<4D F736F F D20B5E7B6AFC1A6D1A7CAD4CCE2BFE22E646F63>

Size: px
Start display at page:

Download "<4D F736F F D20B5E7B6AFC1A6D1A7CAD4CCE2BFE22E646F63>"

Transcription

1 一 选择题 (3 个 ) 1. 在通以交变电流的电容器两极板之间的空间里存在着. A) 位移电流 ; B) 传导电流 ; C) 交变电流 ; D) 涡电流.. 在存在着变化电压的电容器两极板之间的空间里存在着. A) 静电场 ; B) 库仑电场 ; C) 变化电场 ; D) 涡旋电场. 3. 通过摩擦产生的电荷是. A) 自由电荷 ; B) 束缚电荷 ; C) 感应电荷 ; D) 极化电荷. 4. 在处于 中的介质里, 才会同时存在极化电荷和磁化电流. A) 电磁场 ; B) 静电场 ; C) 变化电磁场 ; D) 静磁场. 5. 实际上就是推广到变化电磁场的高斯定理和环路定理. A) 法拉第电磁感应定律公式 ; B) 库仑定律的公式 ; C) 基尔霍夫定律的两个方程 ; D) 麦克斯韦的电磁场基本方程. 6. 一块均匀极化的立方体电介质, A) 仅在穿过电力线的界面上才存在着极化电荷 ; B) 体极化电荷 ; C) 必然存在着极化电荷 ; D) 必然存在着自由电荷 7. 静电场是 A) 无源场 ; B) 无旋场 ;C) 涡旋场 ;D) 调和场 8. 静电场的电势是 A) 电场强弱的量度 ; B) 电场力对正单位电荷做功的量度 ; C) 电场能量的量度 ; D) 电场电力线疏密的量度 9. 用分离变量法求解静电场必须要知道 A) 初始条件 ;B) 电场的分布规律 ;C) 边界条件 ;D) 静磁场 1. 用点像法求接静电场时, 所用到的像点荷 A) 确实存在 ;B) 会产生电力线 ;C) 会产生电势 ;D) 是一种虚拟的假想电荷 11. 在经典电动力学中, 静磁场的矢势一般没有直接的物理意义, 但在考虑 的情况下, 它具有实际的量子效应 (A-B 效应 ) A) 场发生变化 ;B) 相对论 ;C) 光学干涉 ; D) 量子力学 1. 稳恒电流的磁场的矢势一般都与电流的方向 A) 同向平行 ; B) 异向平行 ; C) 反向平行 ; D) 不相关 13. 磁标势的提出是建立在磁荷观点的基础上, 虽然磁单极至今未被发现, 但是由于磁 1

2 偶极子的真实存在, 使得计算静磁场的磁标势法仍然可行, 只是它对于所研究的区域需要一定的条件 : A) 磁力线不与电流链环 ; B) 磁场强度 H 的旋度为零 ; C) 永磁体周围的磁场 ; D) 线圈周围的磁场 14. 求解静磁场的矢势, 同样可以使用分离变量法, 只是在进行方程的计算时, 需要注意矢势是一个, 只有将其拆为各个分量以分别各响应分量的微分方程 在处于中的介质里, 才会同时存在极化电荷和磁化电流 A) 电磁场 ; B) 矢量 ;C) 变化电磁场 ;D) 静磁场 15. 在磁场矢势的多极展开式中, 第二项代表 A) 小区域电流在远区的矢势 ; B) 通电螺线管在远区的矢势 ; C) 永磁体在远区的矢势 ; D) 磁偶极子或小电流圈在远区的矢势 16. 平面单色电磁波在介质中传播时, 不应该具有的特性是 : A) 它是横波 ; B) 电场矢量与磁场矢量互相垂直 ; C) 电场矢量与磁场矢量同位相, 其相速度等于电场与磁场的振幅比 E/B; D) 磁场 B 的位相比电场 E 的位相滞后 π/4 17. 平面单色电磁波在导体中传播时, 不应该具有的特性是 : A) 电场矢量与磁场矢量同位相 ; B) 电磁场量的幅度按照 e-αz 衰减 ; C) 有趋肤效应和穿透深度 ; D) 磁场 B 的位相比电场 E 的位相滞后 π/4 18. 平面电磁波垂直射向金属表面, 则透入金属内部的电磁波能量全部变为 A) 磁场能 ; B) 焦耳热 ; C) 零 ; D) 电能 19. 处于变化电磁场中的理想导体, 在导体的内部将没有 ( 对实际导体来说, 应为导体内部足够深处, 例如离表面几个穿透深度处, 该处实际上已没有电磁场 ) A) 电磁场 ; B) 电场 ; C) 磁场 ; D) 变化电磁场. 透入导体内部薄层的电磁波, 其能量主要是 A) 热能 ; B) 电场能 ;C) 磁场能 ;D) 辐射能 1. 时变电磁场和静磁场的矢势与磁感应强度的关系表达式完全相同, 这是由于任何磁场的磁感应强度都是所造成的 A) 无源场 ; B) 无旋场 ;C) 既无旋也无源 ; D) 一样的. 在时变电磁场中, 其电场与势的关系同静电场与电势的关系

3 不同, 这是由于 A) 电场矢量与磁场矢量互相垂直的缘故 ; B) 静电场无旋, 而变化电场无源 ( 涡旋 ) 的缘故 ; C) 时变电磁场的电场与磁场密不可分的缘故 ; D) 变化电场中含有磁场的缘故 3. 电磁场的规范变换式充分表明 A) 标势和矢势对于同一电磁场是唯一性 ; B) 一个标势或矢势可与多个场量或相对应 ; C) 电磁场量对于同一标势和矢势是非唯一性 ; D) 一个场量或可与多个标势或矢势相对应 4. 达朗伯方程不但显示了电场与磁场的高度对称美, 而且完全覆盖了静态电磁 场 A) 场方程 ; B) 高斯定理 ; C) 环路定理 ;D) 标势与矢势的泊松方程和拉普拉斯方程 5. 下面不属于推迟势的物理意义的是 r A) 时刻处的势 由 t 时刻处的 的变化激发 ; c B) 势波以有限速度光速 c 传播, 从 到 的时间差为, 即有 ; C) 电磁波的传播速度是变化的 ; D) 处同一时刻的势 由不同地点不同时刻的 的变化所产生 6. 狭义相对论是建立在一系列实验基础和两个基本原理上的, 是判断下列答案的 不属于这些基础 A) 相对性原理 ;B) 光速不变原理 ; C) 洛仑兹变换 ;D) 麦克尔逊 - 莫雷干涉实验 7. 在狭义相对论理论中, 间隔不变性其实就是 A) 光速不变原理的数学表征 ; B) 相对性原理的数学表示 ; C) 洛伦兹变换的另一数学表示 ; D) 四维时空的数学表示 8. 洛伦兹变换表述了狭义相对论关于时空统一的思想, 用它可以推导出, 在不同的 中, 时空坐 运动尺度 运动时钟 同时性等都是相对的 3

4 A) 物体 ; B) 坐标系 ; C) 惯性参照系 ; D) 星球 9. 相对论的速度变换公式完全覆盖了伽里略的速度变换公式, 这充分说明, 爱因斯坦的相对论包含了 的相对性理论 A) 洛伦兹 ; B) 牛顿 ; C) 开普勒 ; D) 伽里略 3. 从时空统一的角度, 用闵柯夫斯基四维空间坐标可以将物理规律的基本方程表述为简介而深奥的四维形式 下面不属于这种四维形式的方程是 Aμ J μ A) = ;B) = x x μ μ ;C) Aμ = μ J D); μ m c E = = 1 β m c 二 基本要点测试题 (35 个, 可采取简答或填空形式 ) 1. 麦克斯韦方程组的微分形式 ; 积分形式 ; 边值关系. 洛仑兹力密度公式 ; 电荷守恒定律 ; 稳恒电流条件 3. 能量的转化与守恒定律微分式 积分式及其意义 4. 位移电流假说 5. 几个重要的概念 定义 : 6. 唯一性定理的内容及其意义 7. 引入静电场标势的根据 物理意义 积分表式 8. 体系电偶极矩 电四极矩的表达式, 电偶极矩电场强度 标势表达式 9. 磁场矢势 标势的定义 1. 引入磁场矢势的根据 积分表式 物理意义 11. 引入磁场标势的根据及条件, 的积分表式及物理意义 1. 完成下表标势引入根据势位差微分方程边值关系 13. 磁偶极子的磁感应强度 矢势表达式 14. 概念及名词 : 自由空间 定态波 平面波 相位因子 衰减因子 波数 波矢 复介电系数 复波矢 趋肤效应 穿透深度 波导 谐振腔 TEM 波 TEmn 波 TMmn 波等的表达式及其意义 4

5 表达式 15. 时变电磁场的矢势 标势的引出根据及表式 ; 16. 规范变换和规范不变性的内容及其意义 ; 17. 库仑规范 洛仑兹规范的表达式及其特点 ; 18. 电磁波的势方程, 达朗伯方程和推迟势的表述及物理意义 ; 19. 电偶极辐射的矢势 磁场 电场 功率等表达式及其特点. 狭义相对论的两个基本原理的内容及其意义 1. 间隔不变性的表达式及其意义. 相对论时空观的主要结论及其意义 3. 四维协变量间隔 固有时 四维速度 四维波矢量 四维电流密度 四维势的 4. 洛伦兹变换 多普勒公式 电荷守恒定律 达朗贝尔公式 四维势变换 电磁 场张量 电磁场变换 麦克斯韦方程组协变式表达式 5. 相对论质量 质能关系式 6. 麦克斯韦电磁场理论的实验基础是 ( ) 7. 在两种介质的分界面上, 静电势满足的边值关系为 ( ) ( ) i k x ωt 8. 描述电磁场的平面波为 E = E e, 其散度 E =( ), 旋度 E =( ) 9. 已知载电流为 I 的圆线圈对场点 P 所张立体角为 Ω, 场点处的磁标势 φm =( ) 3. 某磁场的矢势在直角坐标系 ( 用 e x,e y 1 的表达式为 A B ( ye + xe ) 和 e z 表示三个坐标轴方向的单位矢量 ) 中 = x y, 磁场 B=( ) 31. 电磁场 ( 电矢量和磁矢量分别为 E 和 H) 在真空中传播, 空间某点处的能流密度 S=( ); 动量密度 g=( );g 与 S 之间的关系式为 ( ) 3. 库仑规范的条件是 ( ), 在此规范下, 电磁场的标势 φ 和矢势 A 满足的微分 方程为 ( ) 33. 已知电磁场矢势 A(x,t) 的分布函数, 可以由计算磁场 B(x,t) 和电场 E(x,t), 其表达 式 B(x,t)=( ),E(x,t)=( ) 34. 在矩形波导管 (a,b) 内, 能够传播 TE 1 型波的最长波长为 ( ); 能够传播 TM 型 波的最低波型是 ( ) 35. 采用四维坐标 xμ = ( x,ict), 四维电流密度 J μ ( J, icρ ) 荷守恒定律可以写为 ( ); 洛伦兹规范条件可以表示为 ( ) 5 i = 和四维势 Aμ = A, ρ, 电 c

6 三 基本公式推导题 (35 个 ) 1. 电磁场边值关系的导出. 真空中的麦克斯韦方程推出介质中的麦克斯韦方程 3. 能流密度和能量密度公式的推导 4. 单根导线及平行双导线的能量传输图象 5. 静电场泊松方程和拉普拉斯方程导出 :(1). ;(). 6. 静电场势函数的边值关系的导出 :(1) ;() 7. 静电场能量公式的导出 : 8. 静电场标势的引出 9. 稳恒磁场矢势的引出 1. 的导出 11. 毕奥 沙伐尔定律的导出 1. 稳恒磁场矢势的边值关系导出 13. 磁标势的引入及的导出 14. 磁标势的三个边值关系的导出 a. ;b. ; c. ( 表真空, 1 表介质 ); 15. 稳恒电流磁场的能量公式的导出 16. 真空自由空间的波动方程导出 17. 介质自由空间的定态波动方程导出 18. 导体中波动方程的导出 19. 定态 Helmholtz 方程的解的导出. 电磁波能量密度的导出 1. 电磁波能流密度的导出. 电磁波的折 反射定律的证明 6

7 3. 介质中平面单色波的传播特性的证明 4. 导体中电磁波传播特性的证明 5. 菲涅耳公式的导出 6. 下列公式的来源 推证和变形 (1). ; 定态波 : ; (). ; 定态波 : (3)., (4). (5). (6). (7). (8). 范围,, (9). (1)., 7. 验证在定态波中有 : 8. 由麦克斯韦方程推导 ; 9. 论证, 的非唯一性 ( 多值性 ); 3. 从麦克斯韦方程达朗伯方程 ; 31. 论证达朗伯方程涵盖了静态电磁场的泊松方程和拉普拉斯方程 ; 7

8 3. 从达朗伯方程推迟势 ; 33. 由推迟势推导偶极辐射矢势表式 : ; 34. 由推出角分布 ; 35. 狭义相对论的时空理论的推导 (1). 运动时钟延缓 : ; (). 运动尺度缩短 : (3). 同时的相对性 : 论证 ; (4). 因果律和相互作用的最大速度 : 讨论 ; (5). 速度变换公式 : 四 计算题或证明题 (36 个 ) ; 1. 电荷 Q 均匀分布于半径为 a 的球体内, 求各点的电场强度, 并由此直接计算电场 的散度. 的旋度. 荷分布.. 电流 I 均匀分布在半径为 a 的无穷长直导线内, 求空间的磁场强度, 并计算磁场 3. 无穷大平行板电容器内有两层介质, 极板上面电荷密度为 ± σ, 求电场和束缚电 4. 有一内外半径分别为 r 1 和 r 的空心介质球, 介质的介电常数为 ε, 使介质球内均 匀带静止电荷 ρ, 求 f (1) 空间各点的电场 ; () 极化体电荷和极化面电荷分布. 5. 内外半径分别为 r 1 和 r 的无穷长中空导体圆柱, 沿轴向流有稳恒电流 J, 导体的 磁导率为 μ, 求磁感应强度和磁化电流. 6. 证明 :(1) 当两种绝缘介质的分界面上不带自由电荷时, 电力线的曲折满足 tg tg θ 1 = θ ε ε 1 8 f

9 其中 ε 1和 ε 分别为两种介质的介电常数, θ 1 和 θ 分别为界面两侧电力线与法线的夹角. () 当两种导电介质内流有稳恒电流时, 分界面上电力线的曲折满足 tg tg θ 1 = θ σ σ 1 其中 σ 1和 σ 分别为两种介质的电导率. 7. 在一平板电容器的两极板上加一 U = U cosω t 的电压, 若平行板为圆形, 半径为 a, 板间距离为 d, 试求 (1) 两板间的位移电流 ; () 电容器内离轴为 r 处的磁场强度 ; (3) 电容器内的能流密度 ; (4) 能流密度的平均值. 8. 设有一随时间变化的电场 E = cosω t, 试求它在电导率为 σ, 介电常数为 ε 的 E 导体内, 引起的传导电流和位移电流的振幅之比, 从而讨论在什么情况下传导电流起主要 作用, 在什么情况下位移电流起主要作用. 9. 由库仑定律证明 : 半径为 a 的均匀带电球体在球内产生的电场当 a 时为零 1. 求 : 均匀电场的电势 11. 已知 : 均匀带电的无限长直导线的电荷线密度为, 求 : 导线周围的电势分布 1. 求带电量 Q, 半径为 a 的导体球静电场总能量 1. 已知 : 介质球半径, 介电系数 e, 置于均匀外场中, 求 : 分布 13. 已知 : 接地导体球半径为, 置于均匀外场中, 求 : 分布,s 分布 14. 已知 : 双层球体, 内球接地, 外壳电量为 Q; 求分布 15. 已知距离接地无限大导体平板为 a 之处有一个点电荷, 求 : 分布 16. 已知 : 真空中有一半径为的接地导体球, 点电荷距球心为 ( ); 求 : 空间势分布 17. 已知 : 绝缘不接地导体球, 半径, 距球心处有 求 : 18. 已知 : 半径为带电的绝缘导体球, 距离球心 ( ) 处有一个点电荷 求 : 球外 分布 19. 已知接地导体球壳, 球内距球心处置有点电荷, 求 : 电势 电场分布. 已知 : 绝缘不接地球壳, 球内有 +q, 距球心为 a(a<r ), 求 : 电势 电场分布 9

10 1. 已知 : 带电量的绝缘不接地球壳, 球内距球心为 a(a<r ) 处有点电荷 +q, 求 : 电势 电场分布. 一个正的点电荷 Q 位于内半径为 a, 外半径为 b 的导电球壳的球心上, 求任意一 点的 E 和 V 3. 有一内外半径分别为 R 1 和 R 的空心介质球层, 介质的介电常数为 ε, 球层均匀 带自由电荷密度 ρ, 求空间各点的场及势分布 f 4. 在一个均匀外电场 E 中放入一介电常数为 ε 的介质球壳, 其内径为 a, 外径为 b, 球外为真空, 试求球壳内的电场 5. 已知 : 无限长直导线在电流, 求 : 磁场的矢势和磁感应强度的分布 6. 证明的磁性物质表面为等磁势面 已知 : 真空中电磁波的磁场为 求 : 7. 平面电磁波垂直射向金属表面, 证明透入金属内部的电磁波能量全部变成焦耳热 8. 证明在良导体内, 非垂直入射情况下有, 9. 已知 : 满足洛仑兹条件, 满足, 求证 : 满足 ( ; ) 3. 求证 : 在定态平面电磁波中有 31. 求平面电磁波的势及证明与满足关系 3. 静止长度为 l 的车厢, 以速度 υ 相对于地面 S 运行, 车厢的后壁以速度 u 向前推 出一个小球, 求地面观察者看到小球从后壁到前壁的运动时间. 33. 一辆以速度 υ 运动的列车上的观察者, 在经过某一高大建筑物时, 看见其避雷针 上跳起一脉冲电火花, 电光迅速传播, 先后照亮了铁路沿线上的两铁塔. 求列车上观察者 看到的两铁塔被电光照亮的时刻差. 设建筑物及两铁塔都在一直线上, 与列车前进方向一 致. 铁塔到建筑物的地面距离已知都是 l. 34 一事件在 t= 时刻发生在惯性系 S 的原点, 第二个事件在 t=4 秒时发生在点 1

11 x=5c,y=,z= 处, 若在惯性系 S 中, (1) 两事件同时发生 ; () 第一个事件早于第二个事件 1 秒 ; (3) 第二个事件早于第一个事件 1 秒. 求惯性系 S 相对于惯性系 S 的速度. 35. 论证粒子运动速度为光速的充分且必要条件是 五 其它 : 电磁场理论要点与题解中所有习题 收集的考研题经改造后均可入试题库 11

器之 间 向一致时为正 相反时则为负 ③大量电荷的定向移动形成电 流 单个电荷的定向移动同样形成电流 3 电势与电势差 1 陈述概念 电场中某点处 电荷的电势能 E p 与电荷量 q Ep 的比值叫做该点处的电势 表达式为 V 电场中两点之间的 q 电势之差叫做电势差 表达式为 UAB V A VB 2 理解概念 电势差是电场中任意两点之间的电势之差 与参考点的选择无关 电势是反映电场能的性质的物理量

More information

第 14 章 第 14 章 麦克斯韦方程组和电磁波 麦克斯韦方程组和电磁波 麦克斯韦在总结了从库仑到安培 法拉第等人关于电磁学研究的成果的基础 上 建立了著名的电磁场理论 现在称为经典电磁场理论 提出了 有旋场 和 位 移电流 的假说 指出变化的电场和磁场形成统一的电磁场 预言电磁场能够以波 动的形式在空间传播 称为电磁波 并且算出电磁波在真空中传播的速度等于光速 从而断定光在本质上就是一种电磁波

More information

Microsoft Word - 第二十六讲.doc

Microsoft Word - 第二十六讲.doc 第二十六讲 上次课 : 绝对时空观的困难 ( 麦 - 莫实验 ) 相对时空观,Loentz 变换, 四维空间, x ' 标量 矢量 张量 = α x ν ν 4. 速度及四维速度矢量 d 假定在 S 系中考察一个物体的运动, 其速度的定义是 = 现在假定 S 系 dt d ' 相对 S 系以速度 v 沿着 x 轴运动, 则在 S 系中同一粒子的速度定义为 = 因 dt ' 为在相对论时空观中, 时间和空间是一起变换的,

More information

Microsoft PowerPoint - 第13讲 习题课

Microsoft PowerPoint - 第13讲 习题课 电磁场与电磁波基础 主讲 : 徐乐 8 年 4 月 9 日星期二 矢量分析与场论 矢性函数 A = A x (t)x + A y(t)ŷ + A z (t)ẑ 运算 L[A(t)] = L[A (t)]x + L[A (t)]y+l[a ˆ (t)]zˆ x y z L 是算子符号, 代表一种运算 ( 极限 导数 积分 ) b= b cosθ (b c) = b 一些基本矢量运算 xˆ yˆ zˆ

More information

电动力学习题课 - 第一章

电动力学习题课 - 第一章 电动力学习题课 第一章 Cheng-Zong Ruan Department of Astronomy, BNU September 26, 2018 ElectroDynamics, exercise class chzruan 1/25 第一章作业 从静电场麦克斯韦方程的积分形式 E = 0( 静电场无旋 ). L E dl = 0 推导微分形式 从毕奥 - 萨法尔定律 (2.8) 式推导磁场旋度和散度公式

More information

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

概述 恒定电流 恒定电流 电荷对观察者来说有相对运动, 但这些规则运动在导电媒质中的电荷及所形成的电流, 其分布都是不随时间变化的

概述 恒定电流 恒定电流 电荷对观察者来说有相对运动, 但这些规则运动在导电媒质中的电荷及所形成的电流, 其分布都是不随时间变化的 Topic # 3 恒定电流的电场 (Steady lectric Currents) Part I 概述 基本方程 电功率 电动势 不同媒质分界面上的边界条件 静电比拟 (Duality) 概述 恒定电流 恒定电流 电荷对观察者来说有相对运动, 但这些规则运动在导电媒质中的电荷及所形成的电流, 其分布都是不随时间变化的 概述 场效应 静止电荷 静电场 不随时间变化, 只是空间坐标的函数 没有伴随的磁效应和磁场

More information

08-01.indd

08-01.indd 1 02 04 08 14 20 27 31 35 40 43 51 57 60 07 26 30 39 50 56 65 65 67 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ω ρ ε 23 λ ω < 1 ω < 1 ω > 0 24 25 26 27 28 29 30 31 ρ 1 ρ σ b a x x i +3 x i

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

More information

1

1 电动力学习题解答第一章电磁现象的普遍规律 - -. 根据算符 的微分性与矢量性推导下列公式 解 首先算符 是一个微分算符其具有对其后所有表达式起微分的作用对于本题 将作用于 和又 是一个矢量算符具有矢量的所有性质因此利用公式 可得上式其中右边前两项是 作用于 后两项是 作用于 根据第一个公式令 可得证. 设 是空间坐标 的函数证明. 证明 电动力学习题解答第一章电磁现象的普遍规律 - -. 设 为源点

More information

第二章电磁场的基本规律 (2) 2.3 真空中恒定磁场的基本规律 2.4 媒质的电磁特性 教师姓名 : 宗福建单位 : 山东大学微电子学院 2018 年 3 月 22 日

第二章电磁场的基本规律 (2) 2.3 真空中恒定磁场的基本规律 2.4 媒质的电磁特性 教师姓名 : 宗福建单位 : 山东大学微电子学院 2018 年 3 月 22 日 第二章电磁场的基本规律 (2) 2.3 真空中恒定磁场的基本规律 2.4 媒质的电磁特性 教师姓名 : 宗福建单位 : 山东大学微电子学院 2018 年 3 月 22 日 2 本章讨论内容 2.1 电荷守恒定律 2.2 真空中静电场的基本规律 2.3 真空中恒定磁场的基本规律 2.4 媒质的电磁特性 2.5 电磁感应定律和位移电流 2.6 麦克斯韦方程组 2.7 电磁场的边界条件 主线 : 亥姆霍兹定理

More information

第 2 页共 8 页 2014 年 01 月 04 日 14:20 位制 (electrostatic units) 电磁单位制 (electromagnetic units) 洛伦兹 - 赫维赛德单位制 (Lorentz-Heaviside units) 另外还有一类称为自然单位制的制度, 包括原

第 2 页共 8 页 2014 年 01 月 04 日 14:20 位制 (electrostatic units) 电磁单位制 (electromagnetic units) 洛伦兹 - 赫维赛德单位制 (Lorentz-Heaviside units) 另外还有一类称为自然单位制的制度, 包括原 第 1 页共 8 页 2014 年 01 月 04 日 14:20 高斯单位制维基百科, 自由的百科全书 高斯单位制 (Gaussian units) 是一种计量单位的制度, 属于公制, 是从厘米 - 克 - 秒制衍生, 电磁单位系统中最常见的一种单位制 在厘米 - 克 - 秒制内, 又有几组互相冲突的电磁单位, 不单只存在有高斯单位 所以, 使用术语 厘米 - 克 - 秒单位 很可能会引起分歧义,

More information

Microsoft Word - 第23讲.doc

Microsoft Word - 第23讲.doc 复习 : 第二十三讲 1. 动生电动势的物理实质 : E K = v ( 洛伦兹力产生的非静电等效场 ); 感生 u 电动势的物理实质 : E k dl = ds( 产生了一个有旋无源的性质类似 S t 静磁场 u 的电场, 非保守场 ) u u 2. 磁偶极子 与 p 的相似性 u u u u u τ = F = ( ) U = u u 3. (1) 轨道磁矩 μl = l = n μ 核子的磁矩

More information

Microsoft PowerPoint - ch2-d 静电场 [兼容模式]

Microsoft PowerPoint - ch2-d 静电场 [兼容模式] .5 格林函数法 Metho of een Function 一 分离变量法和镜像法能解的情况 分离变量法能解的情况: 自由电荷全聚集在边界上, 也就是说 : 在要求解电场区域没有自由电荷 泊松方程转变为拉普拉斯方程 边界条件 ρ 镜像法能解的情况: 在求解区域内没有自由电荷, 或者只有有限几个点电荷, 并且区域边界或介质界面规则 电场能用等效电荷代替 边界条件 二 een 函数法能解的情况 能用

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

ii 封底介绍 本书采用了比较自然的逻辑体系和简单易记的符号系统, 全面系统地介绍了经典电 动力学的内容和方法, 突出了理论物理教材简洁 优美 严谨的特色. 书中尽量完整地给 出了公式的推导和结论的证明, 每章配有较丰富的例题与习题.

ii 封底介绍 本书采用了比较自然的逻辑体系和简单易记的符号系统, 全面系统地介绍了经典电 动力学的内容和方法, 突出了理论物理教材简洁 优美 严谨的特色. 书中尽量完整地给 出了公式的推导和结论的证明, 每章配有较丰富的例题与习题. 电动力学概论 李书民 ii 封底介绍 本书采用了比较自然的逻辑体系和简单易记的符号系统, 全面系统地介绍了经典电 动力学的内容和方法, 突出了理论物理教材简洁 优美 严谨的特色. 书中尽量完整地给 出了公式的推导和结论的证明, 每章配有较丰富的例题与习题. iii 内容简介 本书根据作者在中国科技大学讲授电动力学的讲义整理而成. 通过比较自然的逻辑体系和简单易记的符号系统, 全面系统地介绍了经典电动力学的内容和方法,

More information

上海交通大学試卷

上海交通大学試卷 电磁场习题参考答案 第 章 - A 与 B 相互垂直 - A ( + ( + 5 + ( ( + ( + 5 + ( - A ( + A B 5 A B 5.8 5 AB A C ( + + 6 A ( B C( A B C 7 ( A B C + 5 和 A ( B C 55-5 m ( + u 6 p -6 φ p -7 e u + 7 6 m ( + + 7 V ( e + e 8 8-8 Ω.

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

Microsoft Word - 习题库.doc

Microsoft Word - 习题库.doc 第一章习题与解答. 根据算符 的微分性与矢量性, 推导下列公式 : A B B A B A A B A B A A A - A A 解 记 A B A B A B A B, A 的算符, 利用 a b b a - a b, 有 A B A B B A B A A B A B A B 是作用于 A 的算符, 是作用于 B A B B A B A A B A B 在上式中令 B A, 即得 A A A

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

Π Ρ! #! % & #! (! )! + %!!. / 0% # 0 2 3 3 4 7 8 9 Δ5?? 5 9? Κ :5 5 7 < 7 Δ 7 9 :5? / + 0 5 6 6 7 : ; 7 < = >? : Α8 5 > :9 Β 5 Χ : = 8 + ΑΔ? 9 Β Ε 9 = 9? : ; : Α 5 9 7 3 5 > 5 Δ > Β Χ < :? 3 9? 5 Χ 9 Β

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % #! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )

More information

电动力学 第五章:辐射电磁场

电动力学  第五章:辐射电磁场 1 / 1 电动力学 第五章 : 辐射电磁场 杨焕雄 中国科学技术大学物理学院近代物理系 hyang@ustc.edu.cn May 25, 2018 电磁波的产生机制 : 2 / 1 电磁波是电磁场存在的基本形式. Maxwell 方程组告诉我们 : 时变的电场 磁场相互激发, 在空间中就形成了电磁波. 于是, 产生电磁波的关键是产生随时间变化的电场和磁场. 1 从微观角度讲, 产生电磁波的前提条件是荷电粒子做加速运动.

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

Microsoft PowerPoint - 第五章

Microsoft PowerPoint - 第五章 第五章时变电磁场 何广强电话 : 01-340436 Email: gqhe@sjtu.edu.cn 1 主要内容 麦克斯韦方程组是宏观电磁理论所遵循的基本规律 5.1 电磁感应定律与全电流定律 5. 麦克斯韦方程组 5. 3 时变电磁场的边界条件 5. 4 坡印亭定理与坡印亭矢量 5. 5 时谐电磁场的复数表示 5.1 电磁感应定律与全电流定律 一 电磁感应定律 1. 电磁感应现象与楞次定律实验表明

More information

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 & ! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ

More information

关于信息化条件下《电动力学》教学的 一点思考

关于信息化条件下《电动力学》教学的 一点思考 关于信息化条件下 电动力学 教学的一点思考 ------ 如何开展 学生个性化学习, 教师针对性教学 胡响明华中师范大学 主要内容 : 一 电动力学 教学中的困惑 共性问题 个性化问题 二 信息技术对教育的影响 个性化教学 ( 云课堂 大数据 ) 2018/10/1 2 一 电动力学 教学中的困惑 教学的目的 重点是启发学生学习 电动力 学 的兴趣, 获得相应的能力 关键是要在注重解决共性问题的同时,

More information

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

电动力学 第二章:静电场,静电标势及唯一性定理

电动力学  第二章:静电场,静电标势及唯一性定理 1 / 1 电动力学 第二章 : 静电场, 静电标势及唯一性定理 杨焕雄 中国科学技术大学物理学院近代物理系 hyang@ustc.edu.cn April 9, 2018 2 / 1 静电场的标势 : 静电场的麦克斯韦方程组是 : D = ρ, E = 0. 静电场是无旋场, E = φ x z o q( x + d x) d l p( x) y 现在求空间中相距 d l 的两点的电势差 dφ.

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

More information

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

More information

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

More information

( ) (! +)! #! () % + + %, +,!#! # # % + +!

( ) (! +)! #! () % + + %, +,!#! # # % + +! !! # % & & & &! # # % ( ) (! +)! #! () % + + %, +,!#! # # % + +! ! %!!.! /, ()!!# 0 12!# # 0 % 1 ( ) #3 % & & () (, 3)! #% % 4 % + +! (!, ), %, (!!) (! 3 )!, 1 4 ( ) % % + % %!%! # # !)! % &! % () (! %

More information

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5, # # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( 0 2 3 ( & +. 4 / &1 5, !! & 6 7! 6! &1 + 51, (,1 ( 5& (5( (5 & &1 8. +5 &1 +,,( ! (! 6 9/: ;/:! % 7 3 &1 + ( & &, ( && ( )

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

主讲人 : 潘时龙办公室 : 明故宫校区 A 电话 : 邮箱 : 网址 :

主讲人 : 潘时龙办公室 : 明故宫校区 A 电话 : 邮箱 : 网址 : 主讲人 : 潘时龙办公室 : 明故宫校区 A1-5 电话 : 5-848963 邮箱 : pans@nuaa.edu.cn 网址 : http://mwp.nuaa.edu.cn 静态电磁场 : 场量不随时间变化, 包括 : 静电场 恒定电场和恒定磁场 时变情况下, 电场和磁场相互关联, 构成统一的电磁场 静态情况下, 电场和磁场由各自的源激发, 且相互独立 本章内容 3.1 静电场分析 3. 导电媒质中的恒定电场分析

More information

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) ! # % & # % ( ) & + + !!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) 6 # / 0 1 + ) ( + 3 0 ( 1 1( ) ) ( 0 ) 4 ( ) 1 1 0 ( ( ) 1 / ) ( 1 ( 0 ) ) + ( ( 0 ) 0 0 ( / / ) ( ( ) ( 5 ( 0 + 0 +

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 . ttp://www.reej.com 4-9-9 4-9-9 . a b { } a b { }. Φ ϕ ϕ ϕ { } Φ a b { }. ttp://www.reej.com 4-9-9 . ~ ma{ } ~ m m{ } ~ m~ ~ a b but m ~ 4-9-9 4 . P : ; Φ { } { ϕ ϕ a a a a a R } P pa ttp://www.reej.com

More information

3?! ΑΑΑΑ 7 ) 7 3

3?! ΑΑΑΑ 7 ) 7 3 ! # % & ( ) +, #. / 0 # 1 2 3 / 2 4 5 3! 6 ) 7 ) 7 ) 7 ) 7 )7 8 9 9 :5 ; 6< 3?! ΑΑΑΑ 7 ) 7 3 8! Β Χ! Δ!7 7 7 )!> ; =! > 6 > 7 ) 7 ) 7 )

More information

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α # % & ( ) # +,. / 0 1 2 /0 1 0 3 4 # 5 7 8 / 9 # & : 9 ; & < 9 = = ;.5 : < 9 98 & : 9 %& : < 9 2. = & : > 7; 9 & # 3 2

More information

第一章三角函数 1.3 三角函数的诱导公式 A 组 ( ) 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角, 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C 2 ( 中诱导公式 ) ( ) B. cos(

第一章三角函数 1.3 三角函数的诱导公式 A 组 ( ) 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角, 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C 2 ( 中诱导公式 ) ( ) B. cos( 第一章三角函数 1. 三角函数的诱导公式 A 组 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C ( 中诱导公式 ) B. cos( B C) cos A D. sin( B C) sin A sin60 cos( ) sin( 0 )cos( 70 ) 的值等于

More information

15-03.indd

15-03.indd 1 02 07 09 13 18 24 32 37 42 53 59 66 70 06 12 17 23 36 52 65 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 fl fi fi 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 σ σ σ α α 36 37 38 39 40 41 42 43 44

More information

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ ! # % & ( ) +,. / 0 1 + 2. 3 4. 56. / 7 89 8.,6 2 ; # ( ( ; ( ( ( # ? >? % > 64 5 5Α5. Α 8/ 56 5 9. > Β 8. / Χ 8 9 9 5 Δ Ε 5, 9 8 2 3 8 //5 5! Α 8/ 56/ 9. Φ ( < % < ( > < ( %! # ! Β Β? Β ( >?? >?

More information

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ ! # % & ( ) % + ( ), & ). % & /. % 0 1!! 2 3 4 5# 6 7 8 3 5 5 9 # 8 3 3 2 4 # 3 # # 3 # 3 # 3 # 3 # # # ( 3 # # 3 5 # # 8 3 6 # # # # # 8 5# :;< 6#! 6 =! 6 > > 3 2?0 1 4 3 4! 6 Α 3 Α 2Η4 3 3 2 4 # # >

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

法拉第实验的分类: a 磁铁与线圈有相对运动 线圈中产生了电流 ; b 线圈中电流变化时 在它附近的其他线圈中产生了电流 ; 感应电流: 当穿过一个闭合回路所限定的面积的磁通量发生变化时 回路中出现的电流叫感应电流 ; 电流是由带电粒子的定向移动形成的 该回路中没有静电场 带电粒子要定向移动 必须要

法拉第实验的分类: a 磁铁与线圈有相对运动 线圈中产生了电流 ; b 线圈中电流变化时 在它附近的其他线圈中产生了电流 ; 感应电流: 当穿过一个闭合回路所限定的面积的磁通量发生变化时 回路中出现的电流叫感应电流 ; 电流是由带电粒子的定向移动形成的 该回路中没有静电场 带电粒子要定向移动 必须要 第八章 电磁感应 学习要点 : 掌握法拉第电磁感应定律的物理意义 计算感应电动势 能熟练地应用楞次定律确定感应电动势的方向 ; 能够用动生电动势公式计算几何形状简单的导体在匀均磁场或对称分布的非匀强磁场中运动时 所产生的动生电动势 理解动生电动势中的非静电力是洛仑兹力 ; 3 掌握感应电场的概念 了解感应电场与静电场的区别 能够计算简单的感应电场强度及感应电动势 判断感应电场的方向 ; 4 理解自感与互感现象

More information

9 : : ; 7 % 8

9 : : ; 7 % 8 ! 0 4 1 % # % & ( ) # + #, ( ) + ) ( ). / 2 3 %! 5 6 7! 8 6 7 5 9 9 : 6 7 8 : 17 8 7 8 ; 7 % 8 % 8 ; % % 8 7 > : < % % 7! = = = : = 8 > > ; 7 Ε Β Β % 17 7 :! # # %& & ( ) + %&, %& ) # 8. / 0. 1 2 3 4 5

More information

第四讲 在封闭空间中电磁波

第四讲  在封闭空间中电磁波 第五讲 在金属波导中电磁波 金属 ( 理想导体 ) 矩形波导 双导线 同轴线 矩形波导 圆波导 带状线 微 带 介质波导光纤 Metllic Rectngulr Wveguides 矩形波导的理想化假设 波导内壁为理想导体, 电导率为无限大 ; 波导内填充介质为各向同性 均匀无耗的线性媒质 ; 波导内无自由电荷和传导电流, 即波导内无源 ; 波导为无限长, 横截面形状大小在传播方向不变 ; 波导中波的传播方向为

More information

; < 5 6 => 6 % = 5

; < 5 6 => 6 % = 5 ! # % ( ),,. / 0. 1, ) 2 3, 3+ 3 # 4 + % 5 6 67 5 6, 8 8 5 6 5 6 5 6 5 6 5 6 5 9! 7 9 9 6 : 6 ; 7 7 7 < 5 6 => 6 % = 5 Δ 5 6 ; Β ;? # Ε 6 = 6 Α Ε ; ; ; ; Φ Α Α Ε 0 Α Α Α Α Α Α Α Α Α Α Α Α Α Β Α Α Α Α Α

More information

% % %/ + ) &,. ) ) (!

% % %/ + ) &,. ) ) (! ! ( ) + & # % % % %/ + ) &,. ) ) (! 1 2 0 3. 34 0 # & 5 # #% & 6 7 ( ) .)( #. 8!, ) + + < ; & ; & # : 0 9.. 0?. = > /! )( + < 4 +Χ Α # Β 0 Α ) Δ. % ΕΦ 5 1 +. # Ι Κ +,0. Α ϑ. + Ι4 Β Η 5 Γ 1 7 Μ,! 0 1 0

More information

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 :

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 : !! # % & % () + (. / 0 ) 1 233 /. / 4 2 0 2 + + 5. 2 / 6 ) 6. 0 ) 7. 8 1 6 / 2 9 2 :+ ; < 8 10 ; + + ( =0 41 6< / >0 7 0?2) 29 + +.. 81 6> Α 29 +8 Β Χ + Δ Ε /4 10 )+ 2 +. 8 1 6 > 2 9 2 : > 8 / 332 > 2

More information

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9 !! #! % & ( ) +,. / 0 1 2 34 5 6 % & +7 % & 89 % & % & 79 % & : % & < < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ

More information

# #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. /

# #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. / ! ( ) # # % % ( % % %! % % & % # #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. / 12 23 4 5 6 7 3.! (. ( / ( ) ). 1.12 ( 4 4 % & &!7 % (!!!!, (! % !!! % %!,! ( & (!! 8!!!,!!+!! & !!%! & 9 3 3 :;

More information

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ ! % & ( ),. / & 0 1 & 2 1 // % & 3 0 4 5 ( 6( ) ( & 7 8 9:! ; < / 4 / 7 = : > : 8 > >? :! 0 1 & 7 8 Α :! 4 Β ( & Β ( ( 5 ) 6 Χ 8 Δ > 8 7:?! < 2 4 & Ε ; 0 Φ & % & 3 0 1 & 7 8 Α?! Γ ), Η % 6 Β% 3 Ι Β ϑ Ι

More information

1#

1# ! # % & ( % + #,,. + /# + 0 1#. 2 2 3 4. 2 +! 5 + 6 0 7 #& 5 # 8 % 9 : ; < =# #% > 1?= # = Α 1# Β > Χ50 7 / Δ % # 50& 0 0= % 4 4 ; 2 Ε; %5 Β % &=Φ = % & = # Γ 0 0 Η = # 2 Ι Ι ; 9 Ι 2 2 2 ; 2 ;4 +, ϑ Α5#!

More information

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9!

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9! # %!!! ( ) ( +, +. ( / 0 1) ( 21 1) ( 2 3 / 4!! 5 6 7 7! 8 8 9 : ; < 9 = < < :! : = 9 ; < = 8 9 < < = 9 8 : < >? % > % > % 8 5 6 % 9!9 9 : : : 9 Α % 9 Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3

More information

Microsoft Word - 第五讲

Microsoft Word - 第五讲 第五讲 上次课 D D f, E B, B, H jf t t D EB, H, jce 边界条件 : n( D1D) f - 本构关系 - Maxwell 方程组 自由面电荷分布 ( 奇性分布 ), 一般情况下 D 的法向分量连续! 同理, 对应方程 B, 容易得到 B 场的法向分量连续的结论 : n B B B B 1 n1 n 对应第 4 条公式 H jf D的积分形式为 t H dl j ds

More information

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5 0 ( 1 0 % (! # % & ( ) + #,. / / % (! 3 4 5 5 5 3 4,( 7 8 9 /, 9 : 6, 9 5,9 8,9 7 5,9!,9 ; 6 / 9! # %#& 7 8 < 9 & 9 9 : < 5 ( ) 8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, 5 4

More information

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ Ⅰ Ⅱ 1 2 Ⅲ Ⅳ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

第 4 卷第 7 期李瑾等 : 电偶极子的各向异性辐射特性 9 达式的获得不仅是完善电磁场理论本身发展的需要, 而且在各向异性介质中目标识别 雷达天线等领域有着重要的应用前景 在这一研究领域,N.P. Zhuck 在四维空间得到独立于坐标的格林函数 [], 各向异性介质中的并矢格林函数十分有用, 提

第 4 卷第 7 期李瑾等 : 电偶极子的各向异性辐射特性 9 达式的获得不仅是完善电磁场理论本身发展的需要, 而且在各向异性介质中目标识别 雷达天线等领域有着重要的应用前景 在这一研究领域,N.P. Zhuck 在四维空间得到独立于坐标的格林函数 [], 各向异性介质中的并矢格林函数十分有用, 提 装备环境工程第 4 卷第 7 期 8 EQUIPMENT ENVIRONMENTAL ENGINEERING 7 年 7 月 电偶极子的各向异性辐射特性 李瑾,, 冯晓毅, 王明军 3 (. 陕西学前师范学院计算机与电子信息系, 西安 7;. 西北工业大学电子工程学院, 西安 77;3. 咸阳师范学院电子工程学院, 陕西咸阳 7) 摘要 : 目的研究均匀各向异性介质中电磁源的辐射特性及其规律 方法基于电磁场的方向多长度标准理论,

More information

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ;

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ; ! # % & ( ) ( +, +. ( /0!) ( 1!2!) ( 3 4 5 2 4 7 8 9: ; 9 < : = ; ; 54 ; = ; ; 75 ; # ; 9 : ; 9 : ; ; 9: ; ; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; 54 9 9: ; ;

More information

幻灯片 1

幻灯片 1 电动力学 Eletrodynamis 第 6 章狭义相对论 (Speial Relatiity) 物理与光电工程学院白璐邮箱 : blu@xidian.edu.n 主页 : http://web.xidian.edu.n/bailu 电话 :1591456996 本章内容 (Speial Relatiity) 1 狭义相对论的实验基础 狭义相对论的基本原理洛仑兹变换 3 狭义相对论的时空理论 4 狭义相对论动力学简介

More information

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε (! # # %& ) +,./ 0 & 0 1 2 / & %&( 3! # % & ( ) & +, ), %!,. / 0 1 2. 3 4 5 7 8 9 : 0 2; < 0 => 8?.. >: 7 2 Α 5 Β % Χ7 Δ.Ε8 0Φ2.Γ Φ 5 Η 8 0 Ι 2? : 9 ϑ 7 ϑ0 > 2? 0 7Ε 2?. 0. 2 : Ε 0 9?: 9 Κ. 9 7Λ /.8 720

More information

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7 ! # % & ( ) +, + )% ). )% / 0 1. 0 3 4 5 6 7 8 7 8 9 : ; < 7 ( % ; =8 9 : ; < ; < > ;, 9 :? 6 ; < 6 5 6 Α Β 5 Δ 5 6 Χ 5 6 5 6 Ε 5 6 Ε 5 5 Β Χ Χ Α Β 7 8 9 Φ 5 6 9 Φ ; < # 9 Φ ; < # 7 8 5 5 < % Γ & (,,,,

More information

ⅠⅡⅢ Ⅳ

ⅠⅡⅢ Ⅳ ⅠⅡⅢ Ⅳ ! "!"#$%&!!! !"#$%& ()*+,!"" *! " !! " #$%& ( Δ !"#$%& ()*+,!"" * !! " #$%& ( !"#$%& ()*+,!"" * !! " #$%& ( !"#$%& ()*+,!"" * !! " #$%& (! # !"#$%& ()*+,!"" * !! " #$%& ( 1 1 !"#$%& ()*+,!"" *

More information

Conductix-Wampfler Inductive Power Transfer IPT 2

Conductix-Wampfler Inductive Power Transfer IPT 2 IPT 产品简介 非接触式动力和数据传输系统 Conductix-Wampfler Inductive Power Transfer IPT 2 Conductix-Wampfler Inductive Power Transfer IPT 3 9 1 2 3 4 5 6 7 8 4 2 3 4 1 8 5 7 9 6 ² ² ² - 无限的应用可能性... 用于变速箱总装线上的 AGV 小车

More information

: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ >

: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ > ! # %& ( +, &. / ( 0 # 1# % & # 2 % & 4 5 67! 8 9 : ; < 8 = > 9? 8 < 9? Α,6 ΒΧ : Δ 8Ε 9 %: ; < ; ; Δ Φ ΓΗ Ιϑ 4 Κ6 : ; < < > : ; : ;!! Β : ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46

More information

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2 ! # % ( % ) +,#./,# 0 1 2 / 1 4 5 6 7 8! 9 9 : ; < 9 9 < ; ?!!#! % ( ) + %,. + ( /, 0, ( 1 ( 2 0% ( ),..# % (., 1 4 % 1,, 1 ), ( 1 5 6 6 # 77 ! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ!

More information

第二章电磁场的基本规律 (1) 2.1 电荷守恒定律 2.2 真空中静电场的基本规律 教师姓名 : 宗福建单位 : 山东大学微电子学院 2018 年 3 月 20 日

第二章电磁场的基本规律 (1) 2.1 电荷守恒定律 2.2 真空中静电场的基本规律 教师姓名 : 宗福建单位 : 山东大学微电子学院 2018 年 3 月 20 日 第二章电磁场的基本规律 (1) 2.1 电荷守恒定律 2.2 真空中静电场的基本规律 教师姓名 : 宗福建单位 : 山东大学微电子学院 2018 年 3 月 20 日 2 本章讨论内容 2.1 电荷守恒定律 2.2 真空中静电场的基本规律 2.3 真空中恒定磁场的基本规律 2.4 媒质的电磁特性 2.5 电磁感应定律和位移电流 2.6 麦克斯韦方程组 2.7 电磁场的边界条件 主线 : 亥姆霍兹定理

More information

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9 ! # %& ( %) & +, + % ) # % % )./ 0 12 12 0 3 4 5 ). 12 0 0 61 2 0 7 / 94 3 : ;< = >?? = Α Β Β Β Β. Β. > 9. Δ Δ. Ε % Α % Φ. Β.,,.. Δ : : 9 % Γ >? %? >? Η Ε Α 9 Η = / : 2Ι 2Ι 2Ι 2Ι. 1 ϑ : Κ Λ Μ 9 : Ν Ο 0

More information

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ # % & ( ) +,& ( + &. / 0 1 2 3 ( 4 4 5 4 6 7 8 4 6 5 4 9 :.; 8 0/ ( 6 7 > 5?9 > 56 Α / Β Β 5 Χ 5.Δ5 9 Ε 8 Φ 64 4Γ Β / Α 3 Γ Β > 2 ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν 3 3 3 Α3 3

More information

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; =

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; = ! 0 1 # & ( & ) +! &,. & /.#. & 2 3 4 5 6 7 8 9 : 9 ; < = : > < = 9< 4 ; < = 1 9 ; 3; : : ; : ;? < 5 51 ΑΒ Χ Δ Ε 51 Δ!! 1Φ > = Β Γ Η Α ΒΧ Δ Ε 5 11!! Ι ϑ 5 / Γ 5 Κ Δ Ε Γ Δ 4 Φ Δ Λ< 5 Ε 8 Μ9 6 8 7 9 Γ Ν

More information

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7 ! # % # & ( & ) # +,,., # / 0 1 3. 0. 0/! 14 5! 5 6 6 7 7 7 7 7! 7 7 7 7 7 7 8 9 : 6! ; < ; < ; : 7 7 : 7 < ;1< = = : = >? ) : ; < = > 6 0 0 : ; < ) ; < ; < ; : < ; < = = 7 7 7 Α > : Β ; < ; 6 < > ;:

More information

幻灯片 1

幻灯片 1 第二章原子的激发态结构. 单电子 (H) 原子 ( 类 ) 氢原子的薛定谔方程 -e 3D 不含时的定态薛定谔方程 其中库仑势 m + ( ) V ( ) V ψ Ze 4πε Eψ + +Ze 电子束缚在原子核的中心力场中 只与电子和原子核之间的径向距离有关 Fom www.hpephsics.ph-ast.gsu.edu . 单电子 (H) 原子氢原子的薛定谔方程 Catesian coodinates

More information

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ!

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ! !! # %& + ( ) ),., / 0 12 3, 4 5 6, 7 6 6, 8! 1 9 :; #< = 1 > )& )? Α Β 3 % Χ %? 7) >ΔΒ Χ :% Ε? 9 : ; Φ Η Ι & Κ Λ % 7 Μ Ν?) 1!! 9 % Ο Χ Χ Β Π Θ Π ; Ρ Ρ Ρ Ρ Ρ ; . Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )?

More information

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ; ! #! % & % ( ) ( +, & %. / & % 0 12 / 1 4 5 5! 6 7 8 7 # 8 7 9 6 8 7! 8 7! 8 7 8 7 8 7 8 7 : 8 728 7 8 7 8 7 8 7 8 7 & 8 7 4 8 7 9 # 8 7 9 ; 8 ; 69 7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β

More information

, & % # & # # & % & + # & # # # & # % #,

, & % # & # # & % & + # & # # # & # % #, ! # #! % # & # & & ( ( # ) % , & % # & # # & % & + # & # # # & # % #, # % % # % # ) % # % % # % # # % # % # + # % ( ( # % & & & & & & % & & # % # % & & % % % . % # / & & # 0 ) & # % & % ( # # & & & # #

More information

Φ2,.. + Φ5Β( 31 (+ 4, 2 (+, Η, 8 ( (2 3.,7,Χ,) 3 :9, 4 (. 3 9 (+, 52, 2 (1 7 8 ΙΜ 12 (5 4 5? ), 7, Χ, ) 3 :9, 4( > (+,,3, ( 1 Η 34 3 )7 1 )? 54

Φ2,.. + Φ5Β( 31 (+ 4, 2 (+, Η, 8 ( (2 3.,7,Χ,) 3 :9, 4 (. 3 9 (+, 52, 2 (1 7 8 ΙΜ 12 (5 4 5? ), 7, Χ, ) 3 :9, 4( > (+,,3, ( 1 Η 34 3 )7 1 )? 54 !! # %& ( ) +, ( ),./0 12,2 34 (+,, 52, 2 (67 8 3., 9: ), ; 5, 4, < 5) ( (, 2 (3 3 1 6 4, (+,,3,0 ( < 58 34 3 )7 1 54 5, 2 2 54, +,. 2 ( :5 ( > 4 ( 37 1, ( 3 4 5? 3 1 (, 9 :), ; 5 4 )1 7 4 )3 5( 34 2 Α

More information

9! >: Ε Φ Ε Ε Φ 6 Φ 8! & (, ( ) ( & & 4 %! # +! ; Γ / : ; : < =. ; > = >?.>? < Α. = =.> Β Α > Χ. = > / Δ = 9 5.

9! >: Ε Φ Ε Ε Φ 6 Φ 8! & (, ( ) ( & & 4 %! # +! ; Γ / : ; : < =. ; > = >?.>? < Α. = =.> Β Α > Χ. = > / Δ = 9 5. ! # % & ( # ) & % ( % +, %. +, / #0 & 2 3 4 5 5 6 7 7 8 9 7:5! ; 0< 5 = 8 > 4 4? 754 Α 4 < = Β Χ 3Δ?? 7 8 7 8? 7 8 7 8 7 8 4 5 7 8 7 8 > 4> > 7 8 7 8 7 8 4 : 5 5 : > < 8 6 8 4 5 : 8 4 5 : 9! >: 48 7 8

More information

<4D F736F F F696E74202D D3020B5E7B6AFC1A6D1A7D4A4B1B8D6AACAB62D322E BBCE6C8DDC4A3CABD5D>

<4D F736F F F696E74202D D3020B5E7B6AFC1A6D1A7D4A4B1B8D6AACAB62D322E BBCE6C8DDC4A3CABD5D> 电动力学 李涛 taoli@nj.d.cn ttp://dsl.nj.d.cn/litao 引 言 Intodction 电动力学的研究对象是电磁场的基本性质 运动规律以及它和带电物质之间的相互作用 电动力学的研究内容是阐述宏观电磁场理论, 主要从实验定律中总结电磁场的普遍规律, 建立 Mawll s qations 讨论稳恒电磁场讨论稳恒电磁场 电磁波传电磁波传 播 电磁波辐射及电动力学的参考系问题电磁波辐射及电动力学的参考系问题

More information

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ <

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ < ! # %!! ( (! +,. /0 0 1 2,34 + 5 6 7,3. 7, 8, 2 7 + 1 9 #. 3 : + ; + 5 83 8 % 8 2 ; , 1 1 8 2 =? : + 2 = 2 = Α 1,!. Β 3 + 5 Χ Β Β

More information

! " # " " $ % " " # # " $ " # " #! " $ "!" # "# # #! &$! ( % "!!! )$ % " (!!!! *$ ( % " (!!!! +$ % " #! $!, $ $ $ $ $ $ $, $ $ "--. %/ % $ %% " $ "--/

!  #   $ %   # #  $  #  #!  $ ! # # # #! &$! ( % !!! )$ %  (!!!! *$ ( %  (!!!! +$ %  #! $!, $ $ $ $ $ $ $, $ $ --. %/ % $ %%  $ --/ "##$ "% "##& " "##( )$ "##%! ) "##$ * "##( "##$ "##(!!!!!!!!! ! " # " " $ % " " # # " $ " # " #! " $ "!" # "# # #! &$! ( % "!!! )$ % " (!!!! *$ ( % " (!!!! +$ % " #! $!, $ $ $ $ $ $ $, $ $ "--. %/ % $

More information

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin 38 5 216 1 1),2) 163318) 163318). API. TE256 A doi 1.652/1-879-15-298 MODE OF CASING EXTERNA EXTRUSION BASED ON THE PRINCIPE OF VIRTUA WORK 1) ZHAO Wanchun,2) ZENG Jia WANG Tingting FENG Xiaohan School

More information

?.! #! % 66! & () 6 98: +,. / / 0 & & < > = +5 <. ( < Α. 1

?.! #! % 66! & () 6 98: +,. / / 0 & & < > = +5 <. ( < Α. 1 !! # % # & ( & ) # +, #,., # / 0 1. 0 1 3 4 5! 6 7 6 7 67 +18 9 : : : : : : : : : :! : : < : : ?.! #! % 66! & 6 1 1 3 4.5 () 6 98: +,. / / 0 & 0 0 + & 178 5 3 0. = +5

More information