Microsoft Word - SupportingInformation_revised.docx

Similar documents
Microsoft Word - Supporting Information clear

, GC/MS ph GC/MS I

Molecules 2017, 22, 236; doi: /molecules S1 of S21 Supplementary Materials: Bioactive Stilbenes from Cortex Mori Radicis, and Their Neur

Microsoft Word _File000009_ doc

OncidiumGower Ramsey ) 2 1(CK1) 2(CK2) 1(T1) 2(T2) ( ) CK1 43 (A 44.2 ) CK2 66 (A 48.5 ) T1 40 (

Supporting information Combination of N-Arylstilbazolium Organic Nonlinear Optical Chromophores with Iodoargentates: Structural Diversities and Optica

Microsoft Word - Electronic Supplementary Information.doc

Microsoft Word - 8 期中文目次.doc

Protein Labeling and Detection

21 13 D / 2 10 ig ig 10 d 1. 0 g kg /2 2 β- 5 g kg g kg mg kg - 1 ig ig 24 h 5% 1 2% CMC-Na 2. 5 ml 30

- I -

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe

DOI /j.issn Food Research And Development UPLC-MS/MS 5 0.

TGF-β AngⅡ B SD ~ 220g SPF. SCXK No SYXK ~ 25 40% ~ 70% OR37G-C

<453A5CCAB3C6B7BFC6D1A73131C4EA3134C6DA5C3134C6DA5C3032B7D6CEF6>

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3

國立中山大學學位論文典藏.PDF

大纲正文.doc

材料與方法

中 草 药 Chinese Traditional and Herbal Drugs 第 46 卷 第 9 期 2015 年 5 月 1339 非 酒 精 性 脂 肪 性 肝 病 (nonalcoholic fatty liver disease,nafld) 是 一 种 与 胰 岛 素 抵 抗 遗

标题

Microsoft PowerPoint - ryz_030708_pwo.ppt

Hyperimmune blood (Table 1) Hamster-to-rat (Table 2) anti-hamster antibody anti-idiotypic antibody Hyperimmune Hepatocyte transfection to donor antige

864 现 代 药 物 与 临 床 Drugs & Clinic 第 31 卷 第 6 期 2016 年 6 月 of apoptosis related factors, decrease the incidence of adverse reactions, which is of great

中 文 摘 要 一 个 蛋 白 质 去 折 叠 可 视 化 系 统 的 设 计 与 实 现 中 文 摘 要 蛋 白 质 的 生 物 功 能 由 其 三 维 结 构 所 决 定, 而 蛋 白 质 通 过 特 定 的 折 叠 机 制 行 成 稳 定 的 空 间 结 构 当 前 生 物 科 学 领 域 一

2004级研究生现代免疫学实验技术结业报告

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

Preface This guide is intended to standardize the use of the WeChat brand and ensure the brand's integrity and consistency. The guide applies to all d

Microsoft Word - HC20138_2010.doc

Microsoft Word - molecules supple.docx

Key words: Qi-diffciency syndrome, Cyclophosphamide, Codonopsis pilosula, Shenlinbaizhu Powder, Biochemical study CTX CTX RT-PCR CTX

标题


<4D F736F F D20B2CCA3BA4542B2A1B6BE BFB9CCE5D3EBB1C7D1CAB0A9B7D6C6DAB5C4B9D8CFB52E646F63>

Wako BioWindow104

國家圖書館典藏電子全文

THE APPLICATION OF ISOTOPE RATIO ANALYSIS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER A Dissertation Presented By Chaoyong YANG Supervisor: Prof.D

國立中山大學學位論文典藏.PDF

HC20131_2010

s 15 contact s W Si 3 N μm N / m 4 AFM 95% AFM WPOJ UPOJ WPOJ UPOJ 260 ~ 280 nm WPOJ-DS UPOJ-DS 1 cm 1 cm DEAE-ce

Microsoft Word _File000001_ docx

211 better than those in the control group, with significant difference between two groups (P < 0.05). The ocular hypertension of patients in the cont

Chapter 24 DC Battery Sizing

mm ~


中 草 药 Chinese Traditional and Herbal Drugs 第 5 卷 第 1 期 201 年 1 月 51 其 他 试 剂 均 为 分 析 纯 对 照 品 栀 子 苷 ( 批 号 ) 甘 草 苷 ( 批 号 ) 连 翘 酯 苷

untitled

HC50246_2009

<4D F736F F D20A46AA4AFACECA7DEA46ABEC7B1D0AE76ACE3A873AD70B565A6A8AA47B3F8A769A4AFACE >

2 JCAM. June,2012,Vol. 28,NO. 6 膝 关 节 创 伤 性 滑 膜 炎 是 急 性 创 伤 或 慢 性 劳 损 所 致 的 关 节 滑 膜 的 无 菌 性 炎 症, 发 病 率 达 2% ~ 3% [1], 为 骨 伤 科 临 床 的 常 见 病 多 发 病 近 年 来

ISSN CN / Q http / /cjbmb. bjmu. edu. cn Chinese Journal of Biochemistry and Molecular Biology ~ 1108 DOI

1. General Information Unless otherwise noted, all reagents, catalysts and solvents were purchased from commercial suppliers and used without further

度 身 體 活 動 量 ; 芬 蘭 幼 兒 呈 現 中 度 身 體 活 動 量 之 比 例 高 於 臺 灣 幼 兒 (5) 幼 兒 在 投 入 度 方 面 亦 達 顯 著 差 異 (χ²=185.35, p <.001), 芬 蘭 與 臺 灣 幼 兒 多 半 表 現 出 中 度 投 入 與 高 度

标题

Shanghai International Studies University THE STUDY AND PRACTICE OF SITUATIONAL LANGUAGE TEACHING OF ADVERB AT BEGINNING AND INTERMEDIATE LEVEL A Thes

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

Total Synthesis of Candicanoside A, a Potent Antitumor Saponin Bearing a Rearranged Steroidal Side Chain

Preparation and Characterization of Vinyl Polymers bearing Pregna Groups via ATRP

Microsoft Word - 荆红卫 板.doc

中 文 摘 要 芦 荟 和 金 银 花 抗 菌 成 分 提 取 及 其 对 棉 织 物 的 整 理 中 文 摘 要 随 着 生 活 水 平 的 提 高 和 健 康 环 保 意 识 的 增 强, 人 们 对 棉 织 物 卫 生 保 健 功 能 的 要 求 越 来 越 高, 故 对 棉 织 物 进 行

The Development of Color Constancy and Calibration System

1269 malondialdehyde (MDA) were significantly decreased, while oxygen partial pressure (PaO 2 ), ph value, superoxide dismutase (SOD) and glutathione

% 8. 48% 3 80 Alcalase Novozymes Alcalase 2. 4 L Bacillus licheniformis 2. 4 AU /g 1. 2 Hitachi S-4700 JEOL JEM-1200EX Olympus Bu

ment group was more effective than that of the control group OR = % CI = Conclusion The clinical efficacy of Chinese medic

< F63756D656E D2D796E2DB9A4D7F72D31C6DABFAF2D31D6D0D2BDD2A9CFD6B4FABBAF2D C4EA2DB5DA34C6DAB8BDBCD32D30302DB7E2C3E6CDC6BDE941A3A D34A3A92E6D6469>

Microsoft PowerPoint _代工實例-1

<30302DB7E2C3E6CDC6BDE9A3A D32A3A92E4D4449>

東吳大學


240 生 异 性 相 吸 的 异 性 效 应 [6] 虽 然, 心 理 学 基 础 研 [7-8] 究 已 经 证 实 存 在 异 性 相 吸 异 性 相 吸 是 否 存 在 于 名 字 认 知 识 别 尚 无 报 道 本 实 验 选 取 不 同 性 别 的 名 字 作 为 刺 激 材 料, 通

Microsoft PowerPoint - Aqua-Sim.pptx

SO 2 g/kg 2.0 ppm 2

Microsoft Word 毕业论文+-+副本

新能源汽车蓝皮书

untitled

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

600 现 代 药 物 与 临 床 Drugs & Clinic 第 31 卷 第 5 期 2016 年 5 月 were significantly decreased, but the levels of IL-12 in two groups were significantly increa

スライド 1


% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte

(baking powder) 1 ( ) ( ) 1 10g g (two level design, D-optimal) 32 1/2 fraction Two Level Fractional Factorial Design D-Optimal D

标题

2005 3,? :; ;, ;,,,,,,1 % %,,,,, 1 %,,,, : () ;, ;,,,,,,,,,,,,, (2004) ( GBΠT ) 16 (2004), (2004) 47

UDC Empirical Researches on Pricing of Corporate Bonds with Macro Factors 厦门大学博硕士论文摘要库

(Microsoft Word - 11-\261i\256m\253i.doc)

m m m ~ mm

by mild (22.7%). Inhaled corticosteroids, systemic corticosteroids, and antibiotics were applied to 94.8% (292 cases), 74.7% (230 cases), and 90.9% (2

1.0 % 0.25 % 85μm % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song

Microsoft Word _editing.doc

HCD0174_2008

出國報告.docx.docx

115 的 大 量 废 弃 物 被 丢 弃 或 直 接 燃 烧 [3] 此 外, 海 南 省 文 昌 鸡 年 产 量 约 8 0 只, 鸡 粪 年 产 量 超 过 100 万 t 这 些 富 含 养 分 的 固 体 有 机 废 弃 物 不 进 行 处 理, 不 仅 会 极 大 浪 费 大 量 养 分

Revit Revit Revit BIM BIM 7-9 3D 1 BIM BIM 6 Revit 0 4D 1 2 Revit Revit 2. 1 Revit Revit Revit Revit 2 2 Autodesk Revit Aut

謝 誌 猶 記 得 六 年 前 初 入 教 育 界 如 誤 闖 叢 林 的 小 白 兔 般, 深 感 自 己 對 教 育 的 徬 徨 與 不 足, 因 而 毅 然 決 然 踏 入 碩 士 學 問 窄 門 課 堂 上 浩 瀚 的 知 識, 引 領 著 我, 同 時 也 備 感 挫 折 ; 寫 論 文

Introduction to Hamilton-Jacobi Equations and Periodic Homogenization

H 2 SO ml ml 1. 0 ml C 4. 0 ml - 30 min 490 nm 0 ~ 100 μg /ml Zhao = VρN 100% 1 m V ml ρ g

third in 20 years. The student population will be in the range of million before Keywords education age population family planning

Microsoft Word - A doc

Transcription:

Supporting Information Selective DYRK1A inhibitor for the treatment of Type 1 Diabetes: Discovery of 6-azaindole derivative GNF2133 Yahu A. Liu*, Qihui Jin, Yefen Zou, Qiang Ding, Shanshan Yan, Zhicheng Wang, Xueshi Hao, Bao Nguyen, Xiaoyue Zhang, Jianfeng Pan, Tingting Mo, Kate Jacobsen, Thanh Lam, Tom Y.-H. Wu, H. Michael Petrassi, Badry Bursulaya, Michael DiDonato, W. Perry Gordon, Bo Liu, Janine Baaten, Robert Hill, Vân Nguyen-Tran, Minhua Qiu, You-Qing Zhang, Anwesh Kamireddy, Sheryll Espinola, Lisa Deaton, Sukwon Ha, George Harb, Yong Jia, Jing Li, Weijun Shen, Andrew M. Schumacher, Karyn Colman, Richard Glynne, Shifeng Pan, Peter McNamara, Bryan Laffitte, Shelly Meeusen, Valentina Molteni, Jon Loren* Genomics Institute of the Novartis Research Foundation (GNF), 10675 John Jay Hopkins Drive, San Diego, California 92121, United States E-mail: yliu2@gnf.org; Phone: +01 858-812-1838 E-mail: jloren@gnf.org; Phone: +01 858-332-4439 S1

Table of Contents Part I 1 H, 13 C and 2D NMR of the compounds in Experimental Section S5-S30 Figure S1. 1 H NMR of 2 in DMSO-d 6 (500 MHz) Figure S2. 1 H NMR of 3e in DMSO-d 6 (500 MHz) Figure S3. 1 H NMR of 5e in DMSO-d 6 (500 MHz) Figure S4. 1 H NMR of 5f in DMSO-d 6 (400 MHz) Figure S5. HMQC NMR of 5f in DMSO-d 6 (400 MHz) Figure S6. COSY NMR of 5f in DMSO-d 6 (400 MHz) Figure S7. NOESY NMR of 5f in DMSO-d 6 (400 MHz) Figure S8. 1 H NMR of 5g in DMSO-d 6 (500 MHz) Figure S9. 1 H NMR of 6 in DMSO-d 6 (500 MHz) Figure S10. 1 H NMR of 7 in DMSO-d 6 (400 MHz) Figure S11. 1 H NMR of 8a in DMSO-d 6 (400 MHz) Figure S12. 1 H NMR of 8b in MeOH-d 4 (400 MHz) Figure S13. 1 H NMR of 8c in DMSO-d 6 (600 MHz) Figure S14. 1 H NMR of 8d in MeOH-d 4 (400 MHz) Figure S15. 1 H NMR of 8e in DMSO-d 6 (400 MHz) Figure S16. 1 H NMR of 8f, in MeOH-d 4 (400 MHz) Figure S17. NMR analysis of 8f in DMSO-d 6 (600 MHz) Figure S18. 1 H NMR of 8f in DMSO-d 6 (600 MHz) Figure S19. HMQC of 8f in DMSO-d 6 (600 MHz) Figure S20. COSY of 8f in DMSO-d 6 (600 MHz) Figure S21. HMBC of 8f in DMSO-d 6 (600 MHz) Figure S22. ROESY of 8f in DMSO-d 6 (600 MHz) Figure S23. NMR analysis of 8f in DMSO-d 6 (600 MHz) Figure S24. 1 H NMR of 8f in DMSO-d 6 (600 MHz) Figure S25. HMQC of 8f in DMSO-d 6 (600 MHz) Figure S26. COSY of 8f in DMSO-d 6 (600 MHz) Figure S27. HMBC of 8f in DMSO-d 6 (600 MHz) Figure S28. ROESY of 8f in DMSO-d 6 (600 MHz) Figure S29. 1 H NMR of 8g in DMSO-d 6 (400 MHz) Figure S30. 1 H NMR of 9e in DMSO-d 6 (500 MHz) Figure S31. 1 H NMR of 10e in MeOH-d 4 (400 MHz) Figure S32. 1 H NMR of 10g in DMSO-d 6 (400 MHz) Figure S33. 1 H NMR of 11a in MeOH-d 4 (400 MHz) Figure S34. 1 H NMR of 12e in DMSO-d 6 (500 MHz) Figure S35. 1 H NMR of 12g in DMSO-d 6 (500 MHz) S2 S5 S5 S6 S6 S7 S8 S9 S10 S11 S11 S12 S12 S13 S13 S14 S14 S15 S15 S16 S16 S17 S17 S18 S18 S19 S19 S20 S20 S21 S21 S22 S22 S23 S23 S24

Figure S36. 1 H NMR of 13a in DMSO-d 6 (500 MHz) Figure S37. 13 C NMR of 13a in DMSO-d 6 (125 MHz) Figure S38. 1 H NMR of 13b in DMSO-d 6 (400 MHz) Figure S39. 1 H NMR of 13c in MeOH-d 4 (400 MHz) Figure S40. 1 H NMR of 13d in DMSO-d 6 (400 MHz) Figure S41. 13 C NMR of 13d in DMSO-d 6 (125 MHz)) Figure S42. 1 H NMR of 13e in DMSO-d 6 (400 MHz) Figure S43. 13 C NMR of 13e in DMSO-d 6 (125 MHz)) Figure S44. 1 H NMR of 13f in DMSO-d 6 (600 MHz) Figure S45. 13 C NMR of 13f in DMSO-d 6 (125 MHz) Figure S46. 1 H NMR of 13g in DMSO-d 6 (400 MHz) Figure S47. 13 C NMR of 13g in DMSO-d 6 (100 MHz) Figure S48. 1 H NMR of 13g (HCl salt) in DMSO-d 6 (400 MHz) S24 S25 S25 S26 S26 S27 S27 S28 S28 S29 S29 S30 S30 Part II Structure-activity relationship (SAR) of the core framework S31-S45 Table S1. Structure-activity relationship (SAR) of the core framework Table S2. Analytical data of the compounds listed in Table S1 S31 S33 Figure S49-S70. 1 H, 13 C and 2D NMR of the compounds in Table S1 S35-S45 Figure S49. 1 H NMR of 8h in DMSO-d 6 (600 MHz) Figure S50. 1 H NMR of 9g in DMSO-d 6 (400 MHz) Figure S51. 1 H NMR of 13h in MeOH-d 4 (500 MHz) Figure S52. 1 H NMR of 14 in CDCl 3 (400 MHz) Figure S53. 1 H NMR of 15 in MeOH-d 4 (400 MHz) Figure S54. 1 H NMR of 16 in MeOH-d 4 (400 MHz) Figure S55. 1 H NMR of 17 in CDCl 3 (400 MHz) Figure S56. 1 H NMR of 17 in DMSO-d 6 (600 MHz) Figure S57. 13 C NMR of 17 in DMSO-d 6 (600 MHz) Figure S58. HMQC NMR of 17 in DMSO-d 6 (600 MHz) Figure S59. COSY NMR of 17 in DMSO-d 6 (600 MHz) Figure S60. HMBC NMR of 17 in DMSO-d 6 (600 MHz) Figure S61. ROESY NMR of 17 in DMSO-d 6 (600 MHz) Figure S62. 1 H NMR of 22 in DMSO-d 6 (400 MHz) Figure S63. 1 H NMR of 23 (TFA salt) in MeOH-d 4 (400 MHz) Figure S64. 1 H NMR of 24 in CDCl 3 (400 MHz0 Figure S65. 1 H NMR of 25 in MeOH-d 4 (400 MHz) Figure S66. 1 H NMR of 26 (TFA salt) in DMSO-d 6 (400 MHz) Figure S67. 1 H NMR of 27 in DMSO-d 6 (400 MHz) S35 S35 S36 S36 S37 S37 S38 S38 S39 S39 S40 S40 S41 S41 S42 S42 S43 S43 S44 S3

Figure S68. 1 H NMR of 28 in MeOH-d 4 (400 MHz) Figure S69. 1 H NMR of 29 in MeOH-d 4 (400 MHz) Figure S70. 1 H NMR of 30 in MeOH-d 4 (400 MHz) S44 S45 S45 Part III Images and dose repsonse of rat and human cell proliferation S46-S47 Figure S71. Images of rat and human primary β-cell replication Figure S72. Dose response of rat and human β-cell proliferation S46 S47 Part IV X-ray co-crystal structure of DYRK1A and GNF2133 S48-S50 Protein expression and purification S48 Crystallization and data collection S48 Structure Determination and refinement S48 Figure S73. Resolution of X-ray co-crystal structure S49 Table S3. Crystallographic data and refinement statistics S50 Part V Two-week in vivo safety study of GNF2133 S51 Part VI Kinase inhibition profiling and Ba/F3 cellular profiling of GNF2133 S52-S56 Table S4. GNF2133 in enzymatic cell free Caliper microfluidic kinase assay S52 Table S5. GNF2133 in Ba/F3 cellular kinase Profiling S56 References S57 S4

Part I. 1 H, 13 C and 2D NMR of the compounds in Experimental Section Figure S1. 1 H NMR of 2 in DMSO-d6 (500 MHz) Figure S2. 1 H NMR of 3e in DMSO-d6 (500 MHz) S5

Figure S3. 1 H NMR of 5e in DMSO-d6 (500 MHz) Figure S4. 1 H NMR of 5f in DMSO-d6 (400 MHz) S6

Figure S5. HMQC NMR of 5f in DMSO-d6 (400 MHz) S7

Figure S6. COSY NMR of 5f in DMSO-d6 (400 MHz) S8

Figure S7. NOESY NMR of 5f in DMSO-d6 (400 MHz) (continued on next page) S9

(continued from previous page) Figure S7. NOESY NMR of 5f in DMSO-d6 (400 MHz) Figure S8. 1 H NMR of 5g in DMSO-d6 (500 MHz) S10

Figure S9. 1 H NMR of 6 in DMSO-d6 (500 MHz) Figure S10. 1 H NMR of 7 in DMSO-d6 (400 MHz) S11

Figure S11. 1 H NMR of 8a in DMSO-d6 (400 MHz) Figure S12. 1 H NMR of 8b in DMSO-d6 (400 MHz) S12

Figure S13. 1 H NMR of 8c in DMSO-d6 (600 MHz) Figure S14. 1 H NMR of 8d in MeOH-d4 (400 MHz) S13

Figure S15. 1 H NMR of 8e in DMSO-d6 (400 MHz) Figure S16. 1 H NMR of 8f in MeOH-d4 (400 MHz) S14

Figure S17. NMR analysis of 8f in DMSO-d6 (600 MHz) Figure S18. 1 H NMR of 8f in DMSO-d6 (600 MHz) S15

Figure S19. HMQC of 8f in DMSO-d6 (600 MHz) Figure S20. COSY of 8f in DMSO-d6 (600 MHz) S16

Figure S21. HMBC of 8f in DMSO-d6 (600 MHz) Figure S22. ROESY of 8f in DMSO-d6 (600 MHz) S17

Figure S23. NMR analysis of 8f in DMSO-d6 (600 MHz) Figure S24. 1 H NMR of 8f in DMSO-d6 (600 MHz) S18

Figure S25. HMQC of 8f in DMSO-d6 (600 MHz) Figure S26. COSY of 8f in DMSO-d6 (600 MHz) S19

Figure S27. HMBC of 8f in DMSO-d6 (600 MHz) Figure S28. ROESY of 8f in DMSO-d6 (600 MHz) S20

Figure S29. 1 H NMR of 8g in DMSO-d6 (400 MHz) Figure S30. 1 H NMR of 9e in DMSO-d6 (500 MHz) S21

Figure S31. 1 H NMR of 10e in DMSO-d6 (400 MHz) Figure S32. 1 H NMR of 10g in DMSO-d6 (400 MHz) S22

Figure S33. 1 H NMR of 11a in MeOH-d4 (400 MHz) Figure S34. 1 H NMR of 12e in DMSO-d6 (500 MHz) S23

Figure S35. 1 H NMR of 12g in DMSO-d6 (500 MHz) Figure S36. 1 H NMR of 13a in DMSO-d6 (500 MHz) S24

Figure S37. 13 C NMR of 13a in DMSO-d6 (125 MHz) Figure S38. 1 H NMR of 13b in DMSO-d6 (400 MHz) S25

Figure S39. 1 H NMR of 13c MeOH-d4 (400 MHz) Figure S40. 1 H NMR of 13d in DMSO-d6 (400 MHz) S26

Figure S41. 13 C NMR of 13d in DMSO-d6 (125 MHz) Figure S42. 1 H NMR of 13e in DMSO-d6 (400 MHz) S27

Figure S43. 13 C NMR of 13e in DMSO-d6 (125 MHz) Figure S44. 1 H NMR of 13f in DMSO-d6 (600 MHz) S28

Figure S45. 13 C NMR of 13f in DMSO-d6 (125 MHz) Figure S46. 1 H NMR of 13g in DMSO-d6 (400 MHz) S29

Figure S47. 13 C NMR of 13g in DMSO-d6 (100 MHz) Figure S48. 1 H NMR of 13g (HCl salt) in DMSO-d6 (400 MHz) S30

Part II. Structure-activity relationship (SAR) of the core framework Table S1. Structure-activity relationship (SAR) of the core framework compound R 1 R 2 J L M Q T X Y Z a IC 50 (µm) DYRK1A GSK3 IC 50 a (µm) 8h CH CH N CH C N CH C 0.382 9.8 14 N CH N CH C N CH C 17.03 >50 8g CH CH N CH C N CH C 0.013 >8.3 15 CH CH N CH N C N C 33.84 >50 16 CH CH N CH C N CH C >16 >50 8a CH CH N CH C N CH C 0.043 >8.3 17 CH CH N CH C N N C 0.361 27.13 18 CH C-Cl CH CH C N N C >50 >50 19 CH C-OMe CH CH C N N C 3.598 >50 20 CH C-Cl CH N C N N C >14 >50 21 CH C-OMe CH N C N N C >50 >50 (continued on next page) S31

Table S1. (continued) compound R 1 R 2 J L M Q T X Y Z a IC 50 (µm) DYRK1A GSK3 IC 50 a (µm) 9g CH CH N CH C N CH C 0.0218 >50 22 CH CH N CH C N C=O N >50 >50 23 CH C-OH N CH C N CH C 14.72 >50 24 CH C-Cl N CH C N CH C 4.85 4.17 25 CH C-OMe N CH C N CH C >50 >50 10e CH H N CH C N CH C 0.0192 >50 26 CH H N C-Me C N CH C 0.371 >50 27 CH H N C-Cl C N CH C 0.203 >50 13h CH CH N CH C N CH C 0.0246 >50 28 C-Me CH N CH C N CH C 6.35 >50 29 C-Cl CH N CH C N CH C >50 >50 30 C-CN CH N CH C N CH C >50 >50 a Obtained from three or more independent experiments. S32

Table S2. Analytical data of the compounds listed in Table S1 compound 1 H NMR LCMS m/z 8h (600 MHz, DMSO-d 6 ) δ 5.60 (s, 2H), 7.16-7.20 (2H), 7.42-7.46 (2H), 7.74 (d, J = 6.1 Hz, 2H), 7.98 (d, J = 5.4 Hz, 1H), 8.27 (d, J = 5.4 Hz, 1H), 8.50 (s, 1H), 8.57 (d, J = 6.1 Hz, 2H), 8.99 (s, 1H). 304 (MH + ) 14 (400 MHz, CDCl 3 ) δ 5.43 (s, 2H), 7.07-7.11 (2H), 7.19-7.23 (2H), 7.90 (s, 1H), 8.02-8.04 (2H), 8.63-8.65 (2H), 8.82 (s, 1 H), 9.13 (s, 1 H). 305 (MH + ) 8g See Experimental Section 15 (400 MHz, MeOH-d 4 ) δ 7.44 (m, 1H), 7.52-7.57 (2H), 7.69 (d, J = 5.2 Hz, 1H), 7.98-8.04 (4H), 8.53 (dd, J = 5.2, 1.6 Hz, 1H), 8.77 (dd, J = 4.6, 1.6 Hz, 2H), 9.53 (d, J = 1.6 Hz, 1H). 16 (400 MHz, MeOH-d 4 ) δ 7.29 (m, 1H), 7.39-7.43 (2H), 7.61-7.63 (2H), 7.68-7.70 (2H), 7.84 (d, J = 5.2 Hz, 1H), 8.06 (s, 1H), 8.23 (d, J = 5.2 Hz, 1H), 8.64 (d, J = 5.0 Hz, 2H), 9.00 (s, 1H). 273 (MH + ) 272 (MH + ) 8a See Experimental Section 17 (400 MHz, CDCl 3 ) δ 1.00 (d, J = 6.7 Hz, 6H), 2.44 (m, 1H), 4.35 (d, J = 7.3 Hz, 2H), 7.89-7.91 (2H), 7.92 (dd, J = 5.8, 1.2 Hz, 1H), 8.43 (d, J = 5.6 Hz, 1H), 8.72-9.76 (2H), 9.04 (d, J = 1.0 Hz, 1H). 253 (MH + ) 18 285 (MH + ) 19 281 (MH + ) 20 286 (MH + ) 21 282 (MH + ) 9g (400 MHz, DMSO-d 6 ) δ 1.51 (s, 9H), 7.48 (dd, J = 5.2, 1.6 Hz, 1H), 7.52 (m, 1H), 7.63-7.68 (2H), 7.77-7.81 (2H), 7.99 (dd, J = 5.6, 1.0 Hz, 1H), 7.26-7.30 (2H), 8.53 (s, 1H), 8.96 (s, 1H), 9.79 (s, 1H). 287 (M-100+H + ) 22 (400 MHz, DMSO-d 6 ) δ 1.48 (s, 9H), 7.35-7.39 (2H), 7.51 (m, 1H), 7.60-7.70 (4H), 8.14 (d, J = 1.8 Hz, 1H), 8.32 (s, 1H), 8.37 (d, J = 5.3 Hz, 1H), 8.46 (d, J = 5.3 Hz, 1H), 10.13 (s, 1H). 23 (400 MHz, MeOH-d 4 ) δ 0.98 (d, J = 6.6 Hz, 6H), 2.27 (m, 1H), 4.08 (d, J = 7.6 Hz, 2H), 7.14 (s, 1H), 8.16 (d, J = 6.8 Hz, 2H), 8.28 (s, 1H), 8.61 (d, J = 6.8 Hz, 2H), 8.66 (s, 1H). 304 (M-100+H + ) 268 (MH + ) (continued on next page) S33

Table S2. (continued) compound 1 H NMR LCMS m/z 24 (400 MHz, CDCl 3 ) δ 0.98 (d, J = 6.6 Hz, 6H), 2.26 (m, 1H), 4.08 (d, J = 7.3 Hz, 2H), 7.48-7.55 (2H), 7.60 (s, 1H), 7.85 (s, 1H), 8.58 (s, 1H), 8.58-8.77 (2H). 25 (400 MHz, MeOH-d 4 ) δ 0.99 (d, J = 6.6 Hz, 6H), 2.31 (m, 1H), 4.05 (s, 3H), 4.22 (d, J = 7.5 Hz, 2H), 7.53 (s, 1H), 8.30 (d, J = 6.9 Hz, 2H), 8.62-8.66 (4H). 286 (MH + ) 282 (MH + ) 10e See Experimental Section 26 (400 MHz, DMSO-d 6 ) δ 2.08-2.25 (4H), 3.18 (s, 3H), 3.57-.364 (2H), 4.03-4.07 (2H), 5.10 (m, 1H), 7.37 (d, J = 6.8 Hz, 1H), 7.41 (s, 1H), 7.99 (br s, 2H, NH 2 ), 8.04 (d, J = 6.8 Hz, 1H), 8.18 (d, J = 6.4 Hz, 1H), 8.42 (d, J = 6.4 Hz, 1H), 9.08 (s, 1H). 27 (400 MHz, DMSO-d 6 ) δ 2.04-2.10 (2H), 2.10-2.07 (2H), 3.53-3.59 (2H), 4.03-4.07 (2H), 5.47 (m, 1H), 7.02-7.15 (3H), 7.28 (br, 1H), 7.93-7.96 (2H), 8.12 (d, J = 5.5 Hz, 1H), 8.57 (s, 1H). 13h (500 MHz, MeOH-d 4 ) δ 1.27 (d, J = 6.6 Hz, 6H), 4.00 (m, 1H), 7.38 (dd, J = 5.7, 1.6 Hz, 1H), 7.54 (m, 1H), 7.63-7.70 (5H), 8.10 (dd, J = 5.7, 1.0 Hz, 1H), 8.24 (d, J = 5.7 Hz, 1H), 8.31 (s, 1H), 8.35 (d, J = 5.7 Hz, 1H), 8.85 (s, 1H). 28 (400 MHz, MeOH-d 4 ) δ 1.25 (d, J = 6.6 Hz, 6H), 2.42 (s, 3H), 3.99 (m, 1H), 7.08 (dd, J = 5.3, 1.0 Hz, 1H), 7.29 (s, 1H), 7.47 (m, 1H), 7.56-7.63 (4H), 7.75 (s, 1H), 8.01 (s, 1H), 8.21 (d, J = 5.3 Hz, 1H), 8.67 (s, 1H). 29 (400 MHz, MeOH-d 4 ) δ 1.25 (d, J = 6.6 Hz, 6H), 3.99 (m, 1H), 7.08 (dd, J = 5.4, 1.5 Hz, 1H), 7.32 (s, 1H), 7.53 (m, 1H), 7.60-7.67 (4H), 7.91 (s, 1H), 8.20 (d, J = 5.4 Hz, 1H), 8.23 (s, 1H), 8.74 (s, 1H). 30 (400 MHz, MeOH-d 4 ) δ 1.25 (d, J = 6.6 Hz, 6H), 3.99 (m, 1H), 7.24 (d, J = 5.4 Hz, 1H), 7.36 (s, 1H), 7.56 (m, 1H), 7.60-7.67 (4H), 5.12 (s, 1H), 8.26 (d, J = 5.4 Hz, 1H), 8.65 (s, 1H), 9.01 (s, 1H). 309 (MH + ) 329 (MH + ) 372 (MH + ) 386 (MH + ) 406 (MH + ) 397 (MH + ) S34

1 H, 13 C and 2D NMR of the compounds in Table S1 Figure S49. 1 H NMR of 8h in DMSO-d6 (600 MHz) Figure S50. 1 H NMR of 9g in DMSO-d6 (400 MHz) S35

Figure S51. 1 H NMR of 13h in MeOH-d4 (500 MHz) Figure S52. 1 H NMR of 14 in CDCl3 (400 MHz) S36

Figure S53. 1 H NMR of 15 in MeOH-d4 (400 MHz) Figure S54. 1 H NMR of 16 in MeOH-d4 (400 MHz) S37

Figure S55. 1 H NMR of 17 in CDCl3 (400 MHz) Figure S56. 1 H NMR of 17 in DMSO-d6 (600 MHz) S38

Figure S57. 13 C NMR of 17 in DMSO-d6 (150 MHz) Figure S58. HMQC NMR of 17 in DMSO-d6 (600 MHz) S39

Figure S59. COSY NMR of 17 in DMSO-d6 (600 MHz) Figure S60. HMBC NMR of 17 in DMSO-d6 (600 MHz) S40

Figure S61. ROESY NMR of 17 in DMSO-d6 (600 MHz) Figure S62. 1 H NMR of 22 in DMSO-d6 (400 MHz) S41

Figure S63. 1 H NMR of 23 (TFA salt) in MeOH-d4 (400 MHz) Figure S64. 1 H NMR of 24 in CDCl3 (400 MHz) S42

Figure S65. 1 H NMR of 25 in MeOH-d4 (400 MHz) Figure S66. 1 H NMR of 26 (TFA salt) in DMSO-d6 (400 MHz) S43

Figure S67. 1 H NMR of 27 in DMSO-d6 (400 MHz) Figure S68. 1 H NMR of 28 in MeOH-d4 (400 MHz) S44

Figure S69. 1 H NMR of 29 in MeOH-d4 (400 MHz) Figure S70. 1 H NMR of 30 in MeOH-d4 (400 MHz) S45

Figure S71. Images of rat and human primary β-cell replication. Images of dispersed rat (A) and human (B) islets treated with DMSO, 13f, 13g, or harmine, and stained with EdU (red), anti-insulin (green), or/and DAPI (blue). Images were processed in parallel and cropped. S46

Figure S72. Dose response of harmine, 5-IT, 13f and 13g-induced rat (A) and human (B) β-cell proliferation. The assay was performed in triplicate in each experiment. Error bars represent standard deviation. Asterisks indicate significance testing compared to DMSO-treated wells: * p < 0.05; ** < 0.01; *** p < 0.001; **** p < 0.0001. S47

Part IV. X-ray co-crystal structure of DYRK1A and GNF2133 Protein expression and purification The DYRK1A kinase domain (residues 118-476) was expressed in E. coli (BL21(DE3) CodonPlus-RIPL, Agilent Technologies) with a cleavable N-terminal 6xHIS tag. Briefly, 14 ml of O/N culture was seeded into 1L TB media (Teknova #T7060) supplemented with the appropriate antibiotics and incubated at 37 C until an OD600 of ~0.4. The temperature was decreased to 18 until an OD600 of ~0.6 was reached at which point expression was induced with 1 mm IPTG. The induced culture was then incubated overnight at 18 C. The next morning cells were harvested by centrifugation (4000xg, 30 min, 4 ). The bacterial pellet was resuspended in lysis buffer (50 mm Tris ph 7.4, 500 mm NaCl, 10 mm Imidazole, 1 mm TCEP, 5% glycerol) supplemented with protease inhibitors (Roche). The resuspended cells were lysed by sonication and the lysate was clarified by centrifugation (36,000xg, 45 min, 4 ). The clarified lysate was applied to Ni-affinity resin previously equilibrated with 25 mm HEPES ph 7.5, 500 mm NaCl, 5 mm TCEP, 5% glycerol. Bound protein was washed with 10 CV of 25 mm HEPES ph 7.5, 500 mm NaCl, 5 mm TCEP, 5% glycerol, 10 mm imidazole and then eluted with the same wash buffer supplemented with 300 mm imidazole. The eluted protein was desalted into 25mM HEPES ph 7.5, 500 mm NaCl, 5 mm TCEP using a PD10 desalting column (GE Life Sciences). The N-terminal 6xHis tag was removed by overnight digestion with Tev protease (His-tagged) at 4 C. Uncleaved protein and Tev protease were removed by flowing the digestion mixture over Ni-affinity resin equilibrated with 25 mm HEPES ph 7.5, 500 mm NaCl, 5 mm TCEP and the flow through collected. The cleaved protein was further purified using size exclusion chromatography using a Superdex S200 (GE Life Sciences) column. Fraction containing protein were combined and concentrated to a 15 mg/ml using a 10 kda MWCO spin concentrator (Amicon). Crystallization and data collection Crystallization experiments were carried out using the sitting-drop vapor diffusion setup with 0.4 μl drops (0.2 μl protein + 0.2 μl reservoir solution). Prior to crystallization, the inhibitor was added to the purified DYRK1A kinase domain to a final concentration of ~0.5 mm. Crystallization experiments were carried out at both 4 and 20. Crystals for the DYRK1A-Inhibitor complex appeared in 2-3 weeks from 0.1 M Bicine ph 8.5, 15% PEG 20000, 3% Dextran sulfate at 4. Crystals were cryopreserved in reservoir solution supplemented with 20% v/v ethylene glycol and flash frozen in liquid nitrogen prior to data collection. X-ray diffraction data were collected from frozen crystals on ALS beamline 5.0.3. Structure determination and refinement Diffraction data were processed using HKL2000 S1 and the structure was solved by molecular replacement using PHASER S2 as implemented in the CCP4 software package. S3 Structure refinement was carried out in PHENIX S4 alternated with manual fitting in Coot. S5 Restraints for the inhibitor were generated with GRADE as part of the autobuster software package. S6,S7 Due to the relatively low resolution of the structure group B-factor refinement (one per residue) and a single TLS group per chain were employed in the refinement protocol using PHENIX. S48

Resolution of X-ray co-crystal structure Despite the moderately low resolution of the structure (3.7 Å) the electron density in the active site and for the inhibitor is very well defined and supports the depicted binding mode. This is likely due to the low mosaicity of the crystal (0.325 ), the low Wilson b-factor (24.87 Å 2 ) and the presence of 3 copies of DYRK1A in the crystallographic asymmetric unit which allowed for the use of NCS restraints during refinement. Also, the average b-factors for the protein and across all three copies of the inhibitor are quite low (48.12 Å 2 and 44.92 Å 2 respectively) relative to the overall resolution. More specifically, the average b-factor of the inhibitor bound to chain A is 24.89 Å 2, the inhibitor bound to chain B is 41.79 Å 2 and the inhibitor bound to chain C is 68.01 Å 2. The structure and interactions depicted in Figure 5 are the inhibitor bound to chain A (the binding mode in the other chain is the same). Figure S73 depicts the 2FoFc electron density map for the inhibitor bound to chain A contoured to 1.5σ. The quality and shape of the electron density allowed for unambiguous placement of the inhibitor molecule. The observed electron density does not support a flipped binding mode. Figure S73. 2FoFc electron density map for GNF2133 bound to chain A. S49

Table S3. Crystallographic data and refinement statistics DYRK1A-GNF2133 PDB Code Wavelength 0.9765 Resolution Range (Å) 48.27 3.703 (3.835 3.703) Space Group P3112 Unit Cell (a, b, c, α, β, γ) 112.884, 112.884, 304.651, 90, 90, 120 Unique Reflections 23849 (2168) Multiplicity 8.4 (8.4) Completeness (%) 98.48 (86.14) Mean I/sigma(I) 24.9 (1.4) Wilson B-factor 24.87 Rmeas 0.122 (0.00) Rpim 0.048 (0.580) Reflections used for R-free 1155 (133) Rwork 27.24 (36.30) Rfree 29.04 (38.33) Number of non-hydrogen atoms 8203 macromolecules 8107 ligands 96 solvent 0 Protein residues 989 RMS (bonds) 0.003 RMS (angles) 0.64 Ramachandran favored (%) 91.7 Ramachandran allowed (%) 7.46 Ramachandran outliers (%) 0.84 Clashscore 8.18 Average B-factor 48.08 macromolecules 48.12 ligands 44.92 Statistics for the highest-resolution shell are shown in parentheses. S50

Part V. Two-week in vivo safety study of GNF2133 In order to evaluate potential off-target (non-islet) cellular proliferation, GNF2133 was administered to 8-week old male HanWistar rats by oral gavage for two weeks, at doses of 0 (vehicle control) and 100 mg/kg/day with 5 animals in each group. Samples of the liver, heart, kidney and pancreas were taken at necropsy, fixed in 10% neutral buffered formalin for 48 h, embedded in paraffin and then processed to slide. Immunohistochemical staining (Ki67) was performed using a Leica Bond RX autostainer using Leica BOND Polymer Refine Detection kit (Leica, Buffalo Grove, IL) except the deparaffinization and heat antigen retrieval steps. Slides were deparaffinized using xylene, 100% ethanol and 95% ethanol (2 changes of 3 minutes each), then rehydrated in deionized water. Slides were submitted to heat-induced antigen retrieval by covering them with Biocare Reveal Decloaker solution in the Biocare Medical Decloaking Chamber (Biocare Medical, Concord, CA) for 1 minute at 125. Slides were washed with deionized water then Leica Bond Wash solution at room temperature. Slides were incubated with Leica Bond 3% hydrogen peroxide in methanol for 5 minutes to quench endogenous peroxidase activity then washed 3 times with Leica Bond wash solution. Slides were then incubated with the primary antibody, a rabbit monoclonal anti-human Ki-67 (Biocare Medical, clone SP6, Concord, CA; 1/25 for 1 hour) or a non-immune isotype-matched control (isotype negative control rabbit IgG Biocare, Concord, CA). Staining visualization was obtained by incubation with Leica Bond Polymer for 8 minutes followed by Leica Bond DAB Refine for 10 minutes. Counterstaining was done using Leica Bond Hematoxylin for 10 minutes then dehydrated, cleared and cover slipped with a synthetic mounting medium. The stained slides were scanned at 40x using Leica s Aperio eslide Manager on an Aperio AT Turbo scanner and evaluated using HALO image analysis software (Indica Labs, Albuquerque, NM) to determine any differences in the percentage of cells staining positive for Ki67 in rats given GNF2133. The number of proliferating cells (Ki67 positive cells) divided by the total tissue area (the result multiplied by 100) were reported as the percent of proliferating cells per micrometer square of tissue for each animal and the fold (multiple) difference between the values from control and treated animals was determined as an index of GNF2133-induced proliferation within the organs (Figure 6). S51

Part VI. Kinase inhibition profiling and Ba/F3 cellular profiling of GNF2133 Table S4. GNF2133 in enzymatic cell free Caliper microfluidic kinase assay a target % inhibition concentration (µm) target % inhibition concentration (µm) Abl 18.45 2 MapK13 2.555 0.2 AKT1 3.085 0.2 MapK14 5.535 0.2 AKT2 3.185 0.2 MAPK3 0.565 0.2 AKT3 3.385 0.2 MAPKAPK2 2.745 0.2 ALK 9.69 0.2 MAPKAPK3 3.745 0.2 AMP-a1b1g1 8.065 2 MARK1 2.79 0.2 AMP-a2b1g1 0.075 2 MARK3 2.725 0.2 ARG 4.005 2 MARK4 0.455 0.2 ARK5 3.205 2 MEK1 9.185 2 AURA 1.63 0.2 MEK2 11.1 2 AURB 0.38 0.2 MELK 15.46 2 AURC 5.11 0.2 MER 3.1 2 Axl 5.705 2 Met 4.645 0.2 BLK 6.225 0.2 MINK 39.145 2 BMX 6.855 0.2 MKNK1 75.65 2 braf 3.255 2 MRCKα 0.705 0.2 BRK 18.185 2 MRCKβ 0.08 2 BRSK1 5 0.2 MSK1 4.685 0.2 BRSK2 2.255 0.2 MSK2 3.245 0.2 BTK 5.74 0.2 MSSK1 2.455 0.2 CAMK1A 4.09 0.2 MST1 3.61 0.2 CAMK1D 2.86 0.2 MST2 5.445 0.2 CAMK2A 3.115 0.2 MST3 2.385 2 CAMK2B 0.785 2 MST4 0 0.2 CAMK2D 0 0.2 mtor 12.385 2 CAMK2G 0 0.2 MUSK 3.255 0.2 CAMK4 0 0.2 NDR1 3.49 0.2 CDK1 11.26 2 NDR2 4.195 0.2 CDK2 30.215 2 NEK1 5.61 0.2 CDK2-cycE 37.69 2 Nek2 3.02 0.2 CDK3-cycE 29.66 2 NEK6 1.49 2 CDK4-cycD 3.065 2 NEK7 0 0.2 CDK5 21.625 2 NEK9 0.12 0.2 CDK5-p25 26.48 2 P38b 1.045 0.2 CDK6-cycD3 4.715 0.2 P38g 2.345 0.2 CDK7 20.25 2 p70s6k 6.95 2 CDK9-cycT1 61.45 2 p70s6k2 2.2 2 S52 (continued on next page)

Table S4. (continued) target % inhibition concentration (µm) target % inhibition concentration (µm) CHEK1 2.35 0.2 PAK1 1.21 0.2 CHEK2 8.145 0.2 PAK2 2.77 2 CK1a 29.34 2 PAK3 3.815 0.2 CK1-epsilon 35.165 2 PAK4 2.195 2 CK1-γ1 11.785 2 PAK5 4.03 2 CK1- γ2 2.115 2 PAK6 2.07 2 CK1- γ3 3.885 2 PAR-1Bα 3.755 2 ckit 10.12 2 PASK 0.145 0.2 CLK1 94.545 2 PDGFRα 74.48 2 CLK2 95.835 2 PDGFRβ 65.95 2 CLK3 15.36 2 PDK1 2.095 2 CLK4 102.415 2 PERK 4.91 2 craf 3.655 2 PHKγ1 13.295 2 CSK 7.115 0.2 PHKγ2 11.515 2 DAPK1 1.49 0.2 PI3Kα 15.275 2 DAPK3 3.395 2 PI4Kβ 33.565 2 DCAMKL2 3.1 2 Pim1 4.89 2 DDR1 13.73 2 Pim2 0 0.2 DDR2 1.22 2 Pim3 0.325 2 DYRK1A 97.695 2 PKA 6.615 0.2 DYRK1B 97.185 2 PKACB 0 0.2 DYRK2 95.055 2 PKCa 2.015 0.2 DYRK3 70.425 2 PKC-β1 5.45 2 DYRK4 2.205 0.2 PKC-β2 3.82 0.2 EGFR 4.695 0.2 PKC-ε 13.15 0.2 EphA1 9.43 2 PKC-η 2.32 2 EphA2 5.385 2 PKC-γ 2.66 0.2 EphA3 6.495 2 PKC-ι 0 0.2 EphA4 10.745 2 PKC-θ 1.44 0.2 EphA5 9.68 2 PKC-ϛ 13.4 0.2 EphA8 8.995 2 PKN1 0 0.2 EphB1 11.875 2 PKN2 1.785 0.2 EphB2 18.985 2 PLK1 1.33 2 EphB3 5.635 2 PLK3 0 0.2 EphB4 5.595 2 PLK4 0 0.2 ErbB2 0 0.2 PRAK 2.915 0.2 ErbB4 0.92 0.2 PRKACA 0.885 0.2 FAK 2.93 0.2 PRKD1 3.485 0.2 (continued on next page) S53

Table S4. (continued) target % inhibition concentration (µm) target % inhibition concentration (µm) FER 4.99 0.2 PRKD2 0.825 0.2 FES 2.58 2 PRKD3 4.785 0.2 FGFR1 18.795 2 PRKG1 3.33 0.2 FGFR2 29.615 2 PRKG2 23.84 2 FGFR3 4.71 0.2 PRKX 0.425 0.2 FGFR4 1.895 0.2 PTK5 2.085 0.2 FGR 3.125 0.2 PYK2 4.24 0.2 Flt1 58.84 2 Ret 5.42 0.2 Flt3 86.9 2 RIPK2 91.89 2 Flt4 90.49 2 ROCK1 5.57 2 FMS 18.555 2 ROCK2 11.7 2 Fyn 7.67 0.2 RON 1.53 2 GRK6 0 0.2 ROS 14.64 2 GRK7 5.885 0.2 RSK1 10.53 2 GSK3α 66.99 2 RSK2 16 2 GSK3β 49.64 2 RSK3 9.955 2 HASPIN 65 2 RSK4 13.15 2 HCK 3.905 2 SGK1 5.3 2 HIPK1 20.73 2 SGK2 5.83 0.2 HIPK2 13.615 2 SGK3 4.185 0.2 HIPK3 8.93 2 SLK 7.45 0.2 HIPK4 79.74 2 SNF1LK 1.44 2 IGF1R 1.22 0.2 SNF1LK2 15.56 2 IKKα 0 0.2 SPHK1 0 0.2 IKKβ 7.87 0.2 SPHK2 0 0.2 IKKe 13.28 2 SRC 4.05 0.2 InsR 4.21 2 SRMS 4.86 0.2 Irak1 13.51 2 SRPK1 1.12 0.2 Irak4 0 0.2 SRPK2 0.665 0.2 IRR 0.04 0.2 STK16 0 0.2 ITK 8.215 0.2 SYK 5.23 0.2 JAK1 2.72 2 TAK1-TAB1 17.185 2 JAK2 0 0.2 TAOK2 1.225 0.2 JAK3 5.49 0.2 TAOK3 37.54 2 Jnk1 38.14 2 TBK1 12.38 2 Jnk2 48.075 2 Tec 5.745 0.2 Jnk3 20.37 2 TIE2 1.325 0.2 (continued on next page) S54

Table S4. (continued) target % inhibition concentration (µm) target % inhibition concentration (µm) KDR 86.31 2 TNIK 64.24 2 LATS1 3.21 0.2 TNK2 3.815 2 LATS2 2.97 0.2 TrkA 10.745 0.2 Lck 6.09 0.2 TrkB 3.995 0.2 LOK 3.98 2 TrkC 6.165 0.2 LRRK2(G2019S) 76.6 2 TSSK1 11.85 2 LTK 11.74 2 TSSK2 2.8 0.2 Lyn 6.64 0.2 TTK 25.3 2 LynB 10 2 TXK 18.37 2 MAP4K2 28.865 2 TYK2 34.695 2 MAP4K4 46.92 2 TYRO3 2.78 0.2 MAP4K5 0 0.2 YES 6 0.2 MapK1 4.685 0.2 ZAP70 1.73 2 a GNF2133 was screened at 0.2 or 2.0 µm against 250 kinases. Results were reported as %inhibition, where larger values indicate stronger inhibition. S55

Table S5. GNF2133 in Ba/F3 Cellular Kinase Profiling Ba/F3 IC 50 (μm) Ba/F3 IC 50 (μm) BaF3 Parental 3.136 KDR 4.569 BCRABL >10.7 KITQ 6.027 BRAF-V600E >10.7 LCK2.1 2.093 Jak2_clone1_CTG 3.019 LYN1.2 4.735 Jak2_V617F_EpoR_CTG 9.011 MER3.2 6.14 KIF5B-RETV804M >10 MET-3.1 2.502 KRasG12V_CTG 7.872 PDGFRa-Q2 9.331 NPM-ALK 6.128 PDGFRb 7.731 Blk4.1 0.903 RETQ1 >10 BMX1.1 6.117 RETQ1 4.075 EPHB4 4.977 RON4.1 4.465 FGFR1 4.01 ROS-1.1 0.906 FGFR2 5.216 SRC3.3 3.979 FGFR3Q2 7.401 SRC3.3 4.575 FGFR4Q4 6.667 SYK-IS 3.381 FGR2.1 6.237 TIE1-Q2 1.608 FLT1Q1 6.386 TRKA-Q3 >10.7 FLT31.2 3.671 TRKB-Q2 7.304 FMS-Q.3 5.905 TRKC-Q2 6.856 IGF1R-N-FL 3.509 TYRO3-2.2 6.575 INSR_1.2 2.903 ZAP70S 3.761 JAK1S-1.2 4.795 Tpr_Met_CTG 4.075 JAK3-S1.2/sACP 1.42 BAF3/WT >8.722 JAK2 3.506 S56

References: S1. Otwinowski, Z.; Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode, Methods in Enzymology, Volume 276: Macromolecular Crystallography, Part A, p.307-326, 1997, C.W. Carter, Jr. & R. M. Sweet, Eds., Academic Press (New York). S2. McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R. J. Phaser crystallographic software. J Appl. Crystallogr. 2007, 40 (Pt 4), 658-674. S3. Winn, M. D.; Ballard, C. C.; Cowtan, K. D.; Dodson, E. J.; Emsley, P.; Evans, P. R.; Keegan, R. M.; Krissinel, E. B.; Leslie, A. G. W.; McCoy, A.; McNicholas, S. J.; Murshudov, G. N.; Pannu, N. S.; Potterton, E. A.; Powell, H. R.; Read, R. J.; Vagin A.; Wilson, K. S. Overview of the CCP4 suite and current developments. Acta Cryst. 2011, D67 (Pt4), 235-242. S4. Adams, P. D.; Afonine, P. V.; Bunkóczi, G.; Chen, V. B.; Davis, I.W.; Echols, N.; Headd, J. J.; Hung, L.-W.; Kapral, G. J.; Grosse-Kunstleve, R. W.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R.; Read, R. J.; Richardson, D. C.; Richardson, J. S.; Terwilliger, T. C.; Zwart, P. H. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst. 2010, D66, 213 221. S5. Emsley. P.; Lohkamp, B.; Scott, W. G.; Cowtan, K. Features and development of Coot. Acta Cryst. 2010, D66, 486-501. S6. Bricogne, G.; Blanc, E.; Brandl, M.; Flensburg, C.; Keller, P.; Paciorek, W.; Roversi, P.; Sharff, A.; Smart, O.S.; Vonrhein, C.; Womack, T.O. (2017) BUSTER version X.Y.Z. Cambridge, United Kingdom: Global Phasing Ltd. S7. Smart, O. S.; Womack, T. O.; Flensburg, C.; Keller, P.; Paciorek, W.; Sharff, A.; Vonrhein, C.; Bricogne, G. Exploiting structure similarity in refinement: automated NCS and targetstructure restraints in BUSTER. Acta Cryst. 2012, D68, 368-380. S57