12 Differential Low-Power 6x6 12 bit multiply 1

Similar documents
enews174_2

Tokyo Tech Template

混訊設計流程_04.PDF

The BIST Scheme for Digital-to Analog converters 1

附件1:

NANO COMMUNICATION 23 No. 2-3D IC 29 6T SRAM, ReRAM, sense amplifiers, analog amplifiers and gas sensors was integrated to confirm the superiority in

NANO COMMUNICATION 23 No.3 90 CMOS 94/188 GHz CMOS 94/188 GHz A 94/188 GHz Dual-Band VCO with Gm- Boosted Push-Push Pair in 90nm CMOS 90 CMOS 94

時脈樹設計原則

Microsoft PowerPoint - STU_EC_Ch08.ppt

!!

1 1

gate level ADMS Power Noise Timing RC RCC Signal Integrity RC RCC Calibre xrc Eldo Hspice spectre DSPF SPEF Calibre xrc reduce thresholds tolerances C

enews172_1

Microsoft Word - T集团发行股份购买资产法律意见书 公告版 0711 psq.docx

(Pattern Recognition) 1 1. CCD

(Phase Locked Loops, PLL PLL (Chipset PLL GHz 6M Hz 96M USB2.0 USB2.1 6M Hz [1][2]

SPHE8202R Design Guide Important Notice SUNPLUS TECHNOLOGY CO. reserves the right to change this documentation without prior notice. Information provi


2/80 2

(02) (02) (02) (02) (02

iml88-0v C / 8W T Tube EVM - pplication Notes. IC Description The iml88 is a Three Terminal Current Controller (TTCC) for regulating the current flowi

Microsoft Word - 講義封面

untitled

y 1 = 槡 P 1 1h T 1 1f 1 s 1 + 槡 P 1 2g T 1 2 interference 2f 2 s y 2 = 槡 P 2 2h T 2 2f 2 s 2 + 槡 P 2 1g T 2 1 interference 1f 1 s + n n

邏輯分析儀的概念與原理-展示版

(baking powder) 1 ( ) ( ) 1 10g g (two level design, D-optimal) 32 1/2 fraction Two Level Fractional Factorial Design D-Optimal D

Sep (SCI) 10. Jiann-Ming Wu, Annealing by two sets of interactive dynamics, IEEE Trans. on Systems Man and Cybernetics Part B-Cybernetics 34 (3)

1 CPU

Pin Configurations Figure2. Pin Configuration of FS2012 (Top View) Table 1 Pin Description Pin Number Pin Name Description 1 GND 2 FB 3 SW Ground Pin.

IEEE International Symposium on Radio-Frequency Integration Technology CMOS Korea Advanced Institute of Science and Technology, KAIST Neural

02 看 見 躍 動 的 創 新 力 量 04 矽 數 十 年 金 矽 創 意 十 年 有 成 16 築 夢 之 際 你 所 不 知 道 的 金 矽 獎 40 樂 在 其 中

untitled

untitled

384 : FPGA O-QPSK O-QPSK Fig.1 ProcessofO-QPSK modulationanddemodulation 3 O-QPSK FPGA d Iout d Q Indarrange clk d arrange 20 nsclr

AMP NETCONNECT

GH1220 Hall Switch

Microsoft PowerPoint - aspdac_presentation_yizhu

LED/Smart TV LED/ Function List Products \ Application Tuner block DSP block / I/O Voice/Aud

专业主干课程与主要专业课程教学大纲(2009年、2011年).doc

2-2

K301Q-D VRT中英文说明书141009

---- TEL FAX II %

iml v C / 0W EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the current flowin

untitled

iml v C / 4W Down-Light EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the cur

(02) (02) (02) (02) (02)

. Land Patterns for Reflow Soldering.Recommended Reflow Soldering Conditions (For Lead Free) TYPE PID0703 PID0704 PID1204 PID1205 PID1207 PID1209 L(mm

EMI LOOPS FILTERING EMI ferrite noise suppressors


untitled

Microsoft Word - News Memo doc

<4D F736F F D20312D3120D5D0B9C9CBB5C3F7CAE95FC9EAB1A8B8E55F2E646F63>


PTS7_Manual.PDF

逢 甲 大 學

NW-E403/E405/E407

<4D F736F F F696E74202D20BCC6A6ECA874B2CEBEC9BDD7C1BFB871B2C4A440B3B9>

User ID 150 Password - User ID 150 Password Mon- Cam-- Invalid Terminal Mode No User Terminal Mode No User Mon- Cam-- 2

untitled

Microsoft Word - 31空中大學校稿檔.doc

名人风云录_九_.doc

f 0, : = jπfl Z C f 0, (ESR) A C = ε r ε 0 d (d) (A) 4 (ESR) (L) (Z C ) (Z C ) 4 (f 0 ) # (C) (L) :, f 0 = π LC f 0, 5 PCB (V IN ) (R L ) ESL, V IN R

IP TCP/IP PC OS µclinux MPEG4 Blackfin DSP MPEG4 IP UDP Winsock I/O DirectShow Filter DirectShow MPEG4 µclinux TCP/IP IP COM, DirectShow I

untitled


(Load Project) (Save Project) (OffLine Mode) (Help) Intel Hex Motor

ebook105-12

2

Microsoft PowerPoint - STU_EC_Ch01.ppt

专题研究.doc

P4i45GL_GV-R50-CN.p65

untitled

OSI OSI 15% 20% OSI OSI ISO International Standard Organization 1984 OSI Open-data System Interface Reference Model OSI OSI OSI OSI ISO Prototype Prot

Concept of Hyper Kamiokande (20 times Super K) 48m x 50m x 250m x 2 Total mass ~ 1 Mton Photocathode coverage ~40% of surface ~200,000 PMTs => prohibi

附3

Microsoft PowerPoint - Aqua-Sim.pptx

Microsoft Word - HHG 14 Page 001.doc


蘇櫻 慧雪蘇紅櫻 2

内科自诊自疗

2005年中期报告.doc


Introduction to Hamilton-Jacobi Equations and Periodic Homogenization

論文寫作技巧

ebook105-1


1.1 ML_ONOFF = 1 Q 3 Q 8 C 0.3V M 2 L 1 ML_ONOFF = 0 Q 3 Q 8 C 1. + R31 VCC R21 10K ML_ONOFF R15 0:off 1:on 1K Green Light VCC=5V L1 Q VDD=12V C

通 过 厂 变 带 电, 这 种 设 计 减 少 了 机 组 自 带 厂 用 电 负 荷 能 力, 降 低 了 锅 炉 满 足 FCB 时 最 低 稳 燃 工 况, 同 时 造 成 燃 烧 调 整 量 加 大 本 电 厂 在 FCB 试 验 时, 电 泵 不 联 启, 始 终 保 持 汽 泵 运 行


第五章 重叠、流水和现代处理器技术

投影片 1

<95BD90AC E E F1816A93648E718D CA48B868F8A8CA48B8694AD955C89EF8D A E706466>


untitled

a b c d e f g C2 C1 2

2019 Chinese Taipei National High School Athletic Game Boxing Championship Junior Men Division Top 8 As of WED 24 APR 2019 Men s Mosquito(38-41Kg) Ran

JD cover

Microsoft PowerPoint - Performance Analysis of Video Streaming over LTE using.pptx

AN INTRODUCTION TO PHYSICAL COMPUTING USING ARDUINO, GRASSHOPPER, AND FIREFLY (CHINESE EDITION ) INTERACTIVE PROTOTYPING

Transcription:

12 Differential Low-Power 6x6 12 bit multiply 1

2

07 1.1 07 1.2 07 1.2.1 (Sequential Structure Multiplier )07 1.2.2 (Array Structure Multiplier) 09 1.2.3 (Parallel Multiplier) 10 1.2.3.1 10 1.2.3.2 10 1.2.3.3 10 12 2.1 12 2.2 12 2.3 12 2.3.1 Differential and circuit 13 2.3.2 A fully differential full adder (a)the sum-generate circuit. 14 2.3.2 A fully differential full adder (b)the carry-generate circuit.15 2.3.3 A simple sense amplifier circuit16 3

2.3.4 Invert circuit 17 2.3.5 Superbuffer circuit18 2.3.6 bias circuit19 2.3.7 All compose Differential 6X6 multiplication circui 20 21 3.1 Hspice 21 3.2 22 3.3 22 3.4 23 3.5 24 3.6 (Layout)25 27 27 4

1.2.1 (a)08 1.2.1 (b)08 1.2.2 (a)09 1.2.2 (b)09 1.2.2 (c)09 1.2.3 11 2.1 12 2.3.1 Differential and circuit13 2.3.2 (a) The sum-generate circuit14 2.3.2 (b) The carry-generate circuit 15 2.3.3 A simple sense amplifier circuit16 2.3.4 Invert circuit17 2.3.5 Superbuffer circuit18 2.3.6 bias circuit19 2.3.7 All compose Differential 6X6 multiplication circuit20 3.1 Hspice 21 3.3 22 3.4 23 5

3.5 (a) DRC / 24 3.5 (b) Calibre LVS 24 3.6 (a) (Layout)25 2.3.1 Differential and 13 2.3.2 (a) The sum-generate circuit 14 2.3.2 (a) The sum-generate circuit.14 2.3.2 (b) The carry-generate circuit 15 2.3.2 (b) The carry-generate circuit 15 2.3.4 Invert circuit. 17 2.3.5 Superbuffer circuit. 18 3.2 22 3.5 DRC /24 6

1.1 DSP(Digital Signal Processing)CPU 3D DSP (Parallel) : DSP 1.2 1.2.1 (Sequential Structure Multiplier) 1.2.2 (Array Structure Multiplier) 1.2.3 (Parallel Multip lier) () (1.2.1) (Sequential Structure Multiplier) ALU (Shift Register) 1.2.1 (a) 7

n-bit x m-bit m n-bit m (Clock Cycle) 1.2.1 (b) 4-bit x 4-bit n-bit x m-bit m 1.2.1 (a) (b) 8

(1.2.2) (Array Stru cture Multiplier) (a) n 2n (Two-Dimensional Logic Array)(b) (a) (b) (c) 1.2.2 (a) (b) (c) < (b) Cell > 9

(Layout)(Pipeline) (1.2.3) (Parallel Multiplier) 1.2.3 --1.2.3.1-- (Partial Product Generation Block) (Partial Product) --1.2.3.2-- (Compress Tree Block) Sum and Carry vectors Wallace Dadda --1.2.3.3-- (Final Adder Block) 1.2.3 N M 10

Sum vector Carry vector Vectors (M+N) 1.2.3 11

[2.1] A B 2.1 differential cmos circuit 6X6 A bit B bit Superbuffer TSMC 0.35um 2p4m CMOS HSPICE differential [2.2] Differential 6X6 multiplication circuit 1. Differential and circuit. 2.A fully differential full adder(a)the sum-generate(b)the carry-generate circuit. 3.A simple sense amplifier circuit. 4.Invert circuit. 5.Superbuffer circuit. 6. bias circuit 7. All compose Differential 6X6 multiplication circuit 12

[2.3] 2.3.1 Differential and circuit. vdd M3 M6 out out B M2 A M1 A M4 B M5 gnd 2.3.1 Differential and circuit Different and 2.3.1 Differential and a b a b out out 0 0 1 1 ab X 1 1 0 0 X ab X (1) M1 gate(pad a) M2 gate(pad b) High M4 gate(pad a ) M5 gate(pad b ) invert Low M6 gate Low M6 out ab (2) M4 gate(pad a ) M5 gate(pad b ) High M1 gate(pad a) M2 gate(pad b) invert Low M3 gate Low M3 out ab <<(1) ab >> 13

2.3.2 A fully differential full adder (a)the sum-generate circuit (b)the carry-generate circuit. (a)the sum-generate circuit. 2.3.2 (a) The sum-generate circuit 2.3.2 (a) The sum-generate circuit M1 gate Cin M6 gate Cin M2 M8 gate A M3 M7 gate A M4 M9 gate B M5 M10 gate B Cin High invert Cin Low A B High invert A B Low 2.3.2 (a) The sum-generate circuit. b a Cin sum 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 14

(b)the carry-generate circuit. 2.3.2 (b) The carry-generate circuit 2.3.2 (b) The carry-generate circuit M5 gate Cin M8 gate Cin M1 M3 gate A M6 M9 gate A M2 M4 gate B M7 M10 gate B Cin High invert Cin Low A B High invert A B Low 2.3.2 (b) The carry-generate circuit A B Cin Cout 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 15

2.3.3 A simple sense amplifier circuit. 2.3.3 A simple sense amplifier circuit. Sel Low Q5 the sense amplifier power the sense amplifier, Sel high Q5 Q5 low, Q1 Q2 differential data-line, Q1 Q2 Q1 Q3, Q4 Q2 Q1 Q2 sense amplifier high, Q1 Q2 sense amplifier low < simple sense amplifier circuit. Q1 Q2 high > <<Data line >> 16

2.3.4 Invert circuit. 2.3.4 Invert circuit. 2.3.4 Invert circuit. in out 0 1 1 0 in High M0 M1 out Low in Low M1 M0 out High 17

2.3.5 Superbuffer circuit. 2.3.5 Superbuffer circuit 2.3.5 Superbuffer circuit. in out 0 1 1 0 Superbuffer Invert Hspice 20pf 3 35 = u inverter size inverter u bigger than previous one 1 u u 2 u 3 C g C load Total delay time u Total delay ln( x) ln( u) u 2.7 X=Cload/Cg t p 0 18

2.3.6 bias circuit 2.3.6 bias circuit L M1 M0 19

2.3.7 All compose Differential 6X6 multiplication circuit ( cadance ) 2.3.7 All compose Differential 6X6 multiplication circuit Different A A B B A0 A5 B0 B5 high Invert circuit low A0 A5 B0 B5 differential full adder circuit and circuit : S S simple sense amplifier circuit S simple sense amplifier circuit bias bias simple sense amplifier circuit Cload PAD simple sense amplifier circuit S Superbuffer << Hspice >> 20

[3.1] Hspice 3.1 Hspice a5 a4 a3 a2 a1 a0 1 1 1 0 1 1 = 59 b5 b4 b3 b2 b1 b0 1 0 1 1 1 1 = 47 59 X 47 = 2773 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0 1 0 1 0 1 1 0 1 0 1 0 1 = 2773 <<>> 21

[3.2] 3.2 2.5V~ 3.3V 4.8m W 1318 X 1318 10MHz [3.3]: HP 16522A Pattern Generator 12 bits MATLIB LED HP 16522A Pattern Generator 12 22Ω 12 Super Buffer 22

[3.4] Different NO IC YES IC 3.4 23

[3.5] TSMC 0.35um Mixed-Signal 2P4M Polycide 3.5 DRC / D35.X.01.P0.R.1 TSMC IP 1. D35.IO.01.AMS.1.M1 2. D35.IO.01.AMS.1.M2 3. D35.IO.01.AMS.1.M3 4. D35.IO.01.AMS.1.M4 (a) DRC / AMS IO PAD CIC (b) Calibre LVS 3.5 (a) DRC / (b) Calibre LVS Calibre LVS mul6x6.lvs.report FTP CIC MATCH 24

[3.6] (Layout) (Layout) B1 B2 B3 vdd B4 B5 P0 B0 P1 A0 P2 A1 P3 A2 P4 A3 P5 A4 P6 A5 P7 gnd P11 P10 P9 P8 3.6 (a) (Layout) 25

Side Braze 28L inner lead B1 B2 B3 vdd B4 B5 P0 P1 B0 P2 A0 A1 A2 P4 P5 A3 A4 P7 A5 gnd P11 P10 P9 P8 3.6 (b) 26

[1] Paul F. Stelling, Charles U. Martel, Vojin G. Oklobdzija, R. Ravi, Optimal Circuits for Parallel Multipliers, IEEE Transactions on Computers, Volume: 47 Issue: 3, Mar 1998 Page(s): 273-285 [2] Wen-Chang Yeh, and Chein-Wei Jen, High-Speed Booth Encoded Parallel Multiplier Design, IEEE Transactions on Computers,Volume: 49 Issue:7,Jul 2000, Page(s): 692-701 [3] Junhyung Um, and Taewhan Kim, An Optimal Allocation of Carry-Save-Adders in Arithmetic Circuits, IEEE Transactions on Computers,Volume: 50 Issue:3, Mar 2001,Page(s): 215-233 [4] Tso-Bing Juang, Jeng-Hsin Jan, Ming-Yu Tsai, Shen-Fu Hsiao, A High Performance Function Generator for Multiplier-Based Arithmetic Operations, IEEE Asia-Pacific Conference on ASIC, 2002 Page(s): 331-334 [5] Dimitris Gizopoulos, Antonis Paschalis, and Yervant Zorian, Effective Built-In Self-Test for Booth Multipliers, IEEE Design & Test of Computers, Volume: 15 Issue: 3, Jul-Sep 1998, Page(s): 105-111 [6] R.Tang, P.F.Si, W.K. Huang, and F, Lombardi, Testing IP Cores with Exhaustive Test Sets, 4 th International Conference on ASIC, 2001, Page(s): 740-743 [7] Carl Hamacher, Zvonko vranesic, and Safwat Zaky, Computer Organization,5 th Edition.McGraw-Hill, New York,2002 27