Similar documents

近代物理

投影片 1

Introduction to Hamilton-Jacobi Equations and Periodic Homogenization

ENGG1410-F Tutorial 6

untitled

Microsoft PowerPoint _代工實例-1

Untitled-3

3 (s05q6) The diagram shows the velocity-time graph for a lift moving between floors in a building. The graph consists of straight line segments. In t

PowerPoint Presentation

國立中山大學學位論文典藏.PDF

Stochastic Processes (XI) Hanjun Zhang School of Mathematics and Computational Science, Xiangtan University 508 YiFu Lou talk 06/

Lecture #4: Several notes 1. Recommend this book, see Chap and 3 for the basics about Matlab. [1] S. C. Chapra, Applied Numerical Methods with MATLAB

untitled

天 主 教 輔 仁 大 學 社 會 學 系 學 士 論 文 小 別 勝 新 婚? 久 別 要 離 婚? 影 響 遠 距 家 庭 婚 姻 感 情 因 素 之 探 討 Separate marital relations are getting better or getting worse? -Exp

從篤加有二「區」談當代平埔文化復振現相

<4D F736F F D C4EAC0EDB9A4C0E04142BCB6D4C4B6C1C5D0B6CFC0FDCCE2BEABD1A15F325F2E646F63>

BC04 Module_antenna__ doc

Microsoft PowerPoint - ryz_030708_pwo.ppt

<4D F736F F D2035B171AB73B6CBA8ECAB73A6D3A4A3B6CBA158B3AFA46CA9F9BB50B169A445C4D6AABAB750B94AB8D6B9EFA4F1ACE3A873>

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2

<4D F736F F D203338B4C12D42A448A4E5C3C0B34EC3FE2DAB65ABE1>

(1) ( 1965 ),, 1952 [9] 2.1 (2) 1 53 (E i ), 2 (P i ) (G E (G P, 31 (Q i ) 3, : G E (x,y)= (E i Q(x i, y i )) E i G P (x,y)=

LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva

林教授2.PDF

Microsoft Word - TIP006SCH Uni-edit Writing Tip - Presentperfecttenseandpasttenseinyourintroduction readytopublish

北海道地方の地殻変動

近代物理

國立桃園高中96學年度新生始業輔導新生手冊目錄

南華大學數位論文

Microsoft PowerPoint - Ch5 The Bipolar Junction Transistor

Microsoft PowerPoint - ch2-stallings.ppt

VASP应用运行优化

瞿佑詞校勘輯佚及板本探究

Microsoft Word - 11月電子報1130.doc

錫安教會2015年11月29日分享

Microsoft PowerPoint - Performance Analysis of Video Streaming over LTE using.pptx

Outline Speech Signals Processing Dual-Tone Multifrequency Signal Detection 云南大学滇池学院课程 : 数字信号处理 Applications of Digital Signal Processing 2


Edge-Triggered Rising Edge-Triggered ( Falling Edge-Triggered ( Unit 11 Latches and Flip-Flops 3 Timing for D Flip-Flop (Falling-Edge Trigger) Unit 11

~ ~

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

2014_4_StarTemperature.ppt

untitled

Microsoft PowerPoint - CH 04 Techniques of Circuit Analysis

高雄市左營國民小學八十九學年度第一學期一年級總體課程教學進度表

元代題畫女性詩歌研究

Microsoft Word - 第四組心得.doc

Microsoft Word - 論文封面 修.doc

Microsoft PowerPoint - NCBA_Cattlemens_College_Darrh_B

03施琅「棄留臺灣議」探索.doc

HPM 通 訊 第 八 卷 第 二 三 期 合 刊 第 二 版 數 學 歸 納 法 是 什 麼 玩 意 兒 中 原 大 學 師 資 培 育 中 心 楊 凱 琳 教 授 一 數 學 歸 納 法 不 同 於 歸 納 法 數 學 歸 納 法 在 數 學 知 識 的 領 域 中, 是 屬 於 基 本 原 理

Microsoft PowerPoint - IAS 21 - IFRS宣導會.pptx

國家圖書館典藏電子全文

穨control.PDF

论成都报业群体的生存环境与体制创新

高中英文科教師甄試心得

從詩歌的鑒賞談生命價值的建構

國立中山大學學位論文典藏.PDF

國立中山大學學位論文典藏

Microsoft Word - KSAE06-S0262.doc

致 谢 本 人 自 2008 年 6 月 从 上 海 外 国 语 大 学 毕 业 之 后, 于 2010 年 3 月 再 次 进 入 上 外, 非 常 有 幸 成 为 汉 语 国 际 教 育 专 业 的 研 究 生 回 顾 三 年 以 来 的 学 习 和 生 活, 顿 时 感 觉 这 段 时 间 也



南華大學數位論文

Microsoft Word - 十月號.doc

國立中山大學學位論文典藏.PDF

18 A B S 17.44±1() ±6.26( ) 54.23±5.5( ) 6.42±1.51() m 30m t α =.05 ( )AB 1 5 (p>.05)( )AB 1 5 (p<.05)( )A (p>.05)( )B (p<.05)( )A B

绿化养殖

34 22 f t = f 0 w t + f r t f w θ t = F cos p - ω 0 t - φ 1 2 f r θ t = F cos p - ω 0 t - φ 2 3 p ω 0 F F φ 1 φ 2 t A B s Fig. 1

東吳大學

4. 每 组 学 生 将 写 有 习 语 和 含 义 的 两 组 卡 片 分 别 洗 牌, 将 顺 序 打 乱, 然 后 将 两 组 卡 片 反 面 朝 上 置 于 课 桌 上 5. 学 生 依 次 从 两 组 卡 片 中 各 抽 取 一 张, 展 示 给 小 组 成 员, 并 大 声 朗 读 卡

Microsoft Word - 口試本封面.doc

BISQ理论模型与声波测井响应研究

The Development of Color Constancy and Calibration System

The Graduate Institute of Taiwan Food Culture National Kaohsiung Hospitality College Thesis for the Master Degree A Study of Postpartum Recuperation t

1505.indd

星河33期.FIT)

東莞工商總會劉百樂中學

untitled

202 The Sending Back of The Japanese People in Taiwan in The Beginning Years After the World War II Abstract Su-ying Ou* In August 1945, Japan lost th

中 國 學 研 究 期 刊 泰 國 農 業 大 學 บ นทอนเช นก น และส งผลก บการด ดแปลงจากวรรณกรรมมาเป นบทภาพยนตร และบทละคร โทรท ศน ด วยเช นก น จากการเคารพวรรณกรรมต นฉบ บเป นหล

IEC A( ) B C D II

[ 13 年 12 月 06 日, 下 午 6 点 24 分 ] Intel Hosts 新 加 入 的 同 学 们, 快 去 听 听 在 线 宣 讲 会 哦, 同 时 完 成 页 面 下 方 有 奖 调 查, 就 有 资 格 参 与 大 奖 抽 取 啦! [ 13 年 12 月 06 日, 下 午

热设计网

Microsoft PowerPoint - 01遊戲中的科學( ).ppt

Time Estimation of Occurrence of Diabetes-Related Cardiovascular Complications by Ching-Yuan Hu A thesis submitted in partial fulfillment of the requi

Monetary Policy Regime Shifts under the Zero Lower Bound: An Application of a Stochastic Rational Expectations Equilibrium to a Markov Switching DSGE

[29] a N d N b 2 d sin θ N b ФФ a b Ф Ф θ θ a b Fig.1 Working principle demonstration of a phased-array antenna θ

Microsoft Word - ChineseSATII .doc

Untitiled

Lorem ipsum dolor sit amet, consectetuer adipiscing elit

hks298cover&back

Microsoft Word - Final Exam Review Packet.docx

1 VLBI VLBI 2 32 MHz 2 Gbps X J VLBI [3] CDAS IVS [4,5] CDAS MHz, 16 MHz, 8 MHz, 4 MHz, 2 MHz [6] CDAS VLBI CDAS 2 CDAS CDAS 5 2

新竹市建華國民中學九十四學年度課程計畫

Microsoft Word - 物理專文_fengli_revise_2

2015年4月11日雅思阅读预测机经(新东方版)

2

Transcription:

8.04 Quantum Physics Lecture XIV Figure I: A wavepacket ψ(x) in position space or φ(k) in momentum space whose wavefunction for large x (or k) falls off faster than x 1/2 (k 1/2 ) can be directly normalized. 2. Periodic boundary conditions Assume box of finite length L, require periodic boundary conditions ψ(0) = ψ(l) (14-7) For plane waves e ipx/h this implies that e ipl/h = 1 or pl = kl = n2π, n integer, h 2π i.e. momentum is quantized, p n = n hk o with k 0 =. The corresponding L momentum states are normalizable in the interval [0, L], L dx Ce ipx/ h 2 = L C 2 = 1 (14-8) 0 1 u pn (x) = L e ipnx/ h (14-9) normalized momentum eigenstates in box of size L with p n = n hk o L dxu pn (x)u pm (x) = δ nm orthonormality condition in box (14-10) 0 We perform all calculations for fixed size box, then take the limit L (i.e. 0, momentum spectrum becomes continuous). All physically sensible k 0 Massachusetts Institute of Technology XIV-2

8.04 Quantum Physics Lecture XIV Figure II: Wavefunction in box of length L with periodic boundary conditions. results will be independent of the initially chosen box size L as long as L is large compared to distances of interest. Time evolution of free-particle wavepackets In free space we often work with normalized Gaussian wavepackets 1 x 2 4w 2 Ψ(x, t = 0) = 0 (2π) 1/4 w 1/2 e (14-11) 0 Written in this form we have 2 x Ψ(x, 0) 2 1 = (2π) 1 /2 w 0 e 2w 2 0 dx Ψ(x, 0) 2 = 1 x = 0 2 2 x = w 0 (δx) 2 = x 2 x 2 = w 0 2 Δx = w 0 is the uncertainty or rms width (root-mean-square width) of the wavepacket. Why do we prefer this Gaussian form of wavepacket? 1. Particularly simple and symmetric, the Fourier transform is also a Gaussian wavepacket: 1 4k 2 φ(k) = k 2 0 1/2 e (14-12) (2π) 1/4 k 0 with k 0 = 2w 1 0. (Δk)2 = k 2 k = k 0 2 2. This is a wavepacket with the minimum uncertainty ΔxΔk = 2 1 (ΔxΔp = h 2 ) allowed by QM 3. Physical system after give rise to Gaussian broadening in momentum or position, e.g., thermal distribution of atomic momenta in a gas is a Gaussian distribution. Massachusetts Institute of Technology XIV-3

8.04 Quantum Physics Lecture XIV How do we make a wavepacket move at velocity v 1? We displace the distribution in momentum space from p = hk = 0 to p = hk = hk 1 = mv 1 (see Fig. III). φ(k) = 1 (2π) 1/4 k 0 (k k 1 ) 2 4k 2 0 1/2 e. (14-13) The inverse Fourier transform, i.e., the spatial wavefunction 1 Ψ(x, t = 0) = (2π) 1/ x 2 4wo 4 w 1/2 e 2 e ik 1x 0 (14-14) is still a Gaussian, but now with a phase variation e ik 1x, rather than a constant phase over the wavepacket (compare Eq. (14-11). This phase variation e ik 1x in position Figure III: Moving Gaussian wavepacket with average velocity v 1 = hk 1 /m and spatial 1 wavefunction ψ 1 (x) = (2π) 1/ 2 e x 4w2 eik 1 x 0. 4 w 1/2 0 hk 1 space encodes the motion of the wavepacket at velocity v 1 = m : The dominant de Broglie wavelength in the wavepacket corresponds to a wavevector k 1, or a momentum hk 1. Massachusetts Institute of Technology XIV-4

8.04 Quantum Physics Lecture XIV How does a free-space Gaussian wave packet evolve in time? In general, we expand a wavefunction Ψ(x, 0) into energy eigenfunctions u E (x), and then evolve the energy eigenfunctions as e iet/ h. In free space, there is only KE. Then the momentum eigenstates u p (x) are simultaneous eigenstates of energy: or ˆ pˆ2 Hu p (x) = u p (x) (14-15) 2m ( )2 1 1 = hi e ipx/ h (14-16) 2m x 2πh p 2 = u p (x) (14-17) 2m 2 Hu ˆ (x) = p p u p (x) 2m (14-18) = E p u p (x) (14-19) in free space. The energy eigenstates are said to be doubly degenerate: For each eigenvalue of energy E > 0 there are two different momentum states (namely u ±p (x) with p = 2mh ) that have the same energy. It follows that a momentum eigenstate with eigenvalue p evolves in time as e iept/ h, so that the wavefunction in momentum space evolves in time as 2 Φ(p, t) = Φ(p, 0)e i p t/ h 2m (14-20) time evolution of momentum eigenfunctions in free space. The wavefunction in real space is given by the inverse Fourier transform Ψ(x, t), or equivalently, as the superposition of energy eigenfunctions with their corresponding phase evolution factors e iept/ h : 1 ipx/h Ψ(x, t) = dpφ(p, t)e (14-21) 2πh ( = dpφ(p, t)u p (x)) (14-22) 1 p = dpφ(p, 0)e ipx/ h e 2 2m t/h (14-23) 2πh = dpφ(p, 0)U p (x, t) (14-24) = dpφ(p, t)u p (x) (14-25) Massachusetts Institute of Technology XIV-5

8.04 Quantum Physics Lecture XIV 2 eipx/ h 2 e i p π h where U p (x, t) = u p (x)e p t/ h 2m = 1 t/ h 2m 2 are the time-dependent momentum eigenfunctions in free space. The above equation shows that the phases of different Fourier components u p (x) = 1 eipx/ h 2 evolve in time at different speeds, the π h running out of phase of different Fourier components leads to a spreading of the wavepacket in position space. In the problem sets you will show that the rms width Δx(t) = w(t) of the wavepacket grows in time as h 2 k w(t) = w 2 0 1 + (14-26) m 2 w 2 0 Since a wavepacket contains different momentum components, it changes in time in free space even though there are non external forces acting. For long times t t 0 = mwo 2 h h the wavepacket spreads as w(t) t, i.e. at a speed v 0 = that h mw 0 mw 0 is inversely proportional to its initial size. That speed is negligible for macroscopic wavepacket size, but can be appreciable for initially well-localized microscopic objects. The spreading of a wavepacket in free space was early evidence that the wavepacket size cannot be identified with the particle size. The spreading is due to the quadratic (i.e. not linear) dependence of the energy, and hence the phase evolution rate, on momentum. Note that the wavepacket of a massless particle, e.g. a photon, with E = pc would not spread. (The SE is non-relativistic and does not apply to photons.) Motion of wave packets, group velocity, and stationary phase Why is it that a wavefunction 1 Ψ(x, 0) = (2π) 1/ x 2 4 w 1/2 e 4w0 2 e ik 1x 0 (14-27) hk 1 represents a particle moving at velocity v 1 = m? Since a crest of a single momentum 1 hk 2 2π 2m component u k1 (x, t) = 2π e k1x e i t moves forward a distance λ = k1 in a time hk T = 2 π (remember that ω 1 ω1 1 = 2 and e ie 1t/ h = e iω1t ), the velocity of the crest is 2m λ 2π ω ω 1 hk v 1 ph = T = = k1 2π k 1 = 2m ω 1 hk 1 p 1 v ph = = = (14-28) k 1 2m 2m This is the phase velocity of a momentum component. The particle does not move at the phase velocity v ph = ω 1 k 1 at which the plane wave associated with a single momentum moves forward. At what velocity then? Massachusetts Institute of Technology XIV-6

8.04 Quantum Physics Lecture XIV Look at exponent and write: hk E 1 1 = E 1 (k 1 ) = hω 1 = hω(k 1 ) = 2m e ( ) x 2 4w0 2 +ik 1x iω(k 1 )t 2 Remember Fermat s principle of stationary phase: path is defined by region of space x 2 where phasors point mostly in one direction, i.e. where the phase φ(k) = 4wo 2 + ikx + iω(k 1 )t does not vary between different momentum components k to lowest order ( ) ( ( )) φ ω ω 0 = = ix i t = i x t, (14-29) k k x or ( ) Fermat s principle leads us to the concept of group velocity ω x(t) = t. (14-30) k ω hk 1 p 1 v gr = (k 1 ) = = (14-31) k m m Group velocity of the wavepacket at which the wavepacket, i.e. the region of constructive interference, propagates. The difference between group and phase velocity is due to the fact the ω = ω, or E = ( hω) = E, i.e. the quadratic dependence of KE k k p ( hk) p on momentum in free space. This is in contrast to photons with a linear dispersion relation ω = ω = c in vacuum, where group and phase velocity are the same. k k Massachusetts Institute of Technology XIV-7