Microsoft PowerPoint - 第13讲 习题课

Size: px
Start display at page:

Download "Microsoft PowerPoint - 第13讲 习题课"

Transcription

1 电磁场与电磁波基础 主讲 : 徐乐 8 年 4 月 9 日星期二

2 矢量分析与场论 矢性函数 A = A x (t)x + A y(t)ŷ + A z (t)ẑ 运算 L[A(t)] = L[A (t)]x + L[A (t)]y+l[a ˆ (t)]zˆ x y z L 是算子符号, 代表一种运算 ( 极限 导数 积分 ) b= b cosθ (b c) = b 一些基本矢量运算 xˆ yˆ zˆ b= c( b) = b(c ) x y z bx by bz (b c) = ( c)b-( b)c c lexu@mil.xidin.edu.cn

3 矢量分析与场论 矢端曲线 r = A () t xˆ+ A () t yˆ+ A () t zˆ x y z 矢量线 dx dy dz = = A A A x y z lexu@mil.xidin.edu.cn 3

4 矢量分析与场论 数量场 等值面 梯度 矢量场 采用矢量线描述 散度旋度 4

5 矢量分析与场论 算子 : ( A) = ( ϕ) = 直角坐标系定义 : = x xˆ + y yˆ + z zˆ 梯度 : u u u grdu = u = xˆ+ yˆ+ zˆ x y z 矢量 散度 : diva A A A A x y z x y = = + + z 标量 旋度 : rota xˆ yˆ zˆ = A = x y z A A A x y z 矢量 lexu@mil.xidin.edu.cn 5

6 矢量分析与场论 r r = = r r = 3 r = rˆ f () r f () r = r = f ()ˆ r r r [ f( r) r] = r ( ) = 3 r r = r r 3 lexu@mil.xidin.edu.cn 6

7 矢量分析与场论 场的基本概念 ; 标量场的梯度 ; 矢量场的散度 旋度 ; 亥姆霍兹定理 ; 圆柱坐标系与球坐标系中的梯度 散度和旋度. 基本要求 () 熟练掌握场的基本概念, 掌握标量场的梯度 矢量场的散度和旋度的定义 运算 () 了解圆柱坐标系与球坐标系中梯度 散度和旋度运算. 重点 难点 重点 : 场的基本概念 ; 梯度 散度和旋度的定义 运算和物理意义 难点 : 矢性微分算符 亥姆霍兹定理 矢量公式 lexu@mil.xidin.edu.cn 7

8 静电场 库仑定律 : 分布电荷对点电荷的作用力可以统一地表示为 : q r r r r ( r ) = dq Fq region 3 4πε dq = ρ ρ s ρl ( r ) ( r ) ( r ) dv ds dl 体电荷 面电荷 线电荷 ε 36π 9 / F m lexu@mil.xidin.edu.cn 8

9 静电场 真空中静电场的基本解可归纳为 E = ρ ε E = s E ds = Q ε E dl = E = ϕ l 静电场是一个无旋 有源 ( 通量源 ) 场 电荷就是静电场的源 电力线总是从正电荷出发到负电荷终止 ϕ( r ) = ϕ = 4πε V ρ ε ρ( r' ) dv ' r r' lexu@mil.xidin.edu.cn 9

10 静电场 介质中的场方程 D = ρ E = D = ε E+ P = ε E 边界条件 : n E = n E n D D = ρ ( ) s p D ds = Q S E dl = l ρ = P ρ Sp = P n ϕ ϕ ε ε = ρs n n ϕ ϕ = lexu@mil.xidin.edu.cn

11 静电场 电容的求法 :. 假设两导体上所带电荷 q, 并根据实际情况求出电荷分布. 由电荷分布求出电场强度, 进而得出两导体电位差 = U E dl 3. 由电容定义求出电容 lexu@mil.xidin.edu.cn C = 导体系统 [ ϕ ] = [ p][ q] [ q] = [ β ][ ϕ] C q U n = β, C = β ii ij ij ij j=

12 静电场 分布电荷的储能为 : 带电导体系统的能量 W W W 电容器储存的静电能 : q W e = qu = CU = C e e e = = = n i= n i= V ϕ () r dq n j= n j= p ij q q βijϕiϕ j i j w e W e = E D = V w dv e lexu@mil.xidin.edu.cn

13 静电场 电荷 ; 电场强度 ; 静电场的通量与散度 ; 静电场的环量与旋度 ; 静电场的基本方程 ; 电位 ; 泊松方程和拉普拉斯方程 ; 电偶极子及其产生的场 ; 介质中的场方程 ; 静电场的边界条件 ; 静电场中的多导体系统 多导体系统的部分电容 ; 静电场的能量 能量密度 基本要求 熟练掌握静电场的基本概念 静电场的基本方程 边界条件 掌握静电场的计算方法 电场能量, 电容的求解 lexu@mil.xidin.edu.cn 3

14 恒定电流场 电流密度 电荷守恒定律 欧姆定律 焦耳定律 恒定电流场的基本方程 恒定电场的边界条件 静电比拟法 S J ds = U = RI J ( r ) = σ E( r ) P = UI p = J E nˆ ( J J ) = V ΔI J( r) = lim nˆ ( r) ΔS ΔS dρ dρ dv J + = dt dt J ds = S E dl = l J = E = nˆ ( E E ) = lexu@mil.xidin.edu.cn 4

15 恒定电流场 5

16 恒定电流场 电流和电流密度 ; 欧姆定律的微分形式 焦耳定律的微分形式 ; 电流连续性方程 恒定电场的散度 ; 电动势 恒定电场的旋度 ; 恒定电场的基本方程 ; 恒定电场的边界条件 ; 静场比拟法 基本要求 熟练掌握电流的分类 电流密度的定义 掌握电荷守恒定律 欧姆定律微分形式 焦耳定律 恒定电流场基本方程和边界条件 重点 难点 重点 : 电荷守恒定律 欧姆定律的微分形式 焦耳定律 恒定电流场的基本方程和边界条件的数学表达式及其含意 难点 : 恒定电流场与静电场的比拟 漏电阻计算 lexu@mil.xidin.edu.cn 6

17 恒定电流场 安培定律 法国物理学家安培根据实验总结的基本规律 : 真空中载流 I 的回路 C 给载流 I 的回路 C 的作用力为 : C Idl R Idl C μ 7 = 4π / H m F μ r r = I dl ( I dl R) 3 4π C C R lexu@mil.xidin.edu.cn 7

18 恒定电流场 真空中的恒定磁场场方程 矢量磁位 磁通连续性方程 Br () = 程 B ds = S () l B = A () Jr () 安 Br = μ Br dl = μ I A = A μ = 4π V A = μ J R J 安培环路定律dV 库伦规范 lexu@mil.xidin.edu.cn 8

19 恒定电流场 磁介质中恒定磁场的基本方程 : H = J 微分形式 B = 积分形式 本构方程 恒定磁场的边界条件 C S B H dl = J ds S B ds = = μh nˆ ( B B ) = Jm = M J = M nˆ lexu@mil.xidin.edu.cn 9 H B = M μ ms n H H J ˆ ( ) = S

20 恒定电流场 无电流源区域的磁标位 H = ϕ m ϕ m ϕ m = IΩ = IΩ Br () = μ ( ) = μ ϕ 4π m 4π lexu@mil.xidin.edu.cn

21 恒定电流场 电感 自感 : 互感 : 诺埃曼 (Neumnn) 公式 磁场能量 W m M L 磁场能量密度 = ψ I ψ = I = J AdV V W m 4π C C lexu@mil.xidin.edu.cn M μ = dl dl R = H BdV W = LI V w m = B H

22 恒定电流场 磁感应强度 ; 磁通的连续性原理 磁场的散度 ; 安培环路定律 磁场的旋度 ; 恒定磁场的基本方程 ; 矢量磁位 ; 矢量泊松方程 ; 磁偶极子及其产生的场 ; 磁介质中的场方程 ; 磁场的边界条件 ; 标量磁位 ; 互感和自感 ; 恒定磁场的能量 能量密度 基本要求 熟练掌握磁通的连续性原理 安培环路定律 恒定磁场的基本方程 矢量磁位和磁场的边界条件 掌握电流分布已知时磁感应强度和磁场强度的计算, 矢量泊松方程和磁偶极子及其产生的场, 标量磁位 互感和自感 磁场能量 能量密度的概念和求解 lexu@mil.xidin.edu.cn

23 3

24 平面镜像法 静态场的解 4

25 静态场的解 球面镜像法 q q q d d b b = d q' = d q q q q q d d b q =-q lexu@mil.xidin.edu.cn 5

26 静态场的解 柱面镜像法 d ρ l x ( x+ d) + y ( x d) + y m, m = y x = md m + R, x = d, = m m y ρl nm πε lexu@mil.xidin.edu.cn 6 ϕ =

27 静态场的解 介质平面镜像法 r Region ε y d q Region x ε ε q' = q ε + ε ε q' ' = q ε + ε q d r Region y ε r q d Region x y ϕ ε n = ε ϕ n ε ε d q x ϕ ϕ = lexu@mil.xidin.edu.cn 7

28 静态场的解 分离变量法的大致步骤 : Step: 将偏微分方程的定解问题通过分离变量法转化为常微分方程的定解问题 ; Step: 确定特征值, 利用部分边界条件确定特征函数 ; Step3: 与其它常微方程的解相乘得到包含有任意常数的一般解形式 :φ n (x,y) Step4: 叠加所有的 φ n (x,y) 形成级数形式, 利用剩余的边界条件把已知函数展开成特征函数项级数, 从而确定一系列未知常数, 进而得到通解形式. lexu@mil.xidin.edu.cn 8

29 静态场的解 边值问题的分类 ; 唯一性定理 ; 导体平面 导体球面 导体柱面镜像法 ; 直角坐标系中的分离变量法 基本要求 熟练掌握边值问题的分类 唯一性定理 镜像法 分离变量法 有限差分法 重点 难点 重点 : 镜像法 分离变量法 难点 : 直角坐标系中的分离变量法 lexu@mil.xidin.edu.cn 9

30 3

31 3

32 3

33 习题课指导 33

34 34

35 习题课指导 例. 均匀带电导体球的半径为, 电量为 q, 求球内 外电场及电位分布解 : 用高斯定理计算 由对称性可以知道, 在距球心为 r 的球面上, 电场强度的大小相等, 方向沿半径方向 对球外, 取半径为 r 的球面作为高斯面, 利用高斯定理计算 : DdS i = ε E4 πr = q, E = s r r 4πε r 对球内, 也取球面作为高斯面, 同样利用高斯定理计算 : DdS i = ε E r4 πr =, E = r s 求电位分布一般可以由分布电荷电位的公式通过积分得出 ; 也可以先计算电场强度, 再 由电场强度的线积分求出 ; 或者解电位所满足的泊松方程求电位 该例求解用图见图 - () 使用电场强度的线积分计算 球内 外的电场强度用高斯定理在上题中已得到, q r R z r 图 - 当观察点位于球面以外时, 即 r > 时, 有 q q ϕ() r = Edr = dr r = r 4πε r 4πε r 当观察点位于球面上或球面以内时, 即 r 时, 因为球内的电场强度为零, 球内是等 位区, 故 q q ϕ() r = Edr = dr = 4πε r 4πε () 使用分布电荷的电位公式计算, 面电荷产生的电位为 ρs ( r ') ϕ() r = ds' 4 πε s r r' 由于电荷分布对称, 故而将观察点选为 r = (,, z) 源点 r' = ( sin θ cos ϕ, sin θ sin ϕ, cos θ) r r' = sin θ + ( z cos θ) = z z cosθ + ds ' = sin d d θ θ φ lexu@mil.xidin.edu.cn - -

36 习题课指导 将其代入电位表达式, 并先对 φ 积分, 有 ρs( r') ρ π S sin θ dθ ϕ() r = ' 4 ds = s r r' z + z cos ρ = πε ε θ d(cos θ) S ε z z cos + d(cos θ ) du = z + z cosθ z + zu = z + zu = z z+ z z, z z =, z q 利用这个积分结果, 并注意到 ρ = S 4π, 最后得出电位为 θ q, r 4πε r ϕ q, r 4πε ( ) (3) 使用解电位方程的方法计算, 由于电荷对称分布, 因而电位仅仅是坐标 r 的函数, 球外电位满足方程 其解为 d dϕ ϕ = ( r ) = r dr dr C C ϕ = + r 当 r 时, ϕ, 由此确定出 C =, 常数 C 由球面上的边界条件确定, 在球 面 r = 上, 从而有 q dϕ C ρs = = ε E = ε = ε 4π dr r q C = 4πε q 所以, 球外电位 ϕ = 至于球内电位, 因为其为一个常数, 所以可较容易地得出其为 4πε r q 4πε lexu@mil.xidin.edu.cn - -

37 习题课指导 例. 总量为 q 的电荷均匀分布在半径为, 介电常数为 ε 的球体内, 球外为空气, 求静电能量 解 : 用高斯定理可以计算出球内 外的电场为 静电能量为 ρ r qr E = r =, q 3 r E = r 3ε 4πε 4πε r We = DiEdV = εedv + εedv q 4 3 rdr 4 πε r qr = ε π + ε πrdr 4πεα 4 q q = + 4πε 8πε 静电能量度也可以用电位能公式 W 内 外的电位为 q q ϕ = Edr = Edr Edr 3 ( r ) r + r = + 8πε 4πε ϕ = Edr = E r r dr = 4πε r 3q ρ = 4π ρ = 3 e = ϕρdv 计算 由电场强度的线积分可得出球 q q 3q W = ϕρdv = 3 ( r ) 4 r dr 3 + π 8πε 4πε 4π q q = + 4πε 8πε 例 3. 平行板电容器的极板面积为 S, 其间填充厚度分别为 d 和 d 的漏电媒质, 电导率分 别为 σ 和 σ, 如图 3- 所示 当极板间加电压 U 时, 求各个区域的电场强度, 并求漏电 电阻 lexu@mil.xidin.edu.cn - 3 -

38 习题课指导 解 : 不考虑边缘效应, 设极板间的漏电电流为 I 由于是稳恒电流分布, 两个媒质中 I 的电流密度相同, 即 J = J = J =, 电场强度在每一区域分别为常数, 即 S J J E =, E =, 故电压为 即 σ σ I d d U = Edl = Ed + Ed = + S σ σ SU I = d d + σ σ 将其代入到电场强度的表示式, 有 U σ E =, E = U σ σd+ σd σd+ σd 漏电阻为 U d d R = = + I S σ σ 例 3. 两个平行无限长直导线的距离为, 分别载有电流 I 和 I, 如 d d ϕ = U σ σ ϕ = 图 3- 图 3- 求单位长度受力 解 : 设两个导线的电流方向相同, 导线 与 z 轴重 线 处产生的磁感应强度为 B= μ I π φ I I 合, 由其在导 导线 上的电流元 Idl 在导线 的磁场中受力为 μiidl μiidl df = Idl B= φ z = r π π 导线 单位长度受力为 μii F = r π 负号表示同向电流为吸引力 如果电流方向相反, 则为斥力 \ 例 3.3 一块磁化介质的磁矩定义为 Mdv, 证明 V Mdv = r ρ dv + r ρ ds V V m S 并对半径为 的均匀磁化介质球分别用上式的左边和右边计算其磁矩 证明 : 已知 ρ = M, ρ = M nˆ m sm sm 图 3- lexu@mil.xidin.edu.cn - 4 -

39 rρ ds = r M n ds S sm S ( ˆ) 习题课指导 ( ) ( ) ( ) = xm ds ˆ + ym ds ˆ + zm ds ˆ S x S y S z = ( xm) dv ˆ ( ) ˆ ( ) ˆ V x + ym dv V y + zm dv V z 由哈密顿算子性质可知 : ( xm ) = x M + x M = Mx + x M 同理可得 : ( ym ) = M + y M, ( zm ) = M + z M y 由此可得 : r ρsmds = Mdv + r Mdv = Mdv r ρmdv S V V V V 即可证 : Mdv = r ρmdv + r ρsmds 例 3.4 判断矢量函数 B = A x + A V V S y x y z 是否可能是某区域的磁感应强度 如果是, 求相应 的电流分布 解 : 由恒定磁场的基本方程 i B = 可知, 给定的矢量函数可以是磁感应强度 由公 B = μ J, 得与其相应的电流分布为 式 χ y z A J = B= = μ μ χ y z μ A 例 4. 空气中有一半径为 5 cm的金属球, 其上带有 μ C 的点电荷, 在距离球心 5 cm处另有 一电量也为 μ C 的点电荷, 求球心处的电位及球外点电荷受到的作用力 解 : 由球面镜像法可以知道, 球外任意点的电位等于三部分的叠加 一是由球外电荷 q y A χ z 产生, 二是由 q 的镜像电荷 q ' 产生, 三是由导体球面上的电荷 Q q' 产生 ( 球面上的电荷 必须均匀分布在导体球面上 ) Q q' q' q ϕ = + + 4πε r r r 其中, r 是从球心到场点距离, r 是 q 到场点的距离, r 是 q ' 到场点的距离 导体球是一个等位体, 其电位值为 q Q + Q q' ϕ = = d 4πε 4πε lexu@mil.xidin.edu.cn - 5 -

40 习题课指导 代入数值 球外点电荷受到的作用力等于球面上电荷与镜像电荷对其的作用力, 即 q Q q' q' F = + 4πε ( ) d d b = 5 cm, d = 5 cm, Q = q = μc, q ' = μc, b = = = cm, ε = 得出球心电 3 d π 5 位是.4 V, 球外电荷受力为.365N 例 4. 一个沿 z 轴很长的横截面为矩形的金属管, 其三个边的电位为零, 第四边与其它边 π 绝缘, 电位是 U sin x, 如图 4-, 求管内的电位 解 : 本题的电位是二维的, 电位 ϕ ( x, y) ( ) ϕ ( x ), = ( ) ϕ ( xb) ( ) ϕ ( y) ( ) ϕ ( y) 的边界条件如下, π x = Usin 3, = 4, = 考虑到在 x 方向上, x = 和 x = 处的电位为零, 故选取三角函数作为 x 方向的基本 解 又因在 x = 处电位为零, 因此选取 sin kx x 在 y 方向, 考 y 虑到 y = 处电位为零, 选取双曲正弦 shkx y 再由 x = 处电 b φ=usin(πx/) nπ 位为零, 确定出分离常数 kx = 满足边界条件() () 和 (4) 的解为 φ= φ= φ= x nπ x nπ y ϕ ( xy, ) = Cn sin sh n= 图 4- 展开系数由边界条件 () 确定, 将 y = b代入电位表示式, 得 x n x n b Usin π = Cn sin π sh π n= 由三角级数展开的惟一性, 比较上式的左右两边, 可得出 U C = πb sh 其余系数均为零 从而, 得到电位 U π x π y ϕ = sin sh πb sh lexu@mil.xidin.edu.cn - 6 -

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P. () * 3 6 6 3 9 4 3 5 8 6 : 3. () ; () ; (3) (); (4) ; ; (5) ; ; (6) ; (7) (); (8) (, ); (9) ; () ; * Email: huangzh@whu.edu.cn . () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) :

More information

器之 间 向一致时为正 相反时则为负 ③大量电荷的定向移动形成电 流 单个电荷的定向移动同样形成电流 3 电势与电势差 1 陈述概念 电场中某点处 电荷的电势能 E p 与电荷量 q Ep 的比值叫做该点处的电势 表达式为 V 电场中两点之间的 q 电势之差叫做电势差 表达式为 UAB V A VB 2 理解概念 电势差是电场中任意两点之间的电势之差 与参考点的选择无关 电势是反映电场能的性质的物理量

More information

5 (Green) δ

5 (Green) δ 2.............................. 2.2............................. 3.3............................. 3.4........................... 3.5...................... 4.6............................. 4.7..............................

More information

电动力学习题课 - 第一章

电动力学习题课 - 第一章 电动力学习题课 第一章 Cheng-Zong Ruan Department of Astronomy, BNU September 26, 2018 ElectroDynamics, exercise class chzruan 1/25 第一章作业 从静电场麦克斯韦方程的积分形式 E = 0( 静电场无旋 ). L E dl = 0 推导微分形式 从毕奥 - 萨法尔定律 (2.8) 式推导磁场旋度和散度公式

More information

untitled

untitled 4 y l y y y l,, (, ) ' ( ) ' ( ) y, y f ) ( () f f ( ) (l ) t l t lt l f ( t) f ( ) t l f ( ) d (l ) C f ( ) C, f ( ) (l ) L y dy yd π y L y cosθ, π θ : siθ, π yd dy L [ cosθ cosθ siθ siθ ] dθ π π π si

More information

概述 恒定电流 恒定电流 电荷对观察者来说有相对运动, 但这些规则运动在导电媒质中的电荷及所形成的电流, 其分布都是不随时间变化的

概述 恒定电流 恒定电流 电荷对观察者来说有相对运动, 但这些规则运动在导电媒质中的电荷及所形成的电流, 其分布都是不随时间变化的 Topic # 3 恒定电流的电场 (Steady lectric Currents) Part I 概述 基本方程 电功率 电动势 不同媒质分界面上的边界条件 静电比拟 (Duality) 概述 恒定电流 恒定电流 电荷对观察者来说有相对运动, 但这些规则运动在导电媒质中的电荷及所形成的电流, 其分布都是不随时间变化的 概述 场效应 静止电荷 静电场 不随时间变化, 只是空间坐标的函数 没有伴随的磁效应和磁场

More information

untitled

untitled 5 55-% 8-8 8-5% - 7 7 U- lim lim u k k k u k k k k ` k u k k lim.7. 8 e e. e www.tighuatutor.com 5 79 755 [ e ] e e [ e ] e e e. --7 - u z dz d d dz u du d 8d d d d dz d d d d. 5-5 A E B BA B E B B BA

More information

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

主讲人 : 潘时龙办公室 : 明故宫校区 A 电话 : 邮箱 : 网址 :

主讲人 : 潘时龙办公室 : 明故宫校区 A 电话 : 邮箱 : 网址 : 主讲人 : 潘时龙办公室 : 明故宫校区 A1-5 电话 : 5-848963 邮箱 : pans@nuaa.edu.cn 网址 : http://mwp.nuaa.edu.cn 静态电磁场 : 场量不随时间变化, 包括 : 静电场 恒定电场和恒定磁场 时变情况下, 电场和磁场相互关联, 构成统一的电磁场 静态情况下, 电场和磁场由各自的源激发, 且相互独立 本章内容 3.1 静电场分析 3. 导电媒质中的恒定电场分析

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

ο HOH 104 31 O H 0.9568 A 1 1 109 28 1.01A ο Q C D t z = ρ z 1 1 z t D z z z t Qz = 1 2 z D z 2 2 Cl HCO SO CO 3 4 3 3 4 HCO SO 2 3 65 2 1 F0. 005H SiO0. 032M 0. 38 T4 9 ( K + Na) Ca 6 0 2 7 27 1-9

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

More information

第二章电磁场的基本规律 (2) 2.3 真空中恒定磁场的基本规律 2.4 媒质的电磁特性 教师姓名 : 宗福建单位 : 山东大学微电子学院 2018 年 3 月 22 日

第二章电磁场的基本规律 (2) 2.3 真空中恒定磁场的基本规律 2.4 媒质的电磁特性 教师姓名 : 宗福建单位 : 山东大学微电子学院 2018 年 3 月 22 日 第二章电磁场的基本规律 (2) 2.3 真空中恒定磁场的基本规律 2.4 媒质的电磁特性 教师姓名 : 宗福建单位 : 山东大学微电子学院 2018 年 3 月 22 日 2 本章讨论内容 2.1 电荷守恒定律 2.2 真空中静电场的基本规律 2.3 真空中恒定磁场的基本规律 2.4 媒质的电磁特性 2.5 电磁感应定律和位移电流 2.6 麦克斯韦方程组 2.7 电磁场的边界条件 主线 : 亥姆霍兹定理

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

untitled

untitled f ( ) tan e, > = arcsin a = ae, a = tan e tan lim f ( ) = lim = lim =, arcsin + + + lim f = lim ae = a, y e ( ) =

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

untitled

untitled 995 + t lim( ) = te dt =. α α = lim[( + ) ] = e, α α α α = t t t t te dt = tde = te α α e dt = αe e, =, e α = αe α e α, α =. y z = yf, f( u) z + yz y =. z y y y y y y z = yf + y f = yf f, y y y y z y =

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ .................................2.......................... 2.3.......................... 2.4 d' Alembet...................... 3.5......................... 4.6................................... 5 2 5

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

( )

( ) ( ) * 22 2 29 2......................................... 2.2........................................ 3 3..................................... 3.2.............................. 3 2 4 2........................................

More information

第一章三角函数 1.3 三角函数的诱导公式 A 组 ( ) 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角, 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C 2 ( 中诱导公式 ) ( ) B. cos(

第一章三角函数 1.3 三角函数的诱导公式 A 组 ( ) 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角, 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C 2 ( 中诱导公式 ) ( ) B. cos( 第一章三角函数 1. 三角函数的诱导公式 A 组 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C ( 中诱导公式 ) B. cos( B C) cos A D. sin( B C) sin A sin60 cos( ) sin( 0 )cos( 70 ) 的值等于

More information

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5, # # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( 0 2 3 ( & +. 4 / &1 5, !! & 6 7! 6! &1 + 51, (,1 ( 5& (5( (5 & &1 8. +5 &1 +,,( ! (! 6 9/: ;/:! % 7 3 &1 + ( & &, ( && ( )

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin 38 5 216 1 1),2) 163318) 163318). API. TE256 A doi 1.652/1-879-15-298 MODE OF CASING EXTERNA EXTRUSION BASED ON THE PRINCIPE OF VIRTUA WORK 1) ZHAO Wanchun,2) ZENG Jia WANG Tingting FENG Xiaohan School

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

x y 7 xy = 1 b c a b = x x = 1. 1 x + 17 + x 15 = 16 x + 17 x 15 + 17 15 x + 17 - x 15 = (x x ) ( ). x + 17 + x 15 x + y + 9 x + 4 y = 10 x + 9 y + 4 = 4xy. 9 4 ( x + ) + ( y + ) = 10 x y 9 ( x + )( ).

More information

koji-13.dvi

koji-13.dvi 26 13 1, 2, 3, 4, 5, 6, 7 1 18 1. xy D D = {(x, y) y 2 x 4 y 2,y } x + y2 dxdy D 2 y O 4 x 2. xyz D D = {(x, y, z) x 1, y x 2, z 1, y+ z x} D 3. [, 1] [, 1] (, ) 2 f (1)

More information

untitled

untitled + lim = + + lim = + lim ( ) + + + () f = lim + = + = e cos( ) = e f + = e cos = e + e + + + sin + = = = = = + = + cos d= () ( sin ) 8 cos sin cos = ( ) ( sin ) cos + d= ( + ) = cos sin cos d sin d 4 =

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

m0 m = v2 1 c 2 F G m m 1 2 = 2 r m L T = 2 π ( m g 4 ) m m = 1 F AC F BC r F r F l r = sin sinl l F = h d G + S 2 = t v h = t 2 l = v 2 t t h = v = at v = gt t 1 l 1 a t g = t sin α 1 1 a = gsinα

More information

Π Ρ! #! % & #! (! )! + %!!. / 0% # 0 2 3 3 4 7 8 9 Δ5?? 5 9? Κ :5 5 7 < 7 Δ 7 9 :5? / + 0 5 6 6 7 : ; 7 < = >? : Α8 5 > :9 Β 5 Χ : = 8 + ΑΔ? 9 Β Ε 9 = 9? : ; : Α 5 9 7 3 5 > 5 Δ > Β Χ < :? 3 9? 5 Χ 9 Β

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

untitled

untitled 4 6 4 4 ( n ) f( ) = lim n n +, f ( ) = = f( ) = ( ) ( n ) f( ) = lim = lim n = = n n + n + n f ( ), = =,, lim f ( ) = lim = f() = f ( ) y ( ) = t + t+ y = t t +, y = y( ) dy dy dt t t = = = = d d t +

More information

Microsoft PowerPoint - ch2-d 静电场 [兼容模式]

Microsoft PowerPoint - ch2-d 静电场 [兼容模式] .5 格林函数法 Metho of een Function 一 分离变量法和镜像法能解的情况 分离变量法能解的情况: 自由电荷全聚集在边界上, 也就是说 : 在要求解电场区域没有自由电荷 泊松方程转变为拉普拉斯方程 边界条件 ρ 镜像法能解的情况: 在求解区域内没有自由电荷, 或者只有有限几个点电荷, 并且区域边界或介质界面规则 电场能用等效电荷代替 边界条件 二 een 函数法能解的情况 能用

More information

<4D F736F F D20B5E7B6AFC1A6D1A7CAD4CCE2BFE22E646F63>

<4D F736F F D20B5E7B6AFC1A6D1A7CAD4CCE2BFE22E646F63> 一 选择题 (3 个 ) 1. 在通以交变电流的电容器两极板之间的空间里存在着. A) 位移电流 ; B) 传导电流 ; C) 交变电流 ; D) 涡电流.. 在存在着变化电压的电容器两极板之间的空间里存在着. A) 静电场 ; B) 库仑电场 ; C) 变化电场 ; D) 涡旋电场. 3. 通过摩擦产生的电荷是. A) 自由电荷 ; B) 束缚电荷 ; C) 感应电荷 ; D) 极化电荷. 4.

More information

幻灯片 1

幻灯片 1 .5 力学量的平均值 算符表示 平均值 粒子在外场 V() 中运动, 体系的定态薛定谔方程 : m + V () u()= Eu() 求解该方程, 可以得到体系的波函数和能量 E 例如 : 粒子束缚在一维无限深方势阱中 0 a 一维无限深方势阱 波函数 能量 nπ sin x, 0 x a ux ( ) = a a, x < 0, o, x > a 0 π En = n ma n = 1,,3, .5

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) ! # % & # % ( ) & + + !!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) 6 # / 0 1 + ) ( + 3 0 ( 1 1( ) ) ( 0 ) 4 ( ) 1 1 0 ( ( ) 1 / ) ( 1 ( 0 ) ) + ( ( 0 ) 0 0 ( / / ) ( ( ) ( 5 ( 0 + 0 +

More information

stexb08.dvi

stexb08.dvi B 1 1.1 V N 1 H = p 2 i 2m i 1. Z = β =(k B T ) 1. 1 h 3N N! exp( βh)d p 1 d p N d x 1 x N 2. F ( F = k B T log Z ) 3. ( ) F p = V T 1.2 H μ μh μh N H T 1. Z Z 1 N Z 1 Z 2. F S ( ) F S = T 3. U = F + TS

More information

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 & ! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ

More information

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. ()

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. () ! # % & & &! # % &! ( &! # )! ) & ( +,! (# ) +. + / 0 1 2 3 4 4 5 & 6!!!.! (!,! (! & 7 6!. 8 / 6 7 6 8! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. () , 4 / 7!# + 6 7 1 1 1 0 7!.. 6 1 1 2 1 3

More information

untitled

untitled 梦飞翔考研工作室友情提供 QQ:83659 000 () d. 0. 000 d d t tdt si cos 0 0 0 + y + 3z (,, ). y + z. 6 F, y, z + y + 3z F F F y z (,,),,, y (,,),, 8, z (,,),, 6. y + z 6 3 y + 3y 0. C y C +. 梦飞翔考研工作室 QQ:83 p y p C 3.

More information

. v dx v d () () l s dl s d (_) d () v s v s () a dv a d (_) ( ) ( ) x- = v- = = v 0 = m/s a = = m/s 2 a- = ( ) x- v- a- Page 2 of 20

. v dx v d () () l s dl s d (_) d () v s v s () a dv a d (_) ( ) ( ) x- = v- = = v 0 = m/s a = = m/s 2 a- = ( ) x- v- a- Page 2 of 20 Page 1 of 20 . v dx v d () () l s dl s d (_) d () v s v s () a dv a d (_) ( ) ( ) x- = v- = = v 0 = m/s a = = m/s 2 a- = ( ) x- v- a- Page 2 of 20 (1) x v a (2) x v a x v (3) x v a x v a x v Page 3 of

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

工程硕士网络辅导第一讲

工程硕士网络辅导第一讲 < > < R R [ si t R si cos si cos si cos - sisi < si < si < < δ N δ { < δ δ > } www.tsighututor.com 6796 δ < < δ δ N δ { < < δ δ > b { < < b R} b] { b R} [ { > R} { R} } [ b { < b R} ] { b R} { R} X X Y

More information

3978 30866 4 3 43 [] 3 30 4. [] . . 98 .3 ( ) 06 99 85 84 94 06 3 0 3 9 3 0 4 9 4 88 4 05 5 09 5 8 5 96 6 9 6 97 6 05 7 7 03 7 07 8 07 8 06 8 8 9 9 95 9 0 05 0 06 30 0 .5 80 90 3 90 00 7 00 0 3

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

08-01.indd

08-01.indd 1 02 04 08 14 20 27 31 35 40 43 51 57 60 07 26 30 39 50 56 65 65 67 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ω ρ ε 23 λ ω < 1 ω < 1 ω > 0 24 25 26 27 28 29 30 31 ρ 1 ρ σ b a x x i +3 x i

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

More information

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

More information

WL100014ZW.PDF

WL100014ZW.PDF A Z 1 238 H U 1 92 1 2 3 1 1 1 H H H 235 238 92 U 92 U 1.1 2 1 H 3 1 H 3 2 He 4 2 He 6 3 Hi 7 3 Hi 9 4 Be 10 5 B 2 1.113MeV H 1 4 2 He B/ A =7.075MeV 4 He 238 94 Pu U + +5.6MeV 234 92 2 235 U + 200MeV

More information

PowerPoint Presentation

PowerPoint Presentation Review Section 温故知新 011/3/17 College Physics (II) 1 实验规律 : 电极化强度和极化电荷密度 pi P ΔV 极化强度. P 空间矢量函数 χε 介质极化率 0 E 总场 极化 ( 束缚 ) 电荷与极化强度的关系 : σ ' P cosθ P χ : 由介质的性质决定, 与 E 无关 E E + E 0 退极化场 ds dl v 011/3/17 College

More information

untitled

untitled 6 + a lim = 8, a =. a l. a a + a a a a lim = lim + = e, a a a e = 8 a= l ( 6,, ), 4 y+ z = 8. + y z = ( 6,, ) 4 y z 8 a ( 6,, ) + = = { } i j k 4,,, s = 6 = i+ j k. 4 ( ) ( y ) ( z ) + y z =. + =, () y

More information

d y dy P x Q x y 0. dx dx d d P x Q x C C 1y1 y dx dx d d P x Q x C 1y 1 dx dx d d P x Q x C y 0. dx dx d x 1dx F. ox1 dt dt d x1 1dx1 x 0 1 F 1 dt dt d x 1dx x 0 F dt dt d y 1dy y F 0 1 F1 y x1 x. dt

More information

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

More information

M ( ) K F ( ) A M ( ) 1815 (probable error) F W ( ) J ( ) n! M ( ) T ( ) L ( ) T (171

M ( ) K F ( ) A M ( ) 1815 (probable error) F W ( ) J ( ) n! M ( ) T ( ) L ( ) T (171 1 [ ]H L E B ( ) statistics state G (150l--1576) G (1564 1642) 16 17 ( ) C B (1623 1662) P (1601--16S5) O W (1646 1716) (1654 1705) (1667--1748) (1687--H59) (1700 1782) J (1620 1674) W (1623 1687) E (1656

More information

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

More information

幻灯片 1

幻灯片 1 第二章原子的激发态结构. 单电子 (H) 原子 ( 类 ) 氢原子的薛定谔方程 -e 3D 不含时的定态薛定谔方程 其中库仑势 m + ( ) V ( ) V ψ Ze 4πε Eψ + +Ze 电子束缚在原子核的中心力场中 只与电子和原子核之间的径向距离有关 Fom www.hpephsics.ph-ast.gsu.edu . 单电子 (H) 原子氢原子的薛定谔方程 Catesian coodinates

More information

, & % # & # # & % & + # & # # # & # % #,

, & % # & # # & % & + # & # # # & # % #, ! # #! % # & # & & ( ( # ) % , & % # & # # & % & + # & # # # & # % #, # % % # % # ) % # % % # % # # % # % # + # % ( ( # % & & & & & & % & & # % # % & & % % % . % # / & & # 0 ) & # % & % ( # # & & & # #

More information

微积分 授课讲义

微积分 授课讲义 2018 10 aiwanjun@sjtu.edu.cn 1201 / 18:00-20:20 213 14:00-17:00 I II Taylor : , n R n : x = (x 1, x 2,..., x n ) R; x, x y ; δ( ) ; ; ; ; ; ( ) ; ( / ) ; ; Ů(P 1,δ) P 1 U(P 0,δ) P 0 Ω P 1: 1.1 ( ). Ω

More information

( ) (! +)! #! () % + + %, +,!#! # # % + +!

( ) (! +)! #! () % + + %, +,!#! # # % + +! !! # % & & & &! # # % ( ) (! +)! #! () % + + %, +,!#! # # % + +! ! %!!.! /, ()!!# 0 12!# # 0 % 1 ( ) #3 % & & () (, 3)! #% % 4 % + +! (!, ), %, (!!) (! 3 )!, 1 4 ( ) % % + % %!%! # # !)! % &! % () (! %

More information

1

1 相對內容大綱 : 高考課程大網第一章第 3 節 參考 : 高級程度物理第一冊第七章 6.0 6. 6. 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.0 6. 6.0 CD 6. P ( x, y (pola coodinate P (,θ ( 6.. P θ OP x B s θ P θ (angula position θ θ [ θ ](angula displacement θ

More information

,, :, ;, 20012003 10 90, 20012003 8,;, ; (CIP) /. :,2004. 1 ( ) ISBN 7 5612 1720 X.... 0441. 4 44 CIP (2003) 109559 : : 127 710072 : ( 029 ) 88493844

,, :, ;, 20012003 10 90, 20012003 8,;, ; (CIP) /. :,2004. 1 ( ) ISBN 7 5612 1720 X.... 0441. 4 44 CIP (2003) 109559 : : 127 710072 : ( 029 ) 88493844 ,, :, ;, 20012003 10 90, 20012003 8,;, ; (CIP) /. :,2004. 1 ( ) ISBN 7 5612 1720 X.... 0441. 4 44 CIP (2003) 109559 : : 127 710072 : ( 029 ) 88493844 : www.nwpup.com : : 787 mm1 092 mm 1/ 16 : 19.5 : 462

More information

untitled

untitled arctan lim ln +. 6 ( + ). arctan arctan + ln 6 lim lim lim y y ( ln ) lim 6 6 ( + ) y + y dy. d y yd + dy ln d + dy y ln d d dy, dy ln d, y + y y dy dy ln y+ + d d y y ln ( + ) + dy d dy ln d dy + d 7.

More information

第9章 排队论

第9章  排队论 9, 9. 9.. Nt () [, t] t Nt () { Nt ( ) t [, T]} t< t< t< t + N ( ( t+ ) i+ N( t) i, N( t) i,, N( t) i N + + N ( ( t ) i ( t ) i ) (9-) { Nt ( ) t [, T)} 9- t t + t, t,, t t t { Nt ( ) t [, T] } t< t,,

More information

% %! # % & ( ) % # + # # % # # & & % ( #,. %

% %! # % & ( ) % # + # # % # # & & % ( #,. % !!! # #! # % & % %! # % & ( ) % # + # # % # # & & % ( #,. % , ( /0 ) %, + ( 1 ( 2 ) + %, ( 3, ( 123 % & # %, &% % #, % ( ) + & &% & ( & 4 ( & # 4 % #, #, ( ) + % 4 % & &, & & # / / % %, &% ! # #! # # #

More information

( )... ds.....

( )... ds..... ...... 3.1.. 3.1.. 3.1: 1775. g a m I a = m G g, (3.1) m I m G. m G /m I. m I = m G (3.2)............. 1 2............ 4.................. 4 ( )... ds..... 3.2 3 3.2 A B. t x. A B. O. t = t 0 A B t......

More information

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % #! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )

More information

2 68 975 466 975 34 347 972 33 25 957 27 296 958 220 978 959 30 + X2 + X3 X2 X3 = 4Y Y = Z + Z2 Z + Z2 + X3 = 7 26 + X2 + X32 X2 X23 = 4Y2 Y2 = Z23 + Z2 Z22 + Z2 + Z32 = 3 24 + X3 + X23 X3 X32 = 4Y3

More information

,..,.,,,,,.,,.,., ,.,,.,,.,, 1,,, ; 2,,,,.,,,,.,,.,,,.,.,.,,.,.,,,.,,,.,,,,.,.,,,, i

,..,.,,,,,.,,.,., ,.,,.,,.,, 1,,, ; 2,,,,.,,,,.,,.,,,.,.,.,,.,.,,,.,,,.,,,,.,.,,,, i ,..,.,,,,,.,,.,.,. 6 1,.,,.,,.,, 1,,, ;,,,,.,,,,.,,.,,,.,.,.,,.,.,,,.,,,.,,,,.,.,,,, i .,,,,.,,.,.,.,,.,,,., 1;,,,,,.,,,,.,,,.,.,,.,,.,,,.,,.,,.,.,.,,.,,.,..,.,,.,,,.,,,.,,,,,,.,,,,.,,????.,,,,,.,,,,.,

More information

幻灯片 1

幻灯片 1 第一类换元法 ( 凑微分法 ) 学习指导 复习 : 凑微分 部分常用的凑微分 : () n d d( (4) d d( ); (5) d d(ln ); n n (6) e d d( e ); () d d( b); ); () d d( ); (7) sin d d (cos ) 常见凑微分公式 ); ( ) ( ) ( b d b f d b f ); ( ) ( ) ( n n n n d f

More information

: : : ( CIP ) : ( ) /. :, ISBN :. G7. 4 CIP ( 00 ) 005 : : ( ) : : ( 0 : 0004) : : : / 6 : 7 ( ) : 408 () : 00

: : : ( CIP ) : ( ) /. :, ISBN :. G7. 4 CIP ( 00 ) 005 : : ( ) : : ( 0 : 0004) : : : / 6 : 7 ( ) : 408 () : 00 () ( ) ( : ) : : : ( CIP ) : ( ) /. :, 00. 7 ISBN 7-8008 - 958-8... :. G7. 4 CIP ( 00 ) 005 : : ( ) : : ( 0 : 0004) : : 00 7 00 7 : 78709 / 6 : 7 ( ) : 408 () : 000 : ISBN 7-8008 - 958-8/ G89 : 9 98. 00

More information

C = C + C C = + + C C C C 1 2 3

C = C + C C = + + C C C C 1 2 3 C = C + C 1 2 3 1 1 1 1 + C = + + C C C C 1 2 3 17 Q = Q = Q C = Q U C 1 1 2 3 C 1 C 2 C 3 U = 1 1 1 U 1 U 2 U 3 = + + C C C 1 2 3 1) A B U A U B U U = AB A B AB G G R = R U = U U = 0 U = 4 B C BC CB C

More information

: Previous Next First Last Back Forward 1

: Previous Next First Last Back Forward 1 7-3: : 7.3.................. 1 7.3.1.............. 2 7.3.2..... 8 7.3.3.............. 12 Previous Next First Last Back Forward 1 7.3,, (X 1,, X n )., H 0 : X F Karl Pearson χ 2. : F ˆF n, D( ˆF n, F ),

More information

ϕ ϕ R V = 2 2 314 6378 1668 0 T =. 24 = 2 R cos32 33931 V = = = 1413. 68 32 T 24 2 R cos90 V = = 0 90 T ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ 1

More information

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α Ε! # % & ( )%! & & + %!, (./ 0 1 & & 2. 3 &. 4/. %! / (! %2 % ( 5 4 5 ) 2! 6 2! 2 2. / & 7 2! % &. 3.! & (. 2 & & / 8 2. ( % 2 & 2.! 9. %./ 5 : ; 5. % & %2 2 & % 2!! /. . %! & % &? & 5 6!% 2.

More information

untitled

untitled 00, + lim l[ ] =. ( + lim[ ] = lim[ ] ( + i e ( = ( + lim l[ ] = l e = ( 4 (, (, (, 0 d f d D= D + D, d f d + d f d =. 0 D = (, 0,, 4 D = (,, 4 D ( D =, 0,. 4 0 0 4 ( + ( = ( d f, d d f, d d f, d. - =

More information

a b a = a ϕ λ ϕ λ ρ δ ρ δ ϕ λ M' J' x' = = m MJ x M' K' y' = = n MK y x' x = m 2-1 y' y = n 2 2 x + y = 1 2-2 2 2 x' y' 2 + 2 = 1 m n µ = ds ' ds 2 2 2 2 m + n = a + b 2-3 mnsinθ = ab 2-4 2 2 2 (

More information

15-03.indd

15-03.indd 1 02 07 09 13 18 24 32 37 42 53 59 66 70 06 12 17 23 36 52 65 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 fl fi fi 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 σ σ σ α α 36 37 38 39 40 41 42 43 44

More information

Ps22Pdf

Ps22Pdf ) ,,, :,,,,,,, ( CIP) /. :, 2001. 9 ISBN 7-5624-2368-7.......... TU311 CIP ( 2001) 061075 ( ) : : : : * : : 174 ( A ) : 400030 : ( 023) 65102378 65105781 : ( 023) 65103686 65105565 : http: / / www. cqup.

More information

数学分析考研辅导班讲义4.doc

数学分析考研辅导班讲义4.doc 数学分析考研辅导讲义第四章 - 9 - 第四章 不定积分 积分学是微积分的主要部分之一 积分运算是微分运算的逆运算. 而不定积分为定积分的计算提供了一种简便快捷的工具 又是今后计算重积分 曲线积分 曲面积分的基础. 本章的重点是不定积分的换元积分法与分部积分法. 难点是第二换元法 三角函数有理式及简单无理式积分. 要点是不定积分的各种积分方法. 通过本章的学习 应掌握不定积分的概念 性质 基本积分公式及积分方法.

More information

-2 4 - cr 5 - 15 3 5 ph 6.5-8.5 () 450 mg/l 0.3 mg/l 0.1 mg/l 1.0 mg/l 1.0 mg/l () 0.002 mg/l 0.3 mg/l 250 mg/l 250 mg/l 1000 mg/l 1.0 mg/l 0.05 mg/l 0.05 mg/l 0.01 mg/l 0.001 mg/l 0.01 mg/l () 0.05 mg/l

More information

3?! ΑΑΑΑ 7 ) 7 3

3?! ΑΑΑΑ 7 ) 7 3 ! # % & ( ) +, #. / 0 # 1 2 3 / 2 4 5 3! 6 ) 7 ) 7 ) 7 ) 7 )7 8 9 9 :5 ; 6< 3?! ΑΑΑΑ 7 ) 7 3 8! Β Χ! Δ!7 7 7 )!> ; =! > 6 > 7 ) 7 ) 7 )

More information

1 2 1.1............................ 2 1.2............................... 3 1.3.................... 3 1.4 Maxwell.................... 3 1.5.......................... 4 1.6............................ 4

More information

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α # % & ( ) # +,. / 0 1 2 /0 1 0 3 4 # 5 7 8 / 9 # & : 9 ; & < 9 = = ;.5 : < 9 98 & : 9 %& : < 9 2. = & : > 7; 9 & # 3 2

More information

《分析化学辞典》_数据处理条目_1.DOC

《分析化学辞典》_数据处理条目_1.DOC 3 4 5 6 7 χ χ m.303 B = f log f log C = m f = = m = f m C = + 3( m ) f = f f = m = f f = n n m B χ α χ α,( m ) H µ σ H 0 µ = µ H σ = 0 σ H µ µ H σ σ α H0 H α 0 H0 H0 H H 0 H 0 8 = σ σ σ = ( n ) σ n σ /

More information

(p.29). (a) F Qq r 2 ()() N (b) Q 2 r 2 F ( 2 )() Q 0 5 C 2. (a) F (b) F 3. 7 (p.42). (a) T (b) F (c) T 2. (a) A (b) (c) 4. (a) 4 (b) (

(p.29). (a) F Qq r 2 ()() N (b) Q 2 r 2 F ( 2 )() Q 0 5 C 2. (a) F (b) F 3. 7 (p.42). (a) T (b) F (c) T 2. (a) A (b) (c) 4. (a) 4 (b) ( 20 (p.7). (a) T (b) T (c) T (d) F 2. B 3. 3 (p.4). D 2. C D A B D B D B D 3. (a) F (b) F (c) T 4. 2 (p.0) 4 (p.23). (a) B (b) A P 2. (a) F (b) T 3. 4. 5. 6. (a) (b).6 0 9.6 0 9 0 0. (a) X Y (b) X Y Z 2.

More information

2016考研数学三线性代数题目及试题答案

2016考研数学三线性代数题目及试题答案 6 考研数学三真题及答案解析 来源 : 文都教育 () 设函数 f ( ) 在 ( ) 内连续 ; 其导数如图所示 则 ( ) (A) 函数有 个极值点 曲线 f ( ) 在 个拐点 (B) 函数有 个极值点 曲线 f ( ) 在 个拐点 (C) 函数有 个极值点 曲线 f ( ) 在 个拐点 (D) 函数有 个极值点 曲线 f ( ) 在 个拐点 解析 : 导函数图形如图极值的怀疑点为 : a b

More information

微分流形上积分学 流形上 Stokes 公式 复旦力学 谢锡麟 1 知识要素 1.1 单位 1 分解 2016 年 4 月 21 日 引理 1.1. 设 U, V R m 为开集, 且 V U, 则 ϕ(x) Cc (R m ), 满足 : supp ϕ(x) U, ϕ(x) 1, x V, ϕ(x

微分流形上积分学 流形上 Stokes 公式 复旦力学 谢锡麟 1 知识要素 1.1 单位 1 分解 2016 年 4 月 21 日 引理 1.1. 设 U, V R m 为开集, 且 V U, 则 ϕ(x) Cc (R m ), 满足 : supp ϕ(x) U, ϕ(x) 1, x V, ϕ(x 复旦力学 知识要素. 单位 分解 206 年 4 月 2 日 引理.. 设 U, V R m 为开集, 且 V U, 则 ϕx Cc R m, 满足 : supp ϕx U, ϕx, x V, ϕx [0, ], x R m. 如图 所示. X m O εε X α V 2ε X V U V ε O y 图 : 单位 分解示意证明由于 V U, 则有 dv, U : δ > 0, 故可作 X m X

More information

x y z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.1. (X, Y ) 3.2 P (x 1 < X x 2, y 1 < Y y 2 ) = F (x 2, y 2 ) F (x 2, y 1 ) F (x 1, y 2

x y z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.1. (X, Y ) 3.2 P (x 1 < X x 2, y 1 < Y y 2 ) = F (x 2, y 2 ) F (x 2, y 1 ) F (x 1, y 2 3 3.... xy z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.. (X, Y ) 3.2 P (x < X x 2, y < Y y 2 ) = F (x 2, y 2 ) F (x 2, y ) F (x, y 2 ) + F (x, y ) 3. F (a, b) 3.2 (x 2, y 2) (x, y 2) (x 2, y ) (x,

More information

电动力学 第二章:静电场,静电标势及唯一性定理

电动力学  第二章:静电场,静电标势及唯一性定理 1 / 1 电动力学 第二章 : 静电场, 静电标势及唯一性定理 杨焕雄 中国科学技术大学物理学院近代物理系 hyang@ustc.edu.cn April 9, 2018 2 / 1 静电场的标势 : 静电场的麦克斯韦方程组是 : D = ρ, E = 0. 静电场是无旋场, E = φ x z o q( x + d x) d l p( x) y 现在求空间中相距 d l 的两点的电势差 dφ.

More information

u -, θ = 0, k gu = 2 ln E v, v -, θ = π 2, k gv = dθ 2 E. 2. r(u, v) = {a cos u cos v, a cos u sin v, a sin u} k g = sin u dv, θ. E = a 2, F = 0, = a

u -, θ = 0, k gu = 2 ln E v, v -, θ = π 2, k gv = dθ 2 E. 2. r(u, v) = {a cos u cos v, a cos u sin v, a sin u} k g = sin u dv, θ. E = a 2, F = 0, = a 202.. : r = r(u, v) u v, dv = 0, = 0, = ; E dv =. ( k gu = Γ 2 k gv = Γ 22 ( dv ) 3 E F E F 2 = Γ 2 2 E E, ) 3 E F 2 = Γ 22 E F 2., F = 0 E F k gu = Γ 2 2 E E = 2EF u EE v + F E u E F 2 2(E F 2 ) E E =

More information