CMOS 14 ADS..7 ADS

Similar documents
NANO COMMUNICATION 23 No.3 90 CMOS 94/188 GHz CMOS 94/188 GHz A 94/188 GHz Dual-Band VCO with Gm- Boosted Push-Push Pair in 90nm CMOS 90 CMOS 94

D4

·sª¾125´Á

12 Differential Low-Power 6x6 12 bit multiply 1

Stability for Op Amps

GH1220 Hall Switch

enews174_2

RF & MICROWAVE COMPONENTS

input commom-mode range) output swing (open loop gain) (GBW) ( phase margin) (gain margin)

Microsoft PowerPoint - CH03中文

2

iml88-0v C / 8W T Tube EVM - pplication Notes. IC Description The iml88 is a Three Terminal Current Controller (TTCC) for regulating the current flowi

untitled

; 3/2, Buck-Boost, 3 Buck-Boost DC-DC ; Y, Fig. 1 1 BBMC The topology of three phase-three phase BBMC 3 BBMC (Study on the control strategy of

<4D F736F F D203237B4C12DA2D1A6DBB54DACECBEC7BB50ACECA7DEC3FE2E646F63>

IEEE International Symposium on Radio-Frequency Integration Technology CMOS Korea Advanced Institute of Science and Technology, KAIST Neural

EMI LOOPS FILTERING EMI ferrite noise suppressors

untitled

Microsoft Word - LD5515_5V1.5A-DB-01 Demo Board Manual

Keysight E5071C ENA 9 khz 4.5/6.5/8.5 GHz 100 khz 4.5/6.5/8.5 GHz T 300 khz 14/20 GHz T

CHCN.indd

iml v C / 4W Down-Light EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the cur

untitled

iml v C / 0W EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the current flowin

GJB128A.PDF

Microsoft Word - MWRF_Components.doc

場效電晶體簡介.doc

untitled

IEC A( ) B C D II

untitled

Pin Configurations Figure2. Pin Configuration of FS2012 (Top View) Table 1 Pin Description Pin Number Pin Name Description 1 GND 2 FB 3 SW Ground Pin.

第一章

untitled

(Phase Locked Loops, PLL PLL (Chipset PLL GHz 6M Hz 96M USB2.0 USB2.1 6M Hz [1][2]

Microsoft Word - ML63S_8.doc

Current Sensing Chip Resistor

... 2 SK SK Command KA 9000 COM... 9 SK / SK / Autolock SK


附件1:

Chapter 24 DC Battery Sizing

國家圖書館典藏電子全文

PowerPoint 簡報


(Pattern Recognition) 1 1. CCD

TH2512/TH2512A Tonghui Electronics reserves the right to make changes at any time without notice in order to improve design and supply the best possib

Microsoft Word - AP1515V02

ITU-R M.1849建议书 - 地面气象雷达的技术和操作问题

w w w.chromaate.com Chroma H-S I-V (MPPT) /61500/ Chroma I-V

Microsoft Word - AN-978 _part1_.doc

The BIST Scheme for Digital-to Analog converters 1

enews172_1

Microsoft PowerPoint - Ch5 The Bipolar Junction Transistor

www. chromaate. com Chroma H I-V (MPPT) / 6630/ /61500/ / Chroma

<4D F736F F D FB971BEF7BB50B971A46CB8735FB773A55FA5ABA5DFB7E7AADAB0AAAFC5A475B77EC2BEB77EBEC7AED55FA97EAE61C0F4B9D2B4BCBC7AB1B1A8EEA874B2CE2E646F63>

untitled

Microsoft Word - PZ series.doc

audiogram3 Owners Manual

FM1935X智能非接触读写器芯片

网络分析仪

BC04 Module_antenna__ doc


時脈樹設計原則

enews162

Microsoft Word - HTL7G06S009P_V2.3_CH.doc

untitled

1 1

绯荤粺A4鐗堟湰鍗曢〉

LED/Smart TV LED/ Function List Products \ Application Tuner block DSP block / I/O Voice/Aud

u d = R s i d - ωl q i q u q = R s i q + ωl d i d + ωψ 1 u d u q d-q i d i q d q L d L q d q ψ f R s ω i 1 i 5th i th 5 θ 1 θ θ 3 5 5

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m +

gate level ADMS Power Noise Timing RC RCC Signal Integrity RC RCC Calibre xrc Eldo Hspice spectre DSPF SPEF Calibre xrc reduce thresholds tolerances C

Intersil精密模拟器件

蓄电池维护指南新OK.PDF

MHz 10 MHz Mbps 1 C 2(a) 4 GHz MHz 56 Msps 70 MHz 70 MHz 23 MHz 14 MHz 23 MHz 2(b)

y 1 = 槡 P 1 1h T 1 1f 1 s 1 + 槡 P 1 2g T 1 2 interference 2f 2 s y 2 = 槡 P 2 2h T 2 2f 2 s 2 + 槡 P 2 1g T 2 1 interference 1f 1 s + n n

Comp-AC ACS to 2.2 kw

表17-DDF 版 服務項目-範圍通過TAF認證一覽…

声 明 本 公 司 及 全 体 董 事 监 事 高 级 管 理 人 员 承 诺 公 开 转 让 说 明 书 不 存 在 虚 假 记 载 误 导 性 陈 述 和 重 大 遗 漏, 并 对 其 真 实 性 准 确 性 完 整 性 承 担 个 别 和 连 带 的 法 律 责 任 本 公 司 负 责 人 和

邏輯分析儀的概念與原理-展示版

untitled

I 元器件上市公司经济状况分析及年度展望

g 100mv /g 0. 5 ~ 5kHz 1 YSV8116 DASP 1 N 2. 2 [ M] { x } + [ C] { x } + [ K]{ x } = { f t } 1 M C K 3 M C K f t x t 1 [ H( ω )] = - ω 2

混訊設計流程_04.PDF


Microsoft Word - LR1122B-B.doc

/ XY 24 Z 25 XYZ

LF31B5800P67-N08

電器用電量調查說明

発表の概要

34 22 f t = f 0 w t + f r t f w θ t = F cos p - ω 0 t - φ 1 2 f r θ t = F cos p - ω 0 t - φ 2 3 p ω 0 F F φ 1 φ 2 t A B s Fig. 1

WL100014ZW.PDF

林绍宽

LED N700 OVP UVL UVL OVP N700 GPIB Ethernet/LAN USB 2.0 I/O 1 N700 2 Ethernet USB 2.0 GPIB 2

99710b43ZW.PDF

untitled

HC20131_2010

第 1 部 分 目 錄 第 1 部 分 計 畫 執 行 成 果 摘 要 Ⅰ 頁 次

本 土 天 蝗 傳 奇 - 台 灣 大 蝗 生 活 史 及 生 態 習 性 的 研 究 摘 要 台 灣 大 蝗 在 交 配 時 警 覺 性 降 低, 蝗 會 背 著 蝗 跳 到 遠 處, 但 不 會 飛, 肚 子 餓 時 會 進 食, 但 蝗 不 會 交 配 後 蝗 會 選 擇 土 質 堅 實 植

A 2,720 25% 1.00 [ ] [ ] [ ] [ ] 10,880 25% [2009] [ ] [ ] 1 1 1

電銲安全作業技術手冊

Transcription:

..3 3..3 4 CMOS 14 ADS..7 ADS.33 38...38

5.GHz The design of 5.GHz low voltage and low power consumption mixer with current reuse Maxwell s PHS 3 G OFDM 5 GHz RF RF SOC, System on a Chip (GaAs) (Bipolar) BiCMOS CMOS 0.18um f T 60 GHz CMOS CMOS CMOS

low voltage low power CMOS RF IC Design TSMC 0.18 um CMOS 0.534mW 5.GHz 4.1 (mixer) (transceiver) (down conversion mixer) 3.1 (up conversion mixer) 4.1 4. Voltage Conversion Gain (Power ConversionGain) 4.3

VIFOUT ( rms) G V = V RFIN ( rms) PL ( IF ) G P = P AVS ( RF ) 4.3 V out Vout RS iout RL RL RS = 10 log 10 log 10 log = 10 log A V V = in R L i = in R S V R in L R S Vin RF Vout IF RS RL 10log( ) S L R R RS RL db 4.3 (dynamic range) 80 db 100 db ( ) ( ) 1 db (third-order intercept point) 4.3.1 1 db 1 db

4.4 1 db 1 db 1 db (IP 1dB 1 db (OP 1dB ) 4.4 ( ) 1 db P 1dB 4.3. (IP 3 ) (IM3) 4.5 -

4.5 4.6 4.6 ω ω ω 1 ω ω 1 ω ω ω1 ω1 ω LO ω ω ω LO 1 1 ω ω 1 ω LO

Output Power Fundamental(Slope=1) 3-order inter-modulation (Slope=3) 4.7 (IP3) 4.7 (IIP3) IF IM3 IIP 3 IP 3 Two Tones P IIP 3 dbm P ( db ) Pin ( dbm) 0 1 LO 1 LO 1 LO LO 4.8 3.8 P in P

IIP 3 P 1dB IIP 3 10 db P 1dB IIP 3 4.4 : (MDS) (SNR) MDS = P + 10log BW + SNR RS = KT + NF + 10log BW + SNR min = 174dBm + NF + 10log BW + SNR Hz min P RS SNR min (NoiseFloor) 4.4.1 (Spurious-free dynamic range, SFDR) 4.7 IM3 Noise Floor MDS 4.5 LO RF IF LO-IF Isolation = LO input Power @LO port LO output Power @IF port LO-RF Isolation = LO input Power @LO port LO output Power @RF port RF-IF Isolation = RF input Power @RF port RF output Power @IF port LO-IF LO min

LO-RF LO RF LO LNA RF-IF 4.6 (noise power) : 1. (thermal noise): Johnson. (shot noise): 3. (flick noise): 1/f 4.6.1 white ( ) 4.9 V R ( f ) = 4kTR k (Boltzmann s constant 1.38 3 1 10 JK ) T R 4.10 I R ( f ) = 4kT R 4.9 4.10 4.6. MOS

flicker 3.11 4.11 MOS Flicke (trapped) p MOS (channel resistance) I ( f ) = (4kT) r ds d r ds (homogeneous) I ( f ) = 4kT( 3) 4.6.3 d g m F S N I I = = SO N O SNR SNR IN OUT S N I O db (cascade) : Fcascade F F 1 F 1 3 = 1 + + +L G1 GG 1 F n G n n 4.6.4 SSB DSB

Single Side Band, SSB Double Side Band, DSB 3 db SSB 4.1 DSB homodyne AM 4.13 4.1 SSB 4.13 DSB SSB DSB SSB DSB db 3dB 4.7

LNA LNA LNA IP 3 4.8 x () t = Acosωt y 3 () t = α x( t) + α x ( t) + x ( t) 1 α 3 3 3 ( ) = cos + cos + cos y t α A ωt α A ωt α A ωt 1 3 3 3 αa 3α3A αa α3a = + α1a + cosωt+ cos ωt+ cos 3ωt 4 4 4.9 RF IF S 10 db LO LO LO

4.10 CMOS 5.1 IC MOS MOS 5.1 5.1 CMOS 5.1.1 5.

RF+ LO+ OUT+ LO- LO- OUT- LO+ RF- MOS R ON 5. CMOS IC 5.3 LO M 1 V DS M 1 RF LO

5.3 5.4 5.4 5.5

M 1 M M 3 R L 5.4 RF M 1 M M 3 LO MOS LO LO 4.5 M M 3 180 +1-1 g m R L π IF RF RF-IF LO IF LO LO-IF RF I Q LO 5.5 Gilbert mixer RF LO IF LO M 3 -M 4 M 5 -M 6 MOS LO MOS M 3 M 6 RF+ RF- LO MOS RF

5.6 5.5.1 RF M 1 M (transconductance) 5.5. LO M 3 ~M 6 LO LO LO LO LO 5.5.3 IF g m R L PMOS PMOS r ds PMOS

4.9 (a) LO (b) RF LO IF LO 6.1 LO Power chocke (a) (b) 6.1 (a) (b) Gilbert mixer Gilbert mixer RF LO port port (1) ()

CG V IF = = gmrload (1) VRF π CG=. KnI SS RL π () IP3 (3) IP3 3 3 I SS β n (3) () (3) (current-reuse bleed)[1] (charge injection)[] 6. 6. (a) (b) 6.3 (a) (b)

6.3 gm = g m1 + gm g m I D M 1 ( 1 ) ( 1 ) I D M D I M 1 W L (W/L) 1 = (W/L) ( W L) 1 ( W L) = 0.5(W/L) ( W L) M ( 1 ) D I ( W L)1 M1 g m = 1 ( ) I D g + g m1 m 6.4 LO Vcc RF (current reuse) [3] 4 PMOS NMOS CMOS NMOS g m NMOS PMOS g m M 1 M [4] RF

5 [4] (1) M p M n () M p R P M n (3) M n R n M p Lp Lp Ln Ln 6.5 (a) (b) (c) M p M n RF M p M n 6[5]

6.6 Current reuse NMOS PMOS 1 V DD 1. Vo, V 1.0 0.8 0.6 m1 m1 VB1= 0.600 Vo=575.0mV 0.4 0. 0.0 0.0 0. 0.4 0.6 0.8 1.0 1. VB1 50 Ω (R 1 ) M 1 1 R1 // r g m1 o1 4 (R o ) 1 R O = // ro 1 // RS 5 g m1

6.7 Current reuse 1 current reuse TSMC 0.18 um 1.8 V CMOS Model CMOS

6.8 Current reuse CMOS

(1) paper standard () ADS (3) layout Cadence (4) netlist (1) W L W L W L () 50Ω ADS

7.1 4.9-10dB S Simulation-S_Param

7. 4. LNA Simulation-HB RF LO Mixer 3 LO RF VAR LO 0 dbm RF (-30 dbm) RF HARMONIC BALANCE Sweep Parameter to sweep RF

RF

Eqn1: V1 IF HARMONIC BALANCE Freq[1] LO Freq[] RF IF=RF-LO V1(LO,RF) LO -1 RF 1 mix (1) () Eqn: V1(IF) dbm RF 7.3 4.3 P_1dB IIP3 P_1dB P_1dB Power IIP3 GHz 1 MHz

IP3 IIP3 OIP3 IP3 7.4 4.5 LO-RF IF-RF RF 値 LO 0 dbm RF-LO RF-IF RF -30 dbm

7.5 4.6 HARMONIC BALANCE NFssb NFdsb NFdsb 3 db 7.6 Simulate Annotate DC Solution 値 値

ADS ADS Agilent ADS 1. V 5. GHz 8.1 8.10 LO Power 8.1 LO Power 8. 8.3 8.4 8. RF 5. GHz -10.681 db 8.3 LO (5.1 GHz) -13.0 db 8.4 (100 MHz) -11.85 db gain1 10 8 6 4 m9 P_LO= 0.000 gain1=4.370 m9 db(s(1,1)) 0 - -4-6 -8-10 m4 freq= 5.00GHz db(s(1,1))=-10.681 m4 0-1 - -10-8 -6-4 - 0 4 6 8 10 P_LO -14 0 4 6 8 10 freq, GHz 8.1 LO Power 8. RF

db(s(,)) 0-5 -10 m5 freq= 5.100GHz db(s(,))=-13.0 m5 db(s(3,3)) 0-5 -10-15 m6 m6 freq= 100.0MHz db(s(3,3))=-11.85-15 0 4 6 8 10 freq, GHz -0 0 4 6 8 10 freq, GHz 8.3 LO 8.4 IF RF -30 dbm LO 0 dbm 8.5 8.8 8.5 RF LO IF -135.305 db -11.367 db 8.6 LO IF RF -169.01 db -95.513 db(-15.513-(-30 db)) 8.7 IF LO RF -36.184 db -11.135 db(-41.135 db-(-30 db)) 8.8 DSB SSB 0 m freq= 100.0MHz dbm(rf)=-11.367 m1 freq= 5.100GHz dbm(rf)=-135.305 50 m3 m4 freq= 100.0MHz freq= 5.00GHz dbm(lo)=-169.01 dbm(lo)=-15.513-50 0 dbm(rf) -100 m m1 dbm(lo) -50-100 m4-150 -150 m3-00 0 5 10 15 0 5 30 freq, GHz -00 0 5 10 15 0 5 30 freq, GHz 8.5 LO-RF IF-RF 8.6 IF-LO RF-LO -0-40 m5 freq= 5.100GHz dbm(if1)=-36.184 m5 m6 m6 freq= 5.00GHz dbm(if1)=-41.135 17 16 m1 noisefreq= 100.0MHz m noisefreq= 100.0MHz NFdsb=13.30 NFssb=16.449 m dbm(if1) -60-80 -100-10 NFssb NFdsb 15 14 m1-140 0 5 10 15 0 5 30 freq, GHz 13 100.0000000 100.0000000 100.0000000 noisefreq, MHz 8.7 LO-IF RF-IF 8.8

8.9 1. V RF 5. GHz Power -30 dbm LO 5.1 GHz Power = 0 dbm P in 1dB = -10 dbm IIP3 = 0 dbm 10 m1 P_RF= -10.000 dbm(vif)=-6.798 m P_RF= -10.000 Pideol=-5.630 0 m1 P_RF= 0.000 Pideol=4.357 m1 0 Pideol dbm(vif) 0-10 -0 m1 m Pideol dbm(vif) dbm(vif1) -0-40 -60-80 -30-30 -5-0 -15-10 -5 0 P_RF 8.9 P 1dB (LO Power = 0 dbm) -100-40 -30-0 -10 0 10 P_RF 8.10 IIP3 (SS TT FF) TSMC 0.18um: Simulated Characteristics(process corner) RF Frequency /RF power 5. GHz/ -30 dbm LO Frequency / LO power 5.1 GHz/ 0 dbm IF Frequency 100 MHz Process Corner SS TT FF Core Vdd 1. V 1. V 1. V Buffer Vdd 1. V 1. V 1. V Conversion Gain 3.63 db 4.37 db 4.79 db P1dB -14 dbm -10 dbm -14 db IIP3-4 dbm 0 dbm -4 db LO-RF isolation -170.839 db -11.367 db -157.31 db IF-RF isolation -115.915 db -135.305 db -110.049 db IF-LO isolation -189.661 db -169.01 db -165.859 db RF-LO isolation -154.949 db -95.513 db -19.608 db LO-IF isolation -3.56 db -36.184 db -40.476 db RF-IF isolation -37.78 db -11.135 db -45.163 db RF Port Return Loss -7.59 db -10.681 db -15.461 db LO Port Return Loss -10.456 db -13.0 db -15.188 db IF Port Return Loss -17.19 db -13.85 db -8.41 db Noise figure(dsb) 5.446 db 13.3 db 13.846 db Core Power consumption 0.1 mw 0.534 mw 1.84 db Buffer Power consumption 5.388 mw 7.584 mw 11.568 db

0.8 V 1 V 1. V 1.4 V 1.8 V Conversion Gain -18.559 db -11.588 db 4.37 db -9.68 db -19.973 db P1dB 3 dbm 5 dbm -10 dbm 5 dbm 3 dbm IIP3 1 dbm 14 dbm 0 dbm 15 dbm 1 dbm LO-RF isolation -39.045 db db -11.367 db db db RF Port Return Loss -9.916 db -10.03 db -10.681 db -13.11 db -1.18 db LO Port Return Loss -13.43 db -13.335 db -13.0 db -1.83 db -1.008 db IF Port Return Loss -35.744 db -16.644 db -13.0 db -13.01 db -9.630 db - 40 5 85 Conversion Gain 1.553 db 4.37 db 5.564 db P1dB -8 dbm -10 dbm -13 dbm IIP3 dbm 0 dbm -3 dbm RF Port Return Loss -1.439 db -10.681 db -11.015 db LO Port Return Loss -15.655 db -13.0 db -11.44 db IF Port Return Loss -11.353 db -13.85 db -14.370 db paper [6] [7] [8] THIS WORK Tech. 0.18um CMOS Gilbert Folded 0.18um CMOS 0.18um CMOS 0.18um CMOS Conversion Gain(dB) 3.5 6.6 11.9 5.4 4.37 P1dB(dBm) -- -- -- -9. -10 IIP3 [dbm] 1 0-3 -.8 0 Pdiss [mw] 1.4 3.3 3. 1.6 0.534

TSMC 0.18um: Simulated Characteristics IF frequency LO Frequency / LO power RF Frequency / RF power Operation Voltage Conversion Gain Input P 1dB IIP3 LO-RF isolation IF-RF isolation IF-LO isolation RF-LO isolation LO-IF isolation RF-IF isolation RF Port Return Loss LO Port Return Loss IF Port Return Loss Noise figure(dsb) Core Power consumption Buffer Power consumption 100 MHz 5.1 GHz/ 0 dbm 5. GHz/ -30 dbm 1. V 4.37 db -10 dbm 0 dbm -11.367 db -135.305 db -169.01 db -95.513 db -36.184 db -11.135 db -10.681 db -13.0 db -13.85 db 13.3 db 0.534 mw 7.584 mw on wafer G-S-G pad 100 µ m on wafer CIC RF 5. GHz 1 * 0.961 mm G-S-G-S-G RF input LO input IF Layout chip on wafer test RF probe DC probe S (S11 S S33) P 1dB IIP3

S P 1dB IIP3 P 1dB IIP3 Power Supply RF Combiner*3 DC Probe*1(5PIN) RF Probe*3(3PIN) IIP3 On wafer test [1] S. G. Lee, J. K. Choi, Current-reuse bleeding mixer, Electronics Letters, Vol. 36, Issue 8, pp. 696-697, April 000. [] NacEachern, L.A.; Manku, T Leonard A.MacEachern, A charge-injection method for gilber cell biasing, Electrical and Computer Engineering, 1998. IEEE Canadian Conference on Volume 1 Page(s):365 368, 4-8 May 1998. [3] A. N. Karanicolas, A.7-V 900-MHz CMOS LNA and mixer, IEEE Journal of Solid-State Circuits,: Vol. 31, Issue 1, pp.1939-1944, Dec. 1996. [4] Ming-Feng Huang, Shuenn-Yuh Lee, and Chung u.kuo, Analysis and Implementation of a CMOS Even Harmonic Mixer with Current Reuse for Heterodyne/Direct Conversion Receivers. IEEE Transactions on Volume 5, Issue 9, Page(s):1741 1751, Sept. 005. [5] CMOS 004 8 [6] Vidojkovic, V., et al., Mixer Topology Selection for a 1.8-.5GHzMulti-Standard Front-End in 0.18um CMOS, ISCAS,003 [7] Vojkan Vidojkovic, Johan van der Tang, A Low-Voltage Folded-Switching Mixer in 0.18- m CMOS,IEEE,005 [8] Carsten Hermann, Marc Tiebout,, A 0.6-V 1.6-mW Transformer-Based.5-GHz Downconversion Mixer With +5.4-dB Gain and.8-dbm IIP3 in 0.13-_m CMOS, IEEE,005 1. DRC :

TSMC 0.18um Mixed-Signal/RF 1P6M Process DRC / command file : CTM Metal Density capacitor N/A CTM.R. CTM density is not enough. LVS :!!

!! *** Chip Features*** CKT name : 5.GHz Technology : TSMC 0.18um 1P6M Package : ( ) Chip Size : 1.000 x 0.961 mm ( mm ) Transistor/Gate Count : 4 NMOS PMOS ( / ) Power Dissipation : 8.118 mw ( mw) ( buffer) Max. Frequency : RF = 5. GHz LO = 5.1 ( GHz) CAD Tools : ADS Testing Results : function work partial work fail

Chip Size: 1.010 * 0.971 mm