x y z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.1. (X, Y ) 3.2 P (x 1 < X x 2, y 1 < Y y 2 ) = F (x 2, y 2 ) F (x 2, y 1 ) F (x 1, y 2
|
|
|
- 锈朽 杜
- 6 years ago
- Views:
Transcription
1 xy z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.. (X, Y ) 3.2 P (x < X x 2, y < Y y 2 ) = F (x 2, y 2 ) F (x 2, y ) F (x, y 2 ) + F (x, y ) 3. F (a, b) 3.2 (x 2, y 2) (x, y 2) (x 2, y ) (x, y ) A(X, Y ). X,, X n F (x, x 2,, x n ) = P (X x, X 2 x 2,, X n x n )
2 X Y x, x 2, y, y 2,. (joint frequency function) p(x, y) p(x i, y j ) = P (X = x i, Y = y j ). X Y. Ω = {hhh, hht, hth, htt, thh, tht, tth, ttt} X Y x y p(, 2) = P (X =, Y = 2) =.. 8 Y. p Y () = P (Y = ) = P (Y =, X = ) + P (Y =, X = ) = 8 + = 8 p Y () = P (Y = ) = P (Y =, X = ) + P (Y =, X = ) = 3 8 Y. p Y Y (marginal frequency function). p X (x) = p(x, y i ) i X.. X,, X m p(x,, x m ) = P (X = x,, X m = x m ) X p X (x ) = p(x, x 2,, x m ) x 2 x m X X 2 p XX 2 (x, x 2 ) = p(x, x 2,, x m ) x 3 x m
3 (). n r p, p 2,, p r. N i n i i =,, r. N = n, N 2 = n 2,, N r = n r p n pn2 2 pnr r..4.2 n! n!n 2! n r! ( ) n p(n,, n r ) = p n n n pn2 2 pnr r r N i n j. N i n p i p i. N i, ( ) n p Ni (n i ) = p ni i ( p i ) n ni n i (histogram). [, ] n,, n. n = p i =. (i =,, ) , X Y F (x, y). (joint density function) f(x, y). f(x, y) y)dydx =. A P ((X, Y ) A) = f(x, y)dydx A f(x,
4 54 3 A = {(X, Y ) X x, Y y} F (x, y) = x y f(x, y) = f(u, v)dvdu 2 F (x, y) x y δ x δ y f (x, y) P (x X x + δ x, y Y y + δ y ) = (X, Y ) (x, y) f(x, y). P (x X x + dx, y Y y + dy) = f(x, y)dxdy x+δx x+δy x y f(u, v)dvdu f(x, y)δ x δ y 3.3. f(x, y) = 2 7 (x2 + xy), x, y 3.4. P (X > Y ) {(x, y) y x } f P (X > Y ) = 2 7 x (x 2 + xy)dydx = f(x, y) = 2 7 (x2 + xy), x, y X (marginal cdf) F X F X (x) = P (X x) = lim y F (x, y) = x X X (marginal density) f X (x) = F X(x) = f(x, y)dy f(u, y)dydu X f X (x) = 2 (x 2 + xy)dy = 2 ( x 2 + x ) Y f Y (y) = 2 ( ) y/2.
5 55... XY Z f(x, y, z). X X Y f X (x) = (Farlie-Morgenstern ) α f XY (x, y) = f(x, y, z)dydz f(x, y, z)dz F (x) G(y) cdf α H(x, y) = F (x)g(y){ + α[ F (x)][ G(y)]}. lim F (x) = lim F (y) = x y H(x, ) = F (x) H(, y) = G(y). [, ] [F (x) = x, x G(y) = y, y ]. α = H(x, y) = xy[ ( x)( y)] = x 2 y + y 2 x x 2 y 2, x, y h(x, y) = 2 H(x, y) = 2x + 2y 4xy, x, y x y 3.5. y ( x ) x. α = H(x, y) = xy[ + ( x)( y)] = 2xy x 2 y y 2 x + x 2 y 2, x, y h(x, y) = 2 2x 2y + 4xy, x, y (copula). H(x, y). cdf C(u, v) P (U u) = C(u, ) = u C(, v) = v. c(u, v) = 2 C(u, v) u v
6 h(x, y) = 2x + 2y 4xy x, y 3.6 h(x, y) = 2 2x 2y + 4xy x, y X Y cdf F X (x) F Y (y). U = F X (x) V = F Y (y) ( 2.3.3). C(u, v) F XY (x, y) = C(F X (x), F Y (y)) C(F X (x), ) = F X (x)f XY cdf F X (x) F Y (y). f XY (x, y) = c(f X (x), F Y (y))f X (x)f Y (y), { λ 2 e λy, x y, λ > f(x, y) =, 3.7. ( 3.8)
7 57 f X (x) = f X (x) = f XY (x, y)dy. x y, f(x, y) = x λ 2 e λy dy = λe λx, x X. f XY (x, y) =, x, x > y Y. f Y (y) = y λ 2 e λy dx = λ 2 ye λy, y. (X, Y ) R A R P ((X, Y ) A) = A R. π f(x, y) = π, x2 + y 2, R. r R r. πr 2 F R (r) = P (R r) = πr2 π R f R (r) = 2r, r. x f X (x) = f(x, y)dy = π x 2 x 2 dy = 2 π = r2 x2, x. ( f(x, y) >.) Y () f(x, y) = 2πσ X σ Y ρ 2 exp f Y (y) = 2 π y2, y ( [ (x µx ) 2 2( ρ 2 ) σx 2 + (y µ Y ) 2 σy 2 2ρ(x µ ]) X)(y µ Y ) σ X σ Y. 5 < µ X < σ X > σ Y > < ρ < < µ Y <
8 58 3 xy. (x µ X ) 2 σ 2 X + (y µ Y ) 2 σ 2 Y 2ρ(x µ X)(y µ Y ) σ X σ Y = f(x, y). (µ X, µ Y ). ρ = x y ρ µ X = µ Y =, σ X = σ Y = X Y N(µ X, σx 2 ) N(µ Y, σy 2 ). X f X (x) = f XY (x, y)dy u = (x µ X )/σ X v = (y µ Y )/σ Y [ ] f X (x) = exp 2πσ X ρ 2 2( ρ 2 ) (u2 + v 2 2ρuv) dv. u 2 + v 2 2ρuv = (v ρu) 2 + u 2 ( ρ 2 )
9 59 [ ] f X (x) = 2 2πσ X ρ 2 e u /2 exp 2( ρ 2 (v ρu)2 dv ) ρu ( ρ 2 ) f X (x) = e (/2)[(x µ X ) 2 /σ 2 X ] σ X 2π. 3.9a d x y µ = σ = c(u, v) = 2 2u 2v + 4uv Farlie-Morgenstern. φ(x) Φ(x) f(x, y) =(2 2Φ(x) 2Φ(y)+4Φ(x)Φ(y))φ(x)φ(y) xy
10 X, X 2,, X n x, x 2,, x n F (x, x 2,, x n ) = F X (x )F X2 (x 2 ) F Xn (x n ).. X Y. F (x, y) = F X (x)f Y (y) x y [ x ] [ y ] F (x, y) = f X (u)f Y (v)dvdu = f X (u)du f Y (v)dv = F X (x)f Y (y) X Y P (X A, Y B) = P (X A)P (Y B) g hz = g(x) W = h(y ). ( ) P (Z z, W w). A(z) g(x) z x B(w) h(y) w y. P (Z z, W w) = P (X A(z), Y B(w)) = P (X A(z))P (Y B(w)) = P (Z z)p (W w)) 3.4. (X, Y ) S = {(x, y) /2 x /2, /2 y /2} S (x, y) f XY (x, y) =.. X Y [ /2, /2]. x /2 x /2 x (). f X (x) =, /2 x /2 f Y (y) =, /2 y /2. X Y. X Y X /2 x /2 Y. f X (.9) > f Y (.9) > f XY (.9,.9) =. X Y. X (X =.9) Y (Farlie-Morgenstern ) α = X Y H F G.
11 X Y ( )ρ = X Y τ. [, T ] T T 2 [, T ] f(t, t 2 ) = T 2 t, t 2 [, T ]. (T, T 2 ) (T τ) 2 /2 T 2 (T τ) 2. f(t, t 2 ) ( τ/t ) t t 2 < τ X Y Y = y j X = x i p Y (y j ) > P (X = x i Y = y j ) = P (X = x i, Y = y j ) P (Y = y j ) = p XY (x i, y j ) P Y (y j ) p Y (y j ) =. p X Y (x y). x. X Y p X Y (x y) = p Y (y) x Y = X y p X Y ( ) = = 2 3, p X Y ( ) = = 3 p XY (x, y) = p X Y (x y)p Y (y)
12 62 3 ( ).. y p X (x) = y p X Y (x y)p Y (y) p. λ N X. N = n X n p. λ n e λ ( ) n P (X = k) = P (N = n)p (X = k N = n) = p k ( ρ) n k n! k n= = (λp)k k! = (λp)k k! e λ n=k n k ( p)n k λ (n k)! e λ e λ( p) = (λp)k e λp k! n=k = (λp)k k! e λ j= λ j ( p) j X λp.. N X X Y X Y : < f X (x) <. f Y X (y x) = f XY (x, y) f X (x). f Y X (y x)dy P (y Y y + dy x X x + dx) P (y Y y + dy x X x + dx) = f XY (x, y)dxdy f X (x)dx j! = f XY (x, y) dy f X (x) x y. f XY (x, y) x y x.. x Y. f XY (x, y) = f Y X (y x)f X (x) f Y (y) = f Y X (y x)f X (x)dx
13 f XY (x, y) = λ 2 e λy, x y f X (x) = λe λx, x f Y (y) = λ 2 ye λy, y. x y. x y x y y x y. ( 3.7.). f Y X (y x) = λ2 e λy λe λx = λe λ(y x), y x X = x Y [x, ) f XY (x, y) = f Y X (y x)f X (x) f XY X Y X(f X ) [x, ) Y (f Y X ). Y. f X Y (x y) = λ2 e λy λ 2 ye λy = y, x y Y = y X [, y]. f XY (x, y) = f X Y (x y)f Y (y) f XY X Y Y [, y] X (). (De- Hoff Rhines 968).. (). f R (r). f X (x). R = r f X R (x r). 3.3 H. H [, r] X = r 2 H 2. R = r X 3.3 H r x
14 64 3 X F X R (x r) = P (X x) = P ( r 2 H 2 x) = P (H r2 r 2 x 2 x ) = 2, x r r f X (x) = f X R (x r) = x r r 2 x 2, f X R (x r)f R (r)dr = x x r x r r 2 x 2 f R(r)dr [ r xf X R (x r) = x.]. f X. f R (). f Y X (y x) = σ Y 2π( ρ2 ) exp 2 X Y [ y µ Y ρ σ Y σ X (x µ X ) σ 2 Y ( ρ2 ) µ Y + ρ(x µ X )σ Y /σ X σ 2 Y ( ρ2 ). X Y Van Atta Chen(968) t t + τ. 3.4 t v t + τ v 2.. v v 2. v v () (rejection method) cdf cdf. f [a, b] (a b ). M(x) [a, b] M(x) f(x) m(x) = b a M(x) M(x)dx. M m. [a, b] m [a, b]. m T. [, ] U T. M(T ) U f(t ) X = T ( T ) ( T ). ] 2
15 v v 2 v v f(x) x. X f P (x X x + dx) =P (x T x + dx ) =. 3.5 P (x T x + dx ) P () P ( x T x + dx)p (x T x + dx) = P () P ( x T x + dx) = P (U f(x)/m(x)) = f(x) M(x)
16 66 3 m(x)dxf(x) M(x) P () = P (U f(t )/M(T )) = = f(x)dx b a b a M(x)dx f(t) M(t) m(t)dt = b M(t)dt m f. f(x)dx (). n X. 2. Θ. [, ] Θ (prior density). Θ [, ] f Θ (θ) =, θ. X Θ. θx n θ ( ) n f X Θ (x θ) = θ x ( θ) n x, x =,,, n x Θ X ( ) n f Θ,X (θ, x) = f X Θ (x θ)f Θ (θ) = θ x ( θ) n x, x x =,,, n, θ θ x. θ X f X (x) = ( ) n θ x ( θ) n x dθ x., ( ) n n! = x x!(n x)! = Γ(n + ) Γ(x + )Γ(n x + ) ( k Γ(k) = (k )!( 2 49). (2.2.4 ) g(u) = Γ(a + b) Γ(a)Γ(b) ua ( u) b, u a
17 67 u a ( u) b du = Γ(a)Γ(b) Γ(a + b) θ ux a n x b Γ(n + ) f X (x) = θ x ( θ) n x dθ Γ(x + )Γ(n x + ) Γ(n + ) Γ(x + )Γ(n x + ) = Γ(x + )Γ(n x + ) Γ(n + 2) = n +, x =,,, n θ X. X = x Θ X = x Θ f Θ X (θ x) = f ( ) Θ,X(θ, x) n = (n + ) θ x ( θ) n x f X (x) x Γ(n + ) = (n + ) Γ(x + )Γ(n x + ) θx ( θ) n x = Γ(n + 2) Γ(x + )Γ(n x + ) θx ( θ) n x xγ(x) = Γ(x + ) ( 2 49). x θ x θ n x Θ. a = x + b = n x Θ U[, ] a = x + = 4b = n x + = θ 2 3 θ. θ <.25. θ % θ a = 4 b =
18 X Y p(x, y) Z = X + Y. Z X = xy = z x Z = z x., Z = z x p Z (z) = p(x, z x) x= X Y p(x, y) = p X (x)p Y (y) p Z (z) = p X (x)p Y (z x) x= p X p Y (convolution).. X Y Z. (X, Y ) 3.7 R z Z z F Z (z) = f(x, y)dxdy = R z z x f(x, y)dydx 3.7 (X, Y ) R z X + Y z y = v x F Z (z) = z f(x, v x)dvdx = z f(x, z x)dx z f Z (z) =. X Y f Z (z) = f(x, z x)dx f X (x)f Y (z x)dx f(x, v x)dxdv f X f Y T T 2 λ S = T + T 2. f S (s) = s λe λt λe λ(s t) dt...
19 69 s f S (s) = λ 2 e λs dt = λ 2 se λs 2 λ ( )... X Y f Z = Y/X. F Z (z) = P (Z z) y/x z (x, y). x > y xz x < y xz. F Z (z) = f(x, y)dydx + xz xz x y = xv F Z (z) = = = z z z () f Z (z) = X Y f Z (z) = xf(x, xv)dvdx + ( x)f(x, xv)dvdx + x f(x, xv)dxdv z z x f(x, xz)dx x f X (x)f Y (xz)dx f(x, y)dydx xf(x, xv)dvdx xf(x, xv)dvdx X Y Z = Y/X. f Z (z) = f Z (z) = π u = x 2 f Z (z) = 2π x 2 2π e x /2 e x2 z 2 /2 dx xe x2 ((z 2 +)/2) dx λ exp( λx)dx = λ = (z 2 + )/2 f Z (z) = π(z 2 + ), e u((z2 +)/2) du < z <
20 7 3 (Cauchy density).. Y/X X X Y f XY (x, y) = 2 2π e (x /2) (y 2 /2) (R, Θ 2π) R = X 2 + Y 2 ( ) Y tan, X > X ( ) Y tan + π, X < Θ = X π sgn(y ), X =, Y 2, X =, Y = ( π 2 < Θ < π.) 2 X = R cos Θ Y = R sin Θ R Θ f RΘ (r, θ)drdθ = P (r R r + dr, θ Θ θ + dθ) 3.8 f XY [x(r, θ), y(r, θ)]. rdrdθ P (r R r + dr, θ Θ θ + dθ) = f XY (r cos θ, r sin θ)rdrdθ f RΘ (r, θ) = rf XY (r cos θ, r sin θ), f RΘ (r, θ) = r 2π e[ (r 2 cos 2 θ)/2 (r 2 sin 2 θ)/2] = 2π re r 2 /2 3.8 rdrdθ
21 7 R Θ Θ [, 2π] R f R (r) = re r2 /2, r (Rayleigh density). T = R 2. f T (t) = 2 e t/2, t 2. R Θ T Θ f T Θ (t, θ) = 2π ( ) e t/2 2 Θ [, 2π] R 2 2. ( tan Θ.) Φcdf Φ. [, ] U U 2. 2 log U 2 2πU 2 [, 2π]. X = 2 log U cos(2πu 2 ) Y = 2 log U sin(2πu 2 ). (polar method). X Y U V u = g (x, y) v = g 2 (x, y) x = h (u, v) y = h 2 (u, v) g g 2 x y, g g ( ) ( ) ( ) ( ) J(x, y) = det x y g 2 g 2 = g g2 g2 g x y x y x y.
22 V. (x, y) u = g (x, y), v = g 2 (x, y) (u, v) U f UV (u, v) = f XY (h (u, v), h 2 (u, v)) J (h (u, v), h 2 (u, v)) u v r θ r x = x x2 + y 2 θ x = y x 2 + y 2 r = x 2 + y 2 ( θ = tan y ) x J(x, y) = x = r cos θ y = r sin θ 3.6. r, θ 2π, r y = y x2 + y 2 θ y = x x 2 + y 2 x2 + y 2 = r f RΘ (r, θ) = rf XY (r cos θ, r sin θ) X,, X n f X X n Y i = g i (X,, X n ), X i = h i (Y,, Y n ), i =,, n i =,, n J(x,, x n ) ij g i / x j Y,, Y n f Y Y n (y,, y n ) = f X X n (x,, x n ) J (x,, x n ) x i y x i = h i (y,, y n ) X X 2 Y = X
23 73 Y 2 = X + X 2 Y Y 2. [ ] J(x, y) = det = x = y, x 2 = y 2 y 3.6.Y Y 2 f YY 2 (y, y 2 ) = [ 2π exp ] 2 [y2 + (y 2 y ) 2 ] = [ 2π exp ] 2 (2y2 + y2 2 2y y 2 ) ( ). y y 2 µ Y = µ Y2 =. ( µ Y y µ Y.) σ Y σ Y2 ρ2 = y σy 2 ( ρ 2 ) = 2 σy 2 2 = 2. y 2 ρ 2 = 2. σ 2 Y 2 ( ρ 2 ) = ρ = / 2. σy 2 =...( 58.) 3.7. X, X 2,, X n F f. U X i V. U V. U u i, X i u. F U (u) = P (U u) = P (X u)p (X 2 u) P (X n u) = [F (u)] n f U (u) = nf(u)[f (u)] n V v i, X i v.
24 74 3 V 3.7. F V (v) = [ F (v)] n F V (v) = [ F (v)] n f V (v) = nf(v)[ F (v)] n n T,, T n λ F (t) = e λt. V T i V nλ f V (v) = nλe λv (e λv ) n = nλe nλv n f U (u) = nλe λu ( e λu ) n.. f U (u) n X i (u, u + du) n X i u u U u + du. [F (u)] n f(u)du n f U (u) = n[f (u)] n f(u) X,, X n f(x). X i X () < X (2) < < X (n) (order statistics). X X (). ( n.) X (n) X (). n n = 2m + X (m+) X i (median) k X (k) f k (x) = n! (k )!(n k)! f(x)f k (x)[ F (x)] n k. ( 66.) x X (k) x + dx k x [x, x + dx] n k x + dx. f(x)f k (x)[ F (x)] n k dx n!/[(k )!!(n k)!] X i [, ] k n! (k )!(n k)! xk ( x) n k, x. x k ( x) n k dx = (k )!(n k)! n!
25 75., x X () x+dxy X (n) y+dy X i [x, x+dx] [y, y+dy] n 2 [x, y]. n(n ) V = X () U = X (n) f(u, v) = n(n )f(v)f(u)[f (u) F (v)] n 2, u v f(u, v) = n(n )(u v) n 2, u v X (),, X (n) R = X (n) X () f R (r) = f(v + r, v)dv [, ] U V. f(v + r, v) = n(n )r n 2 v v + r v r. f R (r) = () r n(n )r n 2 dv = n(n )r n 2 ( r), r F R (r) = nr n (n )r n, r f f(x) (X (), X (n) ).. F (X (n) ) F (X () ) Q F (X i ) Q n U (n) U (). P (Q > α) α% P (Q > α) = nα n + (n )α n n = α = %.96 95% X Y x y
26 76 3 a. X Y. b. Y = X X = Y. 2. p q r n. a.. b.. c d w. r. n (.) 5. () D L D L. 2L/πD. π. 6. x y. 7. cdf 8. X Y x 2 a 2 + y2 b 2 = F (x, y) = ( e αx )( e βy ), x, y, α >, β > f(x, y) = 6 7 (x + y)2, x, y a. (i) P (X > Y )(ii) P (X + Y )(iii) P b. x y. c.. 9. (X, Y ) y x 2 x.. a. X Y. b.. f(x, y) = xe x(y+), x <, y < a. X Y. X Y b. X Y. ( X ). 2. U, U 2 U 3 [, ] U x 2 + U 2x + U a. c. b.. c.. f(x, y) = c(x 2 y 2 )e x, x <, x y < x
27 a. x, y z. b. x y. c. Z = xy. 5. X Y a. c. b.. ( c. P X 2 + Y 2 ). 2 f(x, y) = c x 2 y 2, x 2 + y 2 d. X Y. X Y e.. 6. X [, ] X X 2 [, X ] X X (X, Y ) R = {(x, y) : x + y }. a. R. b. X Y.. c. X Y. 8. X Y f(x, y) = k(x y), y x a.. b. k. c. X Y. d. X Y Y X. 9. T T 2 α β. (a) P (T > T 2) (b) P (T > 2T 2) X. X f(x)... x R(x). Y. Y g(y) = R(y)f(y) R(x)f(x)dx 22. N(t, t 2) (t, t 2). t < t < t 2 N(t, t 2) = n N(t, t ). (). 23. N X N p N m r. X.
28 θ. θ. 25. X f Y = X Y = X Y 2 f Y (y) = f Y ( y). 26. P [, ] P = p X p. X P. 27. x y f X Y (x y) = f X(x) X Y. 28. C(u, v) = uv. 29. Farlie-Morgenstern.. 3. α β C(u, v) = min(u α v, uv β ) (Marshall-Olkin ) (X, Y ). X Y f R(r) [, ]. N. N =. a. N Θ. b Θ. a = b = M(x) f(x). 37. x f(x) = 6x 2 ( x) 2. a.. b x α f(x) = + αx 2 a.. b (D.R.Fredkin). X p p p 2,,, 2, U. U < p X = U p U U p X = U p U p X Y p XY (x, y). X p X Y (x y).
29 79 a. X p X(x). b. p(y X) X. c. X X. a. X, 2,, X = x Y 2 x. Y = 44 X Y = 44 X. E(X Y = 44) 4. X Y 42. a. T λ W T ± X = W T. 2 X (double exponential density). b. c f X(x) = λ 2 e λ x 2π e x2 /2 ce x a. 43. U U 2 [, ]. S = U + U X Y, 2. X + Y A B p A + p B =. λ A p Aλ. 46. T T 2 λ λ 2. T + T X Y. Z = X + Y Z. (.) 48. N N 2 λ λ 2. N = N + N 2 λ + λ X + Y X Y X Y Z = X Y. 5. X Y f(x, y)z = XY. Z ( f Z(z) = f y, z ) y y dy U U 2 U 3 [, ]. U U 2 U XY Z N(, σ 2 ). ΘΦ R (X, Y, Z) x = r sin φ cos θ y = r sin φ sin θ z = r cos φ φ π, θ 2π ΘΦ R. (dxdydz = r 2 sin φdrdθdφ.)
30 R [, ] Θ [, 2π] R. a. X = R cos Θ Y = R sin Θ. b. X Y. c X Y (X, Y ) R Θ. R Θ 57. Y Y 2 µ Y = µ Y2 =, σy 2 =, σy 2 2 = 2 ρ = / 2. x = a y + a 2y 2, x 2 = a 2y + a 22y 2 x x 2. ( ) 58. X X 2 Y = a X + b Y 2 = a 2X 2 + b X X 2 Y Y 2. Y = a X + a 2X 2 + b Y 2 = a 2X + a 22X 2 + b X Y U = a + bx V = c + dy. 62. X Y P (X 2 + Y 2 ). 63. X Y. a. X + Y X Y. b. XY Y/X. c. X Y a b. 64. X + Y X/Y X Y λ. X + Y X/Y. 65. λ i. λi. 66. ( 3.9) λ. cdf n. λ. 68. U U 2 U 3. a. U () U (2) U (3).
31 8 b n f(t) = βα β t β e (t/α)β, t 7. X, X 2,, X n F. X () X (n) F (x, y) = F n (y) [F (y) F (x)] n, x y 7. X,, X n f. (, X (n) ] f v%. 72. [, ] X,, X n fx (),, X (n) n!f(x )f(x 2) f(x n), x < x 2 < < x n 74. n. 75. X (i) X (j) i < j. 76. X (k) cdf (X (k) x k X i x. X i x.) 77. U i (i =,, n) U (k) U (k ). [, ]. 78. y (y x) n dxdy = (n + )(n + 2) 79. T T 2 R = T (2) T (). 8. U,, U n V U i. a. P (V U (n) ). b. P (U () < V < U (n) ). 8. U i V f cdf F F 8 ( F (U i) ).
koji-13.dvi
26 13 1, 2, 3, 4, 5, 6, 7 1 18 1. xy D D = {(x, y) y 2 x 4 y 2,y } x + y2 dxdy D 2 y O 4 x 2. xyz D D = {(x, y, z) x 1, y x 2, z 1, y+ z x} D 3. [, 1] [, 1] (, ) 2 f (1)
. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.
() * 3 6 6 3 9 4 3 5 8 6 : 3. () ; () ; (3) (); (4) ; ; (5) ; ; (6) ; (7) (); (8) (, ); (9) ; () ; * Email: [email protected] . () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) :
微积分 授课讲义
2018 10 [email protected] 1201 / 18:00-20:20 213 14:00-17:00 I II Taylor : , n R n : x = (x 1, x 2,..., x n ) R; x, x y ; δ( ) ; ; ; ; ; ( ) ; ( / ) ; ; Ů(P 1,δ) P 1 U(P 0,δ) P 0 Ω P 1: 1.1 ( ). Ω
( ) Wuhan University
Email: huangzh@whueducn, 47 Wuhan Univesity i L A TEX,, : http://affwhueducn/huangzh/ 8 4 49 7 ii : : 4 ; 8 a b c ; a b c 4 4 8 a b c b c a ; c a b x y x + y y x + y x x + y x y 4 + + 8 8 4 4 + 8 + 6 4
3.1 ( ) (Expectation) (Conditional Mean) (Median) Previous Next
3-1: 3.1 ( )........... 2 3.1.1 (Expectation)........ 2 3.1.2............. 12 3.1.3 (Conditional Mean)..... 17 3.1.4 (Median)............ 22 Previous Next First Last Back Forward 1 1.. 2. ( ): ( ), 3.
untitled
f ( ) tan e, > = arcsin a = ae, a = tan e tan lim f ( ) = lim = lim =, arcsin + + + lim f = lim ae = a, y e ( ) =
( )
( ) * 22 2 29 2......................................... 2.2........................................ 3 3..................................... 3.2.............................. 3 2 4 2........................................
untitled
4 y l y y y l,, (, ) ' ( ) ' ( ) y, y f ) ( () f f ( ) (l ) t l t lt l f ( t) f ( ) t l f ( ) d (l ) C f ( ) C, f ( ) (l ) L y dy yd π y L y cosθ, π θ : siθ, π yd dy L [ cosθ cosθ siθ siθ ] dθ π π π si
3978 30866 4 3 43 [] 3 30 4. [] . . 98 .3 ( ) 06 99 85 84 94 06 3 0 3 9 3 0 4 9 4 88 4 05 5 09 5 8 5 96 6 9 6 97 6 05 7 7 03 7 07 8 07 8 06 8 8 9 9 95 9 0 05 0 06 30 0 .5 80 90 3 90 00 7 00 0 3
80000 400 200 X i X1 + X 2 + X 3 + + X n i= 1 x = n n x n x 17 + 15 + 18 + 16 + 17 + 16 + 14 + 17 + 16 + 15 + 18 + 16 = 12 195 = = 1625. ( ) 12 X X n i = = 1 n i= 1 X f i f Xf = f n i= 1 X f ( Xf). i i
➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2
Stochastic Processes [email protected] 111111 ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2 : Stochastic Processes? (Ω, F, P), I t I, X t (Ω, F, P), X = {X t, t I}, X t (ω)
Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α
996,,,,,,, 997 7, 40 ; 998 4,,, 6, 8, 3, 5, ( ),, 3,,, ;, ;,,,,,,,,,
,, AB,, ( CIP) /, 000 ( /, ) ISBN 704009448 F47 CIP ( 000) 86786 55 00009 0064054588 ht tp www hep edu cn ht tp www hep com cn 006404048 787960/ 6 05 370 000 730,, 996,,,,,,, 997 7, 40 ; 998 4,,, 6, 8,
untitled
6 + a lim = 8, a =. a l. a a + a a a a lim = lim + = e, a a a e = 8 a= l ( 6,, ), 4 y+ z = 8. + y z = ( 6,, ) 4 y z 8 a ( 6,, ) + = = { } i j k 4,,, s = 6 = i+ j k. 4 ( ) ( y ) ( z ) + y z =. + =, () y
1 2 1.1............................ 2 1.2............................... 3 1.3.................... 3 1.4 Maxwell.................... 3 1.5.......................... 4 1.6............................ 4
➀ ➁ ➂ ➃ Lecture on Stochastic Processes (by Lijun Bo) 2
Stochastic Processes [email protected] 111111 ➀ ➁ ➂ ➃ Lecture on Stochastic Processes (by Lijun Bo) 2 (Stationary Processes) X = {X t ; t I}, n 1 t 1,..., t n I, n F n (t 1,..., t n ; x 1,..., x
untitled
arctan lim ln +. 6 ( + ). arctan arctan + ln 6 lim lim lim y y ( ln ) lim 6 6 ( + ) y + y dy. d y yd + dy ln d + dy y ln d d dy, dy ln d, y + y y dy dy ln y+ + d d y y ln ( + ) + dy d dy ln d dy + d 7.
! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&
PowerPoint Presentation
1 1 2 3 4 2 2004 20044 2005 2006 5 2007 5 20085 20094 2010 4.. 20112116. 3 4 1 14 14 15 15 16 17 16 18 18 19 19 20 21 17 20 22 21 23 5 15 1 2 15 6 1.. 2 2 1 y = cc y = x y = x y =. x. n n 1 C = 0 C ( x
1. PDE u(x, y, ) PDE F (x, y,, u, u x, u y,, u xx, u xy, ) = 0 (1) F x, y,,uu (solution) u (1) u(x, y, )(1)x, y, Ω (1) x, y, u (1) u Ω x, y, Ωx, y, (P
2008.9-2008.12 Laplace Li-Yau s Harnack inequality Cauchy Cauchy-Kowalevski H. Lewy Open problems F. John, Partial Differential Equations, Springer-Verlag, 1982. 2002 2008 1 1. PDE u(x, y, ) PDE F (x,
4 A C n n, AA = A A, A,,, Hermite, Hermite,, A, A A, A, A 4 (, 4,, A A, ( A C n n, A A n, 4 A = (a ij n n, λ, λ,, λ n A n n ( (Schur λ i n
,?,,, A, A ( Gauss m n A B P Q ( Ir B = P AQ r(a = r, A Ax = b P Ax = P b, x = Qy, ( Ir y = P b (4 (4, A A = ( P Ir Q,,, Schur, Cholesky LU, ( QR,, Schur,, (,,, 4 A AA = A A Schur, U U AU = T AA = A A
005 1 1.. 3. 1-1 - total quality management, TQM 1961 3 1931 199 0 50 1961 6sigma 4 14 1 3 4 5 6 7 8 9 10 11 1 13 14 19511 6 1 3 4 5 6 5 - - a) b) c) 6 1 1 3 4 5 6 7 8 1 3 4 5 6 3 4 1) ) 3) 4) - 3 - 5)
,..,.,,,,,.,,.,., ,.,,.,,.,, 1,,, ; 2,,,,.,,,,.,,.,,,.,.,.,,.,.,,,.,,,.,,,,.,.,,,, i
,..,.,,,,,.,,.,.,. 6 1,.,,.,,.,, 1,,, ;,,,,.,,,,.,,.,,,.,.,.,,.,.,,,.,,,.,,,,.,.,,,, i .,,,,.,,.,.,.,,.,,,., 1;,,,,,.,,,,.,,,.,.,,.,,.,,,.,,.,,.,.,.,,.,,.,..,.,,.,,,.,,,.,,,,,,.,,,,.,,????.,,,,,.,,,,.,
: p Previous Next First Last Back Forward 1
7-2: : 7.2......... 1 7.2.1....... 1 7.2.2......... 13 7.2.3................ 18 7.2.4 0-1 p.. 19 7.2.5.... 21 Previous Next First Last Back Forward 1 7.2 :, (0-1 ). 7.2.1, X N(µ, σ 2 ), < µ 0;
x y 7 xy = 1 b c a b = x x = 1. 1 x + 17 + x 15 = 16 x + 17 x 15 + 17 15 x + 17 - x 15 = (x x ) ( ). x + 17 + x 15 x + y + 9 x + 4 y = 10 x + 9 y + 4 = 4xy. 9 4 ( x + ) + ( y + ) = 10 x y 9 ( x + )( ).
Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π
! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %
!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.
! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9
幻灯片 1
Digital Signal Processing [email protected] /gary/ 1. FT FT. 3. 4. DFT 5. 6. DFT 7. 1. FT FT (FS) (FT) ( ) xt () Dirichlet (, ), 1 T () = ( Ω), ( Ω ) = () T T jkωt jkωt xt X k e X k xte dt e jkω t k
Solutions to Exercises in "Discrete Mathematics Tutorial"
1 2 (beta 10 ) 3 SOLVED AND TEXIFIED BY 4 HONORED REVIEWER BBS (lilybbs.us) 1 2002 6 1 2003 1 2 2 ( ) (E-mail: [email protected]) 3 beta 2005 11 9 ( / ) 40.97% 4 02CS chouxiaoya tedy akaru yitianxing
6 2016/5/ /6/19 z B (HDM) (CDM) CDM (Λ = 0) (k = +1) Friedmann ( ) dr 2 = Rmax R R 2 (4.1) dθ R(θ) = R max 2 t(θ) = R max 2c (1 cos θ), (4.2) (θ
6 206/5/9 206/6/9 z B (HDM) (CDM) CDM (Λ = 0) (k = +) Friedmann ( ) dr 2 = Rmax R R 2 (4.) dθ R(θ) = R max 2 t(θ) = R max 2c ( cos θ), (4.2) (θ sin θ); (4.3) R(θ) θ = 0 θ = π (turn-around time) θ = 2π
., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2
! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,
( ) (! +)! #! () % + + %, +,!#! # # % + +!
!! # % & & & &! # # % ( ) (! +)! #! () % + + %, +,!#! # # % + +! ! %!!.! /, ()!!# 0 12!# # 0 % 1 ( ) #3 % & & () (, 3)! #% % 4 % + +! (!, ), %, (!!) (! 3 )!, 1 4 ( ) % % + % %!%! # # !)! % &! % () (! %
! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7
!! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;
4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;
! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4
( ) : ( ) (CIP) /.. :,003. () ISBN O4 44 CIP (00) : : 7 : 7007 : (09 ) : : :850 mm 68 mm / 3 :0.5 :60 :00 0
( ) ( ) : ( ) (CIP) /.. :,003. () ISBN 7 56 448 0.... O4 44 CIP (00) 007344 : : 7 : 7007 : (09 )8493844 : www.nwpup.com : :850 mm 68 mm / 3 :0.5 :60 :00 003 3 :0 006 000 :3: 00 00, ( ),,,,,,,, 003 8 (
第一章合成.ppt
[email protected] 1. 2. 3. 4. 5. 1. Mathematical Statistics R.V.Hogg ( 1979) 2. Statistics -The Conceptual Approach G. R. Iversen, ed ( - 2000) 3. Mathematical Statistics and Data Analysis J. A. Rice
!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )
! # % & # % ( ) & + + !!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) 6 # / 0 1 + ) ( + 3 0 ( 1 1( ) ) ( 0 ) 4 ( ) 1 1 0 ( ( ) 1 / ) ( 1 ( 0 ) ) + ( ( 0 ) 0 0 ( / / ) ( ( ) ( 5 ( 0 + 0 +
/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π
! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,
, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02
! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0
Cauchy Duhamel Cauchy Cauchy Poisson Cauchy 1. Cauchy Cauchy ( Duhamel ) u 1 (t, x) u tt c 2 u xx = f 1 (t, x) u 2 u tt c 2 u xx = f 2 (
Cauchy Duhamel Cauchy CauchyPoisson Cauchy 1. Cauchy Cauchy ( Duhamel) 1.1.......... u 1 (t, x) u tt c 2 u xx = f 1 (t, x) u 2 u tt c 2 u xx = f 2 (t, x) 1 C 1 C 2 u(t, x) = C 1 u 1 (t, x) + C 2 u 2 (t,
,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2
! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.
8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =
!! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =
Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε
! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!
2 R A B,, : A B,,.,,,.,,., (random variable),, X Y Z..,., ( 1.1),. 1.1 A B A B A, B ; A B A = B A B A B A B (intersection) A B A B (union) A B A B = A
,?,,,,,.,,. 1.1. 1.1.1. (random phenomenon),., (random experiment), trial(,, experiment trials).,, (sample space), Ω ;, (sample point), ω,, ω 1, ω 2,, ω n., (random event, ), (subset).., Ω, (sure event);,
untitled
+ lim = + + lim = + lim ( ) + + + () f = lim + = + = e cos( ) = e f + = e cos = e + e + + + sin + = = = = = + = + cos d= () ( sin ) 8 cos sin cos = ( ) ( sin ) cos + d= ( + ) = cos sin cos d sin d 4 =
) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &
! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ
第9章 排队论
9, 9. 9.. Nt () [, t] t Nt () { Nt ( ) t [, T]} t< t< t< t + N ( ( t+ ) i+ N( t) i, N( t) i,, N( t) i N + + N ( ( t ) i ( t ) i ) (9-) { Nt ( ) t [, T)} 9- t t + t, t,, t t t { Nt ( ) t [, T] } t< t,,
1-1 + 1 + + 2 + + 3 + 4 5 + 6 + 7 8 + 9 + 1-2 1 20000 20000 20000 20000 2 10000 30000 10000 30000 3 5000 5000 30000 4 10000 20000 10000 20000 5 3000 3000 20000 6 3000 3000 20000 7 5000 15000 8 5000 15000
證 明 : 令 φ(x f(x, ydy, 則 φ(x + x φ(x x f x (ξ, ydy f x (ξ, y f x (x, y dy f x (x, ydy f(x + x, y f(x, y d dy f x (x, ydy x f x (x, ydy, ξ ξ(y 介 於 x, x
微 分 與 積 分 的 交 換 積 分 設 f 在 [a, b] [, d] 上 連 續, 問 d dx f(x, y? f(x, ydy x 首 先 (1 式 兩 邊 必 須 有 意 義 f(x, ydy 必 須 對 x 可 導 若 f 及 x f(x, ydy 積 分 必 須 存 在 x f 在 [a, b] [, d] 上 連 續, 則 ( 及 (3 式 成 立, 下 面 的 定 理 告 訴
> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η
1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #
8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <
! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :
a b a = a ϕ λ ϕ λ ρ δ ρ δ ϕ λ M' J' x' = = m MJ x M' K' y' = = n MK y x' x = m 2-1 y' y = n 2 2 x + y = 1 2-2 2 2 x' y' 2 + 2 = 1 m n µ = ds ' ds 2 2 2 2 m + n = a + b 2-3 mnsinθ = ab 2-4 2 2 2 (
2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =
! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!
tbjx0164ZW.PDF
F = k Q Q r F = k Q = k Q r r Q Q = Fr k = C 0 5 C 9 0 5 Q 0 3 n = = 9 = 65. 0 e 6. 0 4 3 A B 7 7 9 6 C D 7 7 F = k q 7q = k 7q r r q + 7q = 4q F = k 4q 4q = k 6q r r F = 6 F 7 7q q = 3q s c = t s c =
信号与系统 (Signal & system)
Signl & sysem xucb@cqup cqup.edu.cn 5-3- ...3.4.5 .......3 3 .. δ δ d δ 4 .. i K V CF u c i δ u c - 5 .. ϕ δ ϕ δ ϕ δ d ϕ ϕ δ ϕ δ ϕ δ d ϕ 6 .. e δ e δ δ δ δ 3δ δ π sin δ d 3 e δ d 3 δ d 5 4 7 .. 3 ϕ δ ϕ
d y dy P x Q x y 0. dx dx d d P x Q x C C 1y1 y dx dx d d P x Q x C 1y 1 dx dx d d P x Q x C y 0. dx dx d x 1dx F. ox1 dt dt d x1 1dx1 x 0 1 F 1 dt dt d x 1dx x 0 F dt dt d y 1dy y F 0 1 F1 y x1 x. dt
: : : ( CIP ) : ( ) /. :, ISBN :. G7. 4 CIP ( 00 ) 005 : : ( ) : : ( 0 : 0004) : : : / 6 : 7 ( ) : 408 () : 00
() ( ) ( : ) : : : ( CIP ) : ( ) /. :, 00. 7 ISBN 7-8008 - 958-8... :. G7. 4 CIP ( 00 ) 005 : : ( ) : : ( 0 : 0004) : : 00 7 00 7 : 78709 / 6 : 7 ( ) : 408 () : 000 : ISBN 7-8008 - 958-8/ G89 : 9 98. 00
Microsoft Word - whfq fm_new_.doc
图 灵 数 学 统 计 学 丛 书 The Calculus Lifesaver:All the Tools You Need to Excel at Calculus 普 林 斯 顿 微 积 分 读 本 [ 美 ] Adrian Banher 著 杨 爽 赵 晓 婷 高 璞 译 北 京 图 书 在 版 编 目 (CIP) 数 据 普 林 斯 顿 微 积 分 读 本 / ( 美 ) 班 纳 (Banner,
例15
cos > g g lim lim cos lim lim lim g lim ) ) lim lim g ) cos lim lim lim 3 / ) ) y, ) ) y o y y, ) y y y) y o y) ) e, ), ) y arctan y y Ce y) C y ) e y) y ) e g n www.tsinghuatutor.com [ g ] C k n n) n
WL100079ZW.PDF
ε I x = r + R + R + R g o x = R ε + v v 2 v1 a = = t t t 2 1 R x { ( 1) ( 2)" " ( 3) ( 4), ( 5)" " ( 6) ( 7) ( 8)" " ( 9) ( 10) ( 11) ( 12) ( 13) ( 14) ( 15) ( 17) {
= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (
! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0
Solutions to Exercises in "Discrete Mathematics Tutorial"
1 2 (beta 16.11 ) 3 SOLVED AND TEXIFIED BY 4 (http://www.ieee.org.cn/list.asp?boardid=67) 1 2002 6 1 2003 1 2 2 (E-mail: [email protected]) 3 2006 11 1 ( / ) 60.17% 4 xbz 02 chouxiaoya tedy akaru yitianxing
3.2 導 函 數 其 切 線 (tangent line) 為 通 過 P, 且 其 斜 率 為 m 的 直 線, 即 y = f(a) + m(x a) (3) 其 法 線 (normal line) 為 通 過 P 且 與 切 線 垂 直 的 直 線, 即 y = f(a) 1 (x a) m
第 3 章 微 分 (Differentiation) 目 錄 3.1 切 線................................... 25 3.2 導 函 數.................................. 26 3.3 微 分 公 式................................. 28 3.4 連 鎖 律..................................
Π Ρ! #! % & #! (! )! + %!!. / 0% # 0 2 3 3 4 7 8 9 Δ5?? 5 9? Κ :5 5 7 < 7 Δ 7 9 :5? / + 0 5 6 6 7 : ; 7 < = >? : Α8 5 > :9 Β 5 Χ : = 8 + ΑΔ? 9 Β Ε 9 = 9? : ; : Α 5 9 7 3 5 > 5 Δ > Β Χ < :? 3 9? 5 Χ 9 Β
4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ
! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9
# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %
#! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )
