chuIMF dvi

Similar documents
国学思想与大学数学

Microsoft Word - 2.v3n1.gjtm.docx

心理学译名:原则与方法

Microsoft Word - ED-774.docx

精 神 與 自 然 : 楊 慈 湖 心 學 研 究 趙 燦 鵬 哲 學 博 士 嶺 南 大 學 二 零 零 五 年

Chinese Journal of Applied Probability and Statistics Vol.25 No.4 Aug (,, ;,, ) (,, ) 应用概率统计 版权所有, Zhang (2002). λ q(t)

输电线路智能监测系统通信技术应用研究

Introduction to Hamilton-Jacobi Equations and Periodic Homogenization

Microsoft Word - GJPHV3N2-4.doc


Knowledge and its Place in Nature by Hilary Kornblith

一次辽宁暴雨过程的诊断及风场反演分析

左下肢多发软组织肿瘤二次术后复发伴梗阻性黄疸一例诊治

Stochastic Processes (XI) Hanjun Zhang School of Mathematics and Computational Science, Xiangtan University 508 YiFu Lou talk 06/

東吳大學

ENGG1410-F Tutorial 6

Microsoft Word - ä¸fi颟æ−¥å‚−_å“ı弋论_1104

~ 10 2 P Y i t = my i t W Y i t 1000 PY i t Y t i W Y i t t i m Y i t t i 15 ~ 49 1 Y Y Y 15 ~ j j t j t = j P i t i = 15 P n i t n Y

中国科学技术大学学位论文模板示例文档

封面及首頁.doc

~ ~ ~

护国运动时期云南都督府的“拥护共和”奖功制度

58 特 殊 教 育 與 復 健 學 報 壹 研 究 動 機 與 背 景 教 育 成 敗, 繫 於 師 資 之 良 窳 教 育 部 於 2010 年 8 月 召 開 第 八 次 全 國 教 育 會 議 中, 師 資 培 育 與 專 業 發 展 為 一 項 重 要 的 討 論 議 題, 其 中 研 修

Microsoft Word - 口試本封面.doc

Your Paper's Title Starts Here: Please Center use Helvetica (Arial) 14

穨6街舞對抗中正紀念堂_林伯勳張金鶚_.PDF

59-81

ABP

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m +

HPM 通 訊 第 八 卷 第 二 三 期 合 刊 第 二 版 數 學 歸 納 法 是 什 麼 玩 意 兒 中 原 大 學 師 資 培 育 中 心 楊 凱 琳 教 授 一 數 學 歸 納 法 不 同 於 歸 納 法 數 學 歸 納 法 在 數 學 知 識 的 領 域 中, 是 屬 於 基 本 原 理


20

TI 3 TI TABLE 4 RANDBIN Research of Modern Basic Education

Microsoft Word - TIP006SCH Uni-edit Writing Tip - Presentperfecttenseandpasttenseinyourintroduction readytopublish

~ ~ ~

医学科研方法

~ ~

<4D F736F F D20BEDBC9B3B3C9CBFEA1AAA1AAC9CCBDADBDCCD3FDCEC4BCAF20A3A8D6D0A3A92E646F63>

Microsoft Word ºÂ¾åÄõ.doc

untitled

國立中山大學學位典藏

果葡糖浆中5-HMF生成影响因素及其去除方法

經濟部智慧財產局

考試學刊第10期-內文.indd

封面.PDF

UDC Empirical Researches on Pricing of Corporate Bonds with Macro Factors 厦门大学博硕士论文摘要库

( ) : ,,, 10 %,,, :,,,,, : (1) ; (2), ; (3), ; (4), ; (5) ( ), (2003),,,,,,, , 20,, ST,,,, :? ( ) 3 ( ) 77

PowerPoint Presentation

Microsoft PowerPoint _代工實例-1

穨1-林聖欽.doc

一段“蝶蝶”上休的生命教育故事

天 主 教 輔 仁 大 學 社 會 學 系 學 士 論 文 小 別 勝 新 婚? 久 別 要 離 婚? 影 響 遠 距 家 庭 婚 姻 感 情 因 素 之 探 討 Separate marital relations are getting better or getting worse? -Exp

No. : Bloch 683 µ, Bloch B ω B µ Bloch B ω,0 B µ,0,. Bloch Bloch [6 10]. [5] D n, Bloch Bloch., C,.,. ).1 f B log U n ), f + n ) f Blog., z > 1 e e =

Microsoft Word doc

Microsoft Word - A doc

,,,,,,, (19 1 ),,,,,,,,,,,,,,,,,,,,,,,,, ;,,,,,,,,,,, (pseudo - contract), 3,,,,,,,,,,,,,,,,,,,,,,,,,,? ( ),,, 3 Cf. Carol Harlow & Rechard Rawlings,

Improved Preimage Attacks on AES-like Hash Functions: Applications to Whirlpool and Grøstl

j.si

%

UDC The Policy Risk and Prevention in Chinese Securities Market


Microsoft Word - CMRO ??????????????? Luxiaoyan

物理学报 Acta Phys. Sin. Vol. 62, No. 14 (2013) 叠 [4]. PET 设备最重要的部件就是探测器环, 探测 备重建图像具有减少数据插值的优势. 器环的性能直接影响 PET 的成像能力. 探头与探头 之间得到的符合直线叫做投影线. 所有的投影线在

Microsoft Word tb 赵宏宇s-高校教改纵横.doc

13-4-Cover-1

《红楼梦》中茗烟与李贵的对比分析

McGraw-Hill School Education Group Physics : Principles and Problems G S 24

Microsoft Word - 07.docx

國立中山大學學位論文典藏.PDF

untitled

Microsoft Word - ChineseSATII .doc

chap-1_NEW.PDF

Microsoft Word doc

834 Vol G = (V, E), u V = V (G), N(u) = {x x V (G), x u } N (u) = {u} N(u) u. 2.2 F, u V (G), G u N (u) F [10 11], G F -., G m F -, u V (G), G

第二十四屆全國學術研討會論文中文格式摘要

第一章 出口退税制改革的内容

Microsoft Word - A doc


/ J J J J See HUAN Q Z.

B.???N-???????????N?W?h

Microsoft Word - 10-朴庸鎮+徐真賢.doc

Untitled-3

03

202,., IEC1123 (1991), GB8051 (2002) [4, 5],., IEC1123,, : 1) IEC1123 N t ( ). P 0 = , P 1 = , (α, β) = (0.05, 0.05), N t = [4]. [6

LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva

标题

EP 的 准 备 考 完 高 科 到 EP 面 试 也 就 一 个 月 的 时 间, 所 以 我 建 议 大 家 立 即 准 备 起 来, 只 要 GPA 够, 材 料 都 没 有 缺 的 话, 拿 到 面 试 的 机 会 是 不 难 的, 而 且 向 今 年 我 是 号 面 试,23

2014 提升中小學補救教學成效之理論與實務研討論壇 壹 緒論 一 研究動機 數學教育是全民性的 應使每一位學生的資賦都能獲得充分的實現與發展 每一位學生都能擁有最適合自己的教育 台灣國中小學生的數學能力 在國際評 比上雖然都名列前茅 但是學習落後的學生比例卻也高於世界平均 近年來教育 行政部門也越

荨荨 % [3] [4] 86%( [6] 27 ) Excel [7] 27 [8] 2 [9] K2 [2] ; Google group+ 5 Gmail [2] 2 fxljwcy 3E [22] 2 2 fxljzrh 2D [23] 3 2 fxzphjf 3D 35

Microsoft Word 岑嘉玲-国际与公共事务学院-影响本科生签约与否的因素探究.doc


1 * 1 *

A B A 18 A a 2007b


Microsoft Word - xb 牛尚鹏.doc

Vol. 36 ( 2016 ) No. 6 J. of Math. (PRC) HS, (, ) :. HS,. HS. : ; HS ; ; Nesterov MR(2010) : 90C05; 65K05 : O221.1 : A : (2016)

cm hpa hpa 2 45 N hpa ~ 12 Fig. 1 The observed rainfall distribution of Shanxi

<4D F736F F D203338B4C12D42A448A4E5C3C0B34EC3FE2DAB65ABE1>

Microsoft Word 任 辉_new_.doc

A Study on JI Xiaolan s ( ) Life, Couplets and Theories of Couplets 紀 曉 嵐 ( ) 生 平 資 料 斠 正 及 對 聯 聯 論 研 究 LI Ha 李 夏 THE UNIVER

Transcription:

International Mathematical Forum, Vol. 8, 01, no. 1, 159-1551 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/imf.01.715 The Best Possible Lehmer Mean Bounds for a Convex Combination of Logarithmic and Harmonic Means 1 Zhijun Guo School of Mathematics and Computation Science Hunan City University Yiyang, Hunan, 41000, P. R. China Xuhui Shen College of Nursing, Huzhou Teachers College Zhejiang, Huzhou, 1000, P.R. China Yuming Chu College of Mathematics and Computation Science Hunan City University Yiyang, Hunan, 41000, P.R. China Corresponding author. e-mail: chuyuming@hutc.zj.cn Copyright c 01 Zhijun Guo, Xuhui Shen and Yuming Chu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract For r R and a, b > 0 the Lehmer mean L r (a, b), logarithmic mean L(a, b), and harmonic mean H(a, b) are defined by L r (a, b) = ar+1 +b r+1 a r +b r, L(a, b) = { b a log b log a, b a, a, b = a, 1 This research was supported by the Natural Science Foundation of China (Grant Nos. 11071069 and 1117107), the Natural Science Foundation of Zhejiang Province (Grant Nos. LY1H070004 and LY1A010004), and the Natural Science Foundation of the Department of Education of Hunan Province (Grant No. 1C0577).

1540 Zhijun Guo, Xuhui Shen and Yuming Chu and H(a, b) = ab a+b, respectively. In this paper, we answer the question: For α (0, 1), what are the largest value p and least value q such that the double inequality L q (a, b) >αh(a, b) +(1 α)l(a, b) >L p (a, b) holds for all a, b > 0 with a b? Mathematics Subject Classification: 6E60 Keywords: Lehmer mean, logarithmic mean, harmonic mean 1. Introduction For r R and a, b > 0 the Lehmer mean L r (a, b), logarithmic mean L(a, b), and harmonic mean H(a, b) are defined by L r (a, b) = ar+1 + b r+1, a r + b r (1.1) { b a L(a, b) = log b log a a, b = a, (1.) and H(a, b) = ab a + b. (1.) It is well-known that L r (a, b) is continuous and strictly increasing with respect to r R for fixed a and b with a b. In the recent past, the Lehmer mean has been attracted the attention of many mathematicians [1-14]. Many means are the special cases of the Lehmer mean, for example, A(a, b) = a + b = L 0 (a, b) is the arithmetic mean, G(a, b) = ab = L 1 (a, b) is the geometric mean, H(a, b) = ab a + b = L 1(a, b) is the harmonic mean. Recently, the logarithmic mean has been the subject of intensive research. In particular, many remarkable inequalities for the logarithmic mean can be found in literatures [15-0]. It might be surprising that the logarithmic mean has applications in physics [1], economics [], and even in meteorology []. In [1], the authors study a variant of Jensen s function involving logarithmic mean, which appears in a heat conduction problem. For p R, let { { ( M p (a, b) = ap +b p ) 1 p, p 0, 1 and I(a, b) = ( bb ) 1 e a a b a, b a, ab, p =0 a, b = a

Best possible Lehmer mean bounds 1541 be the pth power mean and identric mean of two positive real numbers a and b, respectively. Then it is well known that min{a, b} <H(a, b) =L 1 (a, b) =M 1 (a, b) <G(a, b) = L 1 (a, b) =M 0 (a, b) <L(a, b) <I(a, b) <A(a, b) = L 0 (a, b) =M 1 (a, b) < max{a, b} (1.4) for all a, b > 0 with a b. In [1], Alzer presented the following sharp upper and lower Lehmer mean bounds for identric mean I(a, b): L 1 (a, b) <I(a, b) <L 0 (a, b) 6 for all a, b > 0 with a b. Stolarsky [1] established that M n+1 (a, b) L n (a, b) for all a, b > 0 with a b. In [4, 4, 5], the authors presented bounds for L and I in terms of G and A as follows: G 1 (a, b)a (a, b) <L(a, b) < G(a, b)+1 A(a, b) and I(a, b) > 1 G(a, b)+ A(a, b) for all a, b > 0 with a b. The following inequalities can be found in [6]: G 1 1 1 1 1 (a, b)a (a, b) <L (a, b)i (a, b) < (L(a, b)+i(a, b)) < 1 (G(a, b)+a(a, b)). The following sharp bounds for L, I, (IL) 1, and 1 (I +L) in terms of power means are proved in [5-7, 6-9]: M 0 (a, b) <L(a, b) <M1(a, b), M (a, b) <I(a, b) <M log (a, b), M 0 (a, b) < I(a, b)l(a, b) <M1(a, b) and 1 (I(a, b)+l(a, b)) <M1 (a, b) for all a, b > 0 with a b, and the given parameters are best possible. Alzer and Qiu [0] proved that M c (a, b) < 1 (L(a, b)+i(a, b)) for all a, b > 0 with a b if and only if c log /(1 + log ). The purpose of this paper is to answer the question: For α (0, 1), what are the largest value p and least value q such that the double inequality L q (a, b) >

154 Zhijun Guo, Xuhui Shen and Yuming Chu αh(a, b)+(1 α)l(a, b) >L p (a, b) holds for all a, b > 0 with a b.. Lemmas In order to prove our main result, we need several lemmas which we present in this section. Lemma.1. Suppose that α (0, 1) and x (1, ). If p = α+1, then x p+ +(1 α)x p+1 +(1 α)x +1> 0. (.1) Proof. Let h(x) =x p+ +(1 α)x p+1 +(1 α)x+1, then simple computations lead to lim h(x) = 4(1 α) > 0, (.) h (x) =(p +)x p+1 +(1 α)(p +1)x p +1 α, (.) lim h (x) =(p + )(1 α) > 0, (.4) h (x) =(p +1)x p 1 h 1 (x), (.5) where h 1 (x) =(p +)x +(1 α)p. Note that lim 1(x) =α +1+ 1 (α 1) > 0, (.6) h 1(x) =p +> 0. (.7) Therefore, inequality (.1) follows from (.)-(.7). Lemma.. If α (0, 1), then 76α 6 + 1064α 5 908α 4 + 8α 5111α + 665α + 565 > 0. Proof. We clearly see that 76α 6 + 1064α 5 908α 4 + 8α 5111α + 665α + 565 = α (76α 4 908α + 81) + 1064α 5 + 8α 59α +665α + 565 > α (76α 4 908α + 81) + 8α 59α + 665α + 565α = α (76α 4 908α + 81) + α(8α 59α + 40). (.8) The discriminants Δ 1 and Δ of the quadratic functions 76t 908t + 81 and 8t 59t + 40 satisfy and Δ 1 =( 908) 4 76 81 = 800 < 0 (.9) Δ =( 59) 4 8 40 = 1048596 < 0 (.10) respectively. Therefore, Lemma. follows from (.8)-(.10).

Best possible Lehmer mean bounds 154 Lemma.. If α (0, 1), then 808α 5 + 86α 4 + 1750α + 14α 14α + 1085 > 0. Proof. We clearly see that 808α 5 + 86α 4 + 1750α + 14α 14α + 1085 > 1750α + 150α 150α + 1050 = 50(5α +7α 6α + 1). (.11) It is not difficult to verify that min (5α +7α 6α + 1) α (0,1) = 5( 4 51 9) + 7( 4 51 9) 6( 4 51 9)+1 5 5 5 = 0....>0. (.1) Therefore, Lemma. follows from (.11) and (.1). Lemma.4. If α (0, 1), then 04α 5 +74α 4 488α +89α 61α+87 > 0. Proof. We clearly see that 04α 5 + 74α 4 488α + 89α 61α + 87 > 74α 4 488α + 488α + 51α 61α + 87 > 74α 4 + 51α 4 61α + 87 = 1075α 4 61α + 87. (.1) It is easy to verify that min α (0,1) (1075α4 61α + 87) = 1075( 61 400 )4 61( 61 ) + 87 400 = 64.995...>0. (.14) Therefore, Lemma.4 follows from (.1) and (.14).. Main Result Theorem.1. If α (0, 1), then L 0 (a, b) >αh(a, b) +(1 α)l(a, b) > L α+1 (a, b) for all a, b > 0 with a b, and L 0 (a, b) and L α+1 (a, b) are the best possible upper and lower Lehmer mean bounds for the sum αh(a, b)+ (1 α)l(a, b). Proof. Without loss of generality, we assume that a>b. From (1.4) we clearly see that L 0 (a, b) >αh(a, b)+(1 α)l(a, b). Next, we prove that αh(a, b)+(1 α)l(a, b) >L α+1 (a, b). (.1)

1544 Zhijun Guo, Xuhui Shen and Yuming Chu Let x = a b > 1 and p = α+1, then (1.1)-(1.) lead to αh(a, b)+(1 α)l(a, b) L p (a, b) = b[xp+ +(1 α)x p+1 +(1 α)x +1] f(x), (1 + x)(1 + x p ) log x (.) where f(x) = (1 α)(x p+ x p +x 1) log x. Note that x p+ +(1 α)x p+1 +(1 α)x+1 f (x) = lim f(x) =0, (.) f 1 (x) x[x p+ +(1 α)x p+1 +(1 α)x +1], (.4) where f 1 (x) = x p+4 +(α + α 1)x p+ (4α α 1)x p+ +(α α + 1)x p+1 p(1 α)x p+4 +α(α 1)x p+ (4α α + αp p)x p+ +α(α 1)x p+1 p(1 α)x p +(α α +1)x (4α α 1)x +(α + α 1)x 1, lim f 1(x) =0. (.5) Let f (x) = x 4 p f (4) 1 (x), f 1 (x) = f (p+1) (x), f 4(x) = 1f (x), f 5(x) = x 4 p f 4 1 (x), f 6 (x) = f 1 (p+1)(p+) 5(x), and f 7 (x) = f (p+)(p+) 6(x), then simple computations yield that f 1 (x) = (p +)xp+ +(p + )(α + α 1)x p+ (p +1) (4α α 1)x p+1 +(p + 1)(α α +1)x p p(p + 4)(1 α)x p+ +α(p + )(α 1)x p+ (p +) (4α α + αp p)x p+1 +α(p + 1)(α 1)x p p (1 α)x p 1 + (α α +1)x (4α α 1)x +α + α 1, lim f 1(x) =0, (.6) f 1 (x) = (p + )(p +)xp+ +(p + 1)(p + )(α + α 1)x p+1 (p + 1)(p + 1)(4α α 1)x p +p(p +1) (α α +1)x p 1 p(p + )(p + 4)(1 α)x p+ +α(p + )(p + )(α 1)x p+1 (p + 1)(p +) (4α α + αp p)x p +αp(p + 1)(α 1)x p 1 p (p 1)(1 α)x p + 6(α α +1)x (4α α 1), lim f 1 (x) =0, (.7)

Best possible Lehmer mean bounds 1545 f 1 (x) = 4(p + 1)(p + )(p +)x p+1 +(p + 1)(p + 1)(p +) (α + α 1)x p 4p(p + 1)(p + 1)(4α α 1)x p 1 +p(p 1)(p + 1)(α α +1)x p p(p + )(p +) (p + 4)(1 α)x p+1 +α(p + 1)(p + )(p + )(α 1)x p p(p + 1)(p + )(4α α + αp p)x p 1 +αp(p 1) (p + 1)(α 1)x p p (p 1)(p )(1 α)x p +6(α α +1), lim f 1 (x) =0, (.8) f (x) = 4(p + 1)(p + )(p + 1)(p +)x p+4 +4p(p + 1)(p +1) (p + )(α + α 1)x p+ 4p(p + 1)(p 1)(p +1) (4α α 1)x p+ +4p(p 1)(p 1)(p +1) (α α +1)x p+1 p(p + 1)(p + )(p + )(p + 4)(1 α)x 4 +αp(p + 1)(p + )(p + )(α 1)x p(p 1)(p + 1)(p +) (4α α + αp p)x +αp(p 1)(p )(p + 1)(α 1)x p (p 1)(p )(p )(1 α), lim f (x) = (1 α) (10α +5α +1) > 0, (.9) 7 f (x) = (p + )(p + 4)(p + 1)(p +)x p+ +p(p + )(p +1) (p + )(α + α 1)x p+ p(p + )(p 1)(p +1) (4α α 1)x p+1 +p(p 1)(p 1)(p +1) (α α +1)x p p(p + )(p + )(p + 4)(1 α)x +αp(p + )(p + )(α 1)x p(p 1)(p +) (4α α + αp p)x + αp(p 1)(p )(α 1), lim f (x) = 64(1 α) (10α +5α +1) > 0, (.10) 7 f 4 (x) = (p + )(p + )(p + 4)(p + 1)(p +)x p+ + p(p + )(p +) (p + 1)(p + )(α + α 1)x p+1 p(p + 1)(p + )(p 1) (p + 1)(4α α 1)x p + p (p 1)(p 1)(p +1) (α α +1)x p 1 p(p + )(p + )(p + 4)(1 α)x +αp(p + )(p + )(α 1)x p(p 1)(p +) (4α α + αp p), lim f 4(x) = 7 (1 α)[48α4 + 148α + 786α(1 α) + 41α + 65] > 0, (.11) f 4(x) = (p +) (p + )(p + 4)(p + 1)(p +)x p+1 + p(p + 1)(p +) (p + )(p + 1)(p + )(α + α 1)x p p (p + 1)(p +) (p 1)(p + 1)(4α α 1)x p 1 + p (p 1) (p 1) (p + 1)(α α +1)x p 6p(p + )(p + )(p +4) (1 α)x +αp(p + )(p + )(α 1),

1546 Zhijun Guo, Xuhui Shen and Yuming Chu lim f 4 (x) = 4 (1 α)[α(1 α)(75α + 4040α + 14978) +748α + 105α + 1465] > 0, (.1) f 4 (x) = (p + 1)(p +) (p + )(p + 4)(p + 1)(p +)x p + p (p +1) (p + )(p + )(p + 1)(p + )(α + α 1)x p 1 p (p 1) (p + 1)(p + )(p 1)(p + 1)(4α α 1)x p + p (p 1) (p )(p 1)(p + 1)(α α +1)x p 6p(p + )(p + )(p + 4)(1 α), lim f 4 (x) = 8 4 (1 α)(76α6 + 1064α 5 908α 4 + 8α (.1) 5111α + 665α + 565), lim (x) = 6p(p + )(p + )(p + 4)(1 α) > 0 (.14) f 4 x + f 5 (x) = p(p + 1)(p +) (p + )(p + 4)(p + 1)(p +)x + p (p 1) (p + 1)(p + )(p + )(p + 1)(p + )(α + α 1)x p (p 1)(p )(p + 1)(p + )(p 1)(p + 1)(4α α 1)x +p (p 1) (p )(p )(p 1)(p + 1)(α α +1), lim f 5(x) = 8 187 (1 α)(1 4α)(α + 1)[808α5 + 86α 4 +1750α + 14α 14α + 1781α + 1085] (.15) f 6 (x) = p(p + )(p + )(p + 4)(p + 1)(p +)x +p (p 1) (p + )(p + 1)(p + )(α + α 1)x p (p 1) (p )(p 1)(p + 1)(4α α 1), lim f 6(x) = 4 79 (1 4α)(α + 1)(04α5 + 74α 4 488α (.16) +89α 61α + 87) f 7 (x) = p(p + )(p + 4)(p +1)x + p (p 1)(p + 1)(α + α 1) lim f 7(x) = 1 81 (1 4α)(α + 1)(169 8α4 4α α 90α), (.17) f 7 (x) = (1 4α)p(p + )(p +4). (.18) We divide the proof of inequality (.1) into two cases. Case 1. Ifα (0, 1 ], then from Lemmas.-.4 and (.1) together with 4 (.15)-(.18) we clearly see that lim f 4 (x) > 0, (.19) lim f 5(x) > 0, (.0)

Best possible Lehmer mean bounds 1547 lim 6(x) > 0, (.1) lim 7(x) > 0, (.) f 7 (x) > 0. (.) It easily follows from (.)-(.1) and (.19)-(.) that f(x) > 0 (.4) for x>1. Therefore inequality (.1) follows from (.) and (.4) together with Lemma.1. Case. Ifα ( 1, 1), then from Lemmas.-.4 and (.1) together with 4 (.15)-(.18) we clearly see that (.19) again holds and lim f 5(x) < 0, (.5) lim 6(x) < 0, (.6) lim 7(x) < 0, (.7) f 7 (x) < 0. (.8) Inequalities (.5)-(.8) imply that f 4 (x) is strictly decreasing in (1, ). Then from (.14) and (.19) together with the monotonicity of f 4 (x) we know that f 4 (x) > 0 (.9) for x (1, ). Therefore, inequality (.1) follows from (.)-(.1) and (.9) together with Lemma.1. Finally, we prove that L 0 (a, b) and L α+1 (a, b) are the best possible upper and lower Lehmer mean bounds for the sum αh(a, b) +(1 α)l(a, b), respectively. For any ε>0 and x>0, we have and = L α+1 +ε ((1 + x), 1) [αh((1 + x), 1) + (1 α)l((1 + x), 1)] J(x) [1 + (1 + x) ε 1 α ][1 + (1 + x) ] log (1 + x) lim x + [αh(x, 1) + (1 α)l(x, 1) L ε(x, 1)] = lim [ αx x + 1+x = +, + (1 α)(x 1) log x x1 ε +1 x ε +1 ] (.0) (.1)

1548 Zhijun Guo, Xuhui Shen and Yuming Chu where J(x) = [1 + (1 + x) +ε α ][1 + (1 + x) ] log(1 + x) 6α(1 + x) [1 + (1 + x) ε 1 α ] log (1 + x) (1 α)[(1 + x) 6 1][1 + (1 + x) ε 1 α ]. Let x 0, making use of the Taylor expansion, one has J(x) = x[ + ( + ε α)x + 1 ( + ε α)(1 + ε α)x +o(x )][ + x +x + o(x )][1 1 x + 1 x + o(x )] 6αx[1 + x +x + o(x )][ + (ε 1 α)x + 1 (ε α 1)(ε α )x + o(x )][1 1 x + 1 x +o(x )] (1 α)x[6 + 15x +0x + o(x )][ + (ε 1 α)x + 1 (ε α 1)(ε α )x + o(x )] = 7εx + o(x ). (.) Equations (.0)-(.) imply that for any ε>0 there exist δ = δ(ε) > 0 and X = X(ε) > 1 such that αh((1 + x), 1) + (1 α)l((1 + x), 1) < L α+1 +ε ((1 + x), 1) for x (0,δ) and L ε (x, 1) <αh(x, 1) + (1 α)l(x, 1) for x (X, ). References [1] M. K. Wang, Y. M. Chu and G. D. Wang, A sharp double inequality between the Lehmer and arithmetic-geometric means, Pac. J. Appl. Math., 4(01), no. 1, 1-5. [] Y. M. Chu, M. K. Wang and Y. F. Qiu, Optimal Lehmer mean bounds for the geometric and arithmetic combinations of arithmetic and Seiffert means, Azerb. J. Math., (01), no. 1, -9. [] Y. M. Chu and M. K. Wang, Optimal Lehmer mean bounds for the Toader mean, Results Math., 61(01), no. -4, -9. [4] M. K. Wang, Y. M. Chu and G. D. Wang, A sharp double inequality between the Lehmer and arithmetic-geometric means, Pac. J. Appl. Math., (011), no. 4, 81-86. [5] Y. F. Qiu, M. K. Wang, Y. M. Chu and G. D. Wang, Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean, J. Math. Inequal., 5(011), no., 01-06. [6] M. K. Wang, Y. F. Qiu and Y. M. Chu, Sharp bounds for Seiffert means in terms of Lehmer means, J. Math. Inequal., 4(010), no. 4, 581-586.

Best possible Lehmer mean bounds 1549 [7] W. F. Xia and Y. M. Chu, The Schur harmonic convexity of Lehmer means, Int. Math. Forum, 4(009), no. 41-44, 009-015. [8] S. Toader and G. Toader, Complementaries of Greek means with respect to Lehmer means, Automat. Comput. Appl. Math., 15(006), no., 15-0. [9] I. Costin and G. Toader, Generalized inverses of Lehmer means, Automat. Comput. Appl. Math., 14(005), no. 1, 111-117. [10] S. R. Wassell, Rediscovering a family of means, Math. Intelligencer, 4(00), no., 58-65. [11] Zh. Liu, Remark on inequalities between Hölder and Lehmer means, J. Math. Anal. Appl., 47(000), no. 1, 09-1. [1] K. B. Stolarsky, Hölder means, Lehmer means, and x 1 log cosh x, J. Math. Anal. Appl., 0(1996), no., 810-818. [1] H. Alzer, Bestmögliche Abschätzungen für spezielle Mittelwerte, Zb. Rad. Prirod. -Mat. Fak. Ser. Mat., (199), no. 1, 1-46. [14] H. Alzer, Über Lehmers Mittelwertfamilie, Elem. Math., 4(1988), no., 50-54. [15] H. N. Hu, S. S. Wang and Y. M. Chu, Optimal upper power mean bound for the convex combination of Harmonic and logarithmic means, Pac. J. Appl. Math., 4(01), no. 1, 5-44. [16] Y. M. Li, B. Y. Long and Y. M. Chu, Sharp bounds for the Neuman- Sándor mean in terms of generalized logarithmic mean, J. Math. Inequal., 6(01), no. 4, 567-577. [17] Y. M. Chu, M. K. Wang and Z. K. Wang, Best possible inequalities among harmonic, geometric, logarithmic and Seiffert means, Math. Inequal. Appl., 15(01), no., 41-4. [18] Y. M. Chu, S. W. Shou and W. M. Gong, Inequalities between logarithmic, harmonic, arithmetic and centroidal means, J. Math. Appl., (011), no., 1-5. [19] Y. M. Chu and M. K. Wang, Optimal inequalities between harmonic, geometric, logarithmic, and arithmetic-geometric means, J. Appl. Math., 011(011), Article ID 61899, 9 pages.

1550 Zhijun Guo, Xuhui Shen and Yuming Chu [0] Y. M. Chu, S. S. Wang and C. Zong, Optimal lower power mean bound for convex combination of harmonic and logarithmic means, Abstr. Appl. Anal., 011(011), Article ID 50648, 9 pages. [1] W. F. Xia and Y. M. Chu, Optimal inequalities related to the logarithmic, identric, arithmetic and harmonic means, Rev. Anal. Numér. Théor. Approx.,, 9(010), no., 176-18. [] W. F. Xia, Y. M. Chu and G. D. Wang, The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means, Abstr. Appl. Anal., 010(010), Article ID 604804, 9 pages. [] Y. M. Chu and W. F. Xia, Two optimal double inequalities between power mean and logarithmic mean, Comput. Math. Appl., 60(011), no. 1, 8-89. [4] B. C. Carlson, The logarithmic mean, Amer. Math. Monthly, 79(197), 615-618. [5] T. P. Lin, The power mean and the logarithmic mean, Amer. Math. Monthly, 81(1974), 879-88. [6] H. Alzer, Ungleichungen für Mittelwerte, Arch. Math., 47(1986), no. 5, 4-46. [7] F. Burk, Notes: The geometric, logarithmic, and arithmetic mean Inequality, Amer. Math. Monthly, 94(1987), no. 6, 57-58. [8] J. Sándor, On the identric and logarithmic means, Aequations Math., 40(1990), no. -, 61-70. [9] G. Allasia, C. Giordano and J. Pe carić, On the arithmetic and logarithmic means with applications to stirling s formula, Atti Sem. Mat. Fis. Univ. Modena, 47(1999), no., 441-455. [0] H. Alzer and S. L. Qiu, Inequalities for means in two variables, Arch. Math., 80(00), no., 01-15. [1] P. Kahlig and J. Matkowski, Functional equations involving the logarithmic mean, Z. Angew. Math. Mech., 76(1996), no. 7, 85-90. [] A. O. Pittenger, The logarithmic mean in n variables, Amer. Math. Monthly, 9(1985), no., 99-104. [] G. Polya and G. Szegö, Isoperimetric Inequalities in Mathematical physics, Princeton University Press, Princeton, 1951.

Best possible Lehmer mean bounds 1551 [4] E. B. Leach and M. C. Sholander, Extended mean values II, J. Math. Anal. Appl., 9(198), no. 1, 07-. [5] J. Sándor, A note on some inequalities for means, Arch. Math., 56(1991), no. 5, 471-47. [6] H. Alzer, Ungleichungen für (e/a) a (b/e) b, Elem. Math., 40(1985), 10-1. [7] A. O. Pittenger, Inequalities between arithmetic and logarithmic means, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., (1980), no. 678-715, 15-18. [8] A. O. Pittenger, The symmetric, logarithmic and power means, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., (1980), no. 678-715, 19-. [9] K. B. Stolarsky, The power and generalized logarithmic means, Amer. Math. Monthly, 87(1980), no. 7, 545-548. Received: July 5, 01