Deformation mechanism of TWIP steels at high strain rates HUANG Mingxin LIANG Zhiyuan The University of Hong Kong Collaborators: HUANG Wen Shenzhen Un

Size: px
Start display at page:

Download "Deformation mechanism of TWIP steels at high strain rates HUANG Mingxin LIANG Zhiyuan The University of Hong Kong Collaborators: HUANG Wen Shenzhen Un"

Transcription

1 Deformation mechanism of TWIP steels at high strain rates HUANG Mingxin LIANG Zhiyuan The University of Hong Kong Collaborators: HUANG Wen Shenzhen University LIU Rendong WANG Xu Ansteel XIONG Xiaochuan General Motors Automotive steel workshop

2 Introduction Deformation twinning TWIP steels 1800 Fe17Mn0.95C Fe12Mn1.2C True stress (MPa) Fe22Mn1.2C Fe30Mn1C Fe22Mn0.6C Fe30Mn0.5C 1200 Fe30Mn True strain TWIP steels for automotive applications 2

3 Review on strain rates effects σ D TWIP steels ε Experimental data for pure Cu Gray 3

4 Experiments Material Fe Mn C Al Si wt (%) Bal Mechanical tests Quasi-static tensile tests (10-3 to 10-2 s -1 ) =20 µm; IPF Z0; Step=0.5 µm; Grid200x um High strain rate tensile tests (10 1 to 10 3 s -1 ): Split Hopkinson bar system High pressure gas Microstructure characterization TEM for observing the dislocations and deformation twins Synchrotron X-ray diffraction for measuring the dislocation and twin density 3

5 Mechanical properties Strain rate: to 3750 s -1 Engineering stress (MPa) (a) m I Yielding stress Ultimate tensile stress 80 Uniform elongation dσ y = = 14.4MPa d lnɺ ε E-4 1E Strain rate (s -1 ) Significant instantaneous strain rate sensitivity mi = 14.4MPa 30 Uniform elongation (%) True stress (MPa) (b) 5.7*10-4 s *10-3 s s s True strain Similar UTS obtained regardless of the strain rate. Possible explanations for similar UTS: 1. Instantaneous effect weakens with strain 2. Weakened work-hardening at higher strain rate 4

6 Strain rate jump tests Necking Prestrain at s -1 to different levels Unload and reload at 1700 s -1 until fracture Prestrain 0% 5% 15% 25% σ (MPa) Instantaneous effect stay relatively constant with strain Weaker work-hardening rate at higher strain rate Lower density of defects developed at higher strain rate 5

7 TEM characterization C D (a) s -1 STEM dark field (b) 1700 s -1 STEM dark field (c) s -1 TEM bright field (d) 1700 s -1 TEM bright field Massive deformation twins and dislocation found in specimen strained at both low and high strain rate Difference in defects density is difficult to detect in TEM 6

8 XRD tests Defects in crystal will cause peak broadening in the X-ray diffraction Intensity % 15% 25% 40% Normalized intensity % 15% 25% 40% Theta Theta Modified Williamson-Hall method-the peak broadening can be linked to the crystal size, dislocation density and population of twin boundaries & stacking faults as: 2 2 1/ K = 0.9 / d + ( π A' b / 2) ρ K C + β ' W( K) + O( K C ) 7

9 Modified W-H plot 2 2 1/ K = 0.9 / d + ( π A' b / 2) ρ K C + β ' W( K) + O( K C ) 220 Bragg angle-θ K = cos θ ( 2 θ ) / λ FWHM- 2θ K = 2sin θ / λ h k + k l + l h C = Ch00 1 q h + k + l K β W K = + π A b ρ K C + O 2 2 1/ ' ( ) 0.9 / d ( ' / 2) ( K C ) 2 y = n + m K C K 2 C K W(K) *10-4 s m = ( π A' b / 2) ρ n = 0.9 / d 2 2 1/2 8

10 Synchrotron XRD Full profiles 5.7*10-4 s s s *10-4 s s s -1 Intensity I/I max Theta θ ( ο ) Modified Williamson-Hall method-the peak broadening can be linked to the crystal size, dislocation density and population of twin boundaries & stacking faults as: 2 2 1/ K = 0.9 / d + ( π A' b / 2) ρ K C + β ' W( K) + O( K C )

11 Modified Williamson-Hall plot (1/nm) *10-4 s s s C (1/nm 2 ) ρ (m -2 ) β' (%) d (nm) εɺ ρ & β ' Negative rate sensitivity of work-hardening

12 Modelling σ = σ + σ th ath Thermal and athermal stress ɺ ε ρ ν G V σ / M kt 0 th = mbλ 0 exp σ MkT M = lnɺ ( G kt ln b ) m ln V ε + V ρ Λ ν = ɺ ε + σ th 0 m 0 I 0 K σ ath = MαGb ρ + L HP 800 Yielding stress Engineering stress (MPa) m I dσ y = = 14.4MPa d lnɺ ε ( + ) dσ y d σ th σ ath dσ th ln = ln = ln = m d ɺ ε d ɺ ε d ɺ ε T, ψ I 400 1E-4 1E Strain rate (s -1 )

13 Thermal stress Engineering stress (MPa) *10-4 s s -1 5% prestrain 15% prestrain 25% prestrain 40% prestrain Prestrain 0% 5% 15% 25% σ (MPa) Engineering strain Conclusion :Thermal stress does not change with dislocation and twin density, and should be constant during straining. 13

14 Athermalstress σ = MαGb ρ + ath K HP L (a function of strain because of dislocation density and twin volume fraction) 500 Fe18Mn0.6C1.5Al Fitting Yield stress (MPa) =634.7 MPa*um 1/ Grain size (µm)

15 Dislocation and Twin evolution d = M k dε b ρ a ρ ρ f F = 1 e χ ( ε ε ) init n Dislocation density 1E15 1E14 1E13 Dislocation 5.7*10-4 (Modelling) Dislocation 1700 (Modelling) Dislocation 5.7*10-4 (Experiment) Dislocation 1700 (Experiment) 1E True strain Twin 5.7*10-4 Twin Twin volume fraction 5.7* χ εɺ ka f ρ εɺ F

16 Stress-strain curves 1600 Experiment 5.7*10-4 Simulation 5.7*10-4 Experiment 1700 Simulation 1700 True Stress True Strain 16

17 Conclusions σ ɺ ε < ɺ ε εɺ σ A A B εɺ B θ Positive instantaneous strain rate sensitivity Negative rate sensitivity of workhardening Yield stress increases with strain rates. UTS remains the same for various strain rates. Higher strain rates leads to lower dislocation density and twin volume fraction. The average glide distance is higher at higher strain rate due to its higher stress. ε 17

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

More information

鋼構造論文集第 20 巻第 79 号 (2013 年 9 月 ) AN EVALUATION METHOD FOR ULTIMATE COMPRESSIVE STRENGTH OF STAINLESS STEEL PLATES BASED ON STRESS-STRAIN DIAGRAM * **

鋼構造論文集第 20 巻第 79 号 (2013 年 9 月 ) AN EVALUATION METHOD FOR ULTIMATE COMPRESSIVE STRENGTH OF STAINLESS STEEL PLATES BASED ON STRESS-STRAIN DIAGRAM * ** 鋼構造論文集第 20 巻第 79 号 (2013 年 9 月 ) AN EVALUATION METHOD FOR ULTIMATE COMPRESSIVE STRENGTH OF STAINLESS STEEL PLATES BASED ON STRESS-STRAIN DIAGRAM * ** Yasuhiro MIYAZAKI* Satoshi NARA** ABSTRACT This paper

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5, # # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( 0 2 3 ( & +. 4 / &1 5, !! & 6 7! 6! &1 + 51, (,1 ( 5& (5( (5 & &1 8. +5 &1 +,,( ! (! 6 9/: ;/:! % 7 3 &1 + ( & &, ( && ( )

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

TestNian

TestNian Fatigue Damage Mechanism in Very High Cycle Regime Nian Zhou 2012.5.24 Fatigue Low cycle fatigue N f 10 5 cycles Strain-controlled fatigue High cycle fatigue N f f 10 5 cycles Stress-based fatigue Endurance

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

08-01.indd

08-01.indd 1 02 04 08 14 20 27 31 35 40 43 51 57 60 07 26 30 39 50 56 65 65 67 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ω ρ ε 23 λ ω < 1 ω < 1 ω > 0 24 25 26 27 28 29 30 31 ρ 1 ρ σ b a x x i +3 x i

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

Π Ρ! #! % & #! (! )! + %!!. / 0% # 0 2 3 3 4 7 8 9 Δ5?? 5 9? Κ :5 5 7 < 7 Δ 7 9 :5? / + 0 5 6 6 7 : ; 7 < = >? : Α8 5 > :9 Β 5 Χ : = 8 + ΑΔ? 9 Β Ε 9 = 9? : ; : Α 5 9 7 3 5 > 5 Δ > Β Χ < :? 3 9? 5 Χ 9 Β

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) ! # % & # % ( ) & + + !!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) 6 # / 0 1 + ) ( + 3 0 ( 1 1( ) ) ( 0 ) 4 ( ) 1 1 0 ( ( ) 1 / ) ( 1 ( 0 ) ) + ( ( 0 ) 0 0 ( / / ) ( ( ) ( 5 ( 0 + 0 +

More information

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % #! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )

More information

汽车轻量化技术创新战略联盟

汽车轻量化技术创新战略联盟 汽 车 轻 量 化 技 术 创 新 战 略 联 盟 中 国 汽 车 工 程 学 会 文 件 秘 [2013] 18 号 关 于 召 开 2013 中 国 汽 车 轻 量 化 技 术 国 际 研 讨 会 的 第 二 轮 通 知 各 有 关 单 位 : 一 年 一 度 的 中 国 汽 车 轻 量 化 技 术 研 讨 会 是 了 解 中 国 汽 车 轻 量 化 工 作 进 展 沟 通 信 息 交 流 成

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

More information

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 & ! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information

untitled

untitled 20 1 2010 10 Vol.20 Special 1 The Chinese Journal of Nonferrous Metals Oct. 2010 1004-0609(2010)S1-s0127-05 Ti-6Al-4V 1 2 2 (1. 710016 2., 710049) 500~1 000 20 Ti-6Al-4V(TC4) TC4 800 TC4 800 TC4 TC4 800

More information

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

More information

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

More information

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

More information

( ) (! +)! #! () % + + %, +,!#! # # % + +!

( ) (! +)! #! () % + + %, +,!#! # # % + +! !! # % & & & &! # # % ( ) (! +)! #! () % + + %, +,!#! # # % + +! ! %!!.! /, ()!!# 0 12!# # 0 % 1 ( ) #3 % & & () (, 3)! #% % 4 % + +! (!, ), %, (!!) (! 3 )!, 1 4 ( ) % % + % %!%! # # !)! % &! % () (! %

More information

untitled

untitled MSE200 Lecture 10 (CH. 7.3-7.4) Mechanical Properties II Instructor: Yuntian Zhu Objectives/outcoes: You will learn the following: Crack growth rate during fatigue. Fatigue life of cracked coponents. Stages

More information

T K mm mm Q345B 600 mm 200 mm 50 mm 600 mm 300 mm 50 mm 2 K ~ 0. 3 mm 13 ~ 15 mm Q345B 25

T K mm mm Q345B 600 mm 200 mm 50 mm 600 mm 300 mm 50 mm 2 K ~ 0. 3 mm 13 ~ 15 mm Q345B 25 23 4 2018 8 Vol. 23 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug. 2018 Q345B 1 " 1 2 2 2 1. 150040 2. 200125 Q345B 536. 47 MPa 281 HV Q345B DOI 10. 15938 /j. jhust. 2018. 04. 021 TG444

More information

untitled

untitled 20 1 2010 10 Vol.20 Special 1 The Chinese Journal of Nonferrous Metals Oct. 2010 1004-0609(2010)S1-s0357-08 β-ti30nb13zr0.5fe ( 471039) Ti30Nb13Zr0.5Fe( %) 700 850 10 3 10 s 1 β n Q σ ε ε 1 10 s 1 ε 10

More information

: ; # 7 ( 8 7

: ; # 7 ( 8 7 (! # % & ( ) +,. / +. 0 0 ) 1. 2 3 +4 1/,5,6 )/ ) 7 7 8 9 : ; 7 8 7 # 7 ( 8 7 ; ;! #! % & % ( # ) % + # # #, # % + &! #!. #! # # / 0 ( / / 0! #,. # 0(! #,. # 0!. # 0 0 7 7 < = # ; & % ) (, ) ) ) ) ) )!

More information

Research of numerical simulation of high strength steel welding residual stress and fatigue life By Chen Song

Research of numerical simulation of high strength steel welding residual stress and fatigue life By Chen Song Research of numerical simulation of high strength steel welding residual stress and fatigue life By Chen Song I ABSTRACT They are very necessary and important to carry on the research on the welding residual

More information

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α # % & ( ) # +,. / 0 1 2 /0 1 0 3 4 # 5 7 8 / 9 # & : 9 ; & < 9 = = ;.5 : < 9 98 & : 9 %& : < 9 2. = & : > 7; 9 & # 3 2

More information

untitled

untitled 20 6 2010 6 Vol.20 No.6 The Chinese Journal of Nonferrous Metals June 2010 1004-0609(2010)06-1095-07 7150 ( 100088) OM SEM X DSC 7150 480 475 2 h (475 2 h) + (120 24 h) 650 MPa 600 MPa 13.5% 7150 TG113

More information

untitled

untitled 21 4 2011 4 Vol.21 No.4 The Chinese Journal of Nonferrous Metals Apr. 2011 1004-0609(2011)04-0708-06 Al-4.74Cu-0.50Mg-0.30Ag X 1 1 1 1 2 1 3 (1., 100088 2. 100088 3. 201204) X (SAXS) (TEM) Al-4.74Cu-0.50Mg-0.30Ag

More information

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ ! # % & ( ) % + ( ), & ). % & /. % 0 1!! 2 3 4 5# 6 7 8 3 5 5 9 # 8 3 3 2 4 # 3 # # 3 # 3 # 3 # 3 # # # ( 3 # # 3 5 # # 8 3 6 # # # # # 8 5# :;< 6#! 6 =! 6 > > 3 2?0 1 4 3 4! 6 Α 3 Α 2Η4 3 3 2 4 # # >

More information

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig 40 6 2011 6 Vol.40 No.6 Infrared and Laser Engineering Jun. 2011 808 nm 2000 W 1 1 1 1 2 2 2 2 2 12 (1. 710119 2. 710119) : bar 808 nm bar 100 W 808 nm 20 bar 2 000 W bar LIV bar 808 nm : : TN248.4 TN365

More information

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ ! # % & ( ) +,. / 0 1 + 2. 3 4. 56. / 7 89 8.,6 2 ; # ( ( ; ( ( ( # ? >? % > 64 5 5Α5. Α 8/ 56 5 9. > Β 8. / Χ 8 9 9 5 Δ Ε 5, 9 8 2 3 8 //5 5! Α 8/ 56/ 9. Φ ( < % < ( > < ( %! # ! Β Β? Β ( >?? >?

More information

9 : : ; 7 % 8

9 : : ; 7 % 8 ! 0 4 1 % # % & ( ) # + #, ( ) + ) ( ). / 2 3 %! 5 6 7! 8 6 7 5 9 9 : 6 7 8 : 17 8 7 8 ; 7 % 8 % 8 ; % % 8 7 > : < % % 7! = = = : = 8 > > ; 7 Ε Β Β % 17 7 :! # # %& & ( ) + %&, %& ) # 8. / 0. 1 2 3 4 5

More information

; < 5 6 => 6 % = 5

; < 5 6 => 6 % = 5 ! # % ( ),,. / 0. 1, ) 2 3, 3+ 3 # 4 + % 5 6 67 5 6, 8 8 5 6 5 6 5 6 5 6 5 6 5 9! 7 9 9 6 : 6 ; 7 7 7 < 5 6 => 6 % = 5 Δ 5 6 ; Β ;? # Ε 6 = 6 Α Ε ; ; ; ; Φ Α Α Ε 0 Α Α Α Α Α Α Α Α Α Α Α Α Α Β Α Α Α Α Α

More information

% % %/ + ) &,. ) ) (!

% % %/ + ) &,. ) ) (! ! ( ) + & # % % % %/ + ) &,. ) ) (! 1 2 0 3. 34 0 # & 5 # #% & 6 7 ( ) .)( #. 8!, ) + + < ; & ; & # : 0 9.. 0?. = > /! )( + < 4 +Χ Α # Β 0 Α ) Δ. % ΕΦ 5 1 +. # Ι Κ +,0. Α ϑ. + Ι4 Β Η 5 Γ 1 7 Μ,! 0 1 0

More information

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 :

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 : !! # % & % () + (. / 0 ) 1 233 /. / 4 2 0 2 + + 5. 2 / 6 ) 6. 0 ) 7. 8 1 6 / 2 9 2 :+ ; < 8 10 ; + + ( =0 41 6< / >0 7 0?2) 29 + +.. 81 6> Α 29 +8 Β Χ + Δ Ε /4 10 )+ 2 +. 8 1 6 > 2 9 2 : > 8 / 332 > 2

More information

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9 !! #! % & ( ) +,. / 0 1 2 34 5 6 % & +7 % & 89 % & % & 79 % & : % & < < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ

More information

投影片 1

投影片 1 Coherence ( ) Temporal Coherence Michelson Interferometer Spatial Coherence Young s Interference Spatiotemporal Coherence 參 料 [1] Eugene Hecht, Optics, Addison Wesley Co., New York 2001 [2] W. Lauterborn,

More information

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ ! % & ( ),. / & 0 1 & 2 1 // % & 3 0 4 5 ( 6( ) ( & 7 8 9:! ; < / 4 / 7 = : > : 8 > >? :! 0 1 & 7 8 Α :! 4 Β ( & Β ( ( 5 ) 6 Χ 8 Δ > 8 7:?! < 2 4 & Ε ; 0 Φ & % & 3 0 1 & 7 8 Α?! Γ ), Η % 6 Β% 3 Ι Β ϑ Ι

More information

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe * - - 100084 Q235B ML15 Ca OH 2 DOI 10. 13204 /j. gyjz201508023 STUDY OF GALVANIC CORROSION SENSITIVITY BETWEEN ANY COUPLE OF STUD WELDMENT OR BEAM Lu Xinying Li Yang Li Yuanjin Department of Civil Engineering

More information

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α Ε! # % & ( )%! & & + %!, (./ 0 1 & & 2. 3 &. 4/. %! / (! %2 % ( 5 4 5 ) 2! 6 2! 2 2. / & 7 2! % &. 3.! & (. 2 & & / 8 2. ( % 2 & 2.! 9. %./ 5 : ; 5. % & %2 2 & % 2!! /. . %! & % &? & 5 6!% 2.

More information

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9!

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9! # %!!! ( ) ( +, +. ( / 0 1) ( 21 1) ( 2 3 / 4!! 5 6 7 7! 8 8 9 : ; < 9 = < < :! : = 9 ; < = 8 9 < < = 9 8 : < >? % > % > % 8 5 6 % 9!9 9 : : : 9 Α % 9 Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3

More information

1#

1# ! # % & ( % + #,,. + /# + 0 1#. 2 2 3 4. 2 +! 5 + 6 0 7 #& 5 # 8 % 9 : ; < =# #% > 1?= # = Α 1# Β > Χ50 7 / Δ % # 50& 0 0= % 4 4 ; 2 Ε; %5 Β % &=Φ = % & = # Γ 0 0 Η = # 2 Ι Ι ; 9 Ι 2 2 2 ; 2 ;4 +, ϑ Α5#!

More information

1.0 % 0.25 % 85μm % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song

1.0 % 0.25 % 85μm % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song 1.0 % 0.25 % 85μm 0.97 0.136 % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song Liang 1,2 Wang Xuan-cang 1 1 School of Highway, Chang

More information

6 2016/5/ /6/19 z B (HDM) (CDM) CDM (Λ = 0) (k = +1) Friedmann ( ) dr 2 = Rmax R R 2 (4.1) dθ R(θ) = R max 2 t(θ) = R max 2c (1 cos θ), (4.2) (θ

6 2016/5/ /6/19 z B (HDM) (CDM) CDM (Λ = 0) (k = +1) Friedmann ( ) dr 2 = Rmax R R 2 (4.1) dθ R(θ) = R max 2 t(θ) = R max 2c (1 cos θ), (4.2) (θ 6 206/5/9 206/6/9 z B (HDM) (CDM) CDM (Λ = 0) (k = +) Friedmann ( ) dr 2 = Rmax R R 2 (4.) dθ R(θ) = R max 2 t(θ) = R max 2c ( cos θ), (4.2) (θ sin θ); (4.3) R(θ) θ = 0 θ = π (turn-around time) θ = 2π

More information

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5 0 ( 1 0 % (! # % & ( ) + #,. / / % (! 3 4 5 5 5 3 4,( 7 8 9 /, 9 : 6, 9 5,9 8,9 7 5,9!,9 ; 6 / 9! # %#& 7 8 < 9 & 9 9 : < 5 ( ) 8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, 5 4

More information

スライド 1

スライド 1 2017 X 2017 3 7 1/28 1. 2. 1 XAFS Li 2 X img. 3. 2/28 IEA/ ETP Energy Technology Perspectives 2012 HV PHV 3/28 4/28 HV PHV EV FCV 10000 W/ 8000 6000 4000 2000 15 10 0 20 1000 10 100 1000 10000 Wh/ 5/28

More information

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ;

; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; : ; ! # % & ( ) ( +, +. ( /0!) ( 1!2!) ( 3 4 5 2 4 7 8 9: ; 9 < : = ; ; 54 ; = ; ; 75 ; # ; 9 : ; 9 : ; ; 9: ; ; 9 : ; ; 4 9 : > ; : = ; ; :4 ; : ; 9: ; 9 : 9 : 54 =? = ; ; ; 54 9 9: ; ;

More information

(Microsoft PowerPoint - 07_2_20_SP8\203\217\201[\203N\203V\203\207\203b\203v\217\254\227\321\220\263\230a.ppt)

(Microsoft PowerPoint - 07_2_20_SP8\203\217\201[\203N\203V\203\207\203b\203v\217\254\227\321\220\263\230a.ppt) SPring-8 2007/07/20 < > 3-D 3D http://sp-mac4.pse.tut.ac.jp/ 3D 3D + ( ) 3D ( ) CT voel (tiff) (2000piel 2000piel) 1312slice 8bit = 4.88 Gbte (2000piel 2000piel) 1312slice 16bit = 9.78 Gbte 8 bit =1 bte=

More information

3?! ΑΑΑΑ 7 ) 7 3

3?! ΑΑΑΑ 7 ) 7 3 ! # % & ( ) +, #. / 0 # 1 2 3 / 2 4 5 3! 6 ) 7 ) 7 ) 7 ) 7 )7 8 9 9 :5 ; 6< 3?! ΑΑΑΑ 7 ) 7 3 8! Β Χ! Δ!7 7 7 )!> ; =! > 6 > 7 ) 7 ) 7 )

More information

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9 ! # %& ( %) & +, + % ) # % % )./ 0 12 12 0 3 4 5 ). 12 0 0 61 2 0 7 / 94 3 : ;< = >?? = Α Β Β Β Β. Β. > 9. Δ Δ. Ε % Α % Φ. Β.,,.. Δ : : 9 % Γ >? %? >? Η Ε Α 9 Η = / : 2Ι 2Ι 2Ι 2Ι. 1 ϑ : Κ Λ Μ 9 : Ν Ο 0

More information

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7 ! # % & ( ) +, + )% ). )% / 0 1. 0 3 4 5 6 7 8 7 8 9 : ; < 7 ( % ; =8 9 : ; < ; < > ;, 9 :? 6 ; < 6 5 6 Α Β 5 Δ 5 6 Χ 5 6 5 6 Ε 5 6 Ε 5 5 Β Χ Χ Α Β 7 8 9 Φ 5 6 9 Φ ; < # 9 Φ ; < # 7 8 5 5 < % Γ & (,,,,

More information

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ # % & ( ) +,& ( + &. / 0 1 2 3 ( 4 4 5 4 6 7 8 4 6 5 4 9 :.; 8 0/ ( 6 7 > 5?9 > 56 Α / Β Β 5 Χ 5.Δ5 9 Ε 8 Φ 64 4Γ Β / Α 3 Γ Β > 2 ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν 3 3 3 Α3 3

More information

: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ >

: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ > ! # %& ( +, &. / ( 0 # 1# % & # 2 % & 4 5 67! 8 9 : ; < 8 = > 9? 8 < 9? Α,6 ΒΧ : Δ 8Ε 9 %: ; < ; ; Δ Φ ΓΗ Ιϑ 4 Κ6 : ; < < > : ; : ;!! Β : ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46

More information

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2 ! # % ( % ) +,#./,# 0 1 2 / 1 4 5 6 7 8! 9 9 : ; < 9 9 < ; ?!!#! % ( ) + %,. + ( /, 0, ( 1 ( 2 0% ( ),..# % (., 1 4 % 1,, 1 ), ( 1 5 6 6 # 77 ! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ!

More information

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε (! # # %& ) +,./ 0 & 0 1 2 / & %&( 3! # % & ( ) & +, ), %!,. / 0 1 2. 3 4 5 7 8 9 : 0 2; < 0 => 8?.. >: 7 2 Α 5 Β % Χ7 Δ.Ε8 0Φ2.Γ Φ 5 Η 8 0 Ι 2? : 9 ϑ 7 ϑ0 > 2? 0 7Ε 2?. 0. 2 : Ε 0 9?: 9 Κ. 9 7Λ /.8 720

More information

untitled

untitled 21 5 2011 5 Vol.21 No.5 The Chinese Journal of Nonferrous Metals May 2011 1004-0609(2011)05-0968-07 2A14 1, 1, 2, 1, (1. 410083 2. 410100) 2A14 (CCT ) DSC SEM 2A14 2A14 CCT (TEM) 2A14 505 140~380 38.5

More information

(creep) 500~ ~ 30 MPa 9Cr-1Mo 100 MPa ( ) 9Cr-1Mo Threshold Stress Larson-Miller Manson-Haferd Ω

(creep) 500~ ~ 30 MPa 9Cr-1Mo 100 MPa ( ) 9Cr-1Mo Threshold Stress Larson-Miller Manson-Haferd Ω 9Cr-1Mo 1 2 2 9Cr-1Mo ( ) 9Cr-1Mo Larson-Miller Manson-Haferd MPC Ω 823K 848K 873K 923K Ω 9Cr-1Mo Ω 9Cr-1Mo Larson-Miller Manson-Haferd 9Cr-1Mo Larson-Miller Manson-Haferd Ω 1. 2. 3. (creep) 500~600 15

More information

Microsoft PowerPoint - pmoon_ NYUSH_UG

Microsoft PowerPoint - pmoon_ NYUSH_UG Physics of Moiré Pattern in Atomic Scale Pilkyung Moon New York University Shanghai Physics Solid State Physics Atomic species Periodicity of atoms determine material properties Period of atoms Material

More information

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ; ! #! % & % ( ) ( +, & %. / & % 0 12 / 1 4 5 5! 6 7 8 7 # 8 7 9 6 8 7! 8 7! 8 7 8 7 8 7 8 7 : 8 728 7 8 7 8 7 8 7 8 7 & 8 7 4 8 7 9 # 8 7 9 ; 8 ; 69 7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β

More information

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; =

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; = ! 0 1 # & ( & ) +! &,. & /.#. & 2 3 4 5 6 7 8 9 : 9 ; < = : > < = 9< 4 ; < = 1 9 ; 3; : : ; : ;? < 5 51 ΑΒ Χ Δ Ε 51 Δ!! 1Φ > = Β Γ Η Α ΒΧ Δ Ε 5 11!! Ι ϑ 5 / Γ 5 Κ Δ Ε Γ Δ 4 Φ Δ Λ< 5 Ε 8 Μ9 6 8 7 9 Γ Ν

More information

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified 30 1 2013 1 Journal of Highway and Transportation Research and Development Vol. 30 No. 1 Jan. 2013 doi 10. 3969 /j. issn. 1002-0268. 2013. 01. 004 1 2 2 2 2 1. 400074 2. 400067 240 U416. 217 A 1002-0268

More information

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen 31 2 Vol. 31, No. 2 2013 5 PROGRESS IN ASTRONOMY May., 2013 doi: 10.3969/j.issn.1000-8349.2013.02.08 VLBI 1,2 1 ( 1. 200030 2. 100049 ) VLBI VLBI VLBI VLBI VLBI VLBI P228.6 A 1 (VLBI) 20 60 (ITRF) (EOP)

More information

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin 38 5 216 1 1),2) 163318) 163318). API. TE256 A doi 1.652/1-879-15-298 MODE OF CASING EXTERNA EXTRUSION BASED ON THE PRINCIPE OF VIRTUA WORK 1) ZHAO Wanchun,2) ZENG Jia WANG Tingting FENG Xiaohan School

More information

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ!

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ! !! # %& + ( ) ),., / 0 12 3, 4 5 6, 7 6 6, 8! 1 9 :; #< = 1 > )& )? Α Β 3 % Χ %? 7) >ΔΒ Χ :% Ε? 9 : ; Φ Η Ι & Κ Λ % 7 Μ Ν?) 1!! 9 % Ο Χ Χ Β Π Θ Π ; Ρ Ρ Ρ Ρ Ρ ; . Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )?

More information

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ <

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ < ! # %!! ( (! +,. /0 0 1 2,34 + 5 6 7,3. 7, 8, 2 7 + 1 9 #. 3 : + ; + 5 83 8 % 8 2 ; , 1 1 8 2 =? : + 2 = 2 = Α 1,!. Β 3 + 5 Χ Β Β

More information

9! >: Ε Φ Ε Ε Φ 6 Φ 8! & (, ( ) ( & & 4 %! # +! ; Γ / : ; : < =. ; > = >?.>? < Α. = =.> Β Α > Χ. = > / Δ = 9 5.

9! >: Ε Φ Ε Ε Φ 6 Φ 8! & (, ( ) ( & & 4 %! # +! ; Γ / : ; : < =. ; > = >?.>? < Α. = =.> Β Α > Χ. = > / Δ = 9 5. ! # % & ( # ) & % ( % +, %. +, / #0 & 2 3 4 5 5 6 7 7 8 9 7:5! ; 0< 5 = 8 > 4 4? 754 Α 4 < = Β Χ 3Δ?? 7 8 7 8? 7 8 7 8 7 8 4 5 7 8 7 8 > 4> > 7 8 7 8 7 8 4 : 5 5 : > < 8 6 8 4 5 : 8 4 5 : 9! >: 48 7 8

More information

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip * - 1 1 2 3 1. 100124 2. 100124 3. 210018 - ABAQUS - DOI 10. 13204 /j. gyjz201511033 EXPERIMENTAL STUDY AND THEORETICAL MODEL OF A NEW TYPE OF STEEL-LEAD DAMPING Shen Fei 1 Xue Suduo 1 Peng Lingyun 2 Ye

More information

Φ2,.. + Φ5Β( 31 (+ 4, 2 (+, Η, 8 ( (2 3.,7,Χ,) 3 :9, 4 (. 3 9 (+, 52, 2 (1 7 8 ΙΜ 12 (5 4 5? ), 7, Χ, ) 3 :9, 4( > (+,,3, ( 1 Η 34 3 )7 1 )? 54

Φ2,.. + Φ5Β( 31 (+ 4, 2 (+, Η, 8 ( (2 3.,7,Χ,) 3 :9, 4 (. 3 9 (+, 52, 2 (1 7 8 ΙΜ 12 (5 4 5? ), 7, Χ, ) 3 :9, 4( > (+,,3, ( 1 Η 34 3 )7 1 )? 54 !! # %& ( ) +, ( ),./0 12,2 34 (+,, 52, 2 (67 8 3., 9: ), ; 5, 4, < 5) ( (, 2 (3 3 1 6 4, (+,,3,0 ( < 58 34 3 )7 1 54 5, 2 2 54, +,. 2 ( :5 ( > 4 ( 37 1, ( 3 4 5? 3 1 (, 9 :), ; 5 4 )1 7 4 )3 5( 34 2 Α

More information

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7 ! # % # & ( & ) # +,,., # / 0 1 3. 0. 0/! 14 5! 5 6 6 7 7 7 7 7! 7 7 7 7 7 7 8 9 : 6! ; < ; < ; : 7 7 : 7 < ;1< = = : = >? ) : ; < = > 6 0 0 : ; < ) ; < ; < ; : < ; < = = 7 7 7 Α > : Β ; < ; 6 < > ;:

More information

?.! #! % 66! & () 6 98: +,. / / 0 & & < > = +5 <. ( < Α. 1

?.! #! % 66! & () 6 98: +,. / / 0 & & < > = +5 <. ( < Α. 1 !! # % # & ( & ) # +, #,., # / 0 1. 0 1 3 4 5! 6 7 6 7 67 +18 9 : : : : : : : : : :! : : < : : ?.! #! % 66! & 6 1 1 3 4.5 () 6 98: +,. / / 0 & 0 0 + & 178 5 3 0. = +5

More information

Ε? Φ ) ( % &! # +. 2 ( (,

Ε? Φ ) ( % &! # +. 2 ( (, 0 12 ( 1! # # % & ( ) % ( +, & ). % & /. 4 2! 5 # /6 78 7 7 9 9 / 6 7 7 7 9 9 : 7; 7 ; < =% >9>?!#! Α 2 1 9? Β / 6! #Χ Α 7 5 7 Δ 7 / 6 ; Χ < 7? Ε? Φ ) ( % &! # +. 2 (1 5 5 6 5 6 6 4 0 (, [ Β, Η / Β Γ 7

More information

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. &

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. & !! # % & ( ) +,.% /.0.% 1 2 3 / 5,,3 6 7 6 8 9 6!! : 3 ) ; < < = )> 2?6 8 Α8 > 6 2 Β 3Α9 Α 2 8 Χ Δ < < Ε! ; # < # )Φ 5 Γ Γ 2 96 Η Ι ϑ 0 Β 9 Α 2 8 Β 3 0 Β 9 Β ΦΚ Α 6 8 6 6 Λ 2 5 8 Η Β 9 Α 2 8 2 Μ 6 Ν Α

More information

Probabilities of Default RMI PDs CVI 7-8 KMV 9 KMV KMV KMV 1. KMV KMV DPT DD DD DD DPT Step 1 V E = V A N d 1 - e rt DN d 2 1 d 1 = ln V A

Probabilities of Default RMI PDs CVI 7-8 KMV 9 KMV KMV KMV 1. KMV KMV DPT DD DD DD DPT Step 1 V E = V A N d 1 - e rt DN d 2 1 d 1 = ln V A 2017 2 204 210023 KMV KMV 2008 2015 CVI 2016 9 1 12 31 KMV CVI ARIMA F272. 13 A 1672-6049 2017 02-0071-11 CVI KMV KMV Black Scholes Merton BSM BSM Ozge Gokbayrak Lee Chua KMV 1 Douglas Dwyer Heather Russell

More information

第 23 卷 第 1 期 田 素 贵, 等 : 热 处 理 制 度 对 GH4169G 合 金 微 观 组 织 与 蠕 变 性 能 的 影 响 109 响, 当 δ 相 析 出 量 较 大 时, 将 消 耗 大 量 的 元 素 Nb, 致 使 近 晶 界 区 域 γ 和 γ" 相 贫 化, 降 低

第 23 卷 第 1 期 田 素 贵, 等 : 热 处 理 制 度 对 GH4169G 合 金 微 观 组 织 与 蠕 变 性 能 的 影 响 109 响, 当 δ 相 析 出 量 较 大 时, 将 消 耗 大 量 的 元 素 Nb, 致 使 近 晶 界 区 域 γ 和 γ 相 贫 化, 降 低 第 23 卷 第 1 期 中 国 有 色 金 属 学 报 2013 年 1 月 Vol.23 No.1 The Chinese Journal of Nonferrous Metals Jan. 2013 文 章 编 号 :1004 0609(2013)01 0108 08 热 处 理 制 度 对 GH4169G 合 金 微 观 组 织 与 蠕 变 性 能 的 影 响 田 素 贵 1, 王 欣 1,

More information

% & ( ) +, (

% & ( ) +, ( #! % & ( ) +, ( ) (! ( &!! ( % # 8 6 7 6 5 01234% 0 / /. # ! 6 5 6 ;:< : # 9 0 0 = / / 6 >2 % % 6 ; # ( ##+, + # 5 5%? 0 0 = 0 0 Α 0 Β 65 6 66! % 5 50% 5 5 ΗΙ 5 6 Φ Γ Ε) 5 % Χ Δ 5 55 5% ϑ 0 0 0 Κ,,Λ 5!Α

More information

《分析化学辞典》_数据处理条目_1.DOC

《分析化学辞典》_数据处理条目_1.DOC 3 4 5 6 7 χ χ m.303 B = f log f log C = m f = = m = f m C = + 3( m ) f = f f = m = f f = n n m B χ α χ α,( m ) H µ σ H 0 µ = µ H σ = 0 σ H µ µ H σ σ α H0 H α 0 H0 H0 H H 0 H 0 8 = σ σ σ = ( n ) σ n σ /

More information

%? = Β 2Β 2 2 <Χ Φ Α Γ 7Δ 8 3 Ε & % # %& Η! % & &, &), 1 & % & +&,,. & / 0, & 2 %. % 3 % / % 4 %

%? = Β 2Β 2 2 <Χ Φ Α Γ 7Δ 8 3 Ε & % # %& Η! % & &, &), 1 & % & +&,,. & / 0, & 2 %. % 3 % / % 4 % ! # % # & ) + ),. / 0 1 2 ) 1 2 2 ) 3 4 5 6! 7 8 9&3 78 : & ; =? > > > 7 8 9&3 : = = = Α + =?! %? = Β 2Β 2 2

More information

4 4 4 4 4 4! # % & ( # ) )! ) & +!. # / 0! + 1 & % / 0 2 & #. 3 0 5. 6 7 8 0 4 0 0 # 9 : ; < 9 = >9? Α = Β Χ Δ6 Ε9 8 & 9 : # 7 6 Φ = Γ Η Ι 0 ϑ 9 7 Κ 1 Λ 7 Κ % ΓΗ Δ 9 Η ΕΔ 9 = ;

More information

# #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. /

# #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. / ! ( ) # # % % ( % % %! % % & % # #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. / 12 23 4 5 6 7 3.! (. ( / ( ) ). 1.12 ( 4 4 % & &!7 % (!!!!, (! % !!! % %!,! ( & (!! 8!!!,!!+!! & !!%! & 9 3 3 :;

More information

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P. () * 3 6 6 3 9 4 3 5 8 6 : 3. () ; () ; (3) (); (4) ; ; (5) ; ; (6) ; (7) (); (8) (, ); (9) ; () ; * Email: huangzh@whu.edu.cn . () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) :

More information