main.dvi

Size: px
Start display at page:

Download "main.dvi"

Transcription

1 Copyright c 2005 Tech Science Press CMC, vol.2, no.3, pp , 2005 Micromechanical Analysis of Interphase Damage for Fiber Reinforced Composite Laminates Yunfa Zhang 1 and Zihui Xia 1,2 Abstract: In the present study, the initiation and evolution of the interphase damage and their influences on the global stress-strain relation of composite laminates are predicted by finite element analysis on a micromechanical unit cell model. A thin layer of interphase elements is introduced and its stress-strain relation is derived based on a cohesive law which describes both normal and tangential separations at the interface between the fiber and matrix. In addition, a viscous term is added to the cohesive law to overcome the convergence difficulty induced by the so-called snap-back instability in the numerical analysis. The matrix behavior is described by a recently developed nonlinear viscoelastic constitutive model. As application examples, glass fiber/epoxy unidirectional laminates under off-axis loadings are analyzed. One-quarter of the unit cell is used in the analysis accounting for the geometrical symmetry of the model, and the corresponding periodic boundary conditions for combined global shear and normal loading are derived. Results show that the initiation and evolution of the interphase damage can be well simulated and the predicted global stress-strain responses are in good agreement with the experimental results. keyword: Interphase damage, micromechanical modeling, composite laminates, off-axis loading, finite element analysis, viscoelastic analysis, periodic boundary conditions. 1 Introduction For a unidirectional laminate under tensile loading, the fiber/matrix interphase damage and matrix cracking are the two main damage modes [Smith (1987)]. In most cases, damage process in laminates initiates by the above two intralamina damage mechanisms. For multidirec- 1 Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada, T6G 2G8 2 Corresponding author. Tel.: ; fax: ; zihui.xia@ualberta.ca tional laminates, intralamina damages may exist at the loading level much lower than the final failure load or even during the material curing process. The most common example is the loading of the 0 /90 cross-ply laminates along the 0 ply direction. In this case the damage occurs in the 90 plies at a rather low load, however, the laminates can still carry higher load in the 0 direction, although at a reduced stiffness, see, e.g., Hoover et al. (1997). Thus for an accurate analysis, it is imperative to consider the prevailing damage mechanisms, especially the intralamina ones. In most advanced composite materials, there is invariably an interphase between the two main constituents of the reinforced composites. The scale of the intrephase may be very small of the order of several microns [Daniel and Ishai (1994)]. Therefore, in many studies the interphase can be treated as an interface. Interphase/interface determines the stress transfer between the reinforcement and matrix, and thus it influences the damage process of laminates if the bonding is weak. Both macromechanical [e.g., Tian et al. (2004)] and micromechanical [e.g., Okada et al. (2004)] approaches can be used to model the mechanical response of the composite laminates, with or without an assumed damage occurrence. However, damages in the composite laminates initiate at a microscopic level and it would be desirable that a micromechanical approach be used, in which the fiber, matrix, and interphase/interface are explicitly accounted for in the model [Pagano and Yuan (2000), Zhang et al. (2005)]. Assuming a uniform distribution of fibers, a representative volume element (RVE) or a repeated unit cell (RUC) can be used to conduct micromechanical studies [Sun and Vaidya (1996)]. By using the micromechanical approach, not only the global properties of the composites can be obtained, but also various damages at microscopic level can be predicted provided proper damage initiation criteria and evolution rules are available. Some recent micromechanical studies of laminates involving matrix cracking or interphase damage are

2 214 Copyright c 2005 Tech Science Press CMC, vol.2, no.3, pp , 2005 reported e.g., in Zhang et al. (2005), Zhu et al. (1998), Yuan et al. (1997), Zhu and Achenbach (1991), among others. It is worthwhile to note that several researchers have introduced cohesive interface cracking models into the micromechanical RUC analysis. A significant advantage of the cohesive cracking model is that both the initiation and propagation of the damage can be properly simulated [Tvergaard (1990a, 1990b), Legarth, (2004), among others]. Most micromechanical analyses so far are confined to uniaxial loadings along the material principal directions, as reviewed by Pagano and Yuan (2000). For off-axis loadings, only limited attentions have been paid. Examples of recent studies of off-axis loadings are Zhu and Sun (2003) for thermoplastic matrix composites; Aghdam et al. (2001) for metal matrix composites, and Zhang et al. (2005) for thermoset matrix composites. In this paper, the initiation and evolution of interphase damage and their effect on the global stress-strain relation of composite laminates are predicted by finite element micromechanical analysis. A three-dimensional RUC model based on periodic fiber array is established, and appropriate periodic boundary conditions for combined shear and normal stress loading, with consideration of the geometrical symmetry of the RUC, are derived. To model both the normal and tangential separations of the fiber/matrix interface, a thin layer of interphase elements is introduced in the unit cell model. The stress-strain relation of the interphase element is derived based on a cohesive law [Tvergaard (1990a, 1990b)], which characterizes the dependence of the tractions on the displacement discontinuities across the interface. In addition, a viscous term is added to the cohesive law to overcome the convergence difficulty induced by the so-called snap-back instability in the numerical iterations. The matrix behavior is described by a recently developed nonlinear viscoelastic constitutive model [Xia et al. (2003)]. As application examples, glass fiber/epoxy unidirectional laminates under off-axis loading with angles of 90, 45, 30, and 20 are analyzed, respectively. Results show that the initiation and evolution of the interphase damage can be well simulated. And the predicted global stress-strain curves are also in good agreement with the experimental results. 2 Unit Cell Model and Periodic Boundary Conditions 2.1 Unit cell of a unidirectional laminate Assuming fiber distribution is periodic across the crosssection, a repeated unit cell (RUC) can be isolated from the composite laminates. The periodic fiber sequences commonly used are the square array and the hexagonal array, see Sun and Vaidya (1996), for example. In this paper, the square array of fiber distribution is assumed, resulting in a rectangular parallelepiped RUC containing one fiber, as shown in Fig.1. The cross section of the unit cell is a square with sides a, and thickness in the fiber direction is b (Fig.1b). The radius of the fiber, R, is determined by the fiber volume fraction V f of the composite such thatv f = πr 2/ a Periodic boundary conditions The analysis of a unit cell under general periodic boundary conditions can be found in Suquet (1987), Michel et al. (1999), Aboudi et al. (2001), among others, and the implementation in FEM analysis for multiaxial loading case can be seen in Xia et al. (2003), Xia et al. (2005). For a periodic array, the displacement field can be expressed as [Suquet (1987)]: u i (x 1,x 2,x 3 )=ε ij x j +u i (x 1,x 2,x 3 ) (1) where ε ij is the global strain applied to the periodic body, and u i (x 1,x 2,x 3 ) is the periodic part of the deformation. In addition, for a periodic RUC, the tractions on the opposite boundary surfaces should also meet the continuity condition, i.e. σ ij (P)n j (P)= σ ij (Q)n j (Q) (2) where P and Q are periodic points (with the same inplane coordinates) on the two opposite boundary surfaces, n is the unit outward normal vector to the surfaces, see Fig. 1(b). Generally, u i (x 1,x 2,x 3 ) is unknown prior to the solution, thus Eq. 1 cannot be directly applied as the displacement boundary conditions. However, since u i is periodic, i.e. its value is the same at the opposite surfaces of a RUC, therefore, u i (P) u i (Q)=[x j (P) x j (Q)]ε ij (3)

3 Micromechanical Analysis of Interphase Damage for Fiber Reinforced Composite Laminates 215 In a displacement FEM scheme, Eq. 3 can be implemented as displacement constraint equations. Furthermore, it has been shown in Xia et al. (2005) that in a displacement FEM scheme, a unique solution can be obtained by application of Eq.3 as the displacement boundary conditions and the traction continuity condition, Eq. 2, will be satisfied automatically. 2.3 Off-axis loading In this study, a unidirectional laminate under off-axis loading will be analyzed as an application example, Fig. 1(a). The off-axis tensile loading applied to a unidirectional laminate can be decomposed into a set of multiaxial loading in the principal material directions of a lamina, as shown in Fig.1(c). σ 11 = σcos 2 θ σ 22 = σsin 2 θ (4) σ 12 = σsinθcosθ Therefore the global stress and corresponding strain vectors can be written as: {σ} = {σ 11, σ 22, 0, σ 12, 0, 0} T (5) {ε} = {ε 11, ε 22, ε 33, ε 12, 0, 0} T (6) Note that Eq. 3 is the periodic boundary conditions for the entire RUC model. Referring to Fig.1, the geometry, material and loading of the present problem have three symmetries, viz.: (1) along x 1 axis (fiber direction), the geometry, material, stress/strain, and periodic part of displacement are invariant; (2) mirror symmetry about the plane x 3 = 0; and (3) π -rotation symmetry about the x 3 axis. In Appendix A, a detail derivation of the periodic boundary conditions for the one-quarter RUC, Fig. 1(c), under the combined shear and normal loading is provided considering the above three symmetries. In such a way, the computation time required can be significantly reduced, especially for the current nonlinear problem. The applied boundary conditions to the one-quarter model are summarized in the following: On planes x 1 = ±b/2 u 1 (b/2, x 2, x 3 ) u 1 ( b/2, x 2, x 3 )=ε 11 b u 2 (b/2, x 2, x 3 ) u 2 ( b/2, x 2, x 3 )=0 u 3 (b/2, x 2, x 3 ) u 3 ( b/2, x 2, x 3 )=0 (7) On plane x 2 = 0 u 1 (x 1, 0, x 3 )=ε 11 x 1 u 2 (x 1, 0, x 3 )=0 σ 23 (x 1, 0, x 3 )=0 On plane x 2 = a/2: u 1 (x 1, a/2, x 3 )=ε 11 x 1 +2ε 12 (a/2) u 2 (x 1, a/2, x 3 )=ε 22 (a/2) σ 23 (x 1, a/2, x 3 )=0 On plane x 3 = 0 u 3 (x 1, x 2, 0)=0 σ 23 (x 1, x 2, 0)=0 σ 31 (x 1, x 2, 0)=0 On plane x 3 = a/2: u 3 (x 1, x 2, a/2)=δ 33 σ 23 (x 1, x 2, a/2)=0 σ 31 (x 1, x 2, a/2)=0 (8) (9) (10) (11) Note that the constant δ 33 in the first of Eq.11 is not specified, therefore, it ensures that, on the plane x 3 = a/2, the total normal traction vanishes, i.e. Z σ 33 ds = 0 (12) Thus, the global stress component σ 33 = 0. In an off-axis loading of unidirectional laminates under strain control, the global strain in the loading direction (see Fig.1 (a) and (c)) is ε = ε 11 cos 2 θ +ε 22 sin 2 θ +2ε 12 cosθsinθ (13) For each time step, t, the strain increment is given by ε = ε t (14) where ε is the applied global strain rate. To simulate the off-axis loading, an iterative procedure is required to ensure that proper proportions of the increments of ε 11, ε 22, ε 12 are applied, so that Eq. 4 is satisfied at each step. The iteration procedure is as follows [Zhang et al. (2005)]: (i) For each time step t, we have the trial increments ofε 11, ε 22, ε 12, which satisfy Eq. 13.

4 216 Copyright c 2005 Tech Science Press CMC, vol.2, no.3, pp , 2005 (a) (b) (c) Figure 1 : Unidirectional laminates and unit cell model: (a) A unidirectional laminate under off-axis loading; (b) Unit cell for a square fiber array; (c) Quarter of the unit cell (ii) The solution gives the stress distribution in the unit cell, so the global stress components can be calculated from {σ} = 1 Z {σ(x 1, x 2, x 3 )}dv (15) V V where V is the volume of the unit cell. (iii) Equation 4 is checked and, if it is satisfied (within certain error limit), then one proceeds to the next step. If not, new increments of ε 11, ε 22, ε 12 are obtained and steps (i) to (iii) are repeated. For a small time step, it could be assumed that the increments of ε 11, ε 22, ε 12 are proportional to the corresponding increments of average stress components, then the new increments of ε 11, ε 22, ε 12 can be estimated from the average stresses, Eq.15. Numerical calculation indicated that the required increments of ε 11, ε 22, ε 12 could be obtained through a few iterations. 3 Cohesive Debonding Law and Cohesive Interphase Element 3.1 Cohesive law The fiber-matrix interphase/interface will be modeled by a cohesive zone model proposed by Tvergaard (1990a, b). The behavior to be captured by a cohesive law is that, as the cohesive surface separates the magnitude of the tractions at first increases, reaches a maximum and then it decreases with the increasing separation finally approaching zero. In the interface coordinate system shown in Fig. 1(b), let [u 1 ],[u 2 ] and [u 3 ] be the displacement differences across the interface and T 1, T 2 and T 3 are the corresponding tractions in the 1, 2, and 3 directions, respectively. To account for the combined effect of normal and shear decohesions, a non-dimensional parameter λ is defined as [Tvergaard (1990a,b)]: { ([u3 ) ] 2 ( ) [u2 ] 2 ( ) } [u1 ] 2 1 /2 λ = + + (16) δ n δ t1 where δ n, δ t1, δ t2 are displacement difference values in the three directions, corresponding to the complete separation. To determine the tractions a function F(λ) is chosen, F(λ)= 27 4 σ max(1 2λ +λ 2 ) for 0 λ 1 (17) And the interface tractions are given by the expressions T 3 = [u 3] δ n F(λ) T 2 = α [u 2] δ t2 F(λ) (18) T 1 = α [u 1] δ t1 F(λ) For the case of purely normal separation ([u 1 ]=[u 2 ] 0) the maximum traction is σ max, and the total separation occurs at [u 3 ]=δ n, and the work of separation per unit interface area is 9σ max δ n /16. Thus, to represent the interfacial debonding behavior of a given interface the values δ t2

5 Micromechanical Analysis of Interphase Damage for Fiber Reinforced Composite Laminates 217 of the five parameters,δ n, δ t1, δ t2, σ max and α have to be chosen such that the maximum traction and the work required for the separation for the combined modes are approximated as well as possible. 3.2 Cohesive interphase element The traction-displacement jump relation is relatively difficult to implement into a commercial finite element code, especially for three-dimensional cases. Instead, in this study the ideal interface (zero thickness) is represented by a very thin layer of interphase element with thickness of h.assuming uniform strains throughout the thickness, then, the strains can be expressed as a function of the displacement jumps as follows (in the local coordinate system shown in Fig. 1(b)): {ε 33 γ 23 γ 13 } = 1 h {[u 3][u 2 ][u 1 ]} (19) The critical strains are defined from the above equation as {ε c 33 γc 23 γc 13 } = 1 h {δ n δ t2 δ t1 } (20) Substituting Eqs. 19 and 20 into the cohesive law expressed by Eqs , and replacing the corresponding tractions T 3, T 2 and T 1 by the stresses σ 33, τ 23 and τ 13,a stress-strain constitutive law is obtained as follows: σ 33 = ε 33 ε c F(λ) 33 τ 23 = α γ 23 γ c F(λ) (21) 23 τ 13 = α γ 13 γ c F(λ) 13 where F λ = 27 2 σ max( 1 +λ) λ = 1 ( ε33 ε 33 λ ε c 33 ε c + γ γ c 23 γ 23 γ c 23 + γ 13 γ c 13 γ 13 γ c 13 ) (24) This cohesive constitutive law can be implemented into a FEM code as a stress-strain relationship. It should be noted that the constitutivelaw is defined in the coordinate system 1-2-3, in the FEM analysis, it should be transformed to the coordinate system (x 1, x 2, x 3 ), see Fig Snap-back instability during interphase damage In the simulation of damage, the snap-back of the stressstrain curve frequently results in convergence difficulties in the numerical calculations. Snap-back of the stressstrain curve indicates the strain decreasing with the decreasing of the stress [Gao and Bower (2004), Yang and Proverbs (2004)]. In this section, a simple interfacial model is considered to study the snap-back behavior and the numerical strategy to overcome the convergence difficulties. A one dimensional interfacial model is shown in Fig. 2. It consists of three plane strips representing the fiber, interphase and matrix, respectively. The fiber and the matrix are assumed to be elastic and the interphase model is described by the cohesive law. This one dimensional model can be solved either analytically or numerically. In the analytical solution, the interphase is idealized as an interface, and the cohesive law expressed by Eqs are used. While in the FEM solution, the interphase is represented by a thin layer of interphase element, and cohesive constitutive relations expressed by Eqs are used. First, let us examine the following analytical solution: λ = { (ε33 ε c 33 ) 2 + ( γ23 γ c 23 ) 2 + ( γ13 γ c 13 ) 2 } 1 /2 (22) The incremental expressions are obtained from Eq. 21 as σ 33 = ε 33 ε c F(λ)+ ε 33 F 33 ε c 33 λ λ τ 23 = γ 23 γ c F(λ)+ γ 23 F 23 γ c 23 λ λ (23) τ 13 = γ 13 γ c F(λ)+ γ 13 F 13 γ c 13 λ λ ε = λ(δ n /2R)+(σ/σ max )(σ max /2E m )(1 +E m /E f ) σ/σ max = 27 4 λ(1 λ)2 (25) Fig. 3 portrays the stress-strain curves for the above solution with E m =3450 MPa, E f =72400 MPa, σ max =60 MPa and different ratios of δ n /R. It can be seen that the stress-strain curves show the snap back instability when δ n /R = or By differentiating Eq. 25, the condition for this instability is, when (σ max /δ n )/(E /R) > 4/9 (26)

6 218 Copyright c 2005 Tech Science Press CMC, vol.2, no.3, pp , 2005 where E = E m E f /(E m +E f ). where η n, η t2, η t1 are viscous coefficients. In Fig. 4, the FEM numerical solution for δ n /R = with η n = 5.0 is compared with the analytical solution. It can be seen that the snap-back instability is avoided and the curve after the complete separation seems physically more realistic. In addition, the influence of the thickness of the cohesive interphase element, h, is also shown by comparing the results with two different thicknesses. It is seen that, the influence of the h is negligible as long as it is sufficiently small. Thus in the analyses of composite laminates to follow, the thickness of the interphase element will be taken to be 2% of the fiber radius. Figure 2 : One dimensional interphase model. Figure 3 : Global stress vs. global strain for a simple interphase model. In the FEM analyses, for the three ratios of δ n /R = 0.1, and 0.05the same global stress-strain curves as that in Fig. 3 are obtained. However, as for the ratios of δ n /R = and 0.01, the calculations can be continued only until the maximum global stress is reached and no converged solution can be obtained thereafter. To overcome this difficulty, when the snap-back occurs, an artificial viscous term is introduced, as suggested in Gao and Bower (2004). Equation 18 is modified as follows T 3 = [u 3] F(λ)+ η n d[u 3 ] δ n δ n dt T 2 = α [u 2] F(λ)+ η t2 d[u 2 ] δ t2 δ t2 dt T 1 = α [u 1] F(λ)+ η t1 d[u 1 ] δ t1 δ t1 dt (27) Figure 4 : Response with artificial viscousity and comparison with the analytical solution 4 Numerical Results of Laminates under Off-axis Loading The off-axis loading of an E-glass fiber/epoxy (Epon 828/Curing agent Z) unidirectional laminate has been analyzed as an application example. This example is chosen because a detailed experimental study [Ishai (1971)] revealed that the bonding between fiber and matrix in this material system was relatively weak and interfacial debonding was the dominant failure mechanisms of the unidirectional laminates under off-axis loading. Figure 5 shows the fractographs of the failed unidirectional laminate specimens under 90, 45 and 20 off-axis loadings, in which those fibers with relatively smooth surfaces indicate complete separations between the fibers and the epoxy matrix.

7 Micromechanical Analysis of Interphase Damage for Fiber Reinforced Composite Laminates 219 form of nonlinear viscoelastic model recently developed in Xia et al. (2003) is used to model the constitutive response of the epoxy matrix, Epon 828/Z. The material constants needed for the viscoelastic model are also listed in Tab. 1. The physical significances of the constants and the details of the viscoelastic model are documented in the above reference. The parameters for the cohesive model used in the calculations are:σ max = 72MPa, δ n /R = δ t1 /R = δ t2 /R=1.0 % and α = 0.9, where R is the radius of the fiber. The cohesive stress-strain relations for the interphase element and the viscoelastic constitutive model of the epoxy resin were implemented into the FEM code ADINA as user-defined material subroutines. The calculations were conducted on a SGI Origin 2000 computer system. To compare with the test results in Ishai (1971), uniaxial tensile loads at four off-axis angles (90, 45, 30, and 20 ) were applied to the unidirectional laminates at a constant strain rate of 10 3 s 1. Figure 5 : Fractographs of coupon specimens under offaxis tensile loadings [from Ishai (1971)]:(a) 90 off-axis loading; (b) 45 off-axis loading; (c) 20 off-axis loading In the current FEM analysis the glass fiber is assumed to be linearly elastic with elastic constants listed in Tab. 1. The epoxy matrix has a highly nonlinear viscoelastic behavior. Therefore, a viscoelastic constitutive relation for the matrix material is required for an accurate prediction of the response of the composite. A differential Figure 6 : Finite element mesh of the RUC model Figure 6 shows the finite element meshes of the RUC model with 8 node brick elements. A thin layer of interphase element around the fiber (h/r= 0.02, h and R are the thickness of the interphase element and the radius of the fiber, respectively) is shown in the inset. Note that in the fiber direction (x 1 direction), only one layer of element is sufficient, since all the stress and strain components are invariant along the fiber direction.

8 220 Copyright c 2005 Tech Science Press CMC, vol.2, no.3, pp , 2005 Table 1 : Constants of constitutive model for matrix Constituents E (MPa) ν α 1 τ 1 R E-glass fiber / / / Matrix E 1 (σ)= e σ MPa 4.1 Prediction of Global Stress-strain Curves Figure 7 shows the predicted global stress-strain curves and the comparison with the test results of Ishai (1971). All the calculations used the same set of material constants as shown in Table 1 and the off-axis angles consideredwere90,45,30,20,asinthetest. It can be seen that the stress-strain curves of the unidirectional laminates with four different angle orientations are well predicted by the present micromechanical analysis. In the calculations for all the four off-axis angles, η n /σ max = η t /σ max = 0.15 were used to avoid the convergence problems caused by the snap-back instabilities. Figure 7 : Global stress-strain curve of a unidirectional laminate under off-axis loadings. 4.2 Microscopic Deformation and Interphase Damage Initiation The microscopic deformation including the interphase damage behavior can be directly obtained from the current analysis. Figures 8(a) and (b) show the deformed RUC and the separation of the interphase for 90 and 45 off-axis loadings, respectively. The deformations of 30 and 20 loadings are similar to that of the 45 loading. As shown in Fig. 8(a), for the 90 (transverse) loading, the maximum separation of the interphase is normal to the interphase with [u 3 ] 0, [u 1 ]=[u 2 ]=0. For 45 off-axis loading, the interphase damage shows a mixed mode: opening normal to the interphase and sliding along the 1 direction, i.e. in this case,[u 3 ] 0, [u 1 ] 0, but [u 2 ]=0 as shown in Fig. 8(b). Note also that for the transverse (θ = 90 ) loading, the deformed surfaces of the RUC remains rectangular, while for 45 off-axis loading, the surfaces originally perpendicular to the fiber do not remain planes after the deformation. Figures 9 to 11 plot distribution of the tractions in the interphase for the four fiber angles at the instant prior to but close to the peak point of the stress-strain curves. For 90, 45, 30, and 20 off-axis angles, the corresponding global strains are ε =0.5%, 0.9%, 1.0%, and 1.0%, respectively. It can be seen from Figs. 9 to 11 that, along the circumferential direction of the interphase (see inset in Fig. 9 for angle φ ), the normal traction T 3 and sliding traction T 1 for all the four off-axis angles have maximum values at φ=0, thus indicates that the interphase debonding will initiate at φ = 0. However, the proportions of tractions T 3 and T 1 are different for different off-axis angles θ. When θ = 90 (transverse loading), the tractions T 2 and T 1 are very small at φ = 0, while T 3 /σ max is close to 1 as indicted by Fig. 9, thus the initiation of the damage is mainly caused by the traction T 3.Whenθ =45, T 3 /σ max 0.6, T 1 /σ max 0.7 (at φ=0 ), thus both tractions T 3 and T 1 contribute to the initiation of the interphase damage, resulting in the interphase separates with

9 Micromechanical Analysis of Interphase Damage for Fiber Reinforced Composite Laminates 221 (a) (b) Figure 8 : Deformed shape of the RUC and interphase damage for different off-axis angles: (a) 90 off-axis loading; (b) 45 off-axis loading Figure 9 : Distribution of T 3 Figure 10 : Distribution of T 2

10 222 Copyright c 2005 Tech Science Press CMC, vol.2, no.3, pp , 2005 (a) (b) Figure 12 : Traction distributions in interphase prior to and after damage: (a) Traction T 3 ; (b) Traction T 2 the combined normal opening and the sliding along the fiber circumference. 4.3 Evolution of interphase damage Figure 11 : Distribution of T 1 The propagation of the interphase damage can also be depicted by the interphase traction distributionsin the RUC. For transverse loading, for example, Fig. 12 shows the distribution of the interphase tractions at different loading levels. At ε= 0.5 %, the traction T 3 reaches the maximum value at φ = 0, thus the interphase starts separating at this point. The traction decreases with the increase of the separation, thus the normalized traction decreases to about 65% at global strain of 0.7 % and the total separation occurs at a global strain of 0.8 %, i.e. the traction drops to zero. With further increase of loading to 0.9 % and 1.1 %, the damaged zone propagates further along the circumferential direction. The interphase damage propagates to an angle of φ = 40 at the global strain of ε = 1.1%.

11 Micromechanical Analysis of Interphase Damage for Fiber Reinforced Composite Laminates Conclusions The interphase damage analysis has been successfully incorporated into the micromechanical finite element analysis for the fibrous composite materials. Both the macroscopic and microscopic responses of unidirectional laminates under off-axis loadings are well predicted based on the properties of the constituents and that of the interphase. In particular, the following conclusions can be drawn from the current investigation: The interphase element developed based on the cohesive law is capable of modeling both normal and tangential separations of the interface. Thus the entire response including damage initiation and evolution of the composite can be simulated. The interphase element is convenient for the implementation in a FEM code since an equivalent stress-strain relationship is used. Appropriate periodic boundary conditions should be applied to the repeated unit cell model of the composite. From the general periodic boundary conditions for an entire RUC model, the periodic boundary conditions for one-quarter of the unit cell accounting for the symmetry conditions are derived in a rigorous manner for the analysis of unidirectional laminates under off-axis loading. For unidirectional laminates under transverse loading, the interphase damage initiates as the normal opening while for the off-axis loadings combined mode of normal opening and in-plane sliding is predicted. Using the same set of material constants, the global stress-strain curves at different off-axis angles are predicted and they are in good agreement with the experimental results. Acknowledgement: The authors would like to express special thanks to Prof. Fernand Ellyin for helpful discussions and suggestions during the course of this investigation. The research is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through grant to Zihui Xia. References Aboudi, J.; Pindera, M.-J.; Arnold, S. M. (2001): Linear thermoelastic higher-order theory for periodic multiphase materials. ASME Journal of Applied Mechanics, vol. 68, pp Aghdam, M. M.; Pavier, M. J.; Smith, D. J. (2001): Micro-mechanics of off-axis loading of metal matrix composites using finite element analysis. International Journal of Solids and Structures, vol. 38, pp Daniel,I.M.;Ishai,O.(1994): Engineering Mechanics of Composite Materials. Oxford University Press, Oxford. Gao, Y. F.; Bower, A. F. (2004): A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces. Modelling and Simulation in Materials Science and Engineering, vol. 12, pp Hoover, J. W.; Kujawski, D.; Ellyin, F. (1997): Transverse cracking of symmetric and unsymmetric glassfiber/epoxy-resin laminates. Composites Science and Technology, vol. 57, pp Ishai, O. (1971): Failure of unidirectional composites in tension. Journal of the Engineering Mechanics Division, Proceedings of the ASCE, vol. 97, pp Legarth, B. N. (2004): Unit cell debonding analyses for arbitrary orientation of plastic anisotropy. International Journal of Solids and Structures, vol. 41, pp Michel, J. C.; Moulinec, H.; Suquet, P. (1999): Effective properties of composite materials with periodic microstructure: a computational approach. Computer Methods in Applied Mechanics and Engineering, vol. 172, pp Okada, H.; Liu, C. T.; Ninomiya, T.; Fukui, Y.; Kumazawa, N. (2004): Analysis of particulate composite materials using an element overlay technique, CMES: Computer Modeling in Engineering & Sciences, vol. 6, pp Pagano, N. J.; Yuan, F. G. (2000): The significance of effective modulus theory (homogenization) in composite laminate mechanics. Composites Science and Technology, vol. 60, pp Smith, B. W. (1987): Fractography for continuous fiber composites. In: Engineered Materials Handbook, Volume 1, Composites. ASM International, Ohio, USA, pp Sun, C. T.; Vaidya, R. S. (1996): Prediction of composite properties from a representative volume element. Composites Science and Technology, vol. 56, pp Suquet, P. (1987): Elements of homogenization theory for inelastic solid mechanics. In: Sanchez-Palencia, E.;

12 224 Copyright c 2005 Tech Science Press CMC, vol.2, no.3, pp , 2005 Zaoui, A., (eds). Homogenization Techniques for Composite Media. Springer-Verlag, Berlin, pp Tian, J.; Gabbert, U.; Berger, H.; Su, X. (2004): Lamb Wave Interaction with Delaminations in CFRP Laminates, CMC: Computers, Materials, & Continua, vol. 1, pp Tvergaard, V. (1990a): Effect of fiber debonding in whisker-reinforced metal. Material Science and Engineering, vol. A125, pp Tvergaard, V. (1990b): Analysis of tensile properties for a whisker-reinforced metal matrix composite. Acta Metallurgica, vol. 38, pp Xia, Z.; Hu, Y.; Ellyin, F. (2003): Deformation behavior of an epoxy resin subject to multiaxial loadings, part II: constitutive modeling and predictions. Polymer Engineering and Science, vol. 43, pp Xia, Z.; Zhang, Y.; Ellyin, F. (2003): A unified periodical boundary conditions for representative volume elements of composites and applications. International Journal of Solids and Structures, vol. 40, pp Xia, Z.; Zhou, C.; Yong, Q.; Wang, X. (2005): On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. International Journal of Solids and Structures, (in press). Yang, Z. J.; Proverbs, D. (2004): A comparative study of numerical solutions to non-linear discrete crack modeling of concrete beams involving sharp snap-back. Engineering Fracture Mechanics, vol. 71, pp Yuan, F. G.; Pagano, N. J.; Cai, X. (1997): Elastic moduli of brittle matrix composites with interfacial debonding. International Journal of Solids and Structures, vol. 34, pp Zhang, Y.; Xia, Z.; Ellyin, F. (2005): Nonlinear viscoelastic micromechanical analysis of fibre reinforced polymer laminates with damage evolution. International Journal of Solids and Structures, vol. 42, pp Zhu, C.; Sun, C. T. (2003): Micromechanical modeling of fiber composites under off-axis loading. Journal of Thermoplastic Composite Materials, vol. 16, pp Zhu, H.; Sankar B.V.; Marney, R.V. (1998): Evaluation of failure criteria for fiber composites using single element micromechanics. Journal of Composite Materials, vol. 32, pp Zhu, H.; Achenbach, J. D. (1991): Radial matrix cracking and interphase failure in transversely loaded fiber composites. Mechanics of Materials, vol. 11, pp Appendix A: Periodic Boundary Conditions for a Quarter RUC under Off-axis Loading For the off-axis loading case shown in Fig. 13, the geometry, material, stress/strain, and periodic part of displacement are invariant along the x 1 direction. From Eq.1, the general form of the displacement field can be written as: u 1 (x 1, x 2, x 3 )=ε 11 x 1 +2ε 12 x 2 +u 1(x 2, x 3 ) u 2 (x 1, x 2, x 3 )=ε 22 x 2 +u 2(x 2, x 3 ) u 3 (x 1, x 2, x 3 )=ε 33 x 3 +u 3(x 2, x 3 ) (A1) (A2) (A3) Note that Eqs. A1 and A2 are obtained through adding a set of rigid body rotation about x 3 axis, u 1 = ε 12 x 2, u 2 = ε 12 x 1,toEq.A1. Appendix A:.1 Derivation of boundary conditions Eqs. 10 and 11 For off-axis loading (Eqs. 5 and 6), the full size RUC showninfig. A1(a)hasamirrorsymmetryofplane x 3 = 0, thus the displacement and stress components of two arbitrary symmetric points satisfy: u 3 (x 1, x 2, x 3 )= u 3 (x 1, x 2, x 3 ) σ 23 (x 1, x 2, x 3 )= σ 23 (x 1, x 2, x 3 ) σ 31 (x 1, x 2, x 3 )= σ 31 (x 1, x 2, x 3 ) And for the other displacement or stress components: u i (x 1, x 2, x 3 )=u i (x 1, x 2, x 3 ) σ ij (x 1, x 2, x 3 )=σ ij (x 1, x 2, x 3 ) (A4) (A5) (A6) Therefore, we have: 1) From Eqs. A4-A6, on plane x 3 = 0, u 3 = 0, σ 23 = σ 31 = 0, i.e. Eq.10. 2) From Eqs. A3 and A4, for an arbitrary point P on plane x 3 = a/2 and its symmetric point Q on x 3 = a/2, u 3 (x 1, x 2, a/2) u 3 (x 1, x 2, a/2)=ε 33 a u 3 (x 1, x 2, a/2)= u 3 (x 1, x 2, a/2) u 3 (x 1, x 2, a/2)=ε 33 (a/2) }

13 Micromechanical Analysis of Interphase Damage for Fiber Reinforced Composite Laminates 225 (a) (b) (c) Figure 13 : Reduce to one-quarter of the RUC under off-axis loading: (a) Unit cell; (b) Half of the unit cell; (c) Quarter of the unit cell i.e. the first equation of Eq.11. 3) From Eqs. 2, A5 and A6, we have, for σ 23 and σ 31, σ 23 (x 1, x 2, a/2)=σ 23 (x 1, x 2, a/2) σ 23 (x 1, x 2, a/2)= σ 23 (x 1, x 2, a/2) σ 23 (x 1, x 2, a/2)=0 σ 31 (x 1, x 2, a/2)=σ 31 (x 1, x 2, a/2) σ 31 (x 1, x 2, a/2)= σ 31 (x 1, x 2, a/2) σ 31 (x 1, x 2, a/2)=0 i.e. the second and third equations of Eq.11. Therefore the RUC reduced to one half of the original full size, Fig. A1 (b). Appendix A:.2 Derivation of boundary conditions Eqs. 8 and 9 TheproblemshowninFig.A1(a)hasalsoaπ -rotation symmetry about x 3 axis, thus the displacement and stress components of two arbitrary symmetric points meet: u 1 (x 1, x 2, x 3 )= u 1 ( x 1, x 2, x 3 ) u 2 (x 1, x 2, x 3 )= u 2 ( x 1, x 2, x 3 ) σ 23 (x 1, x 2, x 3 )= σ 23 ( x 1, x 2, x 3 ) σ 31 (x 1, x 2, x 3 )= σ 31 ( x 1, x 2, x 3 ) And for the other displacement or stress components: u i (x 1, x 2, x 3 )=u i ( x 1, x 2, x 3 ) } } (A7) (A8) (A9) (A10) σ ij (x 1, x 2, x 3 )=σ ij ( x 1, x 2, x 3 ) 1) For two arbitrary π -rotation symmetric points A and B on plane x 2 = 0: From Eq. A1, and note u 1 are independent of x 1, thus u 1 (x 1, 0, x 3 ) u 1 ( x 1, 0, x 3 ) = ε 11 x 1 ε 11 ( x 1 )+u 1(x 1, 0, x 3 ) u 1( x 1, 0, x 3 ) = 2ε 11 x 1 From Eq. A7 u 1 (x 1, 0, x 3 )= u 1 ( x 1, 0, x 3 ) Thus from the above two relations, we obtain u 1 (x 1, 0, x 3 )=ε 11 x 1 i.e. the first equation of Eq.8. Similarly from Eqs. A2 and A8 we can obtain: u 2 (x 1, 0, x 3 ) u 2 ( x 1, 0, x 3 )=0 u 2 (x 1, 0, x 3 )= u 2 ( x 1, 0, x 3 ) Thus u 2 (x 1, 0, x 3 )=0, i.e. the second equation of Eq. 8. From Eq. A9, σ 23 (x 1, 0, x 3 )= σ 23 ( x 1, 0, x 3 ), but σ 23 is also independent of x 1, thus σ 23 (x 1, 0, x 3 )=0

14 226 Copyright c 2005 Tech Science Press CMC, vol.2, no.3, pp , 2005 i.e. the last equation of Eq. 8. 2) For two arbitrary π -rotation symmetric points M and N on planes x 2 = ±a/2: From Eq. A1, note u 1 is independent of x 1 and u 1 is periodic, thus u 1 (x 1, a/2, x 3 ) u 1 ( x 1, a/2, x 3 ) = ε 11 x 1 ε 11 ( x 1 )+2ε 12 (a/2) 2ε 12 ( a/2) +u 1(x 1, a/2, x 3 ) u 1( x 1, a/2, x 3 ) = 2ε 11 x 1 +2ε 12 a +u 1(x 1, a/2, x 3 ) u 1( x 1, a/2, x 3 ) = 2ε 11 x 1 +2ε 12 a From Eq. A7, u 1 (x 1, a/2, x 3 )= u 1 ( x 1, a/2, x 3 ) Thus from the above two relations we have, u 1 (x 1, a/2, x 3 )=ε 11 x 1 +2ε 12 (a/2) i.e. the first equation of Eq.9. Similarly, from Eqs. A2 and A8, the second equation of Eq.9 can be obtained. Finally from Eq. A9 the last equation of Eq. 9 can be obtained.

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm 33 2 2011 4 ol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0104-08 1 1 1 2 361003 3. 361009 3 1. 361005 2. GB50023-2009 TU746. 3 A Study on Single-span RC Frame Reinforced with Steel Truss System Yuan Xing-ren

More information

#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5

#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5 2011 6 6 153 JOURNAL OF RAILWAY ENGINEERING SOCIETY Jun 2011 NO. 6 Ser. 153 1006-2106 2011 06-0014 - 07 300142 ABAQUS 4. 287 mm 6. 651 mm U455. 43 A Analysis of Impact of Shield Tunneling on Displacement

More information

10384 19020101152519 UDC Rayleigh Quasi-Rayleigh Method for computing eigenvalues of symmetric tensors 2 0 1 3 2 0 1 3 2 0 1 3 2013 , 1. 2. [4], [27].,. [6] E- ; [7], Z-. [15]. Ramara G. kolda [1, 2],

More information

Untitled-3

Untitled-3 SEC.. Separable Equations In each of problems 1 through 8 solve the given differential equation : ü 1. y ' x y x y, y 0 fl y - x 0 fl y - x 0 fl y - x3 3 c, y 0 ü. y ' x ^ y 1 + x 3 x y 1 + x 3, y 0 fl

More information

TestNian

TestNian Fatigue Damage Mechanism in Very High Cycle Regime Nian Zhou 2012.5.24 Fatigue Low cycle fatigue N f 10 5 cycles Strain-controlled fatigue High cycle fatigue N f f 10 5 cycles Stress-based fatigue Endurance

More information

Microsoft Word - TIP006SCH Uni-edit Writing Tip - Presentperfecttenseandpasttenseinyourintroduction readytopublish

Microsoft Word - TIP006SCH Uni-edit Writing Tip - Presentperfecttenseandpasttenseinyourintroduction readytopublish 我 难 度 : 高 级 对 们 现 不 在 知 仍 道 有 听 影 过 响 多 少 那 次 么 : 研 英 究 过 文 论 去 写 文 时 作 的 表 技 引 示 巧 言 事 : 部 情 引 分 发 言 该 生 使 在 中 用 过 去, 而 现 在 完 成 时 仅 表 示 事 情 发 生 在 过 去, 并 的 哪 现 种 在 时 完 态 成 呢 时? 和 难 过 道 去 不 时 相 关? 是 所 有

More information

1.0 % 0.25 % 85μm % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song

1.0 % 0.25 % 85μm % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song 1.0 % 0.25 % 85μm 0.97 0.136 % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song Liang 1,2 Wang Xuan-cang 1 1 School of Highway, Chang

More information

Microsoft PowerPoint _代工實例-1

Microsoft PowerPoint _代工實例-1 4302 動態光散射儀 (Dynamic Light Scattering) 代工實例與結果解析 生醫暨非破壞性分析團隊 2016.10 updated Which Size to Measure? Diameter Many techniques make the useful and convenient assumption that every particle is a sphere. The

More information

ENGG1410-F Tutorial 6

ENGG1410-F Tutorial 6 Jianwen Zhao Department of Computer Science and Engineering The Chinese University of Hong Kong 1/16 Problem 1. Matrix Diagonalization Diagonalize the following matrix: A = [ ] 1 2 4 3 2/16 Solution The

More information

Introduction to Hamilton-Jacobi Equations and Periodic Homogenization

Introduction to Hamilton-Jacobi Equations  and Periodic Homogenization Introduction to Hamilton-Jacobi Equations and Periodic Yu-Yu Liu NCKU Math August 22, 2012 Yu-Yu Liu (NCKU Math) H-J equation and August 22, 2012 1 / 15 H-J equations H-J equations A Hamilton-Jacobi equation

More information

ANSYS WF 1 WF 2 2 SP 1 SP 2 1 NBF 1 1 Fig. 1 1 Connection details of specimens 1 Table 1 Specimen s

ANSYS WF 1 WF 2 2 SP 1 SP 2 1 NBF 1 1 Fig. 1 1 Connection details of specimens 1 Table 1 Specimen s 27 4 2011 12 WORLD EARTHQUAKE ENGINEERING Vol. 27 No. 4 Dec. 2011 1007 6069 2011 04 0102 07 1 2 2 1. 710055 2. 266033 4 1 2 ANSYS 2 U442. 5 + 5 A Study on seismic behavior of widened beam flange connections

More information

LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva

LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva 39 6 2011 12 Journal of Fuzhou University Natural Science Edition Vol 39 No 6 Dec 2011 DOI CNKI 35-1117 /N 20111220 0901 002 1000-2243 2011 06-0923 - 07 350108 105 m 14 69% TU311 3 A Seismic analysis of

More information

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315. 31 5 2011 10 JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct. 2011 1000-1301 2011 05-0075 - 09 510405 1 /35 TU3521 P315. 8 A Earthquake simulation shaking table test and analysis

More information

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip * - 1 1 2 3 1. 100124 2. 100124 3. 210018 - ABAQUS - DOI 10. 13204 /j. gyjz201511033 EXPERIMENTAL STUDY AND THEORETICAL MODEL OF A NEW TYPE OF STEEL-LEAD DAMPING Shen Fei 1 Xue Suduo 1 Peng Lingyun 2 Ye

More information

鋼構造論文集第 20 巻第 79 号 (2013 年 9 月 ) AN EVALUATION METHOD FOR ULTIMATE COMPRESSIVE STRENGTH OF STAINLESS STEEL PLATES BASED ON STRESS-STRAIN DIAGRAM * **

鋼構造論文集第 20 巻第 79 号 (2013 年 9 月 ) AN EVALUATION METHOD FOR ULTIMATE COMPRESSIVE STRENGTH OF STAINLESS STEEL PLATES BASED ON STRESS-STRAIN DIAGRAM * ** 鋼構造論文集第 20 巻第 79 号 (2013 年 9 月 ) AN EVALUATION METHOD FOR ULTIMATE COMPRESSIVE STRENGTH OF STAINLESS STEEL PLATES BASED ON STRESS-STRAIN DIAGRAM * ** Yasuhiro MIYAZAKI* Satoshi NARA** ABSTRACT This paper

More information

untitled

untitled 20 1 2010 10 Vol.20 Special 1 The Chinese Journal of Nonferrous Metals Oct. 2010 1004-0609(2010)S1-s0127-05 Ti-6Al-4V 1 2 2 (1. 710016 2., 710049) 500~1 000 20 Ti-6Al-4V(TC4) TC4 800 TC4 800 TC4 TC4 800

More information

國家圖書館典藏電子全文

國家圖書館典藏電子全文 i ii Abstract The most important task in human resource management is to encourage and help employees to develop their potential so that they can fully contribute to the organization s goals. The main

More information

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3 微 生 物 学 通 报 FEB 20, 2008, 35(2) 306~30 Microbiology 2008 by Institute of Microbiology, CAS tongbao@im.ac.cn 生 物 实 验 室 响 应 面 分 析 法 优 化 副 溶 血 性 弧 菌 生 长 条 件 刘 代 新 宁 喜 斌 * 张 继 伦 2 (. 200090) (2. 20202) 摘 要

More information

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec 31 6 2011 12 JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec. 2011 1000-1301 2011 06-0159 - 08 1 1 1 1 2 1. 150080 2. 100124 1 2 3 P315. 93 TU 43 TU41 A Shaking table test

More information

1556 地 理 科 学 进 展 30 卷 他 关 于 农 村 住 房 结 构 与 抗 震 性 能 的 研 究, 则 多 是 从 工 程 抗 灾 的 角 度, 研 究 某 种 构 造 类 型 的 房 屋, 力 图 找 到 传 统 房 屋 的 结 构 失 误 和 新 建 房 屋 中 存 在 的 问 [

1556 地 理 科 学 进 展 30 卷 他 关 于 农 村 住 房 结 构 与 抗 震 性 能 的 研 究, 则 多 是 从 工 程 抗 灾 的 角 度, 研 究 某 种 构 造 类 型 的 房 屋, 力 图 找 到 传 统 房 屋 的 结 构 失 误 和 新 建 房 屋 中 存 在 的 问 [ 第 30 卷 第 12 期 2011 年 12 月 地 理 科 学 进 展 PROGRESS IN GEOGRAPHY Vol.30, No.12 Dec., 2012 中 国 农 村 地 区 住 房 结 构 的 区 域 差 异 及 其 影 响 因 素 1, 2, 李 方 一 3 1,, 高 晓 路 2 2, 王 英 杰 (1. 中 国 科 学 院 区 域 可 持 续 发 展 分 析 与 模 拟 重

More information

地質調査研究報告/Bulletin of the Geological Survey of Japan

地質調査研究報告/Bulletin of the Geological Survey of Japan Shigeru Suto, Takayuki Inomata, Hisashi Sasaki and Sakae Mukoyama (2007) Data base of the volcanic ash fall distribution map of Japan. Bull. Geol. Surv. Japan, vol. 58(9/10), p.261-321, 8 figs, 2 tables,

More information

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte 211 11 11 158 JOURNAL OF RAILWAY ENGINEERING SOCIETY Nov 211 NO. 11 Ser. 158 16-216 211 11-24 - 6 1 2 3 3 3 1. 126 2. 92181 74 3. 181 1 2 3 4 1. 27 1. 3 1. 56 1. 73 4 1 2 3 4. 96 1. 15 1. 48 1. 6 f s =

More information

θ 1 = φ n -n 2 2 n AR n φ i = 0 1 = a t - θ θ m a t-m 3 3 m MA m 1. 2 ρ k = R k /R 0 5 Akaike ρ k 1 AIC = n ln δ 2

θ 1 = φ n -n 2 2 n AR n φ i = 0 1 = a t - θ θ m a t-m 3 3 m MA m 1. 2 ρ k = R k /R 0 5 Akaike ρ k 1 AIC = n ln δ 2 35 2 2012 2 GEOMATICS & SPATIAL INFORMATION TECHNOLOGY Vol. 35 No. 2 Feb. 2012 1 2 3 4 1. 450008 2. 450005 3. 450008 4. 572000 20 J 101 20 ARMA TU196 B 1672-5867 2012 02-0213 - 04 Application of Time Series

More information

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe * - - 100084 Q235B ML15 Ca OH 2 DOI 10. 13204 /j. gyjz201508023 STUDY OF GALVANIC CORROSION SENSITIVITY BETWEEN ANY COUPLE OF STUD WELDMENT OR BEAM Lu Xinying Li Yang Li Yuanjin Department of Civil Engineering

More information

Settlement Equation " H = CrH 1+ e o log p' o + ( p' p' c o! p' o ) CcH + 1+ e o log p' c + p' f! ( p' p' c c! p' o ) where ΔH = consolidation settlem

Settlement Equation  H = CrH 1+ e o log p' o + ( p' p' c o! p' o ) CcH + 1+ e o log p' c + p' f! ( p' p' c c! p' o ) where ΔH = consolidation settlem Prediction of Compression and Recompression Indices of Texas Overconsolidated Clays Presented By: Sayeed Javed, Ph.D., P.E. Settlement Equation " H = CrH 1+ e o log p' o + ( p' p' c o! p' o ) CcH + 1+

More information

Shanghai International Studies University THE STUDY AND PRACTICE OF SITUATIONAL LANGUAGE TEACHING OF ADVERB AT BEGINNING AND INTERMEDIATE LEVEL A Thes

Shanghai International Studies University THE STUDY AND PRACTICE OF SITUATIONAL LANGUAGE TEACHING OF ADVERB AT BEGINNING AND INTERMEDIATE LEVEL A Thes 上 海 外 国 语 大 学 硕 士 学 位 论 文 对 外 汉 语 初 中 级 副 词 情 境 教 学 研 究 与 实 践 院 系 : 国 际 文 化 交 流 学 院 学 科 专 业 : 汉 语 国 际 教 育 姓 名 : 顾 妍 指 导 教 师 : 缪 俊 2016 年 5 月 Shanghai International Studies University THE STUDY AND PRACTICE

More information

4 155 earthquake resilient structure 1 Yahya Kurama 2 Bulent Erkmen 3 Jose Restrepo 4 Brian Smith C40 HRB mm mm 125 mm 2

4 155 earthquake resilient structure 1 Yahya Kurama 2 Bulent Erkmen 3 Jose Restrepo 4 Brian Smith C40 HRB mm mm 125 mm 2 34 4 2014 8 EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS Vol. 34 No. 4 Aug. 2014 1000-1301 2014 04-0154 - 08 DOI 10. 13197 /j. eeev. 2014. 04. 154. dangxl. 020 200092 TU375 P315. 92 A Experimental study

More information

BC04 Module_antenna__ doc

BC04 Module_antenna__ doc http://www.infobluetooth.com TEL:+86-23-68798999 Fax: +86-23-68889515 Page 1 of 10 http://www.infobluetooth.com TEL:+86-23-68798999 Fax: +86-23-68889515 Page 2 of 10 http://www.infobluetooth.com TEL:+86-23-68798999

More information

2 193 EMAT F a λ 1 a λ 1 /2 EMAT 8 9 EMAT H = J C 1 B = μh EMAT E = - B 3 t J = γe F = J B + B S 5 H J C B μ EMAT E EMAT EMAT γ J ANSYS B

2 193 EMAT F a λ 1 a λ 1 /2 EMAT 8 9 EMAT H = J C 1 B = μh EMAT E = - B 3 t J = γe F = J B + B S 5 H J C B μ EMAT E EMAT EMAT γ J ANSYS B 342 2 0 1 2 3 Journal of Shenyang University of Technology Vo l 34 No 2 Mar 2 0 1 2 1000-1646 2012 02-0192 - 06 110870 ANSYS TB 552 A Three-dimensional finite element analysis on radiation sound field

More information

Deformation mechanism of TWIP steels at high strain rates HUANG Mingxin LIANG Zhiyuan The University of Hong Kong Collaborators: HUANG Wen Shenzhen Un

Deformation mechanism of TWIP steels at high strain rates HUANG Mingxin LIANG Zhiyuan The University of Hong Kong Collaborators: HUANG Wen Shenzhen Un Deformation mechanism of TWIP steels at high strain rates HUANG Mingxin LIANG Zhiyuan The University of Hong Kong Collaborators: HUANG Wen Shenzhen University LIU Rendong WANG Xu Ansteel XIONG Xiaochuan

More information

Microsoft Word _File000003_ doc

Microsoft Word _File000003_ doc Supplementary Information Interfacial Engineering of Silicon Carbide Nanowire/Cellulose Microcrystal Paper towards High Thermal Conductivity Yimin Yao,, Xiaoliang Zeng, *,, Guiran Pan,, Jiajia Sun,, Jiantao

More information

untitled

untitled Co-integration and VECM Yi-Nung Yang CYCU, Taiwan May, 2012 不 列 1 Learning objectives Integrated variables Co-integration Vector Error correction model (VECM) Engle-Granger 2-step co-integration test Johansen

More information

Thesis for the Master degree in Engineering Research on Negative Pressure Wave Simulation and Signal Processing of Fluid-Conveying Pipeline Leak Candi

Thesis for the Master degree in Engineering Research on Negative Pressure Wave Simulation and Signal Processing of Fluid-Conveying Pipeline Leak Candi U17 10220 UDC624 Thesis for the Master degree in Engineering Research on Negative Pressure Wave Simulation and Signal Processing of Fluid-Conveying Pipeline Leak Candidate:Chen Hao Tutor: Xue Jinghong

More information

~ ~

~ ~ * 40 4 2016 7 Vol. 40 No. 4 July 2016 35 Population Research 2014 1 2016 2016 9101. 0 40 49. 6% 2017 ~ 2021 1719. 5 160 ~ 470 100872 Accumulated Couples and Extra Births under the Universal Tw o-child

More information

Research of numerical simulation of high strength steel welding residual stress and fatigue life By Chen Song

Research of numerical simulation of high strength steel welding residual stress and fatigue life By Chen Song Research of numerical simulation of high strength steel welding residual stress and fatigue life By Chen Song I ABSTRACT They are very necessary and important to carry on the research on the welding residual

More information

Microsoft PowerPoint - CH 04 Techniques of Circuit Analysis

Microsoft PowerPoint - CH 04 Techniques of Circuit Analysis Chap. 4 Techniques of Circuit Analysis Contents 4.1 Terminology 4.2 Introduction to the Node-Voltage Method 4.3 The Node-Voltage Method and Dependent Sources 4.4 The Node-Voltage Method: Some Special Cases

More information

Microsoft Word 張嘉玲-_76-83_

Microsoft Word 張嘉玲-_76-83_ 64 4 Journal of Taiwan Agricultural Engineering 107 12 Vol. 64, No. 4, December 2018 DOI: 10.29974/JTAE.201812_64(4).0005 WASP - Applying the WASP Model to Evaluate the Effect of Wastewater Sewer Takeover

More information

2005 5,,,,,,,,,,,,,,,,, , , 2174, 7014 %, % 4, 1961, ,30, 30,, 4,1976,627,,,,, 3 (1993,12 ),, 2

2005 5,,,,,,,,,,,,,,,,, , , 2174, 7014 %, % 4, 1961, ,30, 30,, 4,1976,627,,,,, 3 (1993,12 ),, 2 3,,,,,, 1872,,,, 3 2004 ( 04BZS030),, 1 2005 5,,,,,,,,,,,,,,,,, 1928 716,1935 6 2682 1928 2 1935 6 1966, 2174, 7014 %, 94137 % 4, 1961, 59 1929,30, 30,, 4,1976,627,,,,, 3 (1993,12 ),, 2 , :,,,, :,,,,,,

More information

2008年1月11日に岩手県釜石沖で発生した地震(M4.7)について

2008年1月11日に岩手県釜石沖で発生した地震(M4.7)について 2008 1 11 M4.7 On the M4.7 earthquake off Kamaishi, Iwate prefecture, Japan, on January 11, 2008. Graduate School of Science, Tohoku University 2008 1 11 M4.7 Matsuzawa et al. (2002) M-T M4.9 23Hz DD Waldhauser

More information

<4D6963726F736F667420576F7264202D20B8DFB9B0B0D3B0D3F5E0D3A6C1A6CAB5B2E2D3EBBCC6CBE3BDE1B9FBB2EED2ECD4ADD2F2B7D6CEF62DD5C5B9FAD0C22E646F6378>

<4D6963726F736F667420576F7264202D20B8DFB9B0B0D3B0D3F5E0D3A6C1A6CAB5B2E2D3EBBCC6CBE3BDE1B9FBB2EED2ECD4ADD2F2B7D6CEF62DD5C5B9FAD0C22E646F6378> 高 拱 坝 坝 踵 应 力 实 测 与 计 算 结 果 差 异 原 因 分 析 张 国 新 周 秋 景 ( 中 国 水 利 水 电 科 学 研 究 院, 北 京 100038) 摘 要 : 坝 踵 应 力 是 关 系 到 混 凝 土 坝 是 否 开 裂 和 安 全 的 一 个 重 要 指 标, 不 管 是 用 结 构 力 学 法 还 是 有 限 元 法 都 能 计 算 出 坝 踵 有 一 定 的 拉

More information

Stochastic Processes (XI) Hanjun Zhang School of Mathematics and Computational Science, Xiangtan University 508 YiFu Lou talk 06/

Stochastic Processes (XI) Hanjun Zhang School of Mathematics and Computational Science, Xiangtan University 508 YiFu Lou talk 06/ Stochastic Processes (XI) Hanjun Zhang School of Mathematics and Computational Science, Xiangtan University hjzhang001@gmail.com 508 YiFu Lou talk 06/04/2010 - Page 1 Outline 508 YiFu Lou talk 06/04/2010

More information

Maup re,,,,,, ;,,,,,,,,,, PC 1985 Cognac,, 80, [ 526 ], 420m 160m [ 728 ], PC,,,,,,,,, , [ 3 ] 3008mm, 488mm, 222mm, ( ) 2880mm , 4914, 6

Maup re,,,,,, ;,,,,,,,,,, PC 1985 Cognac,, 80, [ 526 ], 420m 160m [ 728 ], PC,,,,,,,,, , [ 3 ] 3008mm, 488mm, 222mm, ( ) 2880mm , 4914, 6 29 1 Vol129, No11 2008 2 Journal of Building Structures Feb1 2008 : 100026869 (2008) 0120075208, (, 350002) :, 3,,, ;, ; : ; ; ; ; : TU39819 TU31711 : A Experimental studies on concrete filled steel tubular

More information

United Nations ~ ~ % 2010

United Nations ~ ~ % 2010 42 3 2018 5 Vol. 42 No. 3 May 2018 38 Population Research 2014 60 3% ~ 4% 10% 60 +

More information

Microsoft PowerPoint - ryz_030708_pwo.ppt

Microsoft PowerPoint - ryz_030708_pwo.ppt Long Term Recovery of Seven PWO Crystals Ren-yuan Zhu California Institute of Technology CMS ECAL Week, CERN Introduction 20 endcap and 5 barrel PWO crystals went through (1) thermal annealing at 200 o

More information

UDC Empirical Researches on Pricing of Corporate Bonds with Macro Factors 厦门大学博硕士论文摘要库

UDC Empirical Researches on Pricing of Corporate Bonds with Macro Factors 厦门大学博硕士论文摘要库 10384 15620071151397 UDC Empirical Researches on Pricing of Corporate Bonds with Macro Factors 2010 4 Duffee 1999 AAA Vasicek RMSE RMSE Abstract In order to investigate whether adding macro factors

More information

Revit Revit Revit BIM BIM 7-9 3D 1 BIM BIM 6 Revit 0 4D 1 2 Revit Revit 2. 1 Revit Revit Revit Revit 2 2 Autodesk Revit Aut

Revit Revit Revit BIM BIM 7-9 3D 1 BIM BIM 6 Revit 0 4D 1 2 Revit Revit 2. 1 Revit Revit Revit Revit 2 2 Autodesk Revit Aut 60 2 2016 2 RAILWAY STANDARD DESIGN Vol. 60 No. 2 Feb. 2016 1004-2954201602-0071-06 BIM 1 1 2 2 1 1. 7140992. 710054 BIM BIM 3D 4D nd BIM 1 3D 4D Revit BIM BIM U442. 5TP391. 72 A DOI10. 13238 /j. issn.

More information

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen 31 2 Vol. 31, No. 2 2013 5 PROGRESS IN ASTRONOMY May., 2013 doi: 10.3969/j.issn.1000-8349.2013.02.08 VLBI 1,2 1 ( 1. 200030 2. 100049 ) VLBI VLBI VLBI VLBI VLBI VLBI P228.6 A 1 (VLBI) 20 60 (ITRF) (EOP)

More information

THE APPLICATION OF ISOTOPE RATIO ANALYSIS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER A Dissertation Presented By Chaoyong YANG Supervisor: Prof.D

THE APPLICATION OF ISOTOPE RATIO ANALYSIS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER A Dissertation Presented By Chaoyong YANG Supervisor: Prof.D 10384 070302 9825042 UDC 2001.6. 2001.7. 20016 THE APPLICATION OF ISOTOPE RATIO ANALYSIS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER A Dissertation Presented By Chaoyong YANG Supervisor: Prof.Dr. Xiaoru

More information

) ( ) 2008 (300m ) 1 FRP [1 ] FRP 3 FRP FRP (CFRP) FRP CFRP (fiber reinforced polymer FRP) 60 % 160MPa 2400MPa [2 ] FRP 1 2mm FRP FRP 1 FRP C

) ( ) 2008 (300m ) 1 FRP [1 ] FRP 3 FRP FRP (CFRP) FRP CFRP (fiber reinforced polymer FRP) 60 % 160MPa 2400MPa [2 ] FRP 1 2mm FRP FRP 1 FRP C 28 4 Vol128 No14 2007 8 Journal of Building Structures Aug12007 :100026869 (2007) 0420109208 FRP ( 100084) : (FRP) FRP FRP FRP FRP FRP 5 : (FRP) ; ; ; ; :TU383 :A Concepts forms and basic analysis of FRP

More information

我国原奶及乳制品安全生产和质量安全管理研究

我国原奶及乳制品安全生产和质量安全管理研究 密 级 论 文 编 号 中 国 农 业 科 学 院 硕 士 学 位 论 文 我 国 原 奶 及 乳 制 品 质 量 安 全 管 理 研 究 Study on Quality and Safety Management of Raw Milk and Dairy Products in China 申 请 人 : 段 成 立 指 导 教 师 : 叶 志 华 研 究 员 张 蕙 杰 研 究 员 申 请

More information

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified 30 1 2013 1 Journal of Highway and Transportation Research and Development Vol. 30 No. 1 Jan. 2013 doi 10. 3969 /j. issn. 1002-0268. 2013. 01. 004 1 2 2 2 2 1. 400074 2. 400067 240 U416. 217 A 1002-0268

More information

76 34 2. 1. 1 Fig. 1 1 a-a b-b a-a σ ma = 74. 4 MPa σ a = 15. 74 MPa σ 0a =90. 15 MPa 0. 9 σ t =135 MPa b-b σ mb = 21. 77 MPa τ b = 13. 789 MPa σ 0b =

76 34 2. 1. 1 Fig. 1 1 a-a b-b a-a σ ma = 74. 4 MPa σ a = 15. 74 MPa σ 0a =90. 15 MPa 0. 9 σ t =135 MPa b-b σ mb = 21. 77 MPa τ b = 13. 789 MPa σ 0b = 34 11 2012 11 SHIP SCIENCE AND TECHNOLOGY Vol. 34 No. 11 Nov. 2012 0 430064 GB150-98 ASME THR3 +. 4 A 1672-7649 2012 11-0075 - 07 doi 10. 3404 /j. issn. 1672-7649. 2012. 11. 017 Stress and fatigue analysis

More information

不确定性环境下公司并购的估价:一种实物期权.doc

不确定性环境下公司并购的估价:一种实物期权.doc Abstract In view of the inadequacy of investment valuation under uncertainty by the orthodox discounted cash flow (DCF), many scholars have begun to study the investment under uncertainty. Option pricing

More information

Ansys /4 Ansys % 9 60% MU10 M m 1 Fig. Actual situation of measured building 1 Fig. 1 First floor plan of typical r

Ansys /4 Ansys % 9 60% MU10 M m 1 Fig. Actual situation of measured building 1 Fig. 1 First floor plan of typical r 0 5 011 10 JOURNAL OF NATURAL DISASTERS Vol. 0 No. 5 Oct. 011 1004-4574 011 05-0018 - 06 1 3 1. 41008. 41008 3. 410000 7 0. 10g 7 0. 15g 3. 1% 5% P64. 3 A Field test and numerical simulations of seismic

More information

厦 门 大 学 学 位 论 文 原 创 性 声 明 本 人 呈 交 的 学 位 论 文 是 本 人 在 导 师 指 导 下, 独 立 完 成 的 研 究 成 果 本 人 在 论 文 写 作 中 参 考 其 他 个 人 或 集 体 已 经 发 表 的 研 究 成 果, 均 在 文 中 以 适 当 方

厦 门 大 学 学 位 论 文 原 创 性 声 明 本 人 呈 交 的 学 位 论 文 是 本 人 在 导 师 指 导 下, 独 立 完 成 的 研 究 成 果 本 人 在 论 文 写 作 中 参 考 其 他 个 人 或 集 体 已 经 发 表 的 研 究 成 果, 均 在 文 中 以 适 当 方 学 校 编 码 :10384 分 类 号 密 级 学 号 : UDC 硕 士 学 位 论 文 浙 江 省 人 事 考 试 突 发 事 件 应 对 策 略 探 析 An Exploration of Zhejiang Province Personnel Examination Emergency Strategy 姜 海 峰 指 导 教 师 姓 名 : 王 玉 琼 教 授 专 业 名 称 : 公 共

More information

Chinese Journal of Applied Probability and Statistics Vol.25 No.4 Aug (,, ;,, ) (,, ) 应用概率统计 版权所有, Zhang (2002). λ q(t)

Chinese Journal of Applied Probability and Statistics Vol.25 No.4 Aug (,, ;,, ) (,, ) 应用概率统计 版权所有, Zhang (2002). λ q(t) 2009 8 Chinese Journal of Applied Probability and Statistics Vol.25 No.4 Aug. 2009,, 541004;,, 100124),, 100190), Zhang 2002). λ qt), Kolmogorov-Smirov, Berk and Jones 1979). λ qt).,,, λ qt),. λ qt) 1,.

More information

國立中山大學學位論文典藏.PDF

國立中山大學學位論文典藏.PDF I II III The Study of Factors to the Failure or Success of Applying to Holding International Sport Games Abstract For years, holding international sport games has been Taiwan s goal and we are on the way

More information

mm 400 mm 15 mm EOF mm/10a Fig. 1 Distributions

mm 400 mm 15 mm EOF mm/10a Fig. 1 Distributions 7 2 2011 3 ADVANCES IN CLIMATE CHANGE RESEARCH Vol. 7 No. 2 March 2011 1673-1719 (2011) 02-0097-07 1961 2007 77 5 5 6 2 3 8 11 1980 1980 1990 2015 8 11 P426.6 A 7.86% 4 50 0.35 5 6 19 7 8 9 1 1906 2005

More information

天 主 教 輔 仁 大 學 社 會 學 系 學 士 論 文 小 別 勝 新 婚? 久 別 要 離 婚? 影 響 遠 距 家 庭 婚 姻 感 情 因 素 之 探 討 Separate marital relations are getting better or getting worse? -Exp

天 主 教 輔 仁 大 學 社 會 學 系 學 士 論 文 小 別 勝 新 婚? 久 別 要 離 婚? 影 響 遠 距 家 庭 婚 姻 感 情 因 素 之 探 討 Separate marital relations are getting better or getting worse? -Exp 天 主 教 輔 仁 大 學 社 會 學 系 學 士 論 文 小 別 勝 新 婚? 久 別 要 離 婚? 影 響 遠 距 家 庭 婚 姻 感 情 因 素 之 探 討 Separate marital relations are getting better or getting worse? -Explore the impact of emotional factors couples do not

More information

第一章 出口退税制改革的内容

第一章  出口退税制改革的内容 密 级 学 号 2 0 0 1 0 3 2 9 毕 业 设 计 ( 论 文 ) 出 口 退 税 制 改 革 对 我 国 出 口 的 影 响 院 ( 系 部 ): 经 济 管 理 学 院 姓 名 : 王 晓 年 级 : 2001 级 专 业 : 国 际 经 济 与 贸 易 指 导 教 师 : 杜 秀 芳 教 师 职 称 : 讲 师 2005 年 6 月 10 日 北 京 北 京 石 油 化 工 学 院

More information

/MPa / kg m - 3 /MPa /MPa 2. 1E ~ 56 ANSYS 6 Hz (a) 一阶垂向弯曲 (b) 一阶侧向弯曲 (c) 一阶扭转 (d) 二阶侧向弯曲 (e) 二阶垂向弯曲 (f) 弯扭组合 2 6 Hz

/MPa / kg m - 3 /MPa /MPa 2. 1E ~ 56 ANSYS 6 Hz (a) 一阶垂向弯曲 (b) 一阶侧向弯曲 (c) 一阶扭转 (d) 二阶侧向弯曲 (e) 二阶垂向弯曲 (f) 弯扭组合 2 6 Hz 31 3 Vol. 31 No. 3 218 9 Journal of Shijiazhuang Tiedao University Natural Science Edition Sep. 218 1 1 2 1 2 1 1. 543 2. 543 U462. 3 217-2 - 16 A 295-373 218 3-63 - 6 1-4 5-7 8-11 1 11 11 398 mm 86 mm

More information

医学科研方法

医学科研方法 医 学 科 研 方 法 主 讲 苏 秀 兰 细 胞 生 物 学 教 授 第 一 讲 绪 论 一 概 念 : 在 医 学 科 学 研 究 活 动 中, 运 用 科 学 的 实 践 和 理 论 思 维 的 技 巧, 充 分 发 挥 自 己 的 智 慧, 去 寻 找 观 念 世 界 与 现 实 世 界 之 间 的 联 系 或 规 律, 从 而 发 现 新 现 象, 提 出 新 理 论 的 手 段 二 医

More information

A Study on Grading and Sequencing of Senses of Grade-A Polysemous Adjectives in A Syllabus of Graded Vocabulary for Chinese Proficiency 2002 I II Abstract ublished in 1992, A Syllabus of Graded Vocabulary

More information

34 22 f t = f 0 w t + f r t f w θ t = F cos p - ω 0 t - φ 1 2 f r θ t = F cos p - ω 0 t - φ 2 3 p ω 0 F F φ 1 φ 2 t A B s Fig. 1

34 22 f t = f 0 w t + f r t f w θ t = F cos p - ω 0 t - φ 1 2 f r θ t = F cos p - ω 0 t - φ 2 3 p ω 0 F F φ 1 φ 2 t A B s Fig. 1 22 2 2018 2 Electri c Machines and Control Vol. 22 No. 2 Feb. 2018 1 2 3 3 1. 214082 2. 214082 3. 150001 DOI 10. 15938 /j. emc. 2018. 02. 005 TM 301. 4 A 1007-449X 2018 02-0033- 08 Research of permanent

More information

0 Kelly Fig. 1 Novel damping wall-structure connection diagram a b S1 c S Fig. 2 Desig

0 Kelly Fig. 1 Novel damping wall-structure connection diagram a b S1 c S Fig. 2 Desig DOI:10.14006/j.jzjgxb.2013.12.007 Journal of Building Structures 1000-6869 2013 12-0045-07 34 12 2013 12 006 Vol. 34 No. 12 Dec. 2013 510405 6% Bouc-Wen Bouc-Wen TU352. 1 TU317. 1 A Performance of novel

More information

m m m ~ mm

m m m ~ mm 2011 10 10 157 JOURNAL OF RAILWAY ENGINEERING SOCIETY Oct 2011 NO. 10 Ser. 157 1006-2106 2011 10-0007 - 0124-05 710043 6 TBM TBM U455. 43 A Structural Calculation and Analysis of Transfer Node of Three

More information

WTO

WTO 10384 200015128 UDC Exploration on Design of CIB s Human Resources System in the New Stage (MBA) 2004 2004 2 3 2004 3 2 0 0 4 2 WTO Abstract Abstract With the rapid development of the high and new technique

More information

2015年4月11日雅思阅读预测机经(新东方版)

2015年4月11日雅思阅读预测机经(新东方版) 剑 桥 雅 思 10 第 一 时 间 解 析 阅 读 部 分 1 剑 桥 雅 思 10 整 体 内 容 统 计 2 剑 桥 雅 思 10 话 题 类 型 从 以 上 统 计 可 以 看 出, 雅 思 阅 读 的 考 试 话 题 一 直 广 泛 多 样 而 题 型 则 稳 中 有 变 以 剑 桥 10 的 test 4 为 例 出 现 的 三 篇 文 章 分 别 是 自 然 类, 心 理 研 究 类,

More information

a b

a b 38 3 2014 5 Vol. 38 No. 3 May 2014 55 Population Research + + 3 100038 A Study on Implementation of Residence Permit System Based on Three Local Cases of Shanghai Chengdu and Zhengzhou Wang Yang Abstract

More information

UDC The Policy Risk and Prevention in Chinese Securities Market

UDC The Policy Risk and Prevention in Chinese Securities Market 10384 200106013 UDC The Policy Risk and Prevention in Chinese Securities Market 2004 5 2004 2004 2004 5 : Abstract Many scholars have discussed the question about the influence of the policy on Chinese

More information

A Study on the Relationships of the Co-construction Contract A Study on the Relationships of the Co-Construction Contract ( ) ABSTRACT Co-constructio in the real estate development, holds the quite

More information

HC20131_2010

HC20131_2010 Page: 1 of 8 Date: April 14, 2010 WINMATE COMMUNICATION INC. 9 F, NO. 111-6, SHING-DE RD., SAN-CHUNG CITY, TAIPEI, TAIWAN, R.O.C. The following merchandise was submitted and identified by the vendor as:

More information

20

20 37 92 19 40 19 20 21 1 7 22 1/5 6/30 5/3030 23 24 25 26 1 2 27 1 2 28 29 30 5 8 8 3 31 32 33 34 35 36 37 38 39 A Study Investigating Elementary School Students Concept of the Unit in Fraction in Northern

More information

東吳大學

東吳大學 律 律 論 論 療 行 The Study on Medical Practice and Coercion 林 年 律 律 論 論 療 行 The Study on Medical Practice and Coercion 林 年 i 讀 臨 療 留 館 讀 臨 律 六 礪 讀 不 冷 療 臨 年 裡 歷 練 禮 更 老 林 了 更 臨 不 吝 麗 老 劉 老 論 諸 見 了 年 金 歷 了 年

More information

43 14. 45 3 7 220 1 2 cm /s 2 1. 5 3 1 4 c d 1 /40 1 /4 1 /9 600 0. 129 6 7 1 /6 400 1 /256 000 1. 5 2 2 2. 1 /m /Hz /kn / kn m 6 6 0. 1 ~ 50 600 1 80

43 14. 45 3 7 220 1 2 cm /s 2 1. 5 3 1 4 c d 1 /40 1 /4 1 /9 600 0. 129 6 7 1 /6 400 1 /256 000 1. 5 2 2 2. 1 /m /Hz /kn / kn m 6 6 0. 1 ~ 50 600 1 80 43 14 2013 7 Building Structure Vol. 43 No. 14 Jul. 2013 * 1 1 1 2 3 3 3 2 2 1 100013 2 430022 3 200002 1 40 ETABS ABAQUS TU355 TU317 +. 1 A 1002-848X 2013 14-0044-04 Compairion study between the shaking

More information

708 北 京 工 业 大 学 学 报 2011 年 以 往 的 试 验 结 果 进 行 对 比, 选 取 15D 20D 作 为 对 比 参 数, 试 件 参 数 见 表 1. Fig. 1 图 1 试 件 尺 寸 及 配 筋 图 ( mm) Geometry and reinforcement

708 北 京 工 业 大 学 学 报 2011 年 以 往 的 试 验 结 果 进 行 对 比, 选 取 15D 20D 作 为 对 比 参 数, 试 件 参 数 见 表 1. Fig. 1 图 1 试 件 尺 寸 及 配 筋 图 ( mm) Geometry and reinforcement 第 37 卷 第 5 期 2011 年 5 月 北 京 工 业 大 学 学 报 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY Vol. 37 No. 5 May 2011 植 筋 钢 筋 混 凝 土 锚 固 构 件 抗 震 性 能 试 验 研 究 邓 宗 才 1, 钟 林 杭 1, 张 永 方 1, 曾 洪 超 1 2, 范 世 平 ( 1. 北 京 工 业

More information

附件1:

附件1: 附 件 1: 全 国 优 秀 教 育 硕 士 专 业 学 位 论 文 推 荐 表 单 位 名 称 : 西 南 大 学 论 文 题 目 填 表 日 期 :2014 年 4 月 30 日 数 学 小 组 合 作 学 习 的 课 堂 管 理 攻 硕 期 间 及 获 得 硕 士 学 位 后 一 年 内 获 得 与 硕 士 学 位 论 文 有 关 的 成 果 作 者 姓 名 论 文 答 辩 日 期 学 科 专

More information

Microsoft Word - 24217010311110028谢雯雯.doc

Microsoft Word - 24217010311110028谢雯雯.doc HUAZHONG AGRICULTURAL UNIVERSITY 硕 士 学 位 论 文 MASTER S DEGREE DISSERTATION 80 后 女 硕 士 生 择 偶 现 状 以 武 汉 市 七 所 高 校 为 例 POST-80S FEMALE POSTGRADUATE MATE SELECTION STATUS STUDY TAKE WUHAN SEVEN UNIVERSITIES

More information

[29] a N d N b 2 d sin θ N b ФФ a b Ф Ф θ θ a b Fig.1 Working principle demonstration of a phased-array antenna θ

[29] a N d N b 2 d sin θ N b ФФ a b Ф Ф θ θ a b Fig.1 Working principle demonstration of a phased-array antenna θ 1/(cos cos ) 1 X X 20130576 863 2007AA061901 1988E mailliujun198802@126.com [29] a N d N b 2 d sin θ N b ФФ a b Ф Ф θ θ a b Fig.1 Working principle demonstration of a phased-array antenna θ B A B 1

More information

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang 20 6 2011 12 JOURNAL OF NATURAL DISASTERS Vol. 20 No. 6 Dec. 2011 1004-4574 2011 06-0094 - 05 200062 1949-1990 1949 1977 0. 8 0. 03345 0. 01243 30 100 P426. 616 A Risk analysis of flood disaster in Shanghai

More information

Knowledge and its Place in Nature by Hilary Kornblith

Knowledge and its Place in Nature by Hilary Kornblith Deduction by Daniel Bonevac Chapter 7 Quantified Natural Deduction Quantified Natural Deduction As with truth trees, natural deduction in Q depends on the addition of some new rules to handle the quantifiers.

More information

A VALIDATION STUDY OF THE ACHIEVEMENT TEST OF TEACHING CHINESE AS THE SECOND LANGUAGE by Chen Wei A Thesis Submitted to the Graduate School and Colleg

A VALIDATION STUDY OF THE ACHIEVEMENT TEST OF TEACHING CHINESE AS THE SECOND LANGUAGE by Chen Wei A Thesis Submitted to the Graduate School and Colleg 上 海 外 国 语 大 学 SHANGHAI INTERNATIONAL STUDIES UNIVERSITY 硕 士 学 位 论 文 MASTER DISSERTATION 学 院 国 际 文 化 交 流 学 院 专 业 汉 语 国 际 教 育 硕 士 题 目 届 别 2010 届 学 生 陈 炜 导 师 张 艳 莉 副 教 授 日 期 2010 年 4 月 A VALIDATION STUDY

More information

Microsoft PowerPoint - STU_EC_Ch08.ppt

Microsoft PowerPoint - STU_EC_Ch08.ppt 樹德科技大學資訊工程系 Chapter 8: Counters Shi-Huang Chen Fall 2010 1 Outline Asynchronous Counter Operation Synchronous Counter Operation Up/Down Synchronous Counters Design of Synchronous Counters Cascaded Counters

More information

Abstract There arouses a fever pursuing the position of being a civil servant in China recently and the phenomenon of thousands of people running to a

Abstract There arouses a fever pursuing the position of being a civil servant in China recently and the phenomenon of thousands of people running to a Abstract There arouses a fever pursuing the position of being a civil servant in China recently and the phenomenon of thousands of people running to attend the entrance examination of civil servant is

More information

國立中山大學學位論文典藏.PDF

國立中山大學學位論文典藏.PDF The Study on the New Pension Scheme for Civil Servants Evidence from Kaohsiung County I II 1. III Thesis Abstract Title of Thesis The Study on the New Pension Scheme for Civil Servants: Evidence from Kaohsiung

More information

Microsoft PowerPoint - Ch5 The Bipolar Junction Transistor

Microsoft PowerPoint - Ch5 The Bipolar Junction Transistor O2005: Electronics The Bipolar Junction Transistor (BJT) 張大中 中央大學通訊工程系 dcchang@ce.ncu.edu.tw 中央大學通訊系張大中 Electronics, Neamen 3th Ed. 1 Bipolar Transistor Structures N P 17 10 N D 19 10 N D 15 10 中央大學通訊系張大中

More information

HC50246_2009

HC50246_2009 Page: 1 of 7 Date: June 2, 2009 WINMATE COMMUNICATION INC. 9 F, NO. 111-6, SHING-DE RD., SAN-CHUNG CITY, TAIPEI, TAIWAN, R.O.C. The following merchandise was submitted and identified by the vendor as:

More information

mm 5 1 Tab 1 Chemical composition of PSB830 finishing rolled rebars % C Si Mn P S V 0 38 ~ 1 50 ~ 0 80 ~ ~

mm 5 1 Tab 1 Chemical composition of PSB830 finishing rolled rebars % C Si Mn P S V 0 38 ~ 1 50 ~ 0 80 ~ ~ PSB830 365000 32 mm PSB830 PSB830 TG 335 64 A Productive Practition of PSB830 Finishing Rolled Rebars PAN Jianzhou Bar Steel Rolling Minguang Co Ltd of Fujian Sansteel Sanming 365000 China Abstract High

More information

東莞工商總會劉百樂中學

東莞工商總會劉百樂中學 /2015/ 頁 (2015 年 版 ) 目 錄 : 中 文 1 English Language 2-3 數 學 4-5 通 識 教 育 6 物 理 7 化 學 8 生 物 9 組 合 科 學 ( 化 學 ) 10 組 合 科 學 ( 生 物 ) 11 企 業 會 計 及 財 務 概 論 12 中 國 歷 史 13 歷 史 14 地 理 15 經 濟 16 資 訊 及 通 訊 科 技 17 視 覺

More information

m K K K K m Fig. 2 The plan layout of K K segment p

m K K K K m Fig. 2 The plan layout of K K segment p 410151 K7 + 914 - K7 + 984 12 5. 3 Midas DOI 10. 7617 /j. issn. 1000-8993. 2013. 09. 020 THE ANALYSIS OF THE DESIGN AND CONSTRUCTION SECURITY OF DEEP FOUNDATION IN PURUI TUNNEL OPEN-CUT SEGMENT Yang Ping

More information

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流 第 20 卷 第 3 期 2014 年 6 月 ( 自 然 科 学 版 ) JOURNAL OF SHANGHAI UNIVERSITY (NATURAL SCIENCE) Vol. 20 No. 3 June 2014 DOI: 10.3969/j.issn.1007-2861.2013.07.031 基 于 FLUENT 测 轨 道 交 通 隧 道 中 电 波 折 射 率 结 构 常 数 张 永

More information

2013-03

2013-03 101 文 章 编 号 :1006-1355(2013)03-0101-05 高 速 列 车 车 体 结 构 振 动 和 车 内 声 学 特 性 分 析 刘 太 祥, 龚 兴 龙, 宗 路 航, 宣 守 虎 ( 中 国 科 学 技 术 大 学 近 代 力 学 系 中 国 科 学 院 材 料 力 学 行 为 与 设 计 重 点 实 验 室, 合 肥 230027) 摘 要 : 为 了 研 究 高 速

More information

Public Projects A Thesis Submitted to Department of Construction Engineering National Kaohsiung First University of Science and Technology In Partial

Public Projects A Thesis Submitted to Department of Construction Engineering National Kaohsiung First University of Science and Technology In Partial Public Projects A Thesis Submitted to Department of Construction Engineering National Kaohsiung First University of Science and Technology In Partial Fulfillment of the Requirements For the Degree of Master

More information

Shanghai International Studies University A STUDY ON SYNERGY BUYING PRACTICE IN ABC COMPANY A Thesis Submitted to the Graduate School and MBA Center I

Shanghai International Studies University A STUDY ON SYNERGY BUYING PRACTICE IN ABC COMPANY A Thesis Submitted to the Graduate School and MBA Center I 上 海 外 国 语 大 学 工 商 管 理 硕 士 学 位 论 文 ABC 中 国 食 品 公 司 的 整 合 采 购 研 究 学 科 专 业 : 工 商 管 理 硕 士 (MBA) 作 者 姓 名 :0113700719 指 导 教 师 : 答 辩 日 期 : 2013 年 12 月 上 海 外 国 语 大 学 二 一 四 年 一 月 Shanghai International Studies

More information

096STUT DOC

096STUT DOC i YouTube was established in 2005 until now only more than 3 years. Although it was established just more than 3 years, it has already become the one of multitudinous video shares website that most people

More information

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m +

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m + 2012 12 Chinese Journal of Applied Probability and Statistics Vol.28 No.6 Dec. 2012 ( 224002) Euclidean Lebesgue... :. : O212.2 O159. 1.. Zadeh [1 2]. Tanaa (1982) ; Diamond (1988) (FLS) FLS LS ; Savic

More information

untitled

untitled MSE200 Lecture 10 (CH. 7.3-7.4) Mechanical Properties II Instructor: Yuntian Zhu Objectives/outcoes: You will learn the following: Crack growth rate during fatigue. Fatigue life of cracked coponents. Stages

More information

新能源汽车蓝皮书

新能源汽车蓝皮书 Reprint UCD-ITS-RP-16-23 A Comparison of Plug-in Electric Vehicle Markets Between China and the U.S. Based on Surveys Chapter in Blue Book of New Energy Vehicles 2016, Social Sciences Academic Press (In

More information

XML SOAP DOM B2B B/S B2B B2B XML SOAP

XML SOAP DOM B2B B/S B2B B2B XML SOAP 10384 9831010 U D C B2B 2 0 0 1 4 2 0 0 1 5 2 0 0 1 2001 4 XML SOAP DOM B2B B/S B2B B2B XML SOAP ABSTRACT Based on the research of Supply Chain Management theory and E-Commerce theory, especially in Business

More information

<4D6963726F736F667420506F776572506F696E74202D20B5DAD2BBD5C228B4F2D3A1B0E6292E707074205BBCE6C8DDC4A3CABD5D>

<4D6963726F736F667420506F776572506F696E74202D20B5DAD2BBD5C228B4F2D3A1B0E6292E707074205BBCE6C8DDC4A3CABD5D> Homeworks ( 第 三 版 ):.4 (,, 3).5 (, 3).6. (, 3, 5). (, 4).4.6.7 (,3).9 (, 3, 5) Chapter. Number systems and codes 第 一 章. 数 制 与 编 码 . Overview 概 述 Information is of digital forms in a digital system, and

More information