电动力学 第二章:静电场,静电标势及唯一性定理

Size: px
Start display at page:

Download "电动力学 第二章:静电场,静电标势及唯一性定理"

Transcription

1 1 / 1 电动力学 第二章 : 静电场, 静电标势及唯一性定理 杨焕雄 中国科学技术大学物理学院近代物理系 hyang@ustc.edu.cn April 9, 2018

2 2 / 1 静电场的标势 : 静电场的麦克斯韦方程组是 : D = ρ, E = 0. 静电场是无旋场, E = φ x z o q( x + d x) d l p( x) y 现在求空间中相距 d l 的两点的电势差 dφ. 在附图所示的直角坐标系中, 所以, dφ = 3 i=1 d l = d x = e i dx i φ x i dx i = i φdx i = ( e i i φ ) ( e j dx j ) = φ d l = E d l

3 电势差及其物理意义 : 空间中任意两个场点 P, Q 之间的电势差为 : φ Q φ P = 即, 警告 : ˆ Q P φ P φ Q = dφ = ˆ Q P ˆ Q P E d l E d l 只有 势 的差值才有物理意义. 两点之间电势的减少代表着在此两点之间移动单位正电荷时电场力所做的功. 电势零点可以随意规定. 在电荷分布于有限区域的情形下, 常常取无穷远点为电势零点. 这样, φ P = ˆ P E d l 3 / 1

4 给定电荷分布的电势 : x P O P x r P ρ, ρd 3 x 相应的静电势分布为 : φ P = = ˆ P ˆ P E d l [ 1 4πϵ 0 ˆ 倘若电荷分布于有限区域, 且其体密度 ρ( x ) 为已知, 则其在空间中激发的静电场场强分布是 : E = 1 4πϵ 0 ˆ d 3 x ρ( x ) r r 3 式中 r = x x, x 为场点 P 的位置矢量. 在示意图上, x 更明确地标记为 x P. ] ˆ ˆ d 3 x ρ( x ) r r 3 d l = d 3 x ρ( x ) r 4πϵ 0 P r 3 d l 4 / 1

5 计算积分 : 取球坐标系, 使得 : r = r e r 因为 r = x x, 其中的 x 表示场点 P 的位置矢量, 而静电势积分中涉及的线元 d l 所表示的是把单位正电荷从 P 点移动到无穷远点的微元位移, 所以,d l = d x. 进而, 由此知 : d l = d( r + x ) = d r = dr e r + rdθ e θ + r sin θdϕ e ϕ r r 3 d l = e r r 2 (dr e ) dr r + rdθ e θ + r sin θdϕ e ϕ = r 2 我们看到 : 虽然 d l dr e r, 但上述标量积的计算中 d l 充当的角色与 dr e r 并没有什么不同. 这个性质正是大家在力学课程中已经熟悉的结论 : 保守力场做功与路径无关. 所以 : ˆ P ˆ r r 3 d dr l = P r 2 = 1 r P 5 / 1

6 给定电荷分布的电势 ( 续 ): P ρ, 场点 P 处的静电势求得为 : φ P = 1 ˆ ρ( x )d 3 x 4πϵ 0 r P x P O x r P ρd 3 x 在此式中已经把无穷远点取为电势零点. 使用此式的前提是要求空间中所有的电荷分布都已经事先给定. 此式只反映电荷激发电场的性质, 没有反映场对电荷会施加作用力的性质. 实际情形下, 电场对于电荷作用力的存在使得不是所有电荷分布都能够事先给定, 上式的应用范围受限. 我们被迫要寻找新的更有效的电势计算方法. 6 / 1

7 静电泊松方程 : 在均匀各向同性线性介质中, D = ϵ E,ϵ 为常数. Gauss 定理 : 如此, 按照 即, ρ = D = (ϵ E) = ϵ E = ϵ φ = ϵ 2 φ 2 φ = ρ/ϵ 此为静电势满足的基本微分方程, 称为 Poisson 方程. 特例 : 1 在没有电荷分布的区域,ρ( x) = 0, 静电势满足 Laplace 方程 : 2 φ = 0 本章的核心内容就是学习求解这两个方程的几种典型方法. 7 / 1

8 静电场的能量 : 8 / 1 在线性介质中, 静电场的总能量可表为 : W = 1 ˆ d 3 x E D 2 现在我们指出,W 也可以用静电势 φ 的分布表出. 首先注意到静电场的能量密度可以等价地写作, u = 1 2 E D = 1 2 φ D = 1 [ ] (φ D) φ D 2 = 1 2 (φ D) φρ f 所以, ˆ W = d 3 xu = 1 ˆ d 3 x ρ f φ 1 ˆ 2 2 d 3 x (φ D)

9 1 式中右端第一项可以重新表为 : ˆ 1 d 3 x ρ f φ = 1 ˆ d 3 x ρ f φ 2 2 Ω 式中的 Ω 仅仅代表电荷分布区域. 2 式中右端第二项可以利用奥高散度定理化为区域 的边界 所以, 面 上的面积分 :ˆ d 3 x (φ D) = φ D d σ 倘若静电场分布于全空间, 则此面积分遍及无穷远边界. 注意到面积分中诸要素对于 r 的依赖关系, φ 1 r, D 1 r 2 而高斯面面积 r 2, 故此面积分当 r 时趋于零. W = 1 2 ˆ Ω d 3 x ρ f φ 警告 : 1 2 ρ fφ 不是静电场的能量密度. 9 / 1

10 10 / 1 例 : 求带电荷量为 Q 半径为 a 的导体球的静电场能量. 解一 : 导体球的电荷分布于球面上, 整个导体为等势体. 注意到静电场分布于球外空间, 场强分布为 : E = 由此求得导体球的电势, φ a = ˆ 0 Q r, (a r < ) 4πϵ 0 r3 E e r dr = 所以, 静电场总能量为 : W = 1 ˆ 2 = φ ˆ a 2 phere phere ˆ a σ f φ a ds Q 4πϵ 0 r 2 dr = Q 4πϵ 0 a σ f ds = φ a 2 Q = Q2 8πϵ 0 a

11 11 / 1 解二 : 导体球激发的静电场能量体密度计算如下. 在球内空间, u = 0, (0 r a) 在球外空间, u = 1 2 E D = 1 2 ϵ 0E 2 ( Q r ) 2 = 1 2 ϵ 0 = 4πϵ 0 r 3 Q 2 32π 2, (a < r < ) ϵ 0 r4 所以, 导体球静电场的总能量为 : ˆ ˆ W = d 3 x u = 4π ur 2 dr = Q2 8πϵ 0 a ˆ 恰如预期, 两种解法求得的总静电能完全相同. a dr r 2 = Q2 8πϵ 0 a

12 12 / 1 静电势的边界条件 : 静电场的场强与电位移矢量在两种介质分界面上需要满足的边值关系是 : n 12 ( D 2 D 1 ) = σ f n 12 ( E 2 E 1 ) = 0 对于均匀 各向同性的线性介质, 上式简化为场强矢量的边界条件 : n 12 (ϵ 2 E 2 ϵ 1 E 1 ) = σ f n 12 ( E 2 E 1 ) = n 12, σ f, α f 提醒 : 现在的任务是将电场强度矢量 E 的边界条件转化为静电标势 φ 的边界条件.

13 静电势在导体表面的边界条件 : 导体的静电平衡条件是 : 1 导体内部场强为零 ; 2 导体内部没有净电荷, 电荷只能分布于导体表面上 ; 3 导体表面上电场强度矢量必沿表面法线方向. 因此导体是等势体, 导体表面是等势面. ε n E c = 0 E,σ f 设导体外介质的介电常数为 ϵ, 则场强在导体表面 处的边界条件可以表为 : n E = 0, ϵ n E = σ f. 改用电势表示, 就是 : φ = 常数, ϵ φ n = σ f. 13 / 1

14 静电势在介质分界面上的边值关系 : 14 / 1 考虑介质分界面两侧相邻的两点 P 1 和 P 2. 倘若分界面附近的电场强度量值有限, 则因为 P 1 P 2 0, 我们有 : φ P1 φ P2 = ˆ P2 P 1 E d l E n 12 P 1 P 2 0 即分界面两侧的电势相等, n 12 ε 2 ε 1 E 1 P 2 P1 E 2,σ φ P1 = φ P2 请问, 这个结论与电场场强或者电位移矢量的边界条件有何关系?

15 静电势在介质分界面上的边值关系 ( 续一 ): c a E 2 d l E 1 n 12 d b 静电势在介质分界面上的连续性等价于电场强度矢量的切向分量在分界面上的连续性. 考虑左图中跨越两种介质的矩形回路, 其长为 dl 0. 静电势的连续性意味着 : 从而, φ a = φ c, φ b = φ d. E 1t dl = E 1 d l = φ a φ b = φ c φ d = E 2 d l = E 2t dl 注意到 dl 选择的任意性, 我们有 : E 1t = E 2t. 这正是电场强度矢量之切分量在两种介质分界面上应该具有的连续性. 15 / 1

16 静电势在介质分界面上的边值关系 ( 续二 ): 16 / 1 电位移矢量满足的一边值关系是 : n 12 ( D 2 D 1 ) = σ f 若使用静电势将其表出, 即为 : φ 2 ϵ 2 φ 1 n ϵ 1 n = σ f 试问 : 1 哪些因素可以完全确定静电场的分布? 欲回答这个问题, 我们需要学习静电问题的唯一性定理, 其数学基础是微积分中著名的格林积分公式.

17 第一格林公式 : 高等数学里的奥高定理可写为 : ˆ Ad 3 x = A d σ 现将其中的矢量场 A 取做, A = Φ Ψ 此处 Φ 和 Ψ 是两个任意的标量场. 如此, 奥高定理就变成了所谓的第一格林公式 : Φ Ψ n dσ = Φ Ψ d σ ˆ ˆ = (Φ Ψ)d 3 x = d 3 x ( Φ 2 Ψ + Φ Ψ ) 17 / 1

18 第二格林公式 : 在第一格林公式中 Φ Ψ ˆ n dσ = d 3 x ( Φ 2 Ψ + Φ Ψ ) 交换两个标量场的地位, 可得 : Ψ Φ ˆ n dσ = d 3 x ( Ψ 2 Φ + Ψ Φ ) 现把此式与原来的第一格林公式相减, 就得到了所谓的第二格林公式 : ˆ ( Φ 2 Ψ Ψ 2 Φ ) ( d 3 x = Φ Ψ ) n Ψ Φ dσ n 或者等价地,ˆ ˆ Φ 2 Ψd 3 x = Ψ 2 Φd 3 x + ( Φ Ψ n Ψ Φ n ) dσ 18 / 1

19 计算静电势的基本公式 : 在第二格林公式中取 Φ = φ ( 静电势 ) 和 Ψ = 1/ x x, 则由于 2 φ( x ) = ρ f ( x )/ϵ, 2 1 x x = 4πδ(3) ( x x ) 我们有 : ˆ φ( x) = d 3 x φ( x )δ (3) ( x x ) = 1 ˆ d 3 x φ( x ) 2 1 4π x x = 1 ˆ ρ f ( x ) 4πϵ x x 1 4π 请问 : dσ [ φ( x ) n 1 x x 1 x x 1 是否有必要同时给定边界面 上的 φ 与 φ/ n? φ( x ] ) n 19 / 1

20 静电唯一性定理 : 20 / 1 静电势的分布唯一地取决于静电势在区域边界上所满足的 Dirichlet 边界条件或者 Neumann 边界条件. 说明 : Dirichlet: φ 已知. Neumann: φ 已知. n 警告 : 1 没有必要同时给定 φ 和 φ/ n 的值. 2 事实上, 同时给定这两个量可能会引起逻辑冲突, 导致静电势无解.

21 静电唯一性定理的证明 : 21 / 1 用反证法. 假设在给定边界 上电势 φ 或者电势的法向导数 φ/ n 的前提下, 区域 内的电势仍不唯一. 即假设存在着 φ 1 和 φ 2 两个解, 使得 : 以及, 2 φ 1 = ρ f ϵ, 2 φ 2 = ρ f ϵ φ 1 = φ 2 或者, φ 1 n = φ 2 n 构造新函数 u 使得 u = φ 1 φ 2, 则 u 满足 Laplace 方程 : 2 u = 0 u 的边界条件变为 : u = 0 或者, u n = 0

22 22 / 1 回忆第一格林公式, ˆ d 3 x ( Φ 2 Ψ + Φ Ψ ) = 若在此式中取 Φ = Ψ = u, 则有 : ˆ d 3 x ( u 2 u + u u ) = Φ Ψ n dσ u u n dσ 即, ˆ d 3 x( u) 2 = 0 u = 0 u = C ( 常数 ) 所以,φ 1 = φ 2 + C. 但电势的附加常数对于电场没有影响, 这就证明了唯一性定理. 导体表面的特殊性 :

23 若区域 的分界面 是导体表面, 则因为静电平衡状态下导体表面的等势面特点,φ 1 和 φ 2 均为常数,u = φ 1 φ 2 自然亦为常数. 所以,u 满足的第一格林公式可进一步写为 : ˆ d 3 x ( u ) 2 = u u ( n dσ = u φ 1 n dσ ( ) = u E 1 d σ E 2 d σ ) φ 2 n dσ 显然, 为了保证 u = 0, 除了指定界面 上的电势之外, 也可以指定导体表面 上携带的电荷总量 Q, Q = E 1 d σ = E 2 d σ ϵ 0 这一点与普通绝缘介质分界面上的边界条件不同. 换言之, 按照静电唯一性定理的要求施加静电边界条件时, 无须指定导体表面 上的电荷面密度 σ = ϵ 0 φ/ n, 只需要指定 上携带的总电荷量或者 的静电势. 23 / 1

24 例题 : z ɛ 1 x o ɛ 2 y 例 : 如图示, 半径为 R 1 的导体球与同心的 内半径为 R 2 (R 2 > R 1 ) 的导体球壳之间充以两种电介质. 设左半部介质的电容率为 ϵ 1, 右半部介质的电容率为 ϵ 2, 内导体球带电总量为 Q, 外球壳接地. 求介质所占据的空间中的电场分布及内导体球上的电荷分布. 解 : 介质所占据的是有界空间, 它以内导体球的表面 1 及外导体球 壳的内表面 2 为边界. 现在已知 1 面上的总自由电荷 Q 和 φ = 0, 2 ( 外导体球壳接地 ) 按照唯一性定理, 此空间中静电场的分布是唯一确定的. 24 / 1

25 现在通过某些一般性的考虑求解此静电场. 首先, 静电场是无旋场. 基于此考虑可以在球坐标系里把 E 一般性地表达为 : E = α(r) e r + β(θ) e θ r + γ(ϕ) e ϕ r sin θ 显然, E = 式中 α(r), β(θ) 与 γ(ϕ) 是彼此独立的待定函数, 且 R 1 r R 2. [ α(r) e r + β(θ) e θ r + γ(ϕ) e ] ϕ r sin θ = α(r) e r + β(θ) e θ r + γ(ϕ) e ϕ r sin θ = α (r) e r e r + β (θ) r 2 e θ e θ + γ (ϕ) r 2 sin 2 θ e ϕ e ϕ = 0 25 / 1

26 注意到介质占据的空间包含 z 轴, 在其上场强应取有限值. 因为 z 轴对应于 θ = 0 或者 θ = π, sin θ = 0, 故应令 γ(ϕ) = 0 使得 E = α(r) e r + β(θ) e θ r 更准确地说, 应该是 : E 1 = α 1 (r) e r + β 1 (θ) e θ r, E 2 = α 2 (r) e r + β 2 (θ) e θ r 这里 E 1 为左半区域中的电场强度分布, 而 E 2 为右半区域中的电场强度分布. 进而, D 1 = ϵ 1 α 1 (r) e r + ϵ 1 β 1 (θ) e θ r, D 2 = ϵ 2 α 2 (r) e r + ϵ 2 β 2 (θ) e θ r 考虑到介质中不存在自由电荷分布, 按照高斯定律应有 : D 1 = D 2 = 0 26 / 1

27 具体考虑 D 1 = 0, 我们有 : 0 = D [ 1 = ϵ 1 α 1 (r) e r + ϵ 1 β 1 (θ) e ] θ r = [ ϵ 1 α 1 (r)r 2 sin θ ] e r r 2 sin θ + [ ϵ 1 β 1 (θ)sin θ ] e θ r sin θ = 1 r 2 sin θ [ r ϵ1 α 1 (r)r 2 sin θ ] + 1 r 2 sin θ [ θ ϵ1 β 1 (θ) sin θ ] = ϵ 1 r 2 [ r α1 (r)r 2] + ϵ 1 r 2 sin θ [ θ β1 (θ) sin θ ] 于是, [ r α1 (r)r 2] = 1 sin θ [ θ β1 (θ) sin θ ] 由于 α 1 (r) 与 β 1 (θ) 彼此独立, 上式一般情形下不成立, 除非两端等于同一个既不依赖于 r 又与 θ 无关的参数 c: r [ α1 (r)r 2] = c, 1 sin θ [ θ β1 (θ) sin θ ] = c 27 / 1

28 28 / 1 所以 : α 1 (r) = a 1 r 2 + c r, β 1(θ) = b 1 sin θ + c cot θ 介质一中的电位移矢量和电场强度矢量的分布暂定为 : ( a1 D 1 = ϵ 1 r 2 + c r E 1 = ( a1 r 2 + c r ) e r + ϵ 1 (b 1 + c cos θ) ) e r + (b 1 + c cos θ) e θ r sin θ e θ r sin θ 计及 z 轴上各场点处电位移与场强的有限性, 我们看到在正 负 z 坐标区域应分别取 c = b 1 和 c = b 1. 换言之, 在介质一的 z > 0 区域 : ( a1 D 1 = ϵ 1 r 2 b ) 1 (1 cos θ) e r + ϵ 1 b 1 e θ, r r sin θ ) ( a1 E 1 = r 2 b 1 r (1 cos θ) e r + b 1 e θ, 0 θ π/2 r sin θ

29 但在介质一的 z < 0 区域 : ( a1 D 1 = ϵ 1 r 2 + b ) 1 (1 + cos θ) e r + ϵ 1 b 1 e θ, r r sin θ ) ( a1 E 1 = r 2 + b 1 r (1 + cos θ) e r + b 1 e θ, r sin θ π/2 θ π 介质一内部这两个区域的分界面是 θ = π/2 的赤道面, 电场强度的切分量必须连续. 此外, 赤道面上无自由电荷面分布, 电位移的法分量也必须连续. 由于, e r θ=π/2 = (ˆk cos θ + î sin θ cos ϕ + ĵ sin θ sin ϕ ) θ=π/2 = î cos ϕ + ĵ sin ϕ, ( e θ = ˆk sin θ + î cos θ cos ϕ + ĵ cos θ sin ϕ) θ=π/2 θ=π/2 = ˆk e r 与 e θ 分别是赤道面的单位切矢量和单位法矢量. 赤道面上场强切分量的连续性, 必须取 :b 1 = 0. 为了保证 29 / 1

30 从而 : 类似地, D 1 = ϵ 1 a 1 e r r 2, D 2 = ϵ 2 a 2 e r r 2, E 1 = a 1 e r r 2 E 2 = a 2 e r r 2 那么, 上述场强与电位移矢量的分布是否满足它们在两种介质分界面上应该满足的边值关系呢? 假设介质的分界面是 z 轴所在的 xz 平面. 在此平面上, 球坐标系里的方位角取值为 ϕ = 0 或者 ϕ = π, e r = ˆk cos θ + î sin θ cos ϕ + ĵ sin θ sin ϕ e r ϕ 0,π = ˆk cos θ ± î sin θ 显然,ˆk 和 î 是 xz 平面 ( 即介质分界面 ) 上的两个独立的单位切矢量, 而 ĵ 为其单位法矢量. 30 / 1

31 所以, 在 ϕ = 0 的半个介质分界面平面两侧 : D i = ϵ i E i, E i = a i r 2 (ˆk cos θ + î sin θ); (i = 1, 2) 介质分界面上不存在自由电荷, 故应有 ĵ ( D 1 D 2 ) = 0. 显然, 这一边值关系对于上述试探解而言是平庸的 : ĵ ( D 1 D 2 ) = (ϵ 1a 1 ϵ 2 a 2 ) r 2 ĵ (ˆk cos θ + î sin θ) = 0 但边值关系 ĵ ( E 1 E 2 ) = 0 不平庸, 0 = ĵ ( E 1 E 2 ) = (a 1 a 2 ) r 2 ĵ (ˆk cos θ + î sin θ) = (a 1 a 2 ) r 2 (î cos θ ˆk sin θ) a 1 = a 2 = ζ 为了确定常参数 ζ, 我们选取介质内紧贴着内部导体球的球面 1 作为高斯面使用积分形式的高斯定律, 31 / 1

32 它给出 : Q = D d s = 2π(ϵ 1 + ϵ 2 )ζ 1 ζ = Q 2π(ϵ 1 + ϵ 2 ) 所以, 介质占据的空间中静电场场强的分布具有球对称性 : E = Q e r 2π(ϵ 1 + ϵ 2 )r 2 ; R 1 < r < R 2, 0 θ π, 0 ϕ < 2π. 但电位移矢量的分布没有球对称性 : ϵ 1 Q e r D 1 = 2π(ϵ 1 + ϵ 2 )r 2, 0 ϕ < π; ϵ 2 Q e r D 2 = 2π(ϵ 1 + ϵ 2 )r 2, π ϕ < 2π. 32 / 1

33 上述试探法求得的静电场场强与电位移矢量的分布满足唯一性定理的所有条件, 因此是本问题唯一正确的解. 电位移矢量的分布决定了内部导体球表面上的自由电荷面密度的分布 : σ 1 = e r D 1 1 = σ 2 = e r D 2 1 = ϵ 1 Q 2π(ϵ 1 + ϵ 2 )R 2, 0 ϕ < π; 1 ϵ 2 Q 2π(ϵ 1 + ϵ 2 )R 2, π ϕ < 2π 1 它也不具有球对称性. 33 / 1

34 作业 : 1 一个半径为 a 电容率为 ϵ 的电介质球处于某外电场中发生了极化. 设其极化强度矢量为 P = α r,(0 r < a),α 为某常参数. (1). 计算束缚电荷的体密度和面密度. (2). 计算自由电荷体密度. (3). 计算介质球内外空间中的电势分布. 34 / 1

器之 间 向一致时为正 相反时则为负 ③大量电荷的定向移动形成电 流 单个电荷的定向移动同样形成电流 3 电势与电势差 1 陈述概念 电场中某点处 电荷的电势能 E p 与电荷量 q Ep 的比值叫做该点处的电势 表达式为 V 电场中两点之间的 q 电势之差叫做电势差 表达式为 UAB V A VB 2 理解概念 电势差是电场中任意两点之间的电势之差 与参考点的选择无关 电势是反映电场能的性质的物理量

More information

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

5 (Green) δ

5 (Green) δ 2.............................. 2.2............................. 3.3............................. 3.4........................... 3.5...................... 4.6............................. 4.7..............................

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

Π Ρ! #! % & #! (! )! + %!!. / 0% # 0 2 3 3 4 7 8 9 Δ5?? 5 9? Κ :5 5 7 < 7 Δ 7 9 :5? / + 0 5 6 6 7 : ; 7 < = >? : Α8 5 > :9 Β 5 Χ : = 8 + ΑΔ? 9 Β Ε 9 = 9? : ; : Α 5 9 7 3 5 > 5 Δ > Β Χ < :? 3 9? 5 Χ 9 Β

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

% %! # % & ( ) % # + # # % # # & & % ( #,. %

% %! # % & ( ) % # + # # % # # & & % ( #,. % !!! # #! # % & % %! # % & ( ) % # + # # % # # & & % ( #,. % , ( /0 ) %, + ( 1 ( 2 ) + %, ( 3, ( 123 % & # %, &% % #, % ( ) + & &% & ( & 4 ( & # 4 % #, #, ( ) + % 4 % & &, & & # / / % %, &% ! # #! # # #

More information

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 & ! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

( ) (! +)! #! () % + + %, +,!#! # # % + +!

( ) (! +)! #! () % + + %, +,!#! # # % + +! !! # % & & & &! # # % ( ) (! +)! #! () % + + %, +,!#! # # % + +! ! %!!.! /, ()!!# 0 12!# # 0 % 1 ( ) #3 % & & () (, 3)! #% % 4 % + +! (!, ), %, (!!) (! 3 )!, 1 4 ( ) % % + % %!%! # # !)! % &! % () (! %

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

More information

高等数学A

高等数学A 高等数学 A March 3, 2019 () 高等数学 A March 3, 2019 1 / 55 目录 1 函数 三要素 图像 2 导数 导数的定义 基本导数表 求导公式 Taylor 展开 3 积分 Newton-Leibniz 公式 () 高等数学 A March 3, 2019 2 / 55 函数 y = f(x) 函数三要素 1 定义域 2 值域 3 对应关系 () 高等数学 A March

More information

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

More information

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

More information

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

More information

08-01.indd

08-01.indd 1 02 04 08 14 20 27 31 35 40 43 51 57 60 07 26 30 39 50 56 65 65 67 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ω ρ ε 23 λ ω < 1 ω < 1 ω > 0 24 25 26 27 28 29 30 31 ρ 1 ρ σ b a x x i +3 x i

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. ()

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. () ! # % & & &! # % &! ( &! # )! ) & ( +,! (# ) +. + / 0 1 2 3 4 4 5 & 6!!!.! (!,! (! & 7 6!. 8 / 6 7 6 8! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. () , 4 / 7!# + 6 7 1 1 1 0 7!.. 6 1 1 2 1 3

More information

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ ! # % & ( ) % + ( ), & ). % & /. % 0 1!! 2 3 4 5# 6 7 8 3 5 5 9 # 8 3 3 2 4 # 3 # # 3 # 3 # 3 # 3 # # # ( 3 # # 3 5 # # 8 3 6 # # # # # 8 5# :;< 6#! 6 =! 6 > > 3 2?0 1 4 3 4! 6 Α 3 Α 2Η4 3 3 2 4 # # >

More information

ⅠⅡⅢ Ⅳ

ⅠⅡⅢ Ⅳ ⅠⅡⅢ Ⅳ ! "!"#$%&!!! !"#$%& ()*+,!"" *! " !! " #$%& ( Δ !"#$%& ()*+,!"" * !! " #$%& ( !"#$%& ()*+,!"" * !! " #$%& ( !"#$%& ()*+,!"" * !! " #$%& (! # !"#$%& ()*+,!"" * !! " #$%& ( 1 1 !"#$%& ()*+,!"" *

More information

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5, # # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( 0 2 3 ( & +. 4 / &1 5, !! & 6 7! 6! &1 + 51, (,1 ( 5& (5( (5 & &1 8. +5 &1 +,,( ! (! 6 9/: ;/:! % 7 3 &1 + ( & &, ( && ( )

More information

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ ! % & ( ),. / & 0 1 & 2 1 // % & 3 0 4 5 ( 6( ) ( & 7 8 9:! ; < / 4 / 7 = : > : 8 > >? :! 0 1 & 7 8 Α :! 4 Β ( & Β ( ( 5 ) 6 Χ 8 Δ > 8 7:?! < 2 4 & Ε ; 0 Φ & % & 3 0 1 & 7 8 Α?! Γ ), Η % 6 Β% 3 Ι Β ϑ Ι

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

1#

1# ! # % & ( % + #,,. + /# + 0 1#. 2 2 3 4. 2 +! 5 + 6 0 7 #& 5 # 8 % 9 : ; < =# #% > 1?= # = Α 1# Β > Χ50 7 / Δ % # 50& 0 0= % 4 4 ; 2 Ε; %5 Β % &=Φ = % & = # Γ 0 0 Η = # 2 Ι Ι ; 9 Ι 2 2 2 ; 2 ;4 +, ϑ Α5#!

More information

电动力学习题课 - 第一章

电动力学习题课 - 第一章 电动力学习题课 第一章 Cheng-Zong Ruan Department of Astronomy, BNU September 26, 2018 ElectroDynamics, exercise class chzruan 1/25 第一章作业 从静电场麦克斯韦方程的积分形式 E = 0( 静电场无旋 ). L E dl = 0 推导微分形式 从毕奥 - 萨法尔定律 (2.8) 式推导磁场旋度和散度公式

More information

3?! ΑΑΑΑ 7 ) 7 3

3?! ΑΑΑΑ 7 ) 7 3 ! # % & ( ) +, #. / 0 # 1 2 3 / 2 4 5 3! 6 ) 7 ) 7 ) 7 ) 7 )7 8 9 9 :5 ; 6< 3?! ΑΑΑΑ 7 ) 7 3 8! Β Χ! Δ!7 7 7 )!> ; =! > 6 > 7 ) 7 ) 7 )

More information

untitled

untitled 4 y l y y y l,, (, ) ' ( ) ' ( ) y, y f ) ( () f f ( ) (l ) t l t lt l f ( t) f ( ) t l f ( ) d (l ) C f ( ) C, f ( ) (l ) L y dy yd π y L y cosθ, π θ : siθ, π yd dy L [ cosθ cosθ siθ siθ ] dθ π π π si

More information

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7 ! # % & ( ) +, + )% ). )% / 0 1. 0 3 4 5 6 7 8 7 8 9 : ; < 7 ( % ; =8 9 : ; < ; < > ;, 9 :? 6 ; < 6 5 6 Α Β 5 Δ 5 6 Χ 5 6 5 6 Ε 5 6 Ε 5 5 Β Χ Χ Α Β 7 8 9 Φ 5 6 9 Φ ; < # 9 Φ ; < # 7 8 5 5 < % Γ & (,,,,

More information

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α # % & ( ) # +,. / 0 1 2 /0 1 0 3 4 # 5 7 8 / 9 # & : 9 ; & < 9 = = ;.5 : < 9 98 & : 9 %& : < 9 2. = & : > 7; 9 & # 3 2

More information

, & % # & # # & % & + # & # # # & # % #,

, & % # & # # & % & + # & # # # & # % #, ! # #! % # & # & & ( ( # ) % , & % # & # # & % & + # & # # # & # % #, # % % # % # ) % # % % # % # # % # % # + # % ( ( # % & & & & & & % & & # % # % & & % % % . % # / & & # 0 ) & # % & % ( # # & & & # #

More information

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) ! # % & # % ( ) & + + !!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) 6 # / 0 1 + ) ( + 3 0 ( 1 1( ) ) ( 0 ) 4 ( ) 1 1 0 ( ( ) 1 / ) ( 1 ( 0 ) ) + ( ( 0 ) 0 0 ( / / ) ( ( ) ( 5 ( 0 + 0 +

More information

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7 ! # % # & ( & ) # +,,., # / 0 1 3. 0. 0/! 14 5! 5 6 6 7 7 7 7 7! 7 7 7 7 7 7 8 9 : 6! ; < ; < ; : 7 7 : 7 < ;1< = = : = >? ) : ; < = > 6 0 0 : ; < ) ; < ; < ; : < ; < = = 7 7 7 Α > : Β ; < ; 6 < > ;:

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ ! # % & ( ) +,. / 0 1 + 2. 3 4. 56. / 7 89 8.,6 2 ; # ( ( ; ( ( ( # ? >? % > 64 5 5Α5. Α 8/ 56 5 9. > Β 8. / Χ 8 9 9 5 Δ Ε 5, 9 8 2 3 8 //5 5! Α 8/ 56/ 9. Φ ( < % < ( > < ( %! # ! Β Β? Β ( >?? >?

More information

9 : : ; 7 % 8

9 : : ; 7 % 8 ! 0 4 1 % # % & ( ) # + #, ( ) + ) ( ). / 2 3 %! 5 6 7! 8 6 7 5 9 9 : 6 7 8 : 17 8 7 8 ; 7 % 8 % 8 ; % % 8 7 > : < % % 7! = = = : = 8 > > ; 7 Ε Β Β % 17 7 :! # # %& & ( ) + %&, %& ) # 8. / 0. 1 2 3 4 5

More information

?.! #! % 66! & () 6 98: +,. / / 0 & & < > = +5 <. ( < Α. 1

?.! #! % 66! & () 6 98: +,. / / 0 & & < > = +5 <. ( < Α. 1 !! # % # & ( & ) # +, #,., # / 0 1. 0 1 3 4 5! 6 7 6 7 67 +18 9 : : : : : : : : : :! : : < : : ?.! #! % 66! & 6 1 1 3 4.5 () 6 98: +,. / / 0 & 0 0 + & 178 5 3 0. = +5

More information

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

More information

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 :

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 : !! # % & % () + (. / 0 ) 1 233 /. / 4 2 0 2 + + 5. 2 / 6 ) 6. 0 ) 7. 8 1 6 / 2 9 2 :+ ; < 8 10 ; + + ( =0 41 6< / >0 7 0?2) 29 + +.. 81 6> Α 29 +8 Β Χ + Δ Ε /4 10 )+ 2 +. 8 1 6 > 2 9 2 : > 8 / 332 > 2

More information

% % %/ + ) &,. ) ) (!

% % %/ + ) &,. ) ) (! ! ( ) + & # % % % %/ + ) &,. ) ) (! 1 2 0 3. 34 0 # & 5 # #% & 6 7 ( ) .)( #. 8!, ) + + < ; & ; & # : 0 9.. 0?. = > /! )( + < 4 +Χ Α # Β 0 Α ) Δ. % ΕΦ 5 1 +. # Ι Κ +,0. Α ϑ. + Ι4 Β Η 5 Γ 1 7 Μ,! 0 1 0

More information

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9 !! #! % & ( ) +,. / 0 1 2 34 5 6 % & +7 % & 89 % & % & 79 % & : % & < < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ

More information

; < 5 6 => 6 % = 5

; < 5 6 => 6 % = 5 ! # % ( ),,. / 0. 1, ) 2 3, 3+ 3 # 4 + % 5 6 67 5 6, 8 8 5 6 5 6 5 6 5 6 5 6 5 9! 7 9 9 6 : 6 ; 7 7 7 < 5 6 => 6 % = 5 Δ 5 6 ; Β ;? # Ε 6 = 6 Α Ε ; ; ; ; Φ Α Α Ε 0 Α Α Α Α Α Α Α Α Α Α Α Α Α Β Α Α Α Α Α

More information

% & ( ) +, (

% & ( ) +, ( #! % & ( ) +, ( ) (! ( &!! ( % # 8 6 7 6 5 01234% 0 / /. # ! 6 5 6 ;:< : # 9 0 0 = / / 6 >2 % % 6 ; # ( ##+, + # 5 5%? 0 0 = 0 0 Α 0 Β 65 6 66! % 5 50% 5 5 ΗΙ 5 6 Φ Γ Ε) 5 % Χ Δ 5 55 5% ϑ 0 0 0 Κ,,Λ 5!Α

More information

概述 恒定电流 恒定电流 电荷对观察者来说有相对运动, 但这些规则运动在导电媒质中的电荷及所形成的电流, 其分布都是不随时间变化的

概述 恒定电流 恒定电流 电荷对观察者来说有相对运动, 但这些规则运动在导电媒质中的电荷及所形成的电流, 其分布都是不随时间变化的 Topic # 3 恒定电流的电场 (Steady lectric Currents) Part I 概述 基本方程 电功率 电动势 不同媒质分界面上的边界条件 静电比拟 (Duality) 概述 恒定电流 恒定电流 电荷对观察者来说有相对运动, 但这些规则运动在导电媒质中的电荷及所形成的电流, 其分布都是不随时间变化的 概述 场效应 静止电荷 静电场 不随时间变化, 只是空间坐标的函数 没有伴随的磁效应和磁场

More information

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ Ⅰ Ⅱ 1 2 Ⅲ Ⅳ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9!

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9! # %!!! ( ) ( +, +. ( / 0 1) ( 21 1) ( 2 3 / 4!! 5 6 7 7! 8 8 9 : ; < 9 = < < :! : = 9 ; < = 8 9 < < = 9 8 : < >? % > % > % 8 5 6 % 9!9 9 : : : 9 Α % 9 Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3

More information

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ;

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ; ! # % & ( ) ( +, +. ( /0!) ( 1!2!) ( 3 4 5 2 4 7 8 9: ; 9 < : = ; ; 54 ; = ; ; 75 ; # ; 9 : ; 9 : ; ; 9: ; ; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; 54 9 9: ; ;

More information

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5 0 ( 1 0 % (! # % & ( ) + #,. / / % (! 3 4 5 5 5 3 4,( 7 8 9 /, 9 : 6, 9 5,9 8,9 7 5,9!,9 ; 6 / 9! # %#& 7 8 < 9 & 9 9 : < 5 ( ) 8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, 5 4

More information

!? > 7 > 7 > 7 Ε ! Α Φ Φ Γ Η Ι Γ / 2 ; Γ / 4 Δ : 4 ϑ / 4 # Η Γ Κ 2 Η 4 Δ 4 Α 5 Α 8 Λ Ηϑ Μ Α Α 4!! Ο. /3 :/Π : Θ Γ 2 ; Γ / 4 Ρ Α

!? > 7 > 7 > 7 Ε ! Α Φ Φ Γ Η Ι Γ / 2 ; Γ / 4 Δ : 4 ϑ / 4 # Η Γ Κ 2 Η 4 Δ 4 Α 5 Α 8 Λ Ηϑ Μ Α Α 4!! Ο. /3 :/Π : Θ Γ 2 ; Γ / 4 Ρ Α !! # % & % ( ) ) + # %, #. /,. / 1 2 3 4 5! 6 /7! 7 8 7 /7 8 7! 7 /7 9 : ; < = ; >? 7 4 4 4 Α Β Χ 9 > 7 4 ΔΑΕ 6 4 Β Β!4 /7 9! 7? 87 ; !? > 7 > 7 > 7 Ε 4 8 5 8! Α Φ Φ Γ Η Ι Γ / 2 ; Γ / 4 Δ : 4 ϑ / 4 # Η

More information

: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ >

: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ > ! # %& ( +, &. / ( 0 # 1# % & # 2 % & 4 5 67! 8 9 : ; < 8 = > 9? 8 < 9? Α,6 ΒΧ : Δ 8Ε 9 %: ; < ; ; Δ Φ ΓΗ Ιϑ 4 Κ6 : ; < < > : ; : ;!! Β : ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46

More information

Ρ 2 % Ε Φ 1 Φ Δ 5 Γ Η Ε Ι ϑ 1 Κ Δ ϑ Ι 5 Δ Ε Κ Β 1 2 Ι 5 Κ Ι 78 Χ > > = > Λ= =!? Λ Λ!???!? Λ?? Χ # > Λ= = >?= =!? Λ?!?!? Λ Λ Α =? Α &<&. >!= = = = = Α

Ρ 2 % Ε Φ 1 Φ Δ 5 Γ Η Ε Ι ϑ 1 Κ Δ ϑ Ι 5 Δ Ε Κ Β 1 2 Ι 5 Κ Ι 78 Χ > > = > Λ= =!? Λ Λ!???!? Λ?? Χ # > Λ= = >?= =!? Λ?!?!? Λ Λ Α =? Α &<&. >!= = = = = Α !! # % # & ( & ) # +, #./. # 0 1 2 / 1 4 5 5!! 6 7 8 9 : ; < => : : >? = ; 7 8 1 5 Α > /? > > = ; 25Β > : ; Χ 2! : ; Χ 2 Χ < Δ : ; Χ < # > : ; # & < > : ; & < & 2 > : ; & 2 6 9!!= 2 Ρ 2 % Ε Φ 1 Φ Δ 5 Γ

More information

10-03.indd

10-03.indd 1 03 06 12 14 16 18 é 19 21 23 25 28 30 35 40 45 05 22 27 48 49 50 51 2 3 4 é é í 5 é 6 7 8 9 10 11 12 13 14 15 16 17 18 19 é 20 21 22 23 ü ü ü ü ü ü ü ü ü 24 ü 25 26 27 28 29 30 31 32 33 34 35 36 37 38

More information

:::: : : : :::: :: :: :::::: :::: < ; 7 7 ; ; % < = = > = / =?? Α Β.. Β Χ (. 7 > 5 / Δ 6 Ε. Φ Δ 5 / 6 Ε. Φ 1 Γ 5 / 6 7 Η (. >5 Ι Δ 6 Φ ϑ

:::: : : : :::: :: :: :::::: :::: < ; 7 7 ; ; % < = = > = / =?? Α Β.. Β Χ (. 7 > 5 / Δ 6 Ε. Φ Δ 5 / 6 Ε. Φ 1 Γ 5 / 6 7 Η (. >5 Ι Δ 6 Φ ϑ . /,.!! # % # & %& ( ) ) + % # & %, % # ( 1 2 3 4 5 6 7 5 6 4 8 3 9 :::: : : : :::: :: :: :::::: :::: < ; 7 7 ; ; % < = = > = / =?? Α 5 6 5 Β.. Β Χ (. 7 > 5 / Δ 6 Ε. Φ 5 3 1 6 Δ 5 / 6 Ε. Φ 1 Γ 5 / 6 7

More information

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % #! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )

More information

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε (! # # %& ) +,./ 0 & 0 1 2 / & %&( 3! # % & ( ) & +, ), %!,. / 0 1 2. 3 4 5 7 8 9 : 0 2; < 0 => 8?.. >: 7 2 Α 5 Β % Χ7 Δ.Ε8 0Φ2.Γ Φ 5 Η 8 0 Ι 2? : 9 ϑ 7 ϑ0 > 2? 0 7Ε 2?. 0. 2 : Ε 0 9?: 9 Κ. 9 7Λ /.8 720

More information

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9 ! # %& ( %) & +, + % ) # % % )./ 0 12 12 0 3 4 5 ). 12 0 0 61 2 0 7 / 94 3 : ;< = >?? = Α Β Β Β Β. Β. > 9. Δ Δ. Ε % Α % Φ. Β.,,.. Δ : : 9 % Γ >? %? >? Η Ε Α 9 Η = / : 2Ι 2Ι 2Ι 2Ι. 1 ϑ : Κ Λ Μ 9 : Ν Ο 0

More information

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ # % & ( ) +,& ( + &. / 0 1 2 3 ( 4 4 5 4 6 7 8 4 6 5 4 9 :.; 8 0/ ( 6 7 > 5?9 > 56 Α / Β Β 5 Χ 5.Δ5 9 Ε 8 Φ 64 4Γ Β / Α 3 Γ Β > 2 ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν 3 3 3 Α3 3

More information

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ; ! #! % & % ( ) ( +, & %. / & % 0 12 / 1 4 5 5! 6 7 8 7 # 8 7 9 6 8 7! 8 7! 8 7 8 7 8 7 8 7 : 8 728 7 8 7 8 7 8 7 8 7 & 8 7 4 8 7 9 # 8 7 9 ; 8 ; 69 7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β

More information

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ <

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ < ! # %!! ( (! +,. /0 0 1 2,34 + 5 6 7,3. 7, 8, 2 7 + 1 9 #. 3 : + ; + 5 83 8 % 8 2 ; , 1 1 8 2 =? : + 2 = 2 = Α 1,!. Β 3 + 5 Χ Β Β

More information

Τ Δ Δ ΝΔ Ο Π 1 # % #! 3 Η Μ.! 1 / 5 6 Ρ 3 Γ Η 1 Κ 6 ; Σ 5 8! Μ? Μ! # % Δ Μ 1 # %! = 47 > 47 ; 1 # %! 4Υ #! # Η# # %! 4 =7 =? Ν

Τ Δ Δ ΝΔ Ο Π 1 # % #! 3 Η Μ.! 1 / 5 6 Ρ 3 Γ Η 1 Κ 6 ; Σ 5 8! Μ? Μ! # % Δ Μ 1 # %! = 47 > 47 ; 1 # %! 4Υ #! # Η# # %! 4 =7 =? Ν ! # % &!! ( ) # +. # / 0! 1 + 2! # % 1 3 %! 41 / 5 6 7! # 8 &! ) # 49 : ; :< = >7 7? = > :? 4 = 7Α Β4 7 4:7Χ 4=7! # % 1 # % 1 # %! 1# %! Δ 6 5 Φ6! 4Γ Δ! Η% 5 7 Ι # ϑ Κ Λ = Μ > = =? Μ ϑ Ε < Ε Τ Δ Δ ΝΔ Ο

More information

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P. () * 3 6 6 3 9 4 3 5 8 6 : 3. () ; () ; (3) (); (4) ; ; (5) ; ; (6) ; (7) (); (8) (, ); (9) ; () ; * Email: huangzh@whu.edu.cn . () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) :

More information

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; =

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; = ! 0 1 # & ( & ) +! &,. & /.#. & 2 3 4 5 6 7 8 9 : 9 ; < = : > < = 9< 4 ; < = 1 9 ; 3; : : ; : ;? < 5 51 ΑΒ Χ Δ Ε 51 Δ!! 1Φ > = Β Γ Η Α ΒΧ Δ Ε 5 11!! Ι ϑ 5 / Γ 5 Κ Δ Ε Γ Δ 4 Φ Δ Λ< 5 Ε 8 Μ9 6 8 7 9 Γ Ν

More information

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2 ! # % ( % ) +,#./,# 0 1 2 / 1 4 5 6 7 8! 9 9 : ; < 9 9 < ; ?!!#! % ( ) + %,. + ( /, 0, ( 1 ( 2 0% ( ),..# % (., 1 4 % 1,, 1 ), ( 1 5 6 6 # 77 ! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ!

More information

ΗΗ Β Η Η Η ϑ ΗΙ ( > ( > 8 Κ Κ 9 Λ! 0 Μ 4 Ν ΟΠ 4 Ν 0 Θ Π < Β < Φ Ρ Σ Ο ΟΦ Ρ Σ ) Ο Τ 4 Μ 4 Ν Π Υ Φ Μ ς 6 7 6Ω : 8? 9 : 8 ; 7 6Ω 1 8? ; 7 : ; 8 ; 9

ΗΗ Β Η Η Η ϑ ΗΙ ( > ( > 8 Κ Κ 9 Λ! 0 Μ 4 Ν ΟΠ 4 Ν 0 Θ Π < Β < Φ Ρ Σ Ο ΟΦ Ρ Σ ) Ο Τ 4 Μ 4 Ν Π Υ Φ Μ ς 6 7 6Ω : 8? 9 : 8 ; 7 6Ω 1 8? ; 7 : ; 8 ; 9 !! # % # & ( & ) #, #,., # / 01. 0 3 4 4!! 5 6 7 6 7 8 9 : 9 ; 6 1 7 < 1? :! ; = >, 8 8 9 ; Α < 1 6 7 Β 6 7 6. Χ : 9 8? 9 ; 7 8? 9 ; = = Δ Ε Φ Γ 5 =!!? ΗΗ Β Η Η Η ϑ ΗΙ ( > ( > 8 Κ Κ 9 Λ! 0 Μ 4 Ν ΟΠ 4 Ν

More information

Microsoft PowerPoint - 概率统计Ch02.ppt [Compatibility Mode]

Microsoft PowerPoint - 概率统计Ch02.ppt [Compatibility Mode] 66 随机变量的函数.5 随机变量的函数的分布 设 是一随机变量, 是 的函数, g(, 则 也是一个随机变量. 本节的任务 : 当 取值 x 时, 取值 y g 67 ( 一 离散型随机变量的函数 设 是离散型随机变量, 其分布律为 或 P { x } p (,, x x, P p p, x p 已知随机变量 的分布, 并且已知 g 要求随机变量 的分布. (, 是 的函数 : g(, 则 也是离散型随机变

More information

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ!

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ! !! # %& + ( ) ),., / 0 12 3, 4 5 6, 7 6 6, 8! 1 9 :; #< = 1 > )& )? Α Β 3 % Χ %? 7) >ΔΒ Χ :% Ε? 9 : ; Φ Η Ι & Κ Λ % 7 Μ Ν?) 1!! 9 % Ο Χ Χ Β Π Θ Π ; Ρ Ρ Ρ Ρ Ρ ; . Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )?

More information

Φ2,.. + Φ5Β( 31 (+ 4, 2 (+, Η, 8 ( (2 3.,7,Χ,) 3 :9, 4 (. 3 9 (+, 52, 2 (1 7 8 ΙΜ 12 (5 4 5? ), 7, Χ, ) 3 :9, 4( > (+,,3, ( 1 Η 34 3 )7 1 )? 54

Φ2,.. + Φ5Β( 31 (+ 4, 2 (+, Η, 8 ( (2 3.,7,Χ,) 3 :9, 4 (. 3 9 (+, 52, 2 (1 7 8 ΙΜ 12 (5 4 5? ), 7, Χ, ) 3 :9, 4( > (+,,3, ( 1 Η 34 3 )7 1 )? 54 !! # %& ( ) +, ( ),./0 12,2 34 (+,, 52, 2 (67 8 3., 9: ), ; 5, 4, < 5) ( (, 2 (3 3 1 6 4, (+,,3,0 ( < 58 34 3 )7 1 54 5, 2 2 54, +,. 2 ( :5 ( > 4 ( 37 1, ( 3 4 5? 3 1 (, 9 :), ; 5 4 )1 7 4 )3 5( 34 2 Α

More information

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α Ε! # % & ( )%! & & + %!, (./ 0 1 & & 2. 3 &. 4/. %! / (! %2 % ( 5 4 5 ) 2! 6 2! 2 2. / & 7 2! % &. 3.! & (. 2 & & / 8 2. ( % 2 & 2.! 9. %./ 5 : ; 5. % & %2 2 & % 2!! /. . %! & % &? & 5 6!% 2.

More information

第一章三角函数 1.3 三角函数的诱导公式 A 组 ( ) 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角, 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C 2 ( 中诱导公式 ) ( ) B. cos(

第一章三角函数 1.3 三角函数的诱导公式 A 组 ( ) 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角, 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C 2 ( 中诱导公式 ) ( ) B. cos( 第一章三角函数 1. 三角函数的诱导公式 A 组 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C ( 中诱导公式 ) B. cos( B C) cos A D. sin( B C) sin A sin60 cos( ) sin( 0 )cos( 70 ) 的值等于

More information

9! >: Ε Φ Ε Ε Φ 6 Φ 8! & (, ( ) ( & & 4 %! # +! ; Γ / : ; : < =. ; > = >?.>? < Α. = =.> Β Α > Χ. = > / Δ = 9 5.

9! >: Ε Φ Ε Ε Φ 6 Φ 8! & (, ( ) ( & & 4 %! # +! ; Γ / : ; : < =. ; > = >?.>? < Α. = =.> Β Α > Χ. = > / Δ = 9 5. ! # % & ( # ) & % ( % +, %. +, / #0 & 2 3 4 5 5 6 7 7 8 9 7:5! ; 0< 5 = 8 > 4 4? 754 Α 4 < = Β Χ 3Δ?? 7 8 7 8? 7 8 7 8 7 8 4 5 7 8 7 8 > 4> > 7 8 7 8 7 8 4 : 5 5 : > < 8 6 8 4 5 : 8 4 5 : 9! >: 48 7 8

More information

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. &

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. & !! # % & ( ) +,.% /.0.% 1 2 3 / 5,,3 6 7 6 8 9 6!! : 3 ) ; < < = )> 2?6 8 Α8 > 6 2 Β 3Α9 Α 2 8 Χ Δ < < Ε! ; # < # )Φ 5 Γ Γ 2 96 Η Ι ϑ 0 Β 9 Α 2 8 Β 3 0 Β 9 Β ΦΚ Α 6 8 6 6 Λ 2 5 8 Η Β 9 Α 2 8 2 Μ 6 Ν Α

More information

4 4 4 4 4 4! # % & ( # ) )! ) & +!. # / 0! + 1 & % / 0 2 & #. 3 0 5. 6 7 8 0 4 0 0 # 9 : ; < 9 = >9? Α = Β Χ Δ6 Ε9 8 & 9 : # 7 6 Φ = Γ Η Ι 0 ϑ 9 7 Κ 1 Λ 7 Κ % ΓΗ Δ 9 Η ΕΔ 9 = ;

More information

%? = Β 2Β 2 2 <Χ Φ Α Γ 7Δ 8 3 Ε & % # %& Η! % & &, &), 1 & % & +&,,. & / 0, & 2 %. % 3 % / % 4 %

%? = Β 2Β 2 2 <Χ Φ Α Γ 7Δ 8 3 Ε & % # %& Η! % & &, &), 1 & % & +&,,. & / 0, & 2 %. % 3 % / % 4 % ! # % # & ) + ),. / 0 1 2 ) 1 2 2 ) 3 4 5 6! 7 8 9&3 78 : & ; =? > > > 7 8 9&3 : = = = Α + =?! %? = Β 2Β 2 2

More information

! Χ Δ? Η Δ? Β Ι Β? ϑ Κ 1 Ε?? Λ Μ Ν Ο Π Β? Δ? Β Ι ΘΗ Κ 1 Ε? Β? ϑ Ν Η Η Δ?? Ρ? Ι Β Χ Τ Τ Ο ς Ι Δ Ω Χ Β [ Υ Ψ? [ Η Β? Β Υ? Ι Δ? Δ? Ο Ξ Ψ Ι Π Β Υ?????? Ι?

! Χ Δ? Η Δ? Β Ι Β? ϑ Κ 1 Ε?? Λ Μ Ν Ο Π Β? Δ? Β Ι ΘΗ Κ 1 Ε? Β? ϑ Ν Η Η Δ?? Ρ? Ι Β Χ Τ Τ Ο ς Ι Δ Ω Χ Β [ Υ Ψ? [ Η Β? Β Υ? Ι Δ? Δ? Ο Ξ Ψ Ι Π Β Υ?????? Ι? ! # % & () +, (. / 0, 1 ( 1 % & (). + 2 ) 3., ( 4 5 6 + 5 8 9 : ; ? Α 6Α? Β Χ Δ Δ? Α ΕΦ? Χ Γ?!! Ε 6Α >Α ! Χ Δ? Η Δ? Β Ι Β? ϑ Κ 1 Ε?? Λ Μ Ν Ο Π Β? Δ? Β Ι ΘΗ Κ 1 Ε? Β? ϑ Ν Η Η Δ?? Ρ? Ι Β Χ Τ Τ Ο ς

More information

! # Χ Η Ι 8 ϑ 8 5 Χ ΚΗ /8 Η/. 6 / Λ. /. Η /. Α Α + Α 0. Η 56 + Α : Α Μ / Η +9 Δ /. : Α : ϑ. Η. /5 % Χ

! # Χ Η Ι 8 ϑ 8 5 Χ ΚΗ /8 Η/. 6 / Λ. /. Η /. Α Α + Α 0. Η 56 + Α : Α Μ / Η +9 Δ /. : Α : ϑ. Η. /5 % Χ ! # % ( ) +. / 0 1 + 2+ 3 4. 56. / 7 8 9 8. 6 2 # :! # # ( : : :! ( = = ( = > > : > : (? : : # : :! :!? : ( : # Α Β Α # : Α > % : Α : Α ( Χ #! Χ # Δ Χ ( Χ ( Φ Χ : Χ ( Χ ( #! / 2 (!( Α Α ( Α Α : =! Γ6 Α

More information

( )... ds.....

( )... ds..... ...... 3.1.. 3.1.. 3.1: 1775. g a m I a = m G g, (3.1) m I m G. m G /m I. m I = m G (3.2)............. 1 2............ 4.................. 4 ( )... ds..... 3.2 3 3.2 A B. t x. A B. O. t = t 0 A B t......

More information

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6 ! # % # & ( ) +, #,. # / 0. 0 2 3 4! 5 6 5 6 7 8 5 6 5 6 8 9 : # ; 9 < = 8 = > 5 0? 0 Α 6 Β 7 5ΧΔ ΕΦ 9Γ 6 Η 5+3? 3Ι 3 ϑ 3 6 ΗΚ Η Λ!Κ Η7 Μ ΒΜ 7 Ν!! Ο 8 8 5 9 6 : Π 5 6 8 9 9 5 6 Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ

More information

= 9 :!! 2 = 28 ; ; < 8 Χ < ΑΓ Η ΒΙ % ) ϑ4? Κ! < ) & Λ / Λ Η Β 1 ; 8,, Φ Ε, Ε ; 8 / Β < Μ Ν Ο Β1 Π ΒΘ 5 Ρ 1 Γ ΛΓ Ι2Λ 2Λ < Ε Ε Φ Ι Η 8!<!!< = 28 <

= 9 :!! 2 = 28 ; ; < 8 Χ < ΑΓ Η ΒΙ % ) ϑ4? Κ! < ) & Λ / Λ Η Β 1 ; 8,, Φ Ε, Ε ; 8 / Β < Μ Ν Ο Β1 Π ΒΘ 5 Ρ 1 Γ ΛΓ Ι2Λ 2Λ < Ε Ε Φ Ι Η 8!<!!< = 28 < 0 1 2 / 1! % & ( ), %. / %. 4 5! 6 7 8 7 8 9 : ;! < < < ? : 1! > ΑΒ Χ, %? :! 6 =! Ε Φ 28 = 9 :!! 2 = 28 ; ; < 8 Χ < ΑΓ Η ΒΙ % ) 7 2 8 ϑ4? Κ! < ) & Λ / Λ Η Β 1 ; 8,, Φ Ε, Ε ; 8 / Β < Μ

More information

Υ 2 Δ Υ 1 = 1 : Φ Υ 1 Ω 5 ς ) Ν + Φ 5 ς ς Α+ ) Ν Φ 6 Ξ ς Α+ 4 Φ Ψ Ψ + = Ε 6 Ψ Ε Ε Π Υ Α Ε Ω 2? Ε 2 5 Ο ; Μ : 4 1 Ω % Β 3 : ( 6 Γ 4 Ρ 2 Ρ

Υ 2 Δ Υ 1 = 1 : Φ Υ 1 Ω 5 ς ) Ν + Φ 5 ς ς Α+ ) Ν Φ 6 Ξ ς Α+ 4 Φ Ψ Ψ + = Ε 6 Ψ Ε Ε Π Υ Α Ε Ω 2? Ε 2 5 Ο ; Μ : 4 1 Ω % Β 3 : ( 6 Γ 4 Ρ 2 Ρ # % & & ( & ) +,. / 0 11 + 23 4 4 5 6 7 %+ 8 9 : ; 8 < %+ % = 4 )>? > Α ( 8 % 1 1 Β Χ > Χ Δ Χ Β > Ε) > 4 > Ε) Φ Δ 5 Γ + % 8 + %. < 6 & % &. : 5 Η+ % Ι & : 5 &% + 8 ) : 6 %, 6, + % 5 ϑ # & > 2 3 Χ Δ Α ;

More information

ϕ ϕ R V = 2 2 314 6378 1668 0 T =. 24 = 2 R cos32 33931 V = = = 1413. 68 32 T 24 2 R cos90 V = = 0 90 T ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ 1

More information

: ; # 7 ( 8 7

: ; # 7 ( 8 7 (! # % & ( ) +,. / +. 0 0 ) 1. 2 3 +4 1/,5,6 )/ ) 7 7 8 9 : ; 7 8 7 # 7 ( 8 7 ; ;! #! % & % ( # ) % + # # #, # % + &! #!. #! # # / 0 ( / / 0! #,. # 0(! #,. # 0!. # 0 0 7 7 < = # ; & % ) (, ) ) ) ) ) )!

More information

Θ Θ Γ 2 Ρ 3 Ω Ω Ω Ξ, ;;> /;? ; ;;<<; > # ( 3 ) #2# #% 3 (#) # ( #) ) ( ) #) & ) 3 % & &89#(#( #3) ) 2 (#(# % ) ()# <= +: ;8.../;< # ; / +2.. ;//.;.82

Θ Θ Γ 2 Ρ 3 Ω Ω Ω Ξ, ;;> /;? ; ;;<<; > # ( 3 ) #2# #% 3 (#) # ( #) ) ( ) #) & ) 3 % & &89#(#( #3) ) 2 (#(# % ) ()# <= +: ;8.../;< # ; / +2.. ;//.;.82 . )/,. % ) # # % & ( ) )+,,% # % ) 1 2 3 4 4 5 67 /8 9: 6 18 ; < < < 2 = 3 & 2 < 3 > 6?? 7 2 = 3 ( ΑΒ 2 Β 3 Χ 8 :? / ) Δ 2 Β 3 7 8 Ε ) Φ? 8: Γ Ε 2 Β 3 ( Η Η 2 Β 3 Ι 6 ϑ 6 / 2 3 ΚΛϑ Μ 6 : ϑ 2 Β 3 Ν 6 Δ

More information

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ .................................2.......................... 2.3.......................... 2.4 d' Alembet...................... 3.5......................... 4.6................................... 5 2 5

More information

Microsoft PowerPoint - 第13讲 习题课

Microsoft PowerPoint - 第13讲 习题课 电磁场与电磁波基础 主讲 : 徐乐 8 年 4 月 9 日星期二 矢量分析与场论 矢性函数 A = A x (t)x + A y(t)ŷ + A z (t)ẑ 运算 L[A(t)] = L[A (t)]x + L[A (t)]y+l[a ˆ (t)]zˆ x y z L 是算子符号, 代表一种运算 ( 极限 导数 积分 ) b= b cosθ (b c) = b 一些基本矢量运算 xˆ yˆ zˆ

More information