieve the collection and recycling rates set by the Environmental Protection Administration (EPA). In March 1997, the new amendments to the Waste Disposal Act changed the EPR scheme to require the responsible manufacturers or importers to pay recycling fees instead of fulfilling the mandatory collection and recycling targets. Besides, labeling requirement is applied to batteries containing mercury or cadmium. The retailers, on the other hand, are required to take back the used dry batteries from consumers. The recycling fees are paid to the EPA-administered recycling funds, which are used to subsidize the costs of collection and recycling, to subsidize or award recycling systems, to reimburse municipalities for waste disposal, to pay for the costs of third-party certification, and for other uses related to recycling. In 1998, Ni-Cd batteries for general consumer uses are added to the EPR product list. From November 1999, the EPR regime was expanded to cover all kinds of dry battery chemistries. The volume collected in 2001 is 586 tons for dry batteries of various chemistries. In the mean time, the collection rate is 6.2% for dry batteries. Despite the legislation, the collection rate achieved is low for dry batteries. This can be attributed to the relatively small size of dry batteries, which are often disposed together with general garbage. To raise public awareness of dry battery recycling, EPA initiated a nation-wide school education program in late 2001. Besides, the subsidy rate for dry battery collectors was doubled from March 2002. The volume collected in 2002 is 923 tons, and collection rate is 10.3% for dry batteries. This paper outlines the history and current situations of dry battery recycling in Taiwan, as well as EPA s efforts to promote dry battery recycling. Key wordsdry batteryrecycling 89 11,049 5 5 169

2003 2003/12/19 / 79 86 3 87 88 11 90 586 6.2% 90 91 3 7.5 15 10.5% 91 79 86 1 1 170

2003 2003/12/19 / 1 1. 2. 3. 30% 4. () 2 171

2003 2003/12/19 / ( ) 2 () 172

2003 2003/12/19 / 1 1 20 20 15 58.95 73.95 12 15 468.91 483.91 12 56 56 56 56 100 343.41 443.41 48 50 129.87 79.87 15 15 94.87 12 15 422.9 437.9 80 / 0.0005 0.025 0.4 90 10 24 1.79 5 21 173

2003 2003/12/19 / 2.86 11 27 3.87 3 23 4.88 5 4 88 11 1 1.87 9 10 2.88 10 28 89 4 1 3.91 6 13 4.91 10 2 1.91 7 31 2.91 10 9 174

2003 2003/12/19 / 3.91 10 16 89 5.7 90 6.2 91 10.5 92 6 15 2 2 89 11,049 632 5.7 90 9,447 586 6.2 91 8,828 923 10.5 2 1. 2. 1. 91 3 1 7.5 / 15 / 2. 90 11 92 3. 4. 5. 175

2003 2003/12/19 / 6.92 4 7 8. 1. 2. 3. 4. 5. 1. 2. 3. 176

2003 2003/12/19 / 1 2 3 1 2 3 ( ) SiO 2 ( 60%~90%) FM SiO 2 A Study of Foundry Waste Reuse H. D, Zheng 1 Y.M,Chang 2 T. H., Lu 3 1 General Manager, Eco Technology & Consultants Co., Ltd.. 2 Environment Engineer, Eco Technology & Consultants Co., Ltd.. 3 Vice General Manager, Re-source Technology Abstract 177

2003 2003/12/19 / The foundry produce 1.5million waste per year. These diverse foundry wastes deriving from different equipments are difficult to reuse them. The chemical composition of waste foundry sand is mainly SiO 2 (60%-90%). The physical character of waste foundry sand is similar to natural sand. The chemical composition of foundry slag is mainly SiO 2 and residual irons. The physical character of foundry slag is similar to natural sand, too. The character of foundry dust is similar to waste foundry sand except of its grain. At present, the way of reusing the waste foundry sand and foundry slag is to be the civil engineering material. Although the character of foundry dust is similar to waste foundry sand, the dust has a confined way to reusing for its fine gain. In this study, by the way of inspecting the foundry and reusing factory is to understand the situation and questions of producing, and reusing. Analyzing the advantage and drawback of the reusing technology purpose to propose the best way to reuse the Foundry Waste. Key words: foundry waste, resource reusing 150 ~200 [1] 91 6 / () 150 2% 178

2003 2003/12/19 / 呋 1 1 150 () TCLP 1 2 3 1. ( 1) ( 3) ( ) 179

2003 2003/12/19 / SiO 2 (%) 1 Al 2 O 3 (%) CaO (%) Cr 2 O 3 (%) Fe 2 O 3 (%) MgO (%) Clay (%) Cl - (mg/kg) ( ) 92.20 1.840 0.094 0.013 0.633 0.046 5.51 12.7 ( ) 95.80 0.954 0.287 0.002 1.060 0.020 42.9 87.4 44.10 0.055 9.410 0.011 0.343 0.212 4.0 0.86 ( ) 89.40 1.160 0.151 0.012 19.80 0.022 14.9 6.04 ( ) 19.00 0.784 0.189 0.003 17.70 0.008 84.2 234 ( ) 68.40 0.228 1.930 0.021 1.510 0.101 60.9 3370 2 (TCLP) As Cd Cr Cr 6+ Cu Hg Pb Zn (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) ( ) 0.011 ND 0.017 ND 0.1 ND 0.24 0.12 ( ) 0.005 ND ND ND ND ND 0.22 0.19 0.003 ND ND ND 0.02 ND 0.56 0.30 ( ) ND 0.030 0.114 ND 0.03 ND 0.56 0.29 ( ) 0.009 ND 0.044 ND ND ND 0.27 ND ( ) ND ND 0.034 ND 0.02 ND 0.45 4.32 0.003 0.025 0.014 0.01 0.02 0.0005 0.05 0.07 5.0 1.0 5.0 2.5 15 0.2 5.0 - No.40 (%) 3 No.60 (%) No.70 (%) No.100 (%) No.140 (%) No.170 (%) No.200 (%) ( ) 0.7 13.9 30.2 77.9 92.6 95.5 97.9 99.9 ( ) 16.2 42.3 59.3 85.6 91.7 93.2 95.0 99.9 ( ) 3.0 16.7 29.6 64.4 80.4 85.0 90.9 100.0 ( ) 23.5 33.7 40.2 58.1 71.1 76.1 83.0 99.9 ( ) 9.2 18.1 23.9 40.9 55.5 68.7 80.3 100.0 2. 2 3. SiO 2 (%) 180

2003 2003/12/19 / 91 4 56,528 / 3,277 / 4 (/) 56,528 3,277 0 () 1 + CLSM 1 181

2003 2003/12/19 / 1. (1) (2) 2. (1) (2) 1/10 3. (1) (2) 4. (CLSM) (1) CLSM (2) CLSM [2] CLSM CLSM 5. (1) (2) ASTM 6. 182

2003 2003/12/19 / (1) (2) () 1. ( 2) 2. MgO CaO ( 1) + () CLSM 2 ( 1) 1 (CLSM) () 183

2003 2003/12/19 / 1. (1) (2) ( ) 2. ( ) ( ) 3. () 1. 184

2003 2003/12/19 / 2. CLSM( ) 1. 2. CLSM 1. (2001) 2. " CLSM " 443 (2003_ 185

2003 2003/12/19 / 1 2 3 3 1 2 3 4 (A ) (B ) NH 3 NH 3 NH 3 A 0.046 0.102 ppm 0.074 ppmb 0.055 0.077 ppm 0.066 ppma NH 3 0.057~0.268 ppm 0.209 ppmb 0.082~0.746 ppm 0.312ppmA NH 3 0.201 ppmb 0.087 ppma NH 3 0.628ppm AB NH 3 A NH 3 B ph A NH 3 B NH 3 (ammonia) [1] 186

2003 2003/12/19 / SO 2-4 NO - 3 NH + 4 NH 4 NO 3 NH 4 HSO 4 (NH 4 ) 3 H(SO4) 2 (NH 4 ) 2 SO 4 SOxNOx H 2 SO 4 HN0 3 NH + 4 (NH 4 ) 2 SO 4 NH 4 NO 3 [2] NH 3 NH 3 [3] 1. [4-10]2. [11]3. [12] 83.1% 13%[4] 90% [5] 90% [13] [14] [15] 2.1 92 4 24 9 9 ( ) A 10 B ph 15 187

2003 2003/12/19 / 1 2 (A ) (B ) 1. A 2. B 188

2003 2003/12/19 / 2.2 (NIEA A426. 71B) alkaline-sodium hypochlorite indophenol sodium nitroprusside 630nm 14.6µg/Nm 3 ( 2L/min 60 min=120 L/hr) 2.2.1 1. 3 3 a. SKC Inc., Eighty, PA USA 60Kpa 1~2 L/min( 2 L/min) b. SKC Inc., 863Valley View Road,Eighty,PA15330 USA 1 2L/min c. 10mL d. SKC Inc., Glass Filter Type A/C mm, 1.0µm mormal e. SKC 189

2003 2003/12/19 / f. g. PU PVC 2. Davis Instrument Weather Monitorsystem, product #7440 2.2.2 10 ml 1 L/min 1 4 1. 0.51.01.52.02.5 3.0 ml 25mL 510152025 30µg NH3/25mL 10mL 10mL R 2 0.9996 2. 25 2 ml 5 ml 22 ml 2.5mL 25 ml 25 30 630 nm 3. : C=W/Vn C µg /Nm 3 NH 3 W 25mL NH 3 µg Vn=(F/1000) t (Ps/1013) [273/(273+Ts)] F (L/min) t (min) Ps (Kpa) Ts ( ) 190

2003 2003/12/19 / 3.1 A A 1 0.628ppm 0.2680.247 0.209 ppm 0.200 ppm 0.149~0.057ppm 4 A 0.600ppm 0.300ppm. 1ppm 1. A NH 3 () (%) (Kpa) (g/nm 3 ) (ppm) ( ) 32.1 52 102.2 70.6 0.046 ( ) 32.1 54 102.2 32.1 0.102 33.9 49 102.1 435 0.628 33.9 49 102.1 31.2 0.045 31.4 54 101.4 186 0.268 31.4 54 101.4 51.7 0.075 32.2 54 101.4 103 0.149 32.2 54 101.4 171 0.247 31.4 54 101.4 39.5 0.057 31.4 54 104.4 145 0.209 3.2 B B 2 ph 3 0.739ppm 0.492ppm 0.082ppm 0.739ppm 0.746ppm 191

2003 2003/12/19 / 0.300ppm 5 0.300ppm 2 B NH 3 () (%) (Kpa) (g/nm 3 ) (ppm) ( ) 37.4 46 101.1 86.0 0.124 ( ) 37.4 46 101.1 517 0.746 37.4 46 101.1 245 0.353 36.6 48 101.0 61.0 0.087 ( ) 36.6 48 101.0 83.0 0.120 ( ) 36.6 48 101.0 513 0.739 38.0 44 101.0 82 0.118 38.0 44 101.0 513 0.739 38.0 44 101.0 297 0.429 37.4 46 101.0 93.0 0.134 37.4 46 101.0 206 0.297 ph 37.4 46 101.0 57.0 0.082 36.1 50 101.1 57.0 0.082 ( ) 36.1 50 101.1 38.0 0.077 ( ) 36.1 50 101.1 53.0 0.055 0.7 0.6 0.5 NH 3 (ppm) 0.4 0.3 0.2 0.1 0.0 4. A 192

2003 2003/12/19 / 0.8 0.6 NH 3 (ppm) 0.4 0.2 0.0 5. B 3.3 AB 6 AB 0.074 0.066ppm A A 0.209ppm B 0.087ppm B ph B 0.312ppm A 0.201 ppm A 0.7 0.6 0.5 A B NH 3 (ppm) 0.4 0.3 0.2 0.1 0.0 6. AB 193

2003 2003/12/19 / 3 3. / NH 3 Ranage Oct 2000~Jan 2001 (3 ) Oct2000~Jan 2001 (3 ) May 2001~Mar 2002 (4 ) May 2001~Mar (Park) 2002 (4 ) 2000~2002 20000 2900 May~Jul 1999 6000 12000 25000 (8 ) Jul 2003 24000 125000 (2 ) Apr~Sep 2003 A B (2 ) 21.2~4.1 (ppb) 13.6~4.2 (ppb) 3.8~45.6 (g/m 3 ) 2.2~7.3 (g/m 3 ) 2.4~7.5 (mg/m 3 ) 66~205 324~1488 183~1050 (g/m 3 ) 0.296~1.159 0.081~0.615 (ppm) 0.057~0.268 0.082~0.746 (ppm) NH 3 Averaged 11.4(ppb) Automated IC [16] 9.2(ppb) Automated IC [16] 17.2 (g/m 3 ) 3.7 (g/m3) 147 55 (g/s-m 2 ) 130 813 459 (g/m 3 ) 0.676 0.336 0.209 0.312 (ppm) Automated Denuder/Filter-pack sample Automated Denuder/Filter-pack sample GC Chenilum- inesence [12] [12] [17] NIEA A426.71B [18] NIEA A426.71B [19] NIEA A426.71B 1. 194

2003 2003/12/19 / 2. ph 3. 4. AB 1ppm 1. (1999.08.11) 2. N. F. Magelson, L. Lewis, J. M. Joseph, W. Cui, J.Machir, N. W. Williams, D. J. Eatough, L. B. Rees, T. Wilkerson and D. T. Jensen, The Contribution of Sulfate and Nitrate to Atmospheric Fine Particle During Winter Inversion Fogs in Cache Valley, Uath, Journal Air and Waste Management Association, Vol.47, pp.167-175(1997). 3. V.P. Anjea, J.P. Chauhan, J.T.Walker, Characterisation of atmospheric ammonia emissions from swine waste storage and treatment lagoons, Journal of Geophysical Research 105,11535-11545(2000). 4. (1999) 5. T.H. Misselbrook, Van Der Weerden, B.F Pain, S.C. Jarvis, B.J. Chambers, K.A. Smith., V.R Phillips, T.G.M Demmers, Ammonia emission factors for UK agriculture, Atmospheric Environment,Vol.34, pp.871~880(2000). 6. B. F. Pain, T. J. Van Der Weerden, B. J. Chanbers, V. R. Phillips, A inventory for ammonia emissions from UK agriculture, Atmospheric Environment,Vol. 32, pp. 309 313(1998). 7. J. Webba, T. Misselbrookb, B.F. Painb,1, J. Crabbc, S. Ellisd, An estimate of the contribution of outdoor concrete yards used by livestock to the UK inventories of ammonia, nitrous oxide and methane, Atmospheric Environment,Vol.35, pp.64476451 (2001). 8. V. R. Phillips, S. J. Bishop, J. S. price, S. You, Summer emission of ammonia from a slurry-based, dairy cow house, Bioressorce Technology,Vol.65, 213-219(1998). 9. S. C. Jarvis, S. Ledgard, Ammonia emissions from intensive dairying: a comparison of contrasting systems in the United Kingdom and New Zealand, Agriculture, Ecosystems and Environment,Vol.92, pp.83 92(2002). 195

2003 2003/12/19 / 10. B. P. Hyde, O. T. Carton, P. O Toole, T.H. Misselbrook, A new inventory of ammonia emissions from Irish agriculture, Atmospheric Environment,Vol.37,pp.55-62(2003). 11. E. Buijsman, H. F. M. Mass, W. A. H. Asman, Anthropogenic NH 3 emission in Environment, Atmospheric Environment, Vol.21, pp.1009-1022(1987). 12. C. Perrino, M. Catrambone, A. Di Menno Di Bucchianico, I. Allegrini Gaseous ammonia in the urban area of Rome, Italy and its relationship with traffic emission, Atmospheric Environment, Vol.36, pp.53855394(2002). 13. M. A. Sutton, C. J. Place, M. Eager, D. Fowler, R. I. Smith, Assessment of the magnitude of ammonia emissions in the United Kingdom, Atmospheric Environment, Vol.29, pp.13931411(1995). 14. Jun Zhu, A review of microbiology in swine odor control, Agriculture Ecosystem and Environment, Vol.78, pp93-10(2002). 15. M. D. Goebes, R. Strader, C. David,An ammonia emission inventory for fertilizer application in the United States Atmospheric Environment, Vol.37, pp.25392250(2003). 16. M.L. Fischer, L. David, M.L. Melissa, J.B. Nancy,Automated measurement of ammonia and nitric acid in indoor and outdoor air, Environmental Science and Technology, Vol.37, pp.21142119(2003). 17. T. T. Lim, J. H. Albert, Ji-Qin Ni, A. L. Sutton, P. Shao,Odor and gas release from anerobic treatment lagoon for swine manure, Journal of Environmental Quality, Vol.32, pp.406412(2003). 18. S. M. McGinn, H. H. Janzen, T. Coate,Atmospheric ammonia, Volatile fatty acid, and other odorants near beef feedlots, Journal of Environmental Quality, Vol.32, pp.11731182(2003). 19. (2003) 196

2003 2003/12/19 / BTX 1 1 2 2 2 2 2 1 2 BTX 5.4 BTX 91.499.6% 0.121 mg/l O 2 / mgvsshr HBOD 30 mg/l 050 g/l NaCl BOD Monod 0.210.21 0.15 h -1 Kargi 3 K T 2.64 10 g/l, R 2 =0.86031.96 10 3 g/l, R 2 =0.8373 3.19 10 3 g/l, R 2 =0.9260 Effect of Salinity on the Respiration Characteristics of BTX Oxidizer Ching-Hsing Lin, Wen-Der Liu, Chun-Chih Hsiao, Wen Lee, Hui-Ying Liu, Ssu-Fan Lin, and Chun-hsuan Yu Department of Safety Health and Environmental Engineering, Tung Nan Institute of Technology 197

2003 2003/12/19 / Abstract This study intends to examine the respiration characteristics of benzene, toluene, and xylene (BTX) under various salinities by microorganisms that cultivated from chemostat reactor fed with mixed substrate of benzene, toluene, and xylene as sole carbon source. Oxygen uptake rate measurements were performed on BTX oxidizer cultivated in fresh water medium and subjected to the shock load of saline water having a wide range of salinity(050 g/l NaCl). The results were compared with those of fresh water medium as a control and correlated to the NaCl concentrations. Results showed that the salinity had significant impact on respiration characteristics of BTX oxidizer. Measured data from batch experimentals were modeled with Monod kinetics, giving that the maximum substrate utilization rates for benzene, toluene, and xylene were 0.21, 0.21, and 0.15 h -1, respectively. Then experimental data from saline mediums was fitted with Kargi inhibition equation, yielding values of 2.64 10 3 g/l, R 2 =0.8603 for benzene, 1.96 10 3 g/l, R 2 =0.8373 for toluene, and 3.19 10 3 g/l, R 2 =0.9260 for xylene. This result suggested that K T of BTX could be the same order. Key words: oxygen uptake rate, respiration characteristics, salt inhibition [1] [2] BOD BOD [3] [4] [5] HBOD(Headspace Biochemical Oxygen Demand) HBOD HBOD BOD HBOD [6] Kinner et al. RBC 60%COD [7] 198

2003 2003/12/19 / Kargi Dincer 1 COD 5% COD 85% 60% [8] Dincer Karg K TN =1.42 10 3 mg/l K TDN =0.152 10 5 mg/l [9] Dan, N. P. 2032 45 g/l COD K T 46 g/l 70 g/l [10] BTX 05% NaCl BTX Kargi K T 2.1 1. chemostat 30 15 4.8 L Master Flex model 7553-80 Cole Parmer BTX BTX 4 chemostat 1 2. K 2 HPO 4 3H 2 O4.25 g/lnah 2 PO 4 H 2 O1.00 g/l NH 4 Cl2.00 g/lmgso 4 7H 2 O 0.20 g/lfeso 4 7H 2 O 0.012 g/l MnSO 4 H 2 O0.003 g/lznso 4 7H 2 O 0.003 g/lcoso 4 7H 2 O 0.001 g/l NaCl 3. Spectronic Instruments 4001/4 600nm OD 600 199

2003 2003/12/19 / 4. 1 BOD YSI 52B YSI5905 5.BTX GC/FID GC/FID BTX 30 m (J&W DB-5 column) 250 275 80 20µL GC/FID BTX 1.151.35 1.75 4storage feed pump Complete mixed Active carbon off-gas Air Effluent BTX & Nutrient Soln. Computert DO meter SOUR detect pump 1 chemostat 2.2 WTW (Rspirometrische BSB 5 OxiTop) 050 g/l (1) 200

2003 2003/12/19 / 1 Chemostat BTX 30 mg/l 2.3 010203040 50 mg/l NaCl mg O 2 /mg VSS-hr 1. Monod kinetics1949 ds dt kxs = 1 K S S + ds dt = h -1 k= h -1 S= mg/lx= mg/lk s = mg/l [11] 1 do dt X O = 2 2 K SO k S S + S + K O 2 Specific Oxygen Uptake RateSOUR k K, K SOUR k, K, K S 2 k, K, K O O, SO IO I SO IO IO 2SOURobs SOUR pre Minimize 2. n [ i 2 SOUR obs SOUR pre ] 3 k m 201

2003 2003/12/19 / k KT = km 4 K + T T T mg/l K T mg/l K T 4 1 k 1 1 = + T 5 k k K m m T T k 5 K T 3.1Chemostat Chemostat 2 5.4 BTX 27.225.4 22.4 mg/l BTX 0.540.06 1.40 mg/l BTX 0.100.03 0.52 mg/l Chemostat 5.4 19.2 mg/l BTX 97.699.6 91.4% Y 0.27 mg VSS /mg BTX ph DO 6.14.9 mg/l 24.0 0.121 mg/l O 2 / mgvsshr 2 3.2 2(a) Y [12] Monod k=0.21 h -1 K s =12.05 mg/lrss=9.8414 1 5 % 2(b)2(f) k K s 1 1 K m 0.21 h -1 5%0.05 h -1 3(a)3(f) Y [12] k K s 3 202

2003 2003/12/19 / K m 0.21 h -1 2 Chemostat ph 6.1±0.3 DOmg/L 4.9±1.2 Temp. 24.0±2.7 MLSSmg/L 56.0±28.8 MLVSSmg/L 19.2±8.6 Hydraulic DTdays 5.4±0.2 Oxygen uptake rate mg/l O 2 / Inflow mgvsshr B Tmg/L X B Effluent Tmg/L X B Off-gas Tmg/L X 0.121±0.021 27.2±4.1 25.4±2.4 22.4±3.0 0.54±0.36 0.06±0.09 1.40±1.09 0.10±0.10 0.03±0.04 0.52±0.37 5%0.06 h-1 4(a)4(f) k K s 4 K m 0.15 h-1 5%0.05 h-1 3.3 Kargi K T 2.64 10 3 g/l, R 2 =0.86031.96 10 3 g/l, R 2 =0.8373 3.19 10 3 g/l, R 2 =0.9260 203

2003 2003/12/19 / HBOD K T 1.Grady, C.P.L., Jr., Daigger, G.T., and Lim, H.C. (1999) Biological wastewater treatment, 2nd Ed., Marcel Dekker, Inc., New York. 2.Rozich, A.F., and Gaudy, A.F., Jr. (1992) Design and Operation of Activated Sludge Processes Using Respirometry, Lewis Publishers, Inc., Chelsea, Mich. 3.Schroeder, F., Water and wastewater treatment, McGraw-Hill, New York(1977). 4.Grady, C.P.L., Jr., and Lim, H. C., Biological wastewater treatment, theory and applications, Marcel Dekker, Inc., NEW York(1980). 5.Metcalf and Eddy, Inc., Wastewater Engineering-Treatment, Disposal and Reuse, McGraw-Hill, New York(1991). 6.Logan, B. E., and Wagenseller, G. A., (1995) The HBOD test : anew method for determining biochemical oxygen demand, Water Environment Research,65(7),862-868. 7.Kinner, N. E. and Bishop, P. I., Treatment of saline domestic wastewater using RBC's J. Environ. Engineer., 108, 650-663 (1962). 8.Kargi, F. and Dincer, A., Enhancement of biological treatment performance of saline wastewater by halophilic bacteria, Bioprocess Engrg., 15, 51-58(1996). 9.Kargi, F. and Dincer, A. R., Salt inhibition effects in biological treatment of saline wastewater in RBC, Journal of Environmental Engineering, 125, 966-971(1999). 10.Dan, N. P., Visvanathan, C. and Basu Biswadeep, (2002) Comparative evaluation of yeast and bacterial treatment of high salinity wastewater based on biokinetic coefficients, Bioresource Technology, 87, 51-56. 11.Lee, C. Y. and Cheng, S. Z., Toxic effects on respiratory activities of phenol-oxidizing cultures grown from various conditions, Journal of Environmental Science and Health, B33(6), 705-721(1998). 12., BTpX (2002) 204

2003 2003/12/19 / 2 ( NaCl 050 g/l) ( ) ( ) (2) ((3)) 205

2003 2003/12/19 / 3 ( NaCl 050 g/l) ( ) ( ) (2) ((3)) Y [12] 206

2003 2003/12/19 / 4 ( NaCl 050 g/l) ( ) ( ) (2) ((3)) Y [12] 207

2003 2003/12/19 / 1 2 200 PET A Study on the Development and Promotion Strategy for Taiwan s Environmental Textiles- Using Recycled Textile as Case Study 208

2003 2003/12/19 / Ching-Wei Lo and Allen H.Hu 1 Graduate Student, Graduate Institute of Environmental Management, Nan Hua University 2 Associate Professor, Institute of Environmental Planning and Management, National Taipei University of Technology Abstract Textile industry used to be Taiwan s most important industry in the 60~70 s. It created lots of foreign exchange for Taiwan and laid the groundwork for the island s economic booming. Currently, Taiwan s industrial focus was shifted to high-tech, and the importance of textile industry was somehow overlooked. However, since it is still an important livelihood industry, it s sustainable or not still closely related to Taiwan s sustainability. In this study, newly developed environmental policies and regulations related to the textile industry were first reviewed. Several environmental issues, which have impact on the textile industry were identified and studied. Among them, environmental textile or eco-textile was selected to studied thoroughly in this study. It is because this kind of the products was made of recycled or recovered material, such as PET bottles, and this not just meets the global green trend, but also boosts the trading of textile products. It is found that the market and development of eco-textile was rather week. Hence, special efforts will be devoted to understand the status and its development of eco-textile. A case study will be studied thoroughly to identify the barriers and blockages for the development of eco-textile, whether technologically or legally. Finally, a comprehensive suggestion will be proposed for both government and industry to assist textile industry in creating another pinnacle for Taiwan s foreign trade. Key words: Textile industry, eco-textile, environmental textile, green textile, recycled textile 209

2003 2003/12/19 / 100 [1] 200 Öko-Tex Standard 100 and M.S.T [3] NAFTA 1 1997 2002 [2] ( ) 曁 [1] 1 : 1997 16,616 3,639 +12,977 +7,639 1998 14,560 3,166 +11,395 +5,900 1999 14,185 2,877 +11,308 +10,939 2000 15,196 2,892 +12,304 +8,362 2001 12,635 2,359 +10,276 +15,651 2002 12,150 2,470 +9,680 +18,066 1. 210

2003 2003/12/19 / 2. 3. 1. 2. () [7] 1. (1) ph [3] 1 ( 2002) 211

2003 2003/12/19 / 2. 3. (2)[14] (Parax ylene) DMT TPA PET (Napht ha) 2 ( 2002) 190 35 ( ) [4] Courtaulds Tencel [5] [6] 212

2003 2003/12/19 / 50 ( ) 3000 [7] 2[7] 2 56.0 20.0 15.0 8.0 99 ( 2001) Lyocell 3[7] 3 50 tons/year Lyocell 360 tons/year PCL ( 2001) 1. OEM [8] 3[8] 213

2003 2003/12/19 / 3 ( 2002) 2. [7] 3. 1990 [9] 214

2003 2003/12/19 / [10] () 1. 1990 Pollution Prevention Act [11]1992 E3 [12] PTT Lycell PLA CDP( ) 50%-60% 4[7] 4 Wellman Pure Tech Evergreen Synthetic Carigill Dow Interface F.I.T DuPont PTT DuPont ( 2001) 215

2003 2003/12/19 / 2. 1978 Lyocell 5[13] 5 Lyocell Lenzing Lenzing Lyocell Akzo Nobel New-Cell TITK ALCERU 2002 ( [11]) ( 20 ) 160 70& 30% 2005 160 3. (1) [11] (2) 30 (3) Lyocell Lyocell 2000 216

2003 2003/12/19 / 4 4 217

2003 2003/12/19 / () 1975 8000 7000 67 ( 21 46 ) 5[15] (600 ) 5 2003 ISO 9000ISO 14001 1999 5 1 2 3 1. 218

2003 2003/12/19 / 6[7] 7[16] 1kg 1 1000g/37.8g = 26.5 0.5 9.5 0.5 = 4.8 1 1 350g/37g = 9.5 0.5 9.5 0.25 = 2.4 6 2001 219

2003 2003/12/19 / PET HDPE 7 ( 1996) () 1. 2. 220

2003 2003/12/19 / 1. ( ) 2001 2. ( ) 3. 221

2003 2003/12/19 / 1. 52-65 (1997) 2. http://ttf.textiles.org.tw 3. Ulrich. Sewekwo, Bayer AG and Leverkusen, How to Meet the Requirements for Eco-Textiles, Textile Chemist and Colorist, 28(1), pp.21-27(1996). 4. Ioan I. Negulescu, Hyojung Kwon, Billie J. Collier, John R. Collier, and Ajit Pendse, Recycling Cotton From Cotton/Polyester Fabrics, Textile Chemist and Colorist, 30(6), pp.31-35(1998). 5. 18-25 2000 6. 12-27 2001 7. 2001 8. (2002) 9. 38-43 1997 10. 2003 11. 2001 222

2003 2003/12/19 / 12. Keith Bradlley, Recycling Textiles: The Fashionable Way to Make Energy Savings, Canadian Textile Journal, 111(8), pp.26-27(1995). 13. 2002 14. http://tkn.cti.org.tw/tkd/index.php 15. (2003) 16. 2-11 1996 223

2003 2003/12/19 / 1 2 2 2 2 2 1 2 SRB385 EUB338UNIV342ACD840THIO820 DNA PCR 16Sr-DNA DIG The Evaluation for a Microarray Prototype on the Diagnosis of Biocorrosion YJ Chang 1, WL Wu 2, CY Tsu 2, WT Lai 2, CY Tsai 2, and CH Chen 2 1 Assistant Professor, Department of Safty Health and Environmental Engineering, Tung Nan Institute of Technology 2 Department of Safty Health and Environmental Engineering, Tung Nan Institute of Technology Abstract Several specify probes which corresponding to the bacteria relating to corrosion were selected for building a prototype of a corrosion-diagnosis 224

2003 2003/12/19 / biochip. The probe SRB385 (for sulfate reducing bacteria), EUB338 (for domain Bacteria), ACD840 (for Acidiphilium sp.), and THIO820 (for Thiobacillus thiooxidans and Thiobacillus ferrooxidans) were selected to fix on the positive charged nylon membrane in this study. Then the DNA extracted from either aerobic or anaerobic bioreactor were amplified by PCR and labeled with DIG. After hybridization and washing process, the chemical colorization was performed by adding color substrate and the reaction for each probe was evaluated. The advantages of this system are low cost of equipment, economic stuff, and commercial potential. However, the low sensitivity and the operational experience will affect the accuracy of the results of this system. Key words: Biocorrosion, Sulfate reducing bacteria, Microarray, Southern hybridization Microbiologically Influenced Corrosion, MIC MIC sulfate reducing bacteria, SRB [1]-[3] (hydrogenase) APS (adenosin-5 -phosphosulphate) 16S rdna fluorescence in-situ hybridization, FISH (polymerase chain reaction, PCR) denature gradient gel electrophoresis, DGGE [4] 225

2003 2003/12/19 / 16S rdna 2.1 SRB 21 1ng/uL 10 SSC 10 min 1L Hybond-N+, Amersham UV-crosslink 2 min( 1) 1 5 3 GC% bp Tm EUB338 gct gcc TCC CgT Agg AgT 66.7 18 43.8 Ravenschlag et al., 2000; Bond et al., 2000 NON338 ACT CCT ACG gga ggc AgC 66.7 18 43.8 Ravenschlag et al., 2000; Bond et al., 2000 UNIV342 CTg CTg CSY CCC gta g 68.7 16 40.5 Frischer et al., 2000 SRB385 gct gcc TCC CgT Agg AgT 66.7 18 43.8 Peccia et al., 2000 THIO820 ACC AAA CAT CTA gta TTC ATC g 36.4 22 37.5 Frischer et al., 2000 ACD840 CgA CAC TgA AgT gct AAg C 52.6 19 39.8 Bond et al., 2000 ARCH91 5 gtg CTC CCC CgC CAA TTC CT 61.9 21 43.6 Bond et al., 2000 S C G 2.2 DNA DIG DNA [5] DNA Roche DIG High Prime DNA Labeling and Detection Starter Kit ICat. No. 1 745 832DNA PCR PCRprimers 27F5 gtg CTg CAg AgA gtt TgA TCC Tgg CTC Ag 3 1392R5 CAC gga TCC ACg ggc ggt gtg TRC 3 50L PCR template DNA 2L10X buffer 5L10mM dntp 2 L10mM primer 2.5LTaq 1u PCR ABI GeneAmp 2400 94 5 226

2003 2003/12/19 / 94 40 52 30 72 125 72 7 PCR EtBr1Agrose 100 bp ladder 1300-1400 bp UV box Gel-M kitbioman kit agrose DNA DNA 3g 16 L 10 min Roche DIG-High Prime 4 ul10 sec 37 C 2L 0.2 M EDTA (ph 8.0) 65 C 10 min 2.3 DIG Easy Hyb (37-42 C) 30 min DIG- DNA (25 ng/ml) 5 min DIG Easy Hyb DNA 2.4 2x SSC, 0.1% SDS 2 5 min 0.5x SSC, 0.1% SDS 65-68 C 2 15 min Washing buffer (1-5) min Blocking solution 30 minantibody solution 30 min Washing buffer 2 15 min Detection buffer 2-5 min color substrate solution 5 min buffer Roche Manual 2.5 positive control DNA DNA positive control 20 ul5 ug/ml Bam HI pbr328 DNA DNA [6] DNA Tm Tm = 49.82 + 0.41 (% G + C) - (600/l) l base pair 1 Tm 227

2003 2003/12/19 / NON338 SRB385 Tm 21 THIO820 ACD840THIO820 Thiobacillus thiooxidans Thiobacillus ferrooxidans ACD840 Acidiphilium NON338 negative control UNIV342positive control [6] UNIV342 SRB385 Tm 1 SRB385 UNIV342 EUB338 EUB338 SRB385 EUB338 DNA THIO820 ACD840 THIO820 1 ph = 6 DNA NON338 THIO820 ACD840 Thiobacillus thiooxidans Thiobacillus ferrooxidans ph < 3.0 ph 7.0 Acidiphilium ph 2.5-5.9 ph 6.1 Thiobacillus THIO820 EUB338NON338 SRB385 THIO820 2 THIO820 ACD820 NON338 DNA 2 3 THIO820 Thiobacillus clone Thiobacillus 228

2003 2003/12/19 / 1 ph = 6 DNA 2 1 3 2 229

2003 2003/12/19 / 1. 2. NSC 92-2211-E-236-003 DNA 1. Booth, G. H., Microbiological Corrosion, Mills and Boon Ltd, London. (1971). 2. Miller, J. D. A., Microbial aspects of metallurgy, Medical and Technical Publishing 3., Aylesbury. (1971). 4. Hamilton, W. A., Sulphate-reducing bacteria and anaerobic corrosion, Annu. Rev. Microbiol., 39: 289-305(1985). 5., 1999 6., 2003 7., 2003 230

2003 2003/12/19 / 1 2 1 2 The Observing Article for Implementation of Design for Environment in Automotive Manufacturer Yu-cheng ChangAmos Chang Taiwan Green Productivity Foundation Abstract To promote resource recycle and reuse is an important policy about enhancing gross national life quality and national image. The policy should account for the feasibility about resource recycle and reuse from product design, manufacture, sale, and use to disposal. The automotive industry is a key industry that possesses high industry relational grade and competent to promote industrial value-added. The article deliberates 231

2003 2003/12/19 / about European Union and Japan measures to promote resource recycle, and to probe into automotive industry promoting design for environment. It will be establish the automotive industrial benchmarking about Resource Recycle and Reuse Act. Key words: Design for Environment (DfE), resource recycle and reuse act, recycle 2003 7 12 2 232

2003 2003/12/19 / () 2002 333,699 3,043 0.91% 34.1 2001 19.7% 90.2% 2002 22.8% 23.1 69.4%2002 1 120 100 80 60 40 20 0 () 1 2002 2001 94.4 233

2003 2003/12/19 / 4~5 4~5 18~24 ()... 2002 906.35 2003 1~8 718.68 1,000 2 234

2003 2003/12/19 / 10,131,705 2,529,955 5,705,583 5,141,961 40,710,172 9,523,037 2,822,619 2,159,936 2 2015 95 ASR 2002 560 65.9 12 2 235

2003 2003/12/19 / () 800 900 2000 9 End of Life Vehicles Directive, ELV ELV 2006 1 85% 85% 80%2015 95% 85% ELV 2003 7 1 200 1991 Automobile Consortium on Recycling and Disposal, ACORD 1997 Voluntary Agreement, VA 2002 2015 85%95% ACORD 1. 2. 3. 4. 236

2003 2003/12/19 / () 2001 2001 2002 7 2004 12 CFCs ASR Reduce Reuse Recycle 3R 1. 2. (1) 14 90% 17 8 1/3 (2) 14 85% 27 237

2003 2003/12/19 / 95% (3) 3. (1) (2) (3) 4. (1) (2) (3) (4) 5. CFCs CFCs (1) (2) CFCs (3) 6. 7. (1) (2) (3) ASR 8. () 238

2003 2003/12/19 / U.S.EPA 1976 Resource Conservation and Recycle Act, RCRA 1990 Pollution Prevention Act Ford GM Daimler Chrysler 1992 Vehicle Recycling Partnership, VRP Aluminum Association, AA American Plastics Council, APC Institute of Scrap Recycling Industries, ISRI Automotive Recyclers Association, ARA Automotive Parts Rebuilders Association, APRA 2001 5 Department of Energy, DOE Office of Advanced Automotive Technologies, OAAT Argonne Argonne National Laboratory A Roadmap for Recycling End-of-Life Vehicles of the Future 3 239

2003 2003/12/19 / U.S. MOE2001 A Roadmap for Recycling End-of-Life Vehicles of the Future 3 20 () 1. 2. 50% 2002 2007 22% 22% 240

2003 2003/12/19 / 2003 2 2003/138/EC 100 ISO 1043 ISO 11469 3. ELV 4. JAMA ISO 22628 Recyclability rate 5. 75 25 ELV 2006 1 1 85% 12 2 85 34 1 241

2003 2003/12/19 / 12 2 1 ELV Directive Article 4.1(a) 2003 7 1 Article 8.1 / Article 8.3 Article 7.2 2006 1 85 2015 1 95 242

2003 2003/12/19 / 12 2 1. ELV 12 2 2. 3. 243

2003 2003/12/19 / ELV 12 2 1. Center for Sustainable Systems of University of Michigan, Management of End-of Life Vehicles in US, (2001). 2. Japan Automobile Manufacturers Association (JAMA), Laws and Regulations Concerning Automobiles, 2001 The Motor Industry of Japan, pp.25-28(2002). 3. METI, Towards Advancement of a Recycling-Oriented Economic System, (2002). 4. U.S. Department of Energy Office of Advanced Automotive Technologies, A Roadmap for Recycling End-of-Life Vehicles of the Future, (2003). 5. 2003 40-42 (2003) 6. 82-86 (2003) 7. 2001 () 24-28 (2001) 8. 2002 26-28 (2003) 9. 1-36 (2003) 10. 24-40 (2000) 244

2003 2003/12/19 / Preparation and Characteristics of Titania/Gold/Polypyrrole Nanocomposites Yu-Chuan Liu,1, Chun-En Tsai 1, Cheng-Cai Wang 2, Lain-Chuen Juang 2, Kuo-Lung Lan 1, Shih-Ho Liao 1,Chih-Lung Lin 1 and Ching-Chih Liu 1 1 Department of Chemical Engineering 2 Department of Environmental Engineering, 1 Van Nung Institute of Technology, Van Nung Road, Chung-Li City, Taiwan, R. O. C. Corresponding Author; E-mail:liuyc@cc.vit.edu.tw Abstract We report here the pathway to prepare titania/gold/polypyrrole(ppy) trilayers nanocomposites to modify the photocatalytical characteristics of rutile titania nanoparticles. First, Au-containing nanocomplexes with the mean diameter of 2 nm in 0.1 N HCl aqueous solutions were prepared by roughening Au substrates with electrochemical oxidation-reduction cycles (ORC) in 0.1 N HCl. Then these Au-containing nanocomplexes were added into 1 mm rutile titania nanoparticles solutions at ph 1 to form titania/gold core/shell structures. Finally, PPy-coated titania/gold nanocomposites with a trilayers structure can be prepared by the formation of self-assembled monolayers and further orderly autopolymerization of pyrrole monomers on the Au-containing nanocomplexes in the core/shell structures. The characteristics of the modified nanocomposites were investigated by the analyses of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and ultraviolet-visible absorption spectra. Key words: Modification; Au-containing nanocomplexes; Titania Introduction Nanoscale titania is one of the most investigated oxide materials recently owning to its important applications in environmental cleanup, photocatalysts, and solar cells. To increase its photocatalytic efficiency, many methods have been developed to prepare Au-coated TiO 2 nanocomposites. TiO 2 forms three different crystalline structures: rutile, anatase, and brookite. Rutile is the 245

2003 2003/12/19 / thermodynamically stable phase, while anatase and brookite are metastable polymorphs that irreversibly transform to rutile upon heating. The electronic structure and properties of single crystalline rutile have been studied quite extensively, but only little is known on nanocrystalline rutile, while most of the literature on nanophase TiO 2 concerns ultra fine colloids of the anatase modification. The interest in colloidal anatase stems from its high photocatalytic activity, which is considered by many to be superior to that of rutile. However, the rutile phase is much more stable than anatase and easier to produce. Bulk metallic gold typically exhibits a very low chemical and catalytic activity. Among the transition metals, gold is by far the least reactive and is often referred to as the coinage metal. The low activity of metallic Au is a consequence of combining a deep-lying valence d band and very diffuse valence s, p orbitals. Recently, gold has become the subject of a lot of attention due to its unusual catalytic properties when dispersed on some oxide supports, like TiO 2 and Al 2 O 3. The Au/TiO 2 system is particularly interesting. Gold particles supported on titania are active catalysts for the low-tempwrature oxidation of CO, the selective oxidation of propene, and photocatalytic oxidations used for environmental cleanup. In the previous studies of surface-enhanced Raman scattering (SERS) spectroscopy of polypurrole (PPy), we reported the evidence of chemical effect on SERS of PPy electrodeposited on gold roughened by electrochemical oxidation-reduction cycles (ORC) and the relationship between crystalline orientations of gold and SERS of PPy deposited on it. Encouragingly, during roughening Au substrates by the ORC treatment, stable Au-containing nanocomplexes are found existing in a 0.1 N KCl aqueous solution without any other additive. In this study, we report here the pathway to prepare titania/gold/polypyrrole(ppy) trilayers nanocomposites to modify the photocatalytical characteristics of rutile titania nanoparticles. First, Au-containing nanocomplexes with the mean diameter of 2 nm in 0.1 N HCl aqueous solutions were prepared by roughening Au substrates with electrochemical oxidation-reduction cycles in 0.1 N HCl. Then these Au-containing nanocomplexes were added into 1 mm rutile titania nanoparticles solutions at ph 1 to form titania/gold core/shell structures. Finally, PPy-coated titania/gold nanocomposites with a trilayers structure can be prepared by the formation of self-assembled monolayers and further orderly autopolymerization of pyrrole monomers on the Au-containing nanocomplexes in the core/shell structures. 246

2003 2003/12/19 / Experimental Chemical Reagents. Chemical Reagents Pyrrole (Py) was triply distilled until a colorless liquid was obtained and was then stored under nitrogen before use. HCl was used as received without further purification. The reagents (p.a. grade) were purchased from Acros Organics. Rutile TiO 2 nanoparticles were purchased from Desunnano Co., Ltd, Taiwan. All of the solutions were prepared using deionized 18 MΩ cm water. Preparation of Au-Containing Colloids All the electrochemical experiments were performed in a three-compartment cell at room temperature, 24 o C, and were controlled by a potentiostat (model PGSTAT30, Eco Chemie). A sheet of polycrystalline gold foil with bare surface area of 0.238 cm 2, a 2 2 cm 2 platinum sheet, and silver-silver chloride (Ag/AgCl) were employed as the working, counter, and reference electrodes, respectively. Before the oxidation-reduction cycles (ORC) treatment, the gold electrode was mechanically polished (model Minimet 1000, Buehler) successively with 1 and 0.05 µm of alumina slurry to a mirror finish. During the ORC treatment, the Au substrate was cycled in a deoxygenated aqueous solution containing 0.1 N HCl from -0.28 to +1.22 V vs Ag/AgCl at 500 mv/s with 100 scans. The durations at - the cathodic and anodic vertexes are 10 and 5 s, respectively. Then the AuCl 4 nanocomplexes were prepared in this aqueous solution and some drops containig this Au complexes were immediately added in an aqueous solution containing 1 mm rutile TiO 2 nanoparticles at ph 1. Subsequently, 0.2 m mol/l pyrrole monomers were added into this AuCl - 4 -coated TiO 2 aqueous solution and the mixture was stirred for 1 hr at room temperature to prepare titania/gold/ppy trilayers nanocomposites. Characteristics of prepared titania/gold/ppy trilayers nanocomposites For the X-ray photoelectron spectroscopy (XPS) measurements, a Physical Electronics PHI 1600 spectrometer with monochromatized Mg K α radiation, 15 kv and 250 W, and an energy resolution of 0.1-0.8% E/E was used. To compensate for surface charging effects, all XPS spectra are referred to the C 1s neutral carbon peak at 284.6 ev. Surface chemical compositions were determined from peak-area ratios corrected with the approximate instrument sensitivity factors. Ultraviolet-visible absorption spectroscopic measurements were carried out on a Perkin Elmer Lambda 25 spectrophotometer in 1 cm quartz curvettes. 247

2003 2003/12/19 / Results and Discussions In ORC treatment, the chloride electrolyte was selected, since as for silver, this facilitates the metal dissolution-deposition process that is known to produce SERS-active roughened surfaces. 45 Figure 1 shows the typical triangular voltammetry curve obtained at 500 mv s -1 on gold in 0.1 N HCl. The most distinguishable feature is the marked appearance of the cathodic and anodic peaks at ca. 0.2 and 0.3 V vs Ag/AgCl, respectively, when the Au substrate was roughened between -0.28 and 1.22 V vs Ag/AgCl in ORC treatment. Actually the anodic peak begins to show at the 10th scan. It grows with the scanning. Similar reports, but without this anodic peak, were also shown in the literature. Figure 2 demonstrates the absorbance maximum of rutile TiO 2 nanoparticles, used in this study, appearing approximately at 325 nm. As shown in spectrum a of - Figure 3, the absorbance maximum of AuCl 4 nanocomplexes appears approximately at 308 nm, which is markedly different from that of zero-valent Au located at ca. 520 nm. After addition of pyrrole monomers, the absorbance at 308 nm disappears and a new band of π-π transition of PPy in the region of 400 500 nm with absorbance maximum at ca. 463 nm arises instead, as shown in spectrum b of Figure 3. It indicates that the TiO 2 /Au/PPy nanocomposites with a core-shell structure have been successfully prepared. Figure 4 shows the XPS survey spectrum of the prepared titania/gold/ppy trilayers nanocomposites. The Ti, Au and N signals are markedly demonstrated. Primary result shows that the modified trilayer nanocomposites can improve the decomposition reaction of methyl blue. Detailed researches are under way. 4.00 Current/mA 0.00-4.00-0.40 0.00 0.40 0.80 1.20 1.60 E/V vs. Ag/AgCl Figure 1. I-E curve for roughening Au substrate with scan rate of 500 mv s -1 and 25 scans in 0.1 N HCl. 248

2003 2003/12/19 / Absorbance / a.u. 200 300 400 500 600 700 800 Wavelength / nm Figure 2. UV-vis spectrum of TiO 2 nanoparticles-containing 0.1 N HCl aqueous solution. Absorbance / a.u. b a 200 300 400 500 600 Wavelength / cm Figure 3. UV-vis spectra of (a) Au-containing nanocomplexes -coated TiO 2 ; (b) TiO 2 /Au/PPy nanocomposites. 249

2003 2003/12/19 / Ti XPS intensity / a.u. Au N 0 200 400 600 800 1000 Binding enegry / ev Figure 4. XPS survey spectrum of the titania/gold/ppy nanocomposites. References 1.Andersson, M.; Osterlund, L.; Ljungstrom, S.; Palmqvist, A. J. Phys. Chem. B 2002, 106, 10674(2000). (2) Tada, H.;Suzuki, F.; Ito, S.; Akita, T.; Tanaka, K.; Kawahara, T.; Kobayashi, H. J. Phys. Chem. B 2002, 106, 8714. (3) Gratzel, M. Nature 2001, 414, 338. (4) Zanella, R.; Giorgio, S.; Henry, C. R.; Louis, C. J. Phys. Chem. B 2002, 106, 7634. (5) Guo, Y. G.; Wan, L. J.; Bai, C. L. J. Phys. Chem. B 2003, 107, 5441. (6) Zamborini, F. P.; Gross, S. M.; Murray, R. W. Langmuir 2001, 17, 481. (7) Schoenfisch, M. H.; Pemberton, J. E. J. Am. Chem. Soc. 1998, 120, 4502. (8) Huang, K.; Wan, M. Chem. Mater. 2002, 14, 3486. (9) Antonietti, M.; Forster, S.; Hartmann, J.; Oestreich, S. Macromolecules 1996, 29, 3800. (10) Liu, Y. C.; Jang, L. Y. J. Phys. Chem. B 2002, 106, 6748. (11) Liu, Y. C. Langmuir 2002, 18, 174. 250

2003 2003/12/19 / - 91 () 12345 - - T - (Transportation) (Tourism) (Technology) - - () 91 251

2003 2003/12/19 / (92) () ISO14001 ph () 4~6 87 3 90 6 ISO14001 ( ) COD 50% 30% 252

2003 2003/12/19 / 1 253