2 R A B,, : A B,,.,,,.,,., (random variable),, X Y Z..,., ( 1.1),. 1.1 A B A B A, B ; A B A = B A B A B A B (intersection) A B A B (union) A B A B = A

Size: px
Start display at page:

Download "2 R A B,, : A B,,.,,,.,,., (random variable),, X Y Z..,., ( 1.1),. 1.1 A B A B A, B ; A B A = B A B A B A B (intersection) A B A B (union) A B A B = A"

Transcription

1 ,?,,,,,.,, (random phenomenon),., (random experiment), trial(,, experiment trials).,, (sample space), Ω ;, (sample point), ω,, ω 1, ω 2,, ω n., (random event, ), (subset).., Ω, (sure event);, (empty set), (impossible event).,, ;,.,,.,.,, 9 11,.,,, ;, ;,.

2 2 R A B,, : A B,,.,,,.,,., (random variable),, X Y Z..,., ( 1.1),. 1.1 A B A B A, B ; A B A = B A B A B A B (intersection) A B A B (union) A B A B = A B (disjoint) A B (, mutually exclusive) A c Ā A (complement), A + Ac = Ω A A c A B (difference) A B Ω A 1, A 2,, A n, A 1 A 2 n A n = Ω, A i =Ω, A 1, A 2,, A n Ω (partition), A 1, A 2,, A n i=1 (exhaustive). A 1 A 2 A n n A i., A B,,., : n x i = x 1 + x x n i=1 n x i = x 1 x 2 x n i=1,, (counting technique). (addition principle) (multiplication principle). :, n, 1 m 1, 2 m 2,, n m n, i=1

3 1 3 m 1 + m m n. : n, m,, m n. :,..,,. 1.1 ( ) (factorial),, : n! = n (n 1) (n 2) (1.1), 0! = 1. (double factorial), n (n 2) 4 2, n!! = n (n 2) 3 1, n ; n (1.2) 0!! = 1 R, factorial()., 10! ( ) factorial(10) (permutation) n (without replacement) r(r n) ( ). n P r, P r n A r n(a Arrangement ). :, n P n = n!. np r = n! (n r)! (1.3) n P r,,. P r n A r n.,,,. 1.3 ( ) (combination) n ( ) r(r n) n ( ), n C r C r n., r n r(r n),. :, n C 0 = n C n = 1. nc r = n P r r! = n! (n r)!r! (1.4),.,.. R choose(n, k), n C k., 10 C 5

4 4 R choose(10, 5) 252. R,,., 10 P 5, 10 P 5 = 10 C 5 5!, : choose(10, 5) * factorial(5) (probability)?,. (Leroy Folks) : ( ).,,,,,.,,,,..,.,.,. :.,., ( )., (classical probability), : 10 5,? 10/15 = 2/3. ( ),, ( )..,. 1.4 ( ) : (1) ; (2) ; (3) A [ P (A)] P (A) = A A = (1.5) (1.6) : [M].,. :, 1987: 55.

5 1 5.,, Blaise Pascal ( ) Pierre- Simon Laplace ( ). A (favorable outcomes),, (outcomes of interest).,,,., n, n. : ( ), :,.,?,.,., ;, ( ) ). 6, 6 ( ) ( 6. 1, 365 ; 2, 1, = 364.,, P 6 / R choose(365,6) * factorial(6) / 365^6 R ( ),. 1.2 (k < r)? n r, k,,,,,, ( A), P (A c ) = 1 P (A).,,, ( ) n (k) (n r).. k ( ) n r P (A c ) = 1 P (A) = 1 k ( ) n k 1.3 ( ) k(k a + b). a b,,

6 6 R. X = { k }. (1).,, a + b. a + b a + b, (a + b)!. k k, b ; a + b 1 a + b 1 ( ), (a + b 1)!.,, X b(a + b 1)!. P (X) = b(a + b 1)! (a + b)! = b a + b (2)..,,,., a + b. ( ) a + b, b a + b ( b b,, ), b,. k k, b 1 ( ) a + b 1 a + b 1 b 1,, b 1.. ( ) a + b 1 (a + b 1)! b 1 (b 1)!a! P (X) = ( ) = = b a + b (a + b)! a + b b b!a!. a b,, k. k ( ) k,.,,, ( ),.,.,. 1.4 ( ) (Monty Hall problem), Let s Make a Deal, (Monty Hall). :,,,.,,,.. :?., (, 50% )., 1/3;

7 1 7 ( 2/3),,., 2/3.,,, 2/3., Monty Hall Problem,.,,.,.,, :, ,.,, ;,,.,,,,.,,. (relative frequency).,,,. (empirical probability),. 1.5 ( ), : (1) A ( ) ; (2) n, m A, f n (A) = m n ; (3), n, f n (A) p. p,. (3) : lim n f n(a) = p. f n (A) n p, p, p, p., (Head, H) (Tail, T)., 100 H:T=50:50, :51 ;,.,, : n, f n (A) p., : lim P ( f n(a) p ɛ) = 0 n 2006 Keith Chen(2008) Journal of Personality and Social Psychology How Choice Affects and Reflects Preferences: Revisiting the Free-Choice Paradigm,. Amos Tversky( ) Daniel Kahneman( ),. : (2013, ), (2012, ).

8 8 R ɛ ; P ( ). : p?, 0,.,,.,,.,,., 80%,. 80%,, 80 % ,.,,,, (,,, )., :., : A. : 80%.,. (subjective probability),.,, (prior probability), (posterior probability).,,.,, ( ).,,.,.,,, 20,.,, 20,,,., :, 1?, (, 2012) (, 2013), (, 2015), (Allen B. Downey) : Python (, 2015), (John K. Kruschke) : R BUGS (, 2015),.

9 1 9 1/ = 0.,.,,.,.., 1.,?,,,,, ( ) 2 1, π = π/4. 2, (geometric probability). 1.6 ( ) : (1) Ω, ( ) S Ω ; (2) Ω ; (3) A Ω, S A, A P (A) = S A S Ω (1.7),,,,.,. 0, 1., 0? 1?,.,.,, 1 0, ;,, 1 1,.,.,,,, :00 10:00, 10 min, 10 min. 9:00 10:00,. 9:00 ( : min), (x), (y),, 1.. A = { }. x y 1, 0 x, y 1. 6,, ( 1.1). P (A) = = 11 36

10 10 R d(d > 0), c(c < d),. Buffon (Buffon s Needle Problem). y, θ ( 1.2). 1.2 Buffon : 0 y d, 0 θ π 2, S Ω = dπ 2 ( 1.3). ( A) y c sin θ. : 2 S A = π 0 c 2 sin θ dθ = c 2 cos θ π 0 = c

11 1 11 P (A) = S A S Ω = c dπ 2 = 2c dπ 1.3 Buffon ( c = 2 cm) ( d = 1 cm) π., n, m. P (A) m/n. m n 2c dπ = π 2nc dm. (Monte Carlo Simulation),,,. 1.7 R Buffon, animation., Buffon. R,. library(animation) oopt = ani.options(nmax = ifelse(interactive(), 500, 2), interval = 0.05) par(mar = c(3, 2.5, 0.5, 0.2), pch = 20, mgp = c(1.5, 0.5, 0)) buffon.needle() buffon.needle(redraw = FALSE) ani.options(oopt),?buffon.needle, R.

12 12 R ?,? Andrey Nikolaevich Kolmogorov ( ) 1933., ( ) ( ) E, Ω. E A ( ), P (A), : (1) : A, P (A) 0; (2) : Ω P (Ω) = 1; (3) (Countable Aadditivity): A 1, A 2, i j, A i A j = (i, j = 1, 2, ) P (A 1 A 2 ) = P (A 1 ) + P (A 2 ) + P (A) A. (probability Axioms)., ( A 1, A 2,, A n, n ).,.,,,.,.,,,.,,.,..,,.,.,. (, ),.,,,., :.,.,,,,,..,,,.,,., ;. [M].,,. :, 1987: 62.

13 1 13, ;., : (1) P (Ω) = 1 (2) P ( ) = 0 (3) P (A c ) = 1 P (A) (4) (addition rule): P (A B) = P (A) + P (B) P (A B) 1.3, (conditional probability),., A P (A), B, A,, P (A B), the probability of A given B, given., P (A) (unconditional probability). (die).,. A 4, P (A) = 1/2, B, B., , B, A P (A B) = 1/3. P (B) = 1/2, P (A B) = 1/ ( ) A, B E, P (B) > 0, P (A B) B A, P (A B) = P (A B) P (B) (1.8) (1.8) : P (A B) = n(a B) n(b) (1.9) : n(a B) A B ; n(b) B. n(a B) n(b) = n(a B) n(ω) n(b) n(ω) = P (A B) P (B) : n(ω) Ω.

14 14 R (1.9), B Ω B;, B, A, ( ).,,, ;,,., ( ). (1.8) : A, B, P (A B) = P (B)P (A B) (1.10) P (A B) = P (A)P (B A) (1.11) ( ): ( n ) P A k = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A k A 1 A 2 A k 1 ) (1.12) k= , 2, 2, 1, 2 ( ). A= 1 B= 2.,, A, 2, 8.,, 4, 4, P (B A) = 4 C 2 8C 2 = 3 14, P (B A). R 1.9 ). choose(4,2)/choose(8,2) n 2n, n (.. Ω., 1, 2,, 2n (, 2n ), 2k 2k 1 k = 1, 2,, n,. 2n!, 1 1 2n, 2 2n 1 ;, 2 1 2n 2, 2 2n 3 ;., [2n(2n 1)] [(2n 2)(2n 3)] (2 1) = 2n!

15 A n., 1, 2,, n. A k k(k = 1, 2,, n)., A A k n, A = A k. k=1 P (A 1 ). 1,, 1. 2n 1. P (A) = 2n 1. P (A 2 A 1 ). 1, n 1, 2n 2., 1, 2(n 1) 1 = 1 2n 3, P (A 2 A 1 ) = 2n 3., : P (A k A 1 A 2 A k 1 ) = 1, k = 3, 4,, n 2n (2k 1) P (A) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A k A 1 A 2 A k 1 ) 1 = 2n 1 n = k= n (2n 1)!!, 0.5, 0.2,?, : = 0.1. ( :?)? :., (independence). 1.9 ( ) : A B, P (A B) = P (A) P (B A) = P (B) (1.13), A B (dependent).. : A, B ;.., A, B ;.,.

16 16 R 1.10 ( ) A, B, C P (A B) = P (A)P (B) P (A C) = P (A)P (C) P (B C) = P (B)P (C) A, B, C (1.14) P (A B C) = P (A)P (B)P (C) (1.15) A, B, C,., (1.10) : P (A B) = P (A)P (B) (1.16), A B., (1.16). (1.13) (1.16) : A={ 5 } B={ 6 } C={ 7 } : (1) A B? (2) A C? (1) A={(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6)}, 6. P (A) = 6 36 = 1 6. B={(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}, 5. A B 6, 1 5., {(5, 1)}. P (A B) = 1 5., P (A B) P (A), A B. (2) C={(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}, 6. A C 7, 1 5., {(5, 2)}. P (A C) = 1 6., P (A C) = P (A), A C.. :,,? :, (1.13) (1.16) (,

17 1 17 ).,,. 60 ( 100),, 59 60, a b,., k b a + b. : (1) 1 2? (2), 1,, b a + b? (1). A 1 1, A 2 2.,, P (A 1 ) = P (A 2 ) = b a + b. P (A 2 A 1 ). A 2 A 1 1, 2. a + b 1, b 1 ( 1 ). P (A 2 A 1 ) = b 1 a + b 1., P (A 2 A 1 ) P (A 2 ) (2). 1., (1), 2 P (A 2 A 1 ) = b 1 a + b 1 b a + b., 1, 2 P (A 2 A c b 1) = a + b 1 b. 1, a + b..,?,,.,,. :,,,,,?.,,,, ;,,,., ( ) b a + b.., A B, A B, A B,.. ; ;.?,

18 18 R.,,.,,.,,,,,.,,.,,..,,, A, B.,,,., ( ).,,, (Bayes Formula). 1.1 ( ) : 0 < P (B) < 1, A P (A) = P (B)P (A B) + P (B c )P (A B c ) (1.17) n : B 1, B 2,, B n, B i = Ω, P (B i ) > 0, i = 1, 2,, n, A P (A) = i=1 n P (B i )P (A B i ) (1.18) i=1 (1.17), (1.18) %, 10%.. S=, L=,, P (S) = 3/10, P (L) = 1/10, P (L S) = 10P (L S c ). P (L S). P (L) = P (S)P (L S) + P (S c )P (L S c ) = P (S)P (L S) P (Sc )P (L S), 1 10 = 3 10 P (L S) + 1 ( ) P (L S) 10 P (L S), P (L S) = 10/37..

19 ( ) : P (A) > 0, P (B) > 0, P (B A) = P (B)P (A B) P (A) (1.19) (1.19) P (A) P (A) = P (B)P (A B)+P (B c )P (A B c ). n : B 1, B 2,, B n, B i = Ω, P (A) > 0, P (B i ) > 0, i = 1, 2,, n, i=1 P (B i A) = P (B i)p (A B i ) P (A) = P (B i)p (A B i ) n P (B i )P (A B i ) i=1 (1.20) (1.19)., P (A B) = P (A)P (B A) = P (B)(A B) P (A)P (B A) = P (B)(A B) = P (B A) = (1.20) P (B)P (A B) P (A), 40, 1%., 80%;, 9.6% ( ).,,? A=, B=,, P (B) = 0.01, P (A B) = 0.8, P (A B c ) = P (B A). 1.4., (1.19), P (B)P (A B) P (B A) = P (A) P (B)P (A B) = P (B)P (A B) + P (B c )P (A B c ) = (1 0.01)

20 20 R 1.4..,,, 95%, 75%., 1% (prior probability). Tversky Kahneman, Sabrina. 3/10,, 1/5, 1/10, 2/5., 1/4;, 1/3 1/12;.. Sabrina. :,? A, B 1, B 2, B 3, B 4. B 1, B 2, B 3, B 4. : P (B 1 ) = 3 10 P (B 2 ) = 1 5 P (A B 1 ) = 1 P (A B 2 ) = P (B 1 A). [ (1.20)], P (B 1 A) = P (B 1)P (A B 1 ) 4 P (B i )P (A B i ) = i=1 P (B 3 ) = 1 P (B 4 ) = P (A B 3 ) = 1 P (A B 4 ) = = 1 2

21 , n, A B. 3. n 0 n 1, , 6, : (1) ; (2) 4 ; (3) : n, n 1, n 2,, n k k, n 1 + n n k = n. k, i n i, i = 1, 2,, k.. 5.,. : :,,.,,.,, :,,.,, ( ).,,,.,.,,, :.,,,?. 6. [0, 1], A B,. A 1, B 2,. 8. a > 0, x, y, 0 < x < a, 0 < y < a, xy < a , , ,., , :,. p, 1 p.,.

22 22 R 12. 5%, 0.25%, 22:21., (1)? (2),? 14..,,., , 0.3, 0.1., 0.7. (1). (2),. 16.,,. A,. A. : A, 2/3., 1/2, 1., A,. :? 17.,? , 2 2, 3 3, 4 1, 2, 3, , : P (A i )={, i} (i = 1, 2, 3) : (1) A 1, A 2, A 3?(2) A 1, A 2, A 3?(3),? 18. : ( n P k=1 A k ) = P (A 1 )P (A 2 A 1 )P (A 3 A 1 A 2 ) P (A k A 1 A 2 A k 1 ) 19. :. 20. R 20 30, ( ). 365,.

23 , Paul Erdos( ).,.,, ,,.,.,.,.,, 1, 0.,,.,. 2.1 ( ) E, Ω, ω Ω, X(ω), Ω X(ω), X = X(ω) (random variable)., X, X f(x).., Ω, ( )., ( ), ( )., ; ( ),,.,, ;,.., , 1, 0. A

24 24 R, A ,, X 1, 2,, X, X min.., Y, Y [0, 5] A = 0, 2.2 X = 5 5, 2.3 Y > 3 3min., (,, ), 2.3, ( ), (discrete random variable). (a, b), a, b, (continuous random variable).,,.,,.,,.,,.., X x, :. 2.3 ( ) X, x, F (x) = P (X x), < x < X (distribution function of random variable),, X F (x), (is distributed as). X F X (x), X,., X F (x) X x, (cumulative distribution function, CDF). (,,, ),,. F (x), X x, x. X F (x), X.,.,., x. 2.3,

25 2 25 [0, 5]., (, ). X < 0, P (X < 0) = 0; x 5, X < x, P (X x) = 1; 0 x < 5, P (X x) = x/5., F (x) : 0, x < 0; x F (x) =, 0 x < 5; 5 1, x 5, (, ),.,.,. (1) : F (x) (, ), x 1 < x 2, F (x 1 ) F (x 2 ); (2) : x, 0 F (x) 1, F () = lim F (x) = 0 x F ( ) = lim x F (x) = 1 (3) : F (x) x, a lim F (x) = F (a), F (a + 0) = F (a) x a +,. F (x). ( ),,., F (x). F (x), X., a < b, : P (a < X b) = F (b) F (a) P (a X b) = F (b) F (a 0) P (X b) = 1 F (b 0) P (X > b) = 1 F (b) P (a < X < b) = F (b 0) F (a) P (a X < b) = F (b 0) F (a 0),. F (x) a, b, F (a 0) = F (a), F (b 0) = F (b)

26 26 R, F (a 0) = lim x a F (x) P (a < X < b) = P (a < X b) = P (a X < b) = P (a X b) cm.,. X,. x < 0, X x, F (x) = 0., x 10, X x, F (x) = 1. 0 x 10., P (0 X x) = P (X x) = F (x) = kπx 2, k. x = 10, P (X 10) = F (10) = 1., k = 1/100π., X : F (x) = 1 100π πx2 = x2 0, x < 0; 1 F (x) = 100 x2, 0 x < 10; 1, x 10, F (x), a X < b, a < X b ( ) X, x i (i = 1, 2,, n, ), X P (X = x i ) = p(x i ) = p i, i = 1, 2,, n, (2.1) X (probability mass function, PMF),,. ( 2.1),. 2.1 X x 1 x 2 x n P (X) p 1 p 2 p n

27 2 27,.. :, p i 0;,. p i = 1.. : F (x) = P (X x) = p i, i = 1, 2,, n, (2.2) x i x i=1, ( ). X x i, X x i p i., F (x), F (x) x i P (X = x i ) = p i.,.,.,., (0,1) x 1, x 2,, P (X = x i ) = 1, i = 1, 2, 2i,.,,. [ : (0,1), ],,,, : (1)X ; (2)X. 1,2,3,4, , X 3 X. (1),. X 3, 4, 5. X. 5 3, 5 C 3 = 10. 3,, {1, 2, 3}; 4, 3 : {1, 2, 4}, {1, 3, 4}, {2, 3, 4}; 5, 6, {1, 2, 5},{1, 3, 5},{1, 4, 5}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}. P (X = 3) = 1 10 X 3 6 = 0.1, P (X = 4) = = 0.3, P (X = 5) = = 0.6 X P (X)

28 28 R (2), 0, x < 3; 0.1, 3 x < 4; F (x) = 0.4, 4 x < 5; 1, x 5, c, P (X = c) = 1., (degenerate distribution). 1, x c; F (x) = 0, x < c 2.1.4, X (a, b), x i P (X = x i ) 0., 1,., X, X, X.,,,. 2.5 ( ) f(x), x F (x) X, F (x) = x f(t) dt (2.3) X, F (x), f(x) X (probability density function, PDF),. f(x) : (1), f(x) 0; (2), f(x) dx = 1. f(x),. [ f(x) x ], f(t) F (x).. x,, {x < X x + h} P (x < X x + h) = F (x + h) F (x)., [F (x + h) F (x)] /h x h (x, x + h),. h 0, F (x + h) F (x) lim = F (x) = f(x) h 0 h x., 1,., 1. [f(x)h = f(x) dx],.

29 2 29,,.,,..,,, F (x) = f(x)., P (a < X < b),. X (a, b], x = a, x = b, y = f(x) x., F (x) = f(t) dt = 1., P (a < X < b) = P (a X < b) = P (a < X b) = P (a X b). 0.,, (0, a), X. (0, a),,. X. X F (X) f(x)., F (x) x f(x). x < 0, F (x) = P (X x) = 0; x a, F (x) = P (X x) = 1. 0 x < a, F (x) = P (X x) = P (0 X x) = kx, k. x = a, F (x) = 1, k = 1/a., F (x) = x/a., X 0, x < 0; x F (x) =, 0 x < a; a 1, x a F (x),. x < 0 x > a, f(x) = 0; 0 < x < a, f(x) = 1/a. x = 0 x = a, F (x),., ( ),.,.,,,.,., 0,., X 1, 0 x < a; f(x) = a 0, (0, a) (uniform distribution),, X U(0, a).

30 30 R 2.7 0, x < 0; x F (x) =, 0 x < 1; 2 1, x 1 : (1)F (x)?(2) F (x), X?. (1) :.. F (x), F (x). (2) X, f(x) F (x) = x f(t) dt, f(x) dx = 1. f(x),.,,, F (x) = f(x). F (x) x, 1 F (x) = f(x) = 2, 0 < x < 1; 0, x < 0 x > 1 f(x), x = 1, f(1),, f(x) dx = 1., f(x) dx = 1/2 1., F (x) X,.,.,,., ,,.,. (, ). (expectation, expected value), (mean).,, ( ) ( ) X P (X = x i ), i = 1, 2,, n,, x i p i, x i p i X i=1 i=1

31 2 31,, E(X), µ. E(X) = x i p i (2.4) i (i = 1, 2, 3,, n), E(X) = i=1 n x i p i (2.5) i=1,.,,,,. x i,,.,,.,. 2.7 ( ) xf(x) dx, E(X) = X f(x),.,.. xf(x) dx (2.6) xf(x) dx. x i p i,, f(x), f(x) x i=1, X x f(x) x, (, ), (improper integral, ).. :,,,..,..,,., 3 800, 3 800,,, , ;, , 70.

32 32 R 2.2.2,.,.,,.?,,, A B,.,,,,.., X E(X) = X µ,,., [ E(X µ) = 0, ].,, X µ,., ( 20,,, ), : (X µ) 2., (X µ) 2, X µ ; (X µ) 2 ( 0), X µ., (X µ) 2,. X, µ, (X µ) 2. (X µ) 2,.,, ( ) X 2 E(X 2 ), [X E(X)] 2 X (variance), Var(X) = E[X E(X)] 2 (2.7) (standard deviation, SD). σ 2 ( sigma ), σ (σ Σ ). D(X), D Deviation. X σx 2 σ X.,. 2.9 ( ) X [x E(X)] 2 p i, X ; Var(x) = i=1 n (2.8) [x E(X)] 2 p i, X i=1 (2.7) (2.8), ( [X E(X)] 2 ).

33 ( ) X : Var(X) = [x E(X)] 2 f(x) dx (2.9) (2.8) (2.9),,.,, ;,,..,, ,,.,,.,,.. : (1) c ( ), E(c) = c, ; (2) E(cX) = ce(x); (3) E(aX + b) = ae(x) + b, a, b ( ); (4) E(X ± Y ) = E(X) ± E(Y ); (5) g(x), h(x), E[g(X) ± h(x)] = E[g(X)] ± E[h(X)]; (6) X Y, E(XY ) = E(X)E(Y );. (1) (2) (3), (4) (5),,.. 2.1,.,. (6),.,,, ( ) X P (X i ) = p i f(x), X Y = g(x) E(Y ) = E[g(X)] = g(x i )p i, X ; i=1 (2.10) E(Y ) = E[g(X)] = g(x)f(x) dx, X

34 34 R.,. 2.8 X : E(X 2 ). X 0 1 P (X) 1 p p 2.1, X 2,. Y = f(x) = X 2, Y X., X, Y ;, X, Y.,., Y, f(x) = X 2, X. X 2 : X P (X) 1 p p E(X 2 ) = 1 p + 0 (1 p) = p. 2.1, : E(X 2 ) = 0 2 (1 p) p = p. 2.9 X : E(X 2 ). X P (X) X 0 1 P (X) , X 2 : P (X 2 = 1) = 0.5, P (X = 1) + P (X = 1) = ,,. E(X 2 ) = = , : E(X 2 ) = ( 1) = 0.5.,. 2.1, g(x) g(x)..,, n, n. X,.

35 2 35 X i (i = 1, 2,, n) 1, i ; X i = 0, i n X = X i. i=1 E(X i ) = 1 P (X i = 1) + 0 P (X i = 0) = 1 n n E(X) = E(X i ) = n 1 n = 1. i=1,, (1) Var(c) = 0, 0; (2) Var(X + c) = Var(X); (3) Var(aX + b) = a 2 Var(X); (4) Var(X) = E(X 2 ) [E(X)] 2 ; (5) X Y, Var(X ± Y ) = Var(X) + Var(Y ). (1). (2) (3). (3) (4). (3)., Var(aX + b) = E[(aX + b) E(aX + b)] 2 = E[aX + b ae(x) b] 2 = a 2 E[X E(X)] 2 = a 2 Var(X) (4)., Var(X) = E[X E(X)] 2 = E{X 2 2X E(X) + [E(X)] 2 } = E(X 2 ) 2E[X E(X)] + E[E(X)] 2 = E(X 2 ) 2E(X) E(X) + [E(X)] 2 = E(X 2 ) [E(X)] 2 (4).

36 36 R (5), X Y, X + Y X Y,,, (3) Var( Y ) = Var(Y ). X Y.,, X( : ),. : (1) ; (2) Y = 60(13 X),,. X P (X) (1), E(X)=11.4( ), Var(X)= 0.84=0.917( ).,,. (2) E(Y ) = E[60(13 X)] = 60E(13 X) = E(X) = 96( ). Var(Y ) = Var[60(13 X)] = 60 2 Var(13 X) = 3 600Var(X) = = 55( ) X e x 2, x < 0; F (x) = 1/2, 0 x < 1; e 1 2 (x 1), x 1., E(X) = e x 2, x < 0; f(x) = 0, 0 x < 1; 1 4 e 1 2 (x 1), x 1 xf(x) dx = = = 1 Var(X), E(X 2 ). 0 x ex 2 dx + 1 [ ] 1 x 4 e 1 2 (x 1) dx E(X 2 ) = x 2 f(x) dx = = = x 2 e2 2 dx + 1 x 2 [ 1 4 e 1 2 (x 1) ] dx Var(X) = E(X 2 ) [E(X)] 2 = = 6.5.

37 , 10..,. X,. X = X i (i = 1, 2,, 10) 1, i ; X i = 0, i n X i. i 1/10, i i=1 9/10. i,,, (9/10) 20, 1 (9/10) 20. X i X i 0 1 ( ) 9 20 ( ) 9 20 P (X i ) ( ) [ 20 ( ) ] 20 ( ) E(X i ) = = E(X) = [ n E(X i ) = 10 1 i=1. ( ) ] 20 9 = ,,.,, : p, n, k?.. n k,, ( ) n, (k n k ) p k (1 p) n k. k ( ) n p k (1 p) n k.. k, (binomial distribution) : (1) n ;

38 38 R (2) ; (3), ; (4). (success),, (failure).,, 4, ( ) X ( ) n P (X = k) = p k (1 p) n k, k = 0, 1, 2,, n (2.11) k X, X B(n, p). : n ; p ; k n. n, p (parameter). n p,. X 0, 1, 2,, n n ,, p = 0.5, ; p < 0.5, ( ); p > 0.5, ( ) E(X) = np Var(X) = np(1 p) (2.12)

39 2 39.,, (Bernoulli distribution). n = 1, : X 0 1 P (X) 1 p p, X = 0, X = 1., p, p(1 p). (Bernoulli trial)., n, n., X i (i = 1, 2,, n), 1, i ; X i = 0, i i p. X = X 1 + X X n. X B(n, p)., : E(X) = E(X 1 + X X n ) = E(X 1 ) + E(X 2 ) + + E(X n ) = np Var(X) = Var(X 1 + X X n ) = Var(X 1 ) + Var(X 2 ) + + Var(X n ) = np(1 p),,., : 20%. 100, 120,. X= 120, X B(120, 0.8). P (X > 100) = 1 P (X 100) = R 1-pbinom(100, 120, 0.8), 100, 120, R, R, ( ) X (2.13) P (X = k) = e λ λk, k = 0, 1, 2, (2.13) k! λ > 0, X λ (poisson distribution), X P (λ). X π(λ) X Poisson(λ).

40 40 R (2.13), k=0 λ λk e k! = e λ k=0, λ k k! = e λ e λ = 1 (2.14) e x = 1 + x + x2 2! + + xk k! + = k=0 x k k! (2.15) x = λ. (2.15). 1 : λ. µ, : (µ) (σ 2 ) λ.. X λ,,, E(X) = = = λ = λ k=0 k=1 λ λk ke k! λ λk ke k! k=1 m=0 e λ λk 1 (k 1)! λ λm e m! ( k = 0 0, 1 ) [ m = k 1, (2.14) ] = λ (2.16) E(X 2 ) = = k=0 k 2 λ λk e k! kλe λ λk 1 (k 1)! k=1 m=k 1 ===== λ = λ k=0 m=0 λ λm me = λe(x) + λ λ λm (m + 1)e m! m! + λ k=0 λ λm e m! = λ 2 + λ (2.17) Var(X) = E(X 2 ) [E(X)] 2 = λ 2 + λ λ 2 = λ (2.18)

41 2 41 λ (rate) (intensity), ( )., Simeon-Denis Poisson ( ),, n,.,,,,,,. λ. λ, ; λ, 0, ;,. λ = 20, B(n, p), n p,, (,,, ).., X P (λ 1 ), Y P (λ 2 ), Z = X + Y P (λ 1 + λ 2 ). X Y..,

42 42 R,. X B(n, p), n, p 0 np λ,.., ( n p ), λ = np < 5,.,,.,, (Stochastic Process).,.,, (count data), ( ), (Poisson Regression) : p(0 < p < 1).,.. X=, P (X = k), k = 1, 2,.. X = k k, k 1. P (X = k) = (1 p) k 1 p. (geometric distribution). P (X = k) = (1 p) k 1 p ( ) X P (X = k) = (1 p) k 1 p, k = 1, 2,, n, (2.19) X, X G(p)., p ; k. ( p). ( 2.3).. : (1) ; (2), ; (3) ; (4)., n,. E(X) = 1 p Var(X) = 1 p p 2 (2.20)

43 q = 1 p,, E(X) = k(1 p) k 1 p = p kq k 1 = p i=1 = p d dq,. ( ) q k n=0 i=1 = p d dq i=1 ( q 1 q ) = :. : 2.3 ( ) i=1 dq k dq p (1 q) 2 = 1 p x n = 1, x < 1. 1 x X G(p), m n, P (X > m + n X > m) = P (X > n) (2.21)., ( A) (X). X > m m A. n, A, X > m + n., m A, n A, n A, m, m. 2.3.

44 44 R P (X > n) = (1 p) k 1 (1 p)n p = p = (1 p)n 1 (1 p) k=n+1 P (X > m + n X > m) = = P ({X > m + m} {X > m}) P (X > m) P (X > m + n) P (X > m) = = (1 p) n = P (X > n). (1 p)m+n (1 p) m, X r, X (r, p) (negtive binomial distribution), X Nb(r, p), P (X = k) = ( ) k 1 (1 p) k r p r (2.22) r 1 :, ( ( ) p). k 1 k 1 r 1, p r 1 (1 p) k r, r 1 p, (2.22). r = 1,., E(X) = r p Var(X) = r 1 p p 2 (2.23) 2.15, 11:30 12:30, 20%... (1),,,? (2) 10,? (3) : 5%,,.,. 100, 10,, : 20%?,. (1) X., X G(0.2). E(X) = 5, 5.

45 2 45 (2) 10, P (X > 10) = 1 P (X 10) = , 100, 11, 10., R. R 1-pgeom(9, 0.2),, pgeom(k-1, p) k 1. r = 1., R, pgeom()(r ) pgeom(q, p), q.,,. (3) 0.2, X 100, Y B(100, 0.2). P (Y 10) = 10 k=0 ( ) k k = < 0.05 k R pbinom(10,100,0.2)., 0.2, ,, :! ( ;, ) , , (hyper-geometric distribution) : N M, n, k? N,,., : P (X = k) = ( )( ) M N M k n k ( ) N, k = 0, 1, 2,, r (2.24) n : r {M, N}, M N, n N, n, N, M., (2.24)., r P (X = k) = 1., (2.24) X, X H(n, N, M). k=0

46 46 R E(X) = n M N Var(X) = nm(n M)(N n) N 2 (N 1) (2.25),,.,..,.,,, N n, M/N.,, : ( )( ) M N M ( ) k n k n ( ) p k (1 p) n k, p = M N k N n (2.26),, 1/10.,. (relatively large population) ( ) X 1 f(x) = b a, a < x < b; 0, (2.27) X (a, b) (uniform distribution), X U(a, b)., [a, b]. ( ) E(X) = a + b 2 Var(X) = (a b)2 12 X U(a, b), a < c < c + l < b c c + l, P (c < X < c + l) = c+l c 1 b a dx = l b a X (a, b),.. : X (a, b),?

47 2 47,,, X U(0, 20). X 10, 10,, P (X > 10) = 0.5(?). Y 10 X 10. X B(10, 0.5). ( ) 10 1 P (Y = 0) = = R 1-pbinom(0, 10, 0.5) ( ) X λe λx, x 0; f(x) = 0, x < 0. (2.28) X (exponential distribution), X Exp(λ), λ > 0. (skewed distribution, ), ( 2.4).,. 2.4 : E(X) = 1 λ Var(X) = 1 λ 2 (2.29)

48 48 R E(X) = xf(x) dx = = xe λx x d( λe λx ) e λx dx = 1 λ e λx = 1 0 λ,. θ = 1/λ, θ. 1 e λx, x 0; F (x) = 0, x < 0 (2.30). 2.4 X Exp(λ), s t, P (X > s + t X > s) = P (X > t) (2.31).,. X ( : ), s P (X > s), t P (X > s + t X > s), t P (X > t), s P (X > t) = 1 P (X t) = 1 (1 e λt ) = e λt P (X > s + t X > s) = = P ({X > s + t} {X > s}) P (X > s) P (X > s + t) P (X > s) = e λt = P (X > t) = e λ(s+t) e λs t [0, t] N(t) λt, T. N(t) P (λt), λt (λt)k P [N(t) = k] = e, k = 0, 1, 2, k! T, {T > t} [0, t], {T > t}={n(t) = 0}, P (T > t) = P [N(t) = 0].

49 2 49 t < 0, F T (t) = P (T t) = 0. t 0, F T (t) = P (T t) = 1 P (T > λt (λt)0 t) = 1 P [N(t) = 0] = 1 e = 1 e λt. 0! λ, T Exp(λ) min), ( : 1 f(x) = 5 e x 5, x 0; 0, x < 0 (2.32), 10min,. 10, Y. P (Y 2). p = P (X > 10) = 1 P (X 10) = 1 (1 e 2 ) = e 2. Y B(10, e 2 ). P (Y 2) = 1 P (Y 1) = R 1-pbinom(1,10,exp(-2)) (normal distribution), (Gauss distribution), (Friedrich Gauss, ).,.,,., ; ;, ; ( ) X f(x) = 1 2πσ e (x µ)2 2σ 2, < x < (2.33) X, X N(µ, σ), µ, σ > 0. F (x) = 1 2πσ x e (t µ) 2 2σ 2 dt, < x < (2.34) F (x). X N(µ, σ 2 ),,. X N(µ, σ), ;, σ 2, σ. ( ),.

50 50 R : µ σ.,. (normal curve) (error curve),., ( 2.5) : (1) (bell-shaped) (symmetric) (uni-modal, ), x = µ; (2) x, (asymptote) x ; (3), (median) (mode) (mean) ; (4) µ ± σ (inflection points). 2.5, (µ) (σ).,,, ( 2.6). 2.6 ( ),, ( ),, ( 2.7). ( ),,,,

51 2 51,. 2.7,.,? ( ) X f(x) = 1 2π e x2 2, < x < (2.35) X (standard normal distribution), X N(0, 1), 0, 1. Z, Z N(0, 1). F (x) = 1 2π x e t2 2 dt, < x < (2.36). 2.5 ( ) X N(µ, σ), Z = X µ, Z N(µ, σ). σ (standardization). X Z F X F Z, f X (x) f Z (z). ( X µ F Z (z) = P (Z z) = P σ ) z = P (X µ + zσ) = F X (µ + zσ). F Z (z) = F X (µ+ zσ) z, f Z (z) = d dz F X(µ + zσ) = f X (µ + zσ) σ = 1 2πσ e (µ+zσ µ)2 2σ 2 σ = 1 2π e z2 2, Z N(0, 1). Z z (z-score), z (quantile) (standardised score) X N(µ, σ), E(X) Var(X).

52 52 R,. Z = X µ, 2.5, σ Z N(0, 1). E(Z) = z 1 2π e z2 2 (integrand), 0( ). E(Z) = 0. Var(Z) = E(X 2 ) [E(X)] 2 = E(X 2 ) = dz z 2 1 2π e z2 2 = 1 z 2 e z2 1 2 dz = z d ( e z2 2 ) 2π 2π = 1 [ z( e z2 2 ] ) e z2 2 dz 2π = 1 e z2 1 2 dz = 2π = 1 2π 2π dz Γ( Gamma) : 0. t/ 2 x, e x2 dx = π/2,,, 0 ( ) e ( t 2 ) 2 t d = e t2 2 dt = π 2 e t22 dt = 2 0 e t2 2 dt = 2 2 π 2 = 2π,. Γ,. Gamma Beta,.,. 0, 1. : E(X) = E(µ + Zσ) = E(µ) + 0 = µ; Var(X) = Var(µ + Zσ) = σ 2 Var(Z) = σ 2,,,.,,,.

53 (1) P ( 2 Z 2), Z N(0, 1); (2) P (Z 2), Z N(0, 1); (3) P ( 2 X 2), X N(4, 2); (4) P (X 20), X N(15, 10). (1) R: pnorm(2)-pnorm(-2)=0.9545; R : pnorm(q, mean =, sd = ), mean=0, sd=1, ; q (quantile), P (X < x) x., pnorm(2,0,1) pnorm(2) P (X 2), X N(0, 1). R,. (3). (2) R: 1-pnorm(2)= (3) P ( 2 X 2) = P (X 2) P (X < 2) ( X 4 = P 2 4 ) ( X 4 P = P (Z 1) P (Z < 3) < 2 4 ) 2.,,.,. R: pnorm(2,4,2)-pnorm(-2,4,2)= (4) R: 1-pnorm(20,15,10)= X( : kg) N(µ, σ). P (X 70) = 0.5, P (X 60) = 0.25, : (1) µ σ; (2) 10, 5 65kg. ( X µ (1) P (X 70)=P < 70 µ ) ( =P Z 70 µ ) = 0.5, 70 µ = σ σ σ σ 0, µ = 70. ( ) P (X 60) = P Z = z , σ = σ = σ R z : qnorm(0.25).,r z, qnorm(p, mean =, sd = ),,. (2) Y 10, 65kg. Y B(10, p), p = P (X > 65) = P (Y 5) = 1 P (Y 4) =

54 54 R ) 2.22 X N(172, 6)( cm). (1) 0.01? ( (2) 185 cm, (1) a cm, P (X a) = 1 P (X a) = 0.01, X N(172, 6). P (X a) = 0.99 a. R qnorm(0.99, 172, 6) (2) Y 100, Y B(100, p), p = P (X 185) = P (Y 2) = , R : 2.23 X N(µ, σ). : (1) P (µ σ X µ + σ); (2) P (µ 2σ X µ + 2σ); (3) P (µ 3σ X µ + 3σ). pbinom(2,100,0.0151)., (1), P (µ σ X µ + σ) = P (X µ + σ) P (X µ σ) ( = P Z µ + σ µ ) ( P Z µ σ µ ) σ σ = P (Z 1) P (Z 1) = P (µ 2σ X µ + 2σ) = ; P (µ 3σ X µ + 3σ) = ,, 68% ; 95% ; 99.7%.., N(163, 6)( : cm), : 68% 157 cm 169 cm, 95% 151 cm 175 cm, 99.7% 145 cm 181 cm,.,,,, (empirical rule). 3., t χ 2 F,.

55 , X, X g(x). g(x). X g(x), X. X : X x 1 x 2 x n P (X) p 1 p 2 p n g(x), : X g(x 1 ) g(x 2 ) g(x n) P (X) p 1 p 2 p n [g(x i ) = g(x k ), i, k = 1, 2, ], g(x) X, Y = X Z = X 2 + X. X P (X) Y 0, 1, P (Y = 0) = P (X = 0) = 0.3 P (Y = 1) = P (X = 1) + P (X = 1) = 0.7 Y : Y 0 1 P (Y ) , Z 0, 2, P (Z = 0) = P (X = 1) + P (X = 1) = 0.5 P (Z = 2) = P (X = 1) = 0.5 : Z 0 2 P (Z)

56 56 R , X U(0, 1). Y = X n. 1, 0 < x < 1; f X (x) = 0, 0, x < 0; F X (x) = x, 0 x < 1; 1, x 1 Y (0,1). 0 < y < 1, F Y (y) = P (Y y) = P (X n y) = P (X y 1 n ) = FX (y 1 n ) = y 1 n y, Y 1 f Y (y) = n y 1 n n, 0 < y < 1; 0, (2.37) 2.26 X f X (x), Y = X 2. Y 0. y 0, F Y (y) = P (Y y) = P (X 2 y) = P ( y X y) = F X ( y) F X ( y) y, Y 1 f Y (y) = 2 y [f X( y) + f X ( y)], y 0; 0, y < X f X (x), Y = X. (2.38), y 0, F Y (y) = P (Y y) = P ( X y) = P ( y X y) = F X (y) F X ( y), Y f X (y) + f X ( y), y 0., Y = g(x), Y,., f Y (y) = df Y (y). dy F Y (y) = P (Y y) = P (g(x) y) = g(x) y f X (x) dx (2.39)

57 2 57 Y.,,,., X, f X (x). Y = g(x), y = g(x), x = h(y), Y = g(x), : (a, b) y = g(x). f X [h(y)] h (y), a < y < b; f(x) = 0, y = g(x). Y a, F Y (y) = 0; Y b, F Y (y) = 1. a < Y < b, F Y (y) = P (Y y) = P [g(x) y] = P (X h(y)) = F X [h(y)] = h(y) f X (x) dx (2.40) y = g(x), h = g(y) (?). h (y) > 0. y, f Y (y) = f X [h(y)] h (y) y = g(x),, h (y) [, :, f Y (y), ]. a ,. 2.7 X N(µ, σ), Y = ax + b N(aµ + b, a σ), a, b, X Y (, ). a > 0, y = ax + b(a 0), x = h(y) = y b a, h (y) = 1 a. 2.6 ( ) y b f Y (y) = f X [h(y)] h (y) = f X 1 a a = 1 e ( y b a µ)2 2σ 2 1 2πσ a 1 = e [y (aµ+b)] 2 2(aσ) 2 2π(aσ) N(aµ + b, aσ). a < 0, y = ax + b(a 0), x = h(y) = y b a, h (y) = 1 a f Y (y) = e [y (aµ+b)] 2 2(aσ) 2 2π( a σ)

58 58 R N(aµ + b, a σ)..,, X N(0, σ), Y = X. Y = X (, ), y = x x = y, 2.7 Y N(0, σ). X Y.,,. 2.6,, k 2.18 ( ) X, k, µ k = E(X k ) (2.41) k (original moment), ν k = E[X E(X)] k (2.42) k (central moment). E[(X c) k ], c = 0, c = E(X).,,. (moment).., ( ), ( ),. k, ν k = E[X E(X)] k = E(X µ 1 ) k (2.43) 4 : ν 1 = 0; ν 2 = µ 2 µ 2 1; ν 3 = µ 3 3µ 2 µ 1 + 2µ 3 1; ν 4 = µ 4 4µ 3 µ 1 + 6µ 2 µ 2 1 3µ 4 1 (2.44), X N(0, σ), 4 ( ) µ 1 = ν 1 = 0; µ 2 = ν 2 = σ 2 ;

59 2 59 µ 3 = ν 3 = 0; µ 4 = ν 4 = 3σ 4.,,, ,., ;,. :,.,,., ( ) CV(X) = Var(X) E(X) (2.45) X (coefficient of variation).,.,,, ( )., F (x) α x, x α. x α (quantile)., (quantile regression),, ( ) X f(x), F (x), 0 < α < 1, F (x α ) = xα f(x) dx = α (2.46) x α X α,. α, (percentile). α = 0.5, x 0.5 (median), x 0.5 F (x α ) = x0.5 f(x) dx = 0.5, α = , x 0.25 x 0.75 (first quartile) (third quartile).

60 60 R α z α, N(µ, σ), α x α x α = µ + σ z α., 1 F (x α ) = x α f(x) dx = α (2.47) x α., ,., (skewness) ( ) E[X E(X)]3 β s = [E(X E(X)) 2 ] 3 2 (2.48) X (coefficient of skewness)., (skewedness). 0, 0. β s,. β s > 0, (positively skewed), (right skewed),, ; β s < 0, (negatively skewed), (left skewed),.,,,., ;, ( 2.8) (kurtosis).

61 ( ) β k = X (coefficient of kurtosis). E[X E(X)]4 [E(X E(X)) 2 ] 2 3 (2.49). 0. β k < 0,, (heavy tail); β k > 0,, (light tail). k,.,,., β s β k 0,.. 2.7,.,,,.,,.,,,,, (n ) X 1 (ω), X 2 (ω),, X n (ω) Ω = {ω} n, X(ω) = (X 1 (ω), X 2 (ω),, X n (ω)) (2.50) n ( n ), (random vector)., ( ) n x 1, x 2,, x n, n {X 1 x 1 },{X 2 x 2 },, {X n x n } F (x 1, x 2,, x n ) = P (X 1 x 1, X 2 x 2,, X n x n ) (2.51) n (jointly culmulative probability distribution function),.. (X, Y ), F (x, y) = P (X x, Y y) {X x}, {Y y}.,,

62 62 R a < b, c < d P (a < X b, c < y d) = F (b, d) F (a, d) F (b, c) + F (a, c) 0 (2.52) F (x, y) ( ) (X, Y ) (x i, y j ), p ij = P (X = x i, Y = y j ), i = 1, 2,, j = 1, 2, (2.53) (jointly probability mass function),, (X, Y ) ( ) f(x, y), (X, Y ) F (x, y) F (x, y) = x y f(u, v) dv du (2.54) (X, Y ) (jointly continuous random variable), f(x, y) (X, Y ) (joint probability density function). F (x, y), f(x, y) = 2 F (x, y)(2.55) x y,. G, {(X, Y ) G} G P ((X, Y ) G) = f(x, y) dx dy G, f(x, y) G,,.,,.. X Y F X (x) F Y (y), (X, Y ) (marginal distribution), F X (x) X, F Y (y) Y. F (x, y) y, {y < }, F (x, ) = lim y F (x, y) = P (X x, Y < ) = P (X x) = F X(x) (2.56) F (, y) = P (X <, Y y) = P (Y y) = F Y (y).

63 ( ) (X, Y ) P (X = x i, Y = y j ), j P (X = x i, Y = y j ) = P (X = x i ), i = 1, 2, (2.57) j=1 X., i Y. P (X = x i, Y = y j ) = P (Y = y j ), j = 1, 2, (2.58) i=1 (X, Y ) f(x, y), F X (x) = F (x, ) = F Y (y) = F (, y) = x y ( f X (x) = f Y (y) = ) f(u, v) dv du = ) f(u, v) du dv = ( x y f X (u) du f Y (v) dv f(x, y) dy (2.59) f(x, y) dx (2.60), f X (x) f Y (y) X Y., (X, Y ), (, ),.,, X Y,., ( ) n (X 1, X 2,, X n ) F (x 1, x 2,, x n ), X i F (x i ), x 1, x 2,, x n F (x 1, x 2,, x n ) = n F (x i ) (2.61) i=1 P (X 1 x 1, X 2 x 2,, X n x n ) = n P (X i x i ) (2.62) i=1

64 64 R X 1, X 2,, X n, X 1, X 2,, X n., n x 1, x 2,, x n ( ) n x 1, x 2,, x n, P (X 1 = x 1, X 2 = x 2,, X n = x n ) = n f(x 1, x 2,, x n ) = f Xi (x i ), i=1 n P (X i = x i ), i=1 (2.63), X Y f(x, y) = f X (x)f Y (y) (2.64) : f(x, y) (X, Y ) ; f X (x) f Y (y) X Y ,. (X, Y ), X (conditional ditribution), Y X., X, Y, X Y. 1.7m,, ( ) P (Y = y j ) = p j = (X, Y ) p ij = P (X = x i, Y = y j ), i = 1, 2,, j = 1, 2, p ij > 0 y j, i=1 p i j = P (X = x i Y = y j ) = P (X = x i, Y = y j ) P (Y = y j ) = p ij p j, i = 1, 2, (2.65) Y = y j X. X = x i Y ( ) (X, Y ) f(x, y), f X (x), f Y (y), f X (x) > 0 x, X = x Y F (y x) = f(y x) = y f(x, y) f X (x). f(x, v) dv (2.66) f X (x) (2.67),,.

65 ( ) f Y (y) = f X (x) = f X (x)f(y x) dx; (2.68) f Y (y)f(x y) dy (2.69) 2.32 ( ) f(y x) = f Y (y)f(x y) f Y (y)f(x y) dy (2.70) f(x y) ( ) value), : P (Y = y j X = x), j E(Y X = x) = yf(y x) dy, (conditional expected E(X Y = y). (X, Y ) ; (X, Y ) E(Y X = x) x. x, E(Y X = x),,.. g(x) = E(Y X = x),,,. (X, Y ). f Y X (y x) = f Y (y) f X Y (x y) = f X (x) (2.71) X Y.., X N(µ 1, σ 1 ), Y N(µ 2, σ 2 ), X, Y, X + Y N(µ 1 + µ 2, σ1 2 + σ2 2 )... X, Y,., X N(0, 1), Y = X, Y N(0, 1), X + Y 0., 0., Var(X) + Var(Y ) = σ σ 2 2, Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ), Cov(X, Y )..

66 66 R, ax N(aµ, a σ), a, : n, a 1 X 1 + a 2 X a n X n N(µ 0, σ 0 ) (2.72), n n µ 0 = a i µ i, σ0 2 = a 2 i σi 2 (2.73) i=1 i=1, X N(3, 1), Y N( 2, 2), X, Y, 2X 3Y 10 N(2, 40) ,.,,., (n ). 2.8 ( ) (X, Y ), Z = g(x, Y ) ( ) P (X = x i, Y = y i ), i j E[g(X, Y )] = g(x, y)f(x, y) dx dy, ; (2.74),. X 1, X 2,, X n, E(X 1 X 2 X n ) = E(X 1 )E(X 2 ) E(X n ); Var(X 1 ± X 2 ± ± X n ) = Var(X 1 ) + Var(X 2 ) + + Var(X n ) X 1, X 2,, X n, E(X 1 ± X 2 ± ± X n ) = E(X 1 ) ± E(X 2 ) ± ± E(X n ).., ( ) X Y (covariance). E[(X E(X))(Y E(Y ))], Cov(X, Y ) = E[(X E(X))(Y E(Y ))] (2.75) ρ XY = Cov(X, Y ) = Cov(X, Y ) (2.76) Var(X) Var(Y ) σ X σ Y X Y (coefficient of linear correlation), ρ.

67 2 67 X X E(X), Y Y E(Y ). : (1) X E(X) Y E(Y ) ( X Y, E(X) E(Y ) ), Cov(X, Y ) > 0, ρ > 0, X Y (positive linear correlation); (2) X E(X) Y E(Y ) ( X Y ), Cov(X, Y ) < 0, ρ < 0, X Y (negative linear correlation); (3) Cov(X, Y ) = 0, X Y (no linear correlation), X Y,. : (1) Cov(X, Y ) = Cov(Y, X); (2) Cov(X, Y ) = E(XY ) E(X)E(Y ); (3) Cov(X, X) = Var(X); (4) X Y, Cov(X, Y ) = 0, ; (5) Cov(X + Y, Z) = Cov(X, Z) + Cov(Y, Z); (6) a, Cov(X, a) = 0; (7) a, b, Cov(aX, by ) = abcov(x, Y ); (8) (X, Y ), Var(X ± Y ) = Var(X) + Var(Y ) ± 2Cov(X, Y ).,, (2), (4) (8). (8). Var(X + Y ), Var(X Y )., Var(X + Y ) = E[(X + Y ) E(X + Y )] 2 = E[(X E(X)) + (Y E(Y ))] 2 = E[(X E(X)) 2 + 2(X E(X))(Y E(Y )) + (Y E(Y )) 2 ] = E[X E(X)] 2 + E[Y E(Y )] 2 + 2E[(X E(X))(Y E(Y ))] = Var(X) + Var(Y ) + 2Cov(X, Y ) (2). Cov(X, Y ) = E[(X E(X))(Y E(Y ))] = E[XY XE(Y ) Y E(X) + E(X)E(Y )] = E(XY ) E(X)E(Y ) E(Y )E(X) + E(X)E(Y ) = E(XY ) E(X)E(Y ) (2), X Y, E(XY ) = E(X)E(Y ), Cov(X, Y ) = 0, (4), X Y, Var(X ± Y ) = Var(X) + Var(Y )..

68 68 R (2), X Y 0 X Y.,, (X, Y ) 1/4 : (1, 0), (0, 1), ( 1, 0), (0, 1), X Y. X Y 0, E(X) = E(Y ) = 0;, (X, Y ) XY 0, E(XY ) = 0. Cov(X, Y ) = E(XY ) E(X)E(Y ) = 0, X Y., X Y., X = 0, Y ; X, Y. X Y,,.,,..,. : (1) 1 ρ XY 1; (2) ρ XY Cov(X, Y ), 0; (3) ρ XY = ±1 X Y, a(a 0) b, Y = ax + b; (4) ρ XY = 1, Y = ax + b a > 0, X Y ; (5) ρ XY = 1, Y = ax + b a < 0, X Y ; (6) ρ XY = 0, Cov(X, Y ) = 0, X Y,,. (7) ρ XY > 0, X Y, ρ XY 1,,, X Y ; (8) ρ XY < 0, X Y, ρ XY 1,,, X Y ; (9) X Y U = ax +b V = cy +d( a, c 0) ρ UV, a, c ρ XY, a, c ρ XY. (1) Schwarz, [Cov(X, Y )] 2 Var(X)Var(Y ) (2.77),. (3),,, P (Y = ax + b) = 1., X Y, 0., P (Y = ax + b) = 1 Y = ax + b.

69 2 69 (6), 0,.,,, X U( 0.5, 0.5), Y = cos X. X Y E(X) = 0, Cov(X, Y ) = E(XY ) E(X)E(Y ) = E(XY ) = E(X cos X) = x cos x dx = 0, ρ XY = 0, X Y,.,,.,. (9).,.,.,,.,.,,.,,.,.., X : X = X E(X) Var(X) (2.78) E(X = 0), Var(X = 1). Y, Cov(X, Y ), ( X E(X) Cov(X, Y ) = Cov = E =, Y E(Y ) ) σ X σ Y ( X E(X) Y E(Y ) σ X σ Y ) E ( X E(X) σ X ) E E[(X E(X))(Y E(Y ))] = Cov(X, Y ) = ρ XY σ X σ Y σ X σ Y ( ) Y E(Y )., [ 1, 1], X Y,,. ( ), (covariance matrix),,.. σ Y

70 70 R 2.8, , n (sufficiently large).,. 1.,?.. A P (A) = p,, M n n A, M n = 1 n n i=1 X i = X 1 + X X n n (2.79) : X i = 1 A ; X i = 0 A. E(X i ) = p., n, M n p., 2.9 ( ) (identically independent distribution) X 1, X 2, µ, σ. ɛ > 0, M n = 1 n n i=1 (law of large numbers, LLN). X i = X 1 + X X n n (2.80) lim P ( M n µ ɛ) = 0 (2.81) n, (weak law of large numbers), (stong law of large numbers), : 2.10 ( ) µ, σ. M n 1 µ, M n = 1 n X 1, X 2, n i=1 (stong law of large numbers). X i = X 1 + X X n n (2.82) ( ) P lim M n = µ = 1 (2.83) n,,., :, ( 1), A P (A).

71 2 71 (law) (theorem),,,.,,,.,, :,.., : X 1, X 2,, X n, S n = X 1 + X X n? (central limit theorem, CLT) :,.,,.,, ( ) X 1, X 2,, X n, E(X i ) = µ, Var(X i ) = σ 2, i = 1, 2,, n. Z n = X 1 + X X n nµ nσ E(Z n ) = 0, Var(Z n ) = 1. Z n, x n, Z n N(0, 1). lim P (Z n x) = 1 x e t2 2 dt n 2π, Z n S n = X 1 + X X n,, n, S n N(nµ, ( ) nσ)., X = S n /n, n, X σ N µ, ;, n.., - (De Moivre Laplace),,, (normal approximation to binomial ditribution) ( ), X i : X 1, X 2,, X n X i 0 1 P (X i ) 1 p p X i. S n = X 1 + X X n, S n n

72 72 R. x, lim P n ( ) S n np x np(1 p) = 1 2π x e t2 2 dt n, S n N[np, np(1 p)]. np np(1 p) B(n, p).,,,,, X i. X i, ,,., S n (X i ),, S n.,,,.,,,,.,,.,,..,.,.,.. Laplace, 20, George Pólya ( , ) 1920 Central Limit Theorem,., n., n 30, n 50.,., n,., n, p. p 0.5,, n ; p 0 1, n. np 10, n(1 p) 10. n 30, n = 100, p = ,. n 30., :,,?,, , 80%,, 95%? X=, a., X B(1 000, 0.8).,

73 2 73 P (X a) 0.95 a.,,.,., = 800 > 10, (1 0.8) = 200 > 10,, X N(800, 12.65), , ( P (X a) = P Z a 800 ) R qnorm(0.95) 1.645, a a a = :, R qnorm(0.95, 800, sqrt(1000*0.8*0.2)) ,,,,., n. µ, X i N(µ, 0.2). X n, 95% µ 0.1,? n, X N n : P (µ 0.1 < X < µ + 0.1) 0.95, P ( X µ < 0.1) P ( X < µ 0.1) 0.05 P Z < µ 0.1 µ n ( ) n P Z < ( µ, 0.2 n ). R qnorm(0.025) , n 1.96 (2.84) 2 n n = 16 95% µ 0.1. n,.

74 74 R 2.33 p, ˆp p. 90% ˆp p 5%,? n. 1, i ; X i = 0, i X i, P (X i = 1) = p, P (X i = 0) = 1 p, i = 1, 2,, n. n n, Y. Y = X i B(n, p), ˆp = Y/n. n, ˆp p. np 10, n(1 p) 10, Y N(np, np(1 p)). ˆp Y, ˆp = Y ) p(1 p) (p, n N n ˆp p, P ( ˆp p 0.05) 0.90 P (ˆp p 0.05) 0.05 P p 0.05 p z p(1 p) 0.05 P 0.05 z p(1 p) 0.05 n R qnorm(0.05) 1.645, 0.05 p(1 p) n n n p(1 p) p(1 p) 0.25(0 < p < 1), n , 271. p.,, : i=1

75 2 75 X 1, X 2,, X n, (µ) (σ), X n, S n n, n, ( (1) X σ N µ, ); n (2) S n N(nµ, nσ); (3) Z n = S n nµ nσ N(0, 1); (3), X i (i = 1, 2,, n), P (X i = 1) = p, P (X i = 0) = 1 p, ˆp = X = S n n n, X = S n = X i, np 10, n(1 p) 10, [ i=1 ] p(1 p) ˆp N p,, X = S n N[np, np(1 p)]. n,. n ( ) X B(2, p), Y B(4, p), P (X 1) = 8/9. P (Y 2). 2. X P (λ), P (X = 1) = P (X = 2), P (X = 4) , 0.10,, 85,. 4., 0.85, 100, 80,,. (1) 0.8. (2) 0.75,? 5.,.,, ;,,. : (1) 3, ; (2) 4 ( 4 ). 6., 2km.,, 5km;,, 20km. 0.6,. 7. X U( 1, 2). 1, x < 0; Y = 1, x 0 Y.

76 76 R 8. B (0,10), x 2 + Bx + 1 = , X( : h), 1 f(x) = 600 e x 600, x > 0; 0, 200h, (, ). 10. X ( : ), 4.,,. 100, 300, , , ,? 12. X N(0, σ). P ( X > k) = 0.1, P (X < k). 13. X N(µ, σ). σ, P ( X µ < σ)? 14. X (1,2), Y = e 2X f Y (y). 15. X 0, x < 0; F X (x) = 1 e x 5, 0 x < 2; 1, x 2 Y = e X, Y. 16. X 0, x < a(a > 0); F (x) = A + B arcsin x, a x < a; a 1, x a (1) A B. (2) X f(x). 17. X Y = 1 + ( 1) X. P (X = n) = 2, n = 1, 2, 3n 18. X U(1, 2), Y = e 2X f Y (y). 19. X Y, E(X) = µ, Var(X) = σ 2. E(X Y ) 2 Var(X Y ).

77 , 3 2. ( : min) N(3, 3), N(1, 2), (0, 1) n,. 22. n,,.,,. ( ). 23. n, 1, 2,, n. k,. : n k=1 k 2 = n 2 = 1 n(n + 1)(2n + 1) X Y λ. U = 2X + Y, V = 2X Y, ρ UV. 25. X Y ρ. U = ax + b V = cy + d, a, c n. H T Head Tail. H T. 27., 10 min,. (1) h 15 h ; (2) 95%, 15 h? kw %, kw, 99%?( ) 29. p, n, m, n m/n p %. 30.., , (critical value),., a 5%,.,? 31. X F (x) f(x). X. (hazard rate) (failure rate) λ(t), : λ(t) = f(t), t 0 (2.85) 1 F (t)

78 78 R t., t, dt P [X (t, t + dt) X > t]., P [X (t, t + dt), X > t] P [X (t, t + dt) X > t] = P (X > t) P [X (t, t + dt)] = P (X > t) f(t) dt 1 F (t) : P [X (t, t + dt), X > t] X (t, t + dt) X > t., λ(t) t (conditional probability intensity). (1), X., X X.. (2) X Exp(λ)., t,., λ(t).. (3) : (death rate).,.,?. (4) t(t 40), λ(t) = (t 40) , t , ( 2.9). ( 2.10). R.

79

3.1 ( ) (Expectation) (Conditional Mean) (Median) Previous Next

3.1 ( ) (Expectation) (Conditional Mean) (Median) Previous Next 3-1: 3.1 ( )........... 2 3.1.1 (Expectation)........ 2 3.1.2............. 12 3.1.3 (Conditional Mean)..... 17 3.1.4 (Median)............ 22 Previous Next First Last Back Forward 1 1.. 2. ( ): ( ), 3.

More information

Microsoft Word - Probability.doc

Microsoft Word - Probability.doc 十 一 機 率 (Probability).... 分 立 變 值 (discrete variate) 及 連 續 變 值 (continuous variate)..... 連 續 變 質 (Continuous variate)/ 連 續 變 數 (Continuous variable)..... 分 立 變 值 (Discrete variate)/ 間 斷 變 數 (Discrete variable)....

More information

ii

ii i 概 率 统 计 讲 义 原 著 : 何 书 元 课 件 制 作 : 李 东 风 2015 年 秋 季 学 期 ii 目 录 第 一 章 古 典 概 型 和 概 率 空 间 3 1.1 试 验 与 事 件............................ 3 1.2 古 典 概 型 与 几 何 概 型....................... 7 1.2.1 古 典 概 型.........................

More information

統計課程目錄95

統計課程目錄95 統 計 課 程 10.0.1 起 統 計 學 上 課 講 義 : 上 課 內 容 老 師 自 訂 講 義 參 考 書 籍 : 統 計 學 3 版 劉 明 德 著 全 華 出 版 實 用 統 計 學 ( 第 二 版 ) 東 華 書 局 林 真 真 著 上 課 內 容 : 基 本 統 計 理 論 概 念, 由 老 師 授 課 學 生 需 配 合 練 習 成 績 計 算 : 平 時 ( 含 出 席 尚 可

More information

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2 Stochastic Processes stoprocess@yahoo.com.cn 111111 ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2 : Stochastic Processes? (Ω, F, P), I t I, X t (Ω, F, P), X = {X t, t I}, X t (ω)

More information

M ( ) K F ( ) A M ( ) 1815 (probable error) F W ( ) J ( ) n! M ( ) T ( ) L ( ) T (171

M ( ) K F ( ) A M ( ) 1815 (probable error) F W ( ) J ( ) n! M ( ) T ( ) L ( ) T (171 1 [ ]H L E B ( ) statistics state G (150l--1576) G (1564 1642) 16 17 ( ) C B (1623 1662) P (1601--16S5) O W (1646 1716) (1654 1705) (1667--1748) (1687--H59) (1700 1782) J (1620 1674) W (1623 1687) E (1656

More information

index English to Chinese

index English to Chinese probability A absolutely continuous random variables analytic theory of probability antithetic variables Archimedes Ars Conjectandi associative law for events axioms of probability axioms of surprise 绝

More information

:

: : : 4.1....................... 1 4.1.1............... 1 4.2........... 10 4.2.1............... 10 4.2.2..... 14 4.2.3................ 18 4.2.4................ 24 4.3...................... 26 4.3.1..............

More information

996,,,,,,, 997 7, 40 ; 998 4,,, 6, 8, 3, 5, ( ),, 3,,, ;, ;,,,,,,,,,

996,,,,,,, 997 7, 40 ; 998 4,,, 6, 8, 3, 5, ( ),, 3,,, ;, ;,,,,,,,,, ,, AB,, ( CIP) /, 000 ( /, ) ISBN 704009448 F47 CIP ( 000) 86786 55 00009 0064054588 ht tp www hep edu cn ht tp www hep com cn 006404048 787960/ 6 05 370 000 730,, 996,,,,,,, 997 7, 40 ; 998 4,,, 6, 8,

More information

3978 30866 4 3 43 [] 3 30 4. [] . . 98 .3 ( ) 06 99 85 84 94 06 3 0 3 9 3 0 4 9 4 88 4 05 5 09 5 8 5 96 6 9 6 97 6 05 7 7 03 7 07 8 07 8 06 8 8 9 9 95 9 0 05 0 06 30 0 .5 80 90 3 90 00 7 00 0 3

More information

untitled

untitled 4 y l y y y l,, (, ) ' ( ) ' ( ) y, y f ) ( () f f ( ) (l ) t l t lt l f ( t) f ( ) t l f ( ) d (l ) C f ( ) C, f ( ) (l ) L y dy yd π y L y cosθ, π θ : siθ, π yd dy L [ cosθ cosθ siθ siθ ] dθ π π π si

More information

第一章合成.ppt

第一章合成.ppt plsun@mail.neu.edu.cn 1. 2. 3. 4. 5. 1. Mathematical Statistics R.V.Hogg ( 1979) 2. Statistics -The Conceptual Approach G. R. Iversen, ed ( - 2000) 3. Mathematical Statistics and Data Analysis J. A. Rice

More information

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P. () * 3 6 6 3 9 4 3 5 8 6 : 3. () ; () ; (3) (); (4) ; ; (5) ; ; (6) ; (7) (); (8) (, ); (9) ; () ; * Email: huangzh@whu.edu.cn . () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) :

More information

: Previous Next First Last Back Forward 1

: Previous Next First Last Back Forward 1 7-3: : 7.3.................. 1 7.3.1.............. 2 7.3.2..... 8 7.3.3.............. 12 Previous Next First Last Back Forward 1 7.3,, (X 1,, X n )., H 0 : X F Karl Pearson χ 2. : F ˆF n, D( ˆF n, F ),

More information

untitled

untitled arctan lim ln +. 6 ( + ). arctan arctan + ln 6 lim lim lim y y ( ln ) lim 6 6 ( + ) y + y dy. d y yd + dy ln d + dy y ln d d dy, dy ln d, y + y y dy dy ln y+ + d d y y ln ( + ) + dy d dy ln d dy + d 7.

More information

5 (Green) δ

5 (Green) δ 2.............................. 2.2............................. 3.3............................. 3.4........................... 3.5...................... 4.6............................. 4.7..............................

More information

3.2 導 函 數 其 切 線 (tangent line) 為 通 過 P, 且 其 斜 率 為 m 的 直 線, 即 y = f(a) + m(x a) (3) 其 法 線 (normal line) 為 通 過 P 且 與 切 線 垂 直 的 直 線, 即 y = f(a) 1 (x a) m

3.2 導 函 數 其 切 線 (tangent line) 為 通 過 P, 且 其 斜 率 為 m 的 直 線, 即 y = f(a) + m(x a) (3) 其 法 線 (normal line) 為 通 過 P 且 與 切 線 垂 直 的 直 線, 即 y = f(a) 1 (x a) m 第 3 章 微 分 (Differentiation) 目 錄 3.1 切 線................................... 25 3.2 導 函 數.................................. 26 3.3 微 分 公 式................................. 28 3.4 連 鎖 律..................................

More information

005 1 1.. 3. 1-1 - total quality management, TQM 1961 3 1931 199 0 50 1961 6sigma 4 14 1 3 4 5 6 7 8 9 10 11 1 13 14 19511 6 1 3 4 5 6 5 - - a) b) c) 6 1 1 3 4 5 6 7 8 1 3 4 5 6 3 4 1) ) 3) 4) - 3 - 5)

More information

( ) t ( ) ( ) ( ) ( ) ( ) t-

( ) t ( ) ( ) ( ) ( ) ( ) t- (Statistics). (Descriptive Statistics). (Inferential Statistics) (Inductive Statistics) ( ) t ( ) ( ) ( ) ( ) ( ) t- ( ) ( ) ( )? ( ) ( )? ( ) )?( t ) ( )? ( ) ( ) ( ) ( ) ( ) ( )? ( ) ( ) ( )? ( )?( t

More information

( )

( ) ( ) * 22 2 29 2......................................... 2.2........................................ 3 3..................................... 3.2.............................. 3 2 4 2........................................

More information

建築工程品質管理案例研討

建築工程品質管理案例研討 1.1...2-1 1.2...2-2 1.3...2-2 2.1...2-3 2.2...2-3 2.3...2-8 3.1...2-11 3.2...2-12 3.3...2-15 3.4...2-16 3.5...2-17 4.1...2-19 4.2...2-19 4.3...2-22 4.4...2-24 4.5...2-26 4.6...2-28 5.1...2-29 5.2...2-32

More information

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

WL100014ZW.PDF

WL100014ZW.PDF A Z 1 238 H U 1 92 1 2 3 1 1 1 H H H 235 238 92 U 92 U 1.1 2 1 H 3 1 H 3 2 He 4 2 He 6 3 Hi 7 3 Hi 9 4 Be 10 5 B 2 1.113MeV H 1 4 2 He B/ A =7.075MeV 4 He 238 94 Pu U + +5.6MeV 234 92 2 235 U + 200MeV

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

untitled

untitled 4 6 4 4 ( n ) f( ) = lim n n +, f ( ) = = f( ) = ( ) ( n ) f( ) = lim = lim n = = n n + n + n f ( ), = =,, lim f ( ) = lim = f() = f ( ) y ( ) = t + t+ y = t t +, y = y( ) dy dy dt t t = = = = d d t +

More information

untitled

untitled 5 55-% 8-8 8-5% - 7 7 U- lim lim u k k k u k k k k ` k u k k lim.7. 8 e e. e www.tighuatutor.com 5 79 755 [ e ] e e [ e ] e e e. --7 - u z dz d d dz u du d 8d d d d dz d d d d. 5-5 A E B BA B E B B BA

More information

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

1938 (Ph.D) 1940 (D.Sci) 1940 (Kai-Lai Chung) Lebesgue-Stieltjes [6] ( [22]) 1942 (1941 ) 1945 J. Neyman H. Hotelling ( ) (University of Cali

1938 (Ph.D) 1940 (D.Sci) 1940 (Kai-Lai Chung) Lebesgue-Stieltjes [6] ( [22]) 1942 (1941 ) 1945 J. Neyman H. Hotelling ( ) (University of Cali 1910 9 1 1 () 1925 1928 () (E. A. Poe) 1931 1933 1934 (Osgood, 1864-1943) ( ) A note on the indices and numbers of nondegenerate critical points of biharmonic functions, 1935 1936 (University College London)

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

Previous Next First Last Ba

Previous Next First Last Ba zwp@ustc.edu.cn Office: 1006 Phone: 63600565 http://staff.ustc.edu.cn/~zwp/ http://fisher.stat.ustc.edu.cn 1.1............... 1 1.2............... 9 1.2.1.......... 16 1.2.2....... 22 1.2.3......... 23

More information

80000 400 200 X i X1 + X 2 + X 3 + + X n i= 1 x = n n x n x 17 + 15 + 18 + 16 + 17 + 16 + 14 + 17 + 16 + 15 + 18 + 16 = 12 195 = = 1625. ( ) 12 X X n i = = 1 n i= 1 X f i f Xf = f n i= 1 X f ( Xf). i i

More information

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5, # # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( 0 2 3 ( & +. 4 / &1 5, !! & 6 7! 6! &1 + 51, (,1 ( 5& (5( (5 & &1 8. +5 &1 +,,( ! (! 6 9/: ;/:! % 7 3 &1 + ( & &, ( && ( )

More information

untitled

untitled 6 + a lim = 8, a =. a l. a a + a a a a lim = lim + = e, a a a e = 8 a= l ( 6,, ), 4 y+ z = 8. + y z = ( 6,, ) 4 y z 8 a ( 6,, ) + = = { } i j k 4,,, s = 6 = i+ j k. 4 ( ) ( y ) ( z ) + y z =. + =, () y

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

《分析化学辞典》_数据处理条目_1.DOC

《分析化学辞典》_数据处理条目_1.DOC 3 4 5 6 7 χ χ m.303 B = f log f log C = m f = = m = f m C = + 3( m ) f = f f = m = f f = n n m B χ α χ α,( m ) H µ σ H 0 µ = µ H σ = 0 σ H µ µ H σ σ α H0 H α 0 H0 H0 H H 0 H 0 8 = σ σ σ = ( n ) σ n σ /

More information

untitled

untitled 00, + lim l[ ] =. ( + lim[ ] = lim[ ] ( + i e ( = ( + lim l[ ] = l e = ( 4 (, (, (, 0 d f d D= D + D, d f d + d f d =. 0 D = (, 0,, 4 D = (,, 4 D ( D =, 0,. 4 0 0 4 ( + ( = ( d f, d d f, d d f, d. - =

More information

Ps22Pdf

Ps22Pdf ) ,,, :,,,,,,, ( CIP) /. :, 2001. 9 ISBN 7-5624-2368-7.......... TU311 CIP ( 2001) 061075 ( ) : : : : * : : 174 ( A ) : 400030 : ( 023) 65102378 65105781 : ( 023) 65103686 65105565 : http: / / www. cqup.

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

2.1 1980 1992 % 80 81 82 83 84 85 86 87 88 89 90 91 92 81.9 69.5 68.7 66.6 64.7 66.1 65.5 63.1 61.4 61.3 65.6 65.8 67.1 5.0 12.0 14.2 10.9 13.0 12.9 13.0 15.0 15.8 13.8 10.9 12.7 17.3 13.1 18.6 17.1 22.5

More information

Microsoft Word - 1神奇的矩阵2.doc

Microsoft Word - 1神奇的矩阵2.doc 题 目 : 神 奇 的 矩 阵 第 二 季 ( 修 改 版 2.1) 学 校 : 哈 尔 滨 工 程 大 学 姓 名 : 黎 文 科 联 系 方 式 : QQ 群 :53937814 联 系 方 式 : 190356321@qq.com Contents CONTENTS... 2 前 言... 3 绪 论... 4 1 从 坐 标 系 谈 起... 8 2 内 积 与 范 数 的 深 入 理 解...

More information

: : : ( CIP ) : ( ) /. :, ISBN :. G7. 4 CIP ( 00 ) 005 : : ( ) : : ( 0 : 0004) : : : / 6 : 7 ( ) : 408 () : 00

: : : ( CIP ) : ( ) /. :, ISBN :. G7. 4 CIP ( 00 ) 005 : : ( ) : : ( 0 : 0004) : : : / 6 : 7 ( ) : 408 () : 00 () ( ) ( : ) : : : ( CIP ) : ( ) /. :, 00. 7 ISBN 7-8008 - 958-8... :. G7. 4 CIP ( 00 ) 005 : : ( ) : : ( 0 : 0004) : : 00 7 00 7 : 78709 / 6 : 7 ( ) : 408 () : 000 : ISBN 7-8008 - 958-8/ G89 : 9 98. 00

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

untitled

untitled 5 55-% 8-8 8-5% - 7 7 U- n n lim n n n n lim n n n n un n n k k n k u n k k k n k ` n k u n k k n n n lim n n.7. 8 f f e f f f e. f f e f f f f f f f [ e ] f e e www.tsinghuatutor.om 5 79 755 f f f f [

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

1984 1985 2130 1006 366 405 379 324 4601 2327 1169 524 555 440 361 5376 1984 51.4 31.8 56.2 2.6 45.4 28.3 29.8 16.7 44.2 34.9 665.4 10.1 1989 1990 1991 1992 1993 121.1 124.5 116.0 117.9 130.1 81.6

More information

-2 4 - cr 5 - 15 3 5 ph 6.5-8.5 () 450 mg/l 0.3 mg/l 0.1 mg/l 1.0 mg/l 1.0 mg/l () 0.002 mg/l 0.3 mg/l 250 mg/l 250 mg/l 1000 mg/l 1.0 mg/l 0.05 mg/l 0.05 mg/l 0.01 mg/l 0.001 mg/l 0.01 mg/l () 0.05 mg/l

More information

untitled

untitled SPSS 1-1 1-2 SPSS 1-3 1-4 1-5 1-1 1. (independent variable) 2. (dependent variable) (response) 3. (case) 4. (population) 5. (sample) 6. (data) 7. (level) 8. (covariate) 9. (missing data) 2 SPSS 01 1-2

More information

ο HOH 104 31 O H 0.9568 A 1 1 109 28 1.01A ο Q C D t z = ρ z 1 1 z t D z z z t Qz = 1 2 z D z 2 2 Cl HCO SO CO 3 4 3 3 4 HCO SO 2 3 65 2 1 F0. 005H SiO0. 032M 0. 38 T4 9 ( K + Na) Ca 6 0 2 7 27 1-9

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

Solutions to Exercises in "Discrete Mathematics Tutorial"

Solutions to Exercises in Discrete Mathematics Tutorial 1 2 (beta 16.11 ) 3 SOLVED AND TEXIFIED BY 4 (http://www.ieee.org.cn/list.asp?boardid=67) 1 2002 6 1 2003 1 2 2 (E-mail: xiaoxinpan@163.com) 3 2006 11 1 ( / ) 60.17% 4 xbz 02 chouxiaoya tedy akaru yitianxing

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) ! # % & # % ( ) & + + !!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) 6 # / 0 1 + ) ( + 3 0 ( 1 1( ) ) ( 0 ) 4 ( ) 1 1 0 ( ( ) 1 / ) ( 1 ( 0 ) ) + ( ( 0 ) 0 0 ( / / ) ( ( ) ( 5 ( 0 + 0 +

More information

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

More information

08-01.indd

08-01.indd 1 02 04 08 14 20 27 31 35 40 43 51 57 60 07 26 30 39 50 56 65 65 67 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ω ρ ε 23 λ ω < 1 ω < 1 ω > 0 24 25 26 27 28 29 30 31 ρ 1 ρ σ b a x x i +3 x i

More information

( CIP) /. :, 2004. 5 ( ) ( ) ISBN 7-301-06858-1... - -. C8 CIP ( 2003) 119249 : : : : ISBN 7-301-06858-1/ O0585 : : 100871 : htt p: / / cbs. pku. edu.

( CIP) /. :, 2004. 5 ( ) ( ) ISBN 7-301-06858-1... - -. C8 CIP ( 2003) 119249 : : : : ISBN 7-301-06858-1/ O0585 : : 100871 : htt p: / / cbs. pku. edu. ( CIP) /. :, 2004. 5 ( ) ( ) ISBN 7-301-06858-1... - -. C8 CIP ( 2003) 119249 : : : : ISBN 7-301-06858-1/ O0585 : : 100871 : htt p: / / cbs. pku. edu. cn : zpup@ pup. pku. edu. cn : 62752015 62750672 62752021

More information

11第十一章階層線性模式.DOC

11第十一章階層線性模式.DOC 11.1 11.1.1 (student-level) (personal-level) ( ) (school-level) (organization-level) ( ) 1. (disaggregation) (estimated standard errors) (type one error). (aggregation) (within-group) (1997) (hierarchical

More information

untitled

untitled + lim = + + lim = + lim ( ) + + + () f = lim + = + = e cos( ) = e f + = e cos = e + e + + + sin + = = = = = + = + cos d= () ( sin ) 8 cos sin cos = ( ) ( sin ) cos + d= ( + ) = cos sin cos d sin d 4 =

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ è é é è υυ ν ε ε è α α α α α α α α α τ E h L. ν = λ = h p Ξ v k ν pe nµ Λ ν µ ν µ ε µ π ~ n p n np ~ π N Ξ + p n o o Λ Ξ Ξ SU 3

More information

微 分 方 程 是 经 典 数 学 的 一 个 重 要 分 支, 常 用 来 描 述 随 时 间 变 化 的 动 态 系 统, 被 广 泛 应 用 于 物 理 学 工 程 数 学 和 经 济 学 等 领 域. 实 际 上, 系 统 在 随 时 间 的 变 化 过 程 中, 经 常 会 受 到 一 些

微 分 方 程 是 经 典 数 学 的 一 个 重 要 分 支, 常 用 来 描 述 随 时 间 变 化 的 动 态 系 统, 被 广 泛 应 用 于 物 理 学 工 程 数 学 和 经 济 学 等 领 域. 实 际 上, 系 统 在 随 时 间 的 变 化 过 程 中, 经 常 会 受 到 一 些 不 确 定 微 分 方 程 研 究 综 述 李 圣 国, 彭 锦 华 中 师 范 大 学 数 统 学 院, 湖 北 4379 黄 冈 师 范 学 院 不 确 定 系 统 研 究 所, 湖 北 438 pengjin1@tsinghua.org.cn 摘 要 : 不 确 定 微 分 方 程 是 关 于 不 确 定 过 程 的 一 类 微 分 方 程, 其 解 也 是 不 确 定 过 程. 本 文 主

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

: : : mm 1/ 32 :92 : : 3000 ISBN / G190 : (10 )

: : : mm 1/ 32 :92 : : 3000 ISBN / G190 : (10 ) : : : 8501168mm 1/ 32 :92 :2000 2006 1 1 : 3000 ISBN 7-80702 - 286-8/ G190 : 228.00 (10 ) ( 1 ) ( 4 ) 5( 6 ) ( 9 ) 1. ( 9 ) 2. (10) 3. (13) 1 > 10,? (16) (18) (20) (21) 1. (21) 2. (24) 3. (25) 4.3129(26)

More information

untitled

untitled Statistics & Data Analysis 2 (Part I) Zhu Huaiqiu @Peking University 2.1 Example49613,983,816 13,983,816/52=268,919 Example232111 23 n 10 20 30 50 100 200 300 350 366 p(n) 12% 41% 70% 97% 99.99996% 99.9999999999999999999999999998%

More information

P r = 1 + ecosθ 2 V = V + V 1 2 2V1V2 cosθ 2 2 = ( V V ) + 2V V ( 1 cos θ) 1 2 1 2 40000 V = 0. 5( / ) 24 60 60 λ m = 5100A = 0.51 Å 2 u e d s 3 1 e uud udd 3 2 3 e 1 3 e V = 2 9. 8 2000 = 198 V

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

458 (25),. [1 4], [5, 6].,, ( ).,,, ;,,,. Xie Li (28),,. [9] HJB,,,, Legendre [7, 8],.,. 2. ( ), x = x x = x x x2 n x = (x 1, x 2,..., x

458 (25),. [1 4], [5, 6].,, ( ).,,, ;,,,. Xie Li (28),,. [9] HJB,,,, Legendre [7, 8],.,. 2. ( ), x = x x = x x x2 n x = (x 1, x 2,..., x 212 1 Chinese Journal of Applied Probability and Statistics Vol.28 No.5 Oct. 212 (,, 3387;,, 372) (,, 372)., HJB,. HJB, Legendre.,. :,,, Legendre,,,. : F83.48, O211.6. 1.,.,,. 199, Sharpe Tint (199),.,

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α Ε! # % & ( )%! & & + %!, (./ 0 1 & & 2. 3 &. 4/. %! / (! %2 % ( 5 4 5 ) 2! 6 2! 2 2. / & 7 2! % &. 3.! & (. 2 & & / 8 2. ( % 2 & 2.! 9. %./ 5 : ; 5. % & %2 2 & % 2!! /. . %! & % &? & 5 6!% 2.

More information

1362 A Research on the Performance of Probability Concepts on Sixth-Grade Students Hsin-Chien Tsai Chi-Tsuen Yeh National University of Tainan Abstrac

1362 A Research on the Performance of Probability Concepts on Sixth-Grade Students Hsin-Chien Tsai Chi-Tsuen Yeh National University of Tainan Abstrac 1361 * * 75% 60% 25% 1362 A Research on the Performance of Probability Concepts on Sixth-Grade Students Hsin-Chien Tsai Chi-Tsuen Yeh National University of Tainan Abstract This research paper focuses

More information

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

More information

untitled

untitled Part A Part A CH......... A- CH..... A-6 CH3......... A- CH4... A-3 CH5... A-7 CH6... A-3 立 數 http://www. 立.tw Part A CH. ODE ) dy g f g f g dy f d d y general solution) g dy f d + c dt ) k T TA ) dt T

More information

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

More information

x y 7 xy = 1 b c a b = x x = 1. 1 x + 17 + x 15 = 16 x + 17 x 15 + 17 15 x + 17 - x 15 = (x x ) ( ). x + 17 + x 15 x + y + 9 x + 4 y = 10 x + 9 y + 4 = 4xy. 9 4 ( x + ) + ( y + ) = 10 x y 9 ( x + )( ).

More information

Microsoft Word - p11.doc

Microsoft Word - p11.doc () 11-1 ()Classification Analysis( ) m() p.d.f prior (decision) (loss function) Bayes Risk for any decision d( ) posterior risk posterior risk Posterior prob. j (uniform prior) where Mahalanobis Distance(M-distance)

More information

untitled

untitled SC 93246H327032 (EWMA) 3 EWMA (defects) (Poisson distribution) (compound Poisson process) Brook and Evans EWMA (ARL) EWMA (geometric Poisson EWMA control schemes) The Study on Detecting Small Shifts in

More information

d y dy P x Q x y 0. dx dx d d P x Q x C C 1y1 y dx dx d d P x Q x C 1y 1 dx dx d d P x Q x C y 0. dx dx d x 1dx F. ox1 dt dt d x1 1dx1 x 0 1 F 1 dt dt d x 1dx x 0 F dt dt d y 1dy y F 0 1 F1 y x1 x. dt

More information

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

More information

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % #! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )

More information

lim f(x) lim g(x) 0, lim f(x) g(x),

lim f(x) lim g(x) 0, lim f(x) g(x), 2016 11 14 1 15 lim f(x) lim g(x) 0, lim f(x) g(x), 0 0. 2 15 1 f(x) g(x) (1). lim x a f(x) = lim x a g(x) = 0; (2). a g (x) f (x) (3). lim ( ). x a g (x) f(x) lim x a g(x) = lim f (x) x a g (x). 3 15

More information

tbjx0164ZW.PDF

tbjx0164ZW.PDF F = k Q Q r F = k Q = k Q r r Q Q = Fr k = C 0 5 C 9 0 5 Q 0 3 n = = 9 = 65. 0 e 6. 0 4 3 A B 7 7 9 6 C D 7 7 F = k q 7q = k 7q r r q + 7q = 4q F = k 4q 4q = k 6q r r F = 6 F 7 7q q = 3q s c = t s c =

More information

( )... ds.....

( )... ds..... ...... 3.1.. 3.1.. 3.1: 1775. g a m I a = m G g, (3.1) m I m G. m G /m I. m I = m G (3.2)............. 1 2............ 4.................. 4 ( )... ds..... 3.2 3 3.2 A B. t x. A B. O. t = t 0 A B t......

More information

( ) : ( ) (CIP) /.. :,003. () ISBN O4 44 CIP (00) : : 7 : 7007 : (09 ) : : :850 mm 68 mm / 3 :0.5 :60 :00 0

( ) : ( ) (CIP) /.. :,003. () ISBN O4 44 CIP (00) : : 7 : 7007 : (09 ) :   : :850 mm 68 mm / 3 :0.5 :60 :00 0 ( ) ( ) : ( ) (CIP) /.. :,003. () ISBN 7 56 448 0.... O4 44 CIP (00) 007344 : : 7 : 7007 : (09 )8493844 : www.nwpup.com : :850 mm 68 mm / 3 :0.5 :60 :00 003 3 :0 006 000 :3: 00 00, ( ),,,,,,,, 003 8 (

More information

, 13, 90, 20.,,,,..,,,.,..

, 13, 90, 20.,,,,..,,,.,.. , 13, 90, 20.,,,,..,,,.,.. ............................................. 1 1............................ 4 1.1........................... 4 1.2.......................... 4 2.................................

More information

<4D F736F F D20CAFDD1A7D1A7D4BABACFB2A2B3F6C6ACCEC4BCFE2E646F63>

<4D F736F F D20CAFDD1A7D1A7D4BABACFB2A2B3F6C6ACCEC4BCFE2E646F63> 课 程 质 量 标 准 汇 编 ( 数 学 学 院 2010) 教 务 处 编 印 PDF 文 件 使 用 "pdffactory Pro" 试 用 版 本 创 建 www.fineprint.cn 目 录 高 等 代 数 方 法 选 讲 课 程 简 介 教 学 大 纲 考 核 大 纲 1 数 学 分 析 方 法 选 讲 课 程 简 介 教 学 大 纲 考 核 大 纲 7 数 学 分 析 课 程 简

More information

untitled

untitled 01 1-1 1-2 1-3 Chapter 1-1 (statistics) (uncertainty) 1. (1) (descriptive statistics) (2) (inferential statistics) (statistical inference) (inductive statistics) (parametric statistics) (nonparametric

More information

Pair Copula - GARCH - t 5 Domowitz and Hakkio 1985 ARCH GARCH Nieuwland et al GARCH BF / DM DG /DM FF /DM IL /DM SP /DM Torben

Pair Copula - GARCH - t 5 Domowitz and Hakkio 1985 ARCH GARCH Nieuwland et al GARCH BF / DM DG /DM FF /DM IL /DM SP /DM Torben 2 0 1 1 5 May 2 0 1 1 4 0 3 Journal of Shanghai Normal University Philosophy & Social Sciences Edition Vol. 40 No. 3 F830. 91 A 1004-8634 2011 03-0032- 12 Pair Copula - GARCH - t 200234 Pair copula - garch

More information

數學教育學習領域

數學教育學習領域 高 中 数 学 课 程 补 充 资 料 013/14 学 年 就 读 中 四 学 生 适 用 013 ( 空 白 页 ) 目 录 页 数 1. 概 论 1 1.1 背 景 1 1. 关 注 事 项 及 考 虑 因 素 1 1.3 短 期 方 案 摘 要 1 1.4 评 核 设 计 概 要. 修 订 后 的 高 中 数 学 课 程 学 习 内 容 3.1 修 订 后 的 必 修 部 分 学 习 内 容

More information

32 G; F ; (1) {X, X(i), i = 1, 2,..., X, (2) {M(t), t α Poisson, t ; (3) {Y, Y (i), i = 1, 2,..., Y, (4) {N(t), t β Poisson, t ; (5) {W (t), t, σ ; (6

32 G; F ; (1) {X, X(i), i = 1, 2,..., X, (2) {M(t), t α Poisson, t ; (3) {Y, Y (i), i = 1, 2,..., Y, (4) {N(t), t β Poisson, t ; (5) {W (t), t, σ ; (6 212 2 Chinese Journal of Applied Probability and Statistics Vol.28 No.1 Feb. 212 Poisson ( 1,, 211; 1 2,3 2 2,, 2197) ( 3,, 2197) Poisson,,.,. : :,,,,. O211.9. 1., ( 1 6]). 4] Cai Poisson,, 6] Fang Luo

More information

: 459,. (2011),, Zhu (2008). Y = Xθ + ε, (1.1) Y = (y 1,..., y n ) T, ε = (ε 1,..., ε n ) T, θ = (θ 1,..., θ p ) T, X n p, X i X i, E(ε) = 0, Var (ε)

: 459,. (2011),, Zhu (2008). Y = Xθ + ε, (1.1) Y = (y 1,..., y n ) T, ε = (ε 1,..., ε n ) T, θ = (θ 1,..., θ p ) T, X n p, X i X i, E(ε) = 0, Var (ε) 2013 10 Chinese Journal of Applied Probability and Statistics Vol.29 No.5 Oct. 2013 (,, 213001) (,, 211189). ;, ;. :,,,. : O212.2. 1.,,,,,, Belsley (1980), Christensen (1992), Critchley (2001). Zhu Lee

More information

: ; # 7 ( 8 7

: ; # 7 ( 8 7 (! # % & ( ) +,. / +. 0 0 ) 1. 2 3 +4 1/,5,6 )/ ) 7 7 8 9 : ; 7 8 7 # 7 ( 8 7 ; ;! #! % & % ( # ) % + # # #, # % + &! #!. #! # # / 0 ( / / 0! #,. # 0(! #,. # 0!. # 0 0 7 7 < = # ; & % ) (, ) ) ) ) ) )!

More information

untitled

untitled / ux ( [ x ρ + x ρ ] ρ ux ( ρux ( ρ ρ( x ρ + x ρ 3 u ( δ δ x(, ( (, δ δ + ρ δ (, ρ u( v(, / ( δ + δ δ α δ δ x( α, α (( α,( α δ δ ( α + ( α δ δ (, δ δ ( + ( x(, δ δ x(, ( + δ δ ( + ( v( α, α α α δ δ / δ

More information

數學導論 學數學 前言 學 學 數學 學 數學. 學數學 論. 學,. (Logic), (Set) 數 (Function)., 學 論. 論 學 數學.,,.,.,., 論,.,. v Chapter 1 Basic Logic 學 數學 學 言., logic. 學 學,, 學., 學 數學. 數學 論 statement. 2 > 0 statement, 3 < 2 statement

More information

: p Previous Next First Last Back Forward 1

: p Previous Next First Last Back Forward 1 7-2: : 7.2......... 1 7.2.1....... 1 7.2.2......... 13 7.2.3................ 18 7.2.4 0-1 p.. 19 7.2.5.... 21 Previous Next First Last Back Forward 1 7.2 :, (0-1 ). 7.2.1, X N(µ, σ 2 ), < µ 0;

More information

untitled

untitled 梦飞翔考研工作室友情提供 QQ:83659 000 () d. 0. 000 d d t tdt si cos 0 0 0 + y + 3z (,, ). y + z. 6 F, y, z + y + 3z F F F y z (,,),,, y (,,),, 8, z (,,),, 6. y + z 6 3 y + 3y 0. C y C +. 梦飞翔考研工作室 QQ:83 p y p C 3.

More information