國家圖書館典藏電子全文

Similar documents
2

NANO COMMUNICATION 23 No.3 90 CMOS 94/188 GHz CMOS 94/188 GHz A 94/188 GHz Dual-Band VCO with Gm- Boosted Push-Push Pair in 90nm CMOS 90 CMOS 94

D4

Microsoft Word - MWRF_Components.doc

EMI LOOPS FILTERING EMI ferrite noise suppressors

RF & MICROWAVE COMPONENTS

bingdian001.com

(Pattern Recognition) 1 1. CCD

IP TCP/IP PC OS µclinux MPEG4 Blackfin DSP MPEG4 IP UDP Winsock I/O DirectShow Filter DirectShow MPEG4 µclinux TCP/IP IP COM, DirectShow I

CHCN_8-14_K.indd

声 明 本 公 司 及 全 体 董 事 监 事 高 级 管 理 人 员 承 诺 公 开 转 让 说 明 书 不 存 在 虚 假 记 载 误 导 性 陈 述 和 重 大 遗 漏, 并 对 其 真 实 性 准 确 性 完 整 性 承 担 个 别 和 连 带 的 法 律 责 任 本 公 司 负 责 人 和

·sª¾125´Á

IEEE International Symposium on Radio-Frequency Integration Technology CMOS Korea Advanced Institute of Science and Technology, KAIST Neural

Research of numerical simulation of high strength steel welding residual stress and fatigue life By Chen Song

Microsoft Word - Book 1 瑜伽行.doc

致 谢 开 始 这 篇 致 谢 的 时 候, 以 为 这 是 最 轻 松 最 愉 快 的 部 分, 而 此 时 心 头 却 充 满 了 沉 甸 甸 的 回 忆 和 感 恩, 一 时 间 竟 无 从 下 笔 虽 然 这 远 不 是 一 篇 完 美 的 论 文, 但 完 成 这 篇 论 文 要 感 谢

untitled

; 3/2, Buck-Boost, 3 Buck-Boost DC-DC ; Y, Fig. 1 1 BBMC The topology of three phase-three phase BBMC 3 BBMC (Study on the control strategy of

The BIST Scheme for Digital-to Analog converters 1

Microsoft Word - 先玉335 copy.doc

AMP NETCONNECT

iml v C / 4W Down-Light EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the cur

Microsoft PowerPoint - ch2-stallings.ppt

TI 3 TI TABLE 4 RANDBIN Research of Modern Basic Education

LED/Smart TV LED/ Function List Products \ Application Tuner block DSP block / I/O Voice/Aud

HC20131_2010

<4D F736F F F696E74202D20C6F3D2B5BCB0B2FAC6B7BCF2BDE92DD6D0D3A2CEC420C1F5B9FAD3B1205BBCE6C8DDC4A3CABD5D>

iml v C / 0W EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the current flowin

1.招股意向书.doc

iml88-0v C / 8W T Tube EVM - pplication Notes. IC Description The iml88 is a Three Terminal Current Controller (TTCC) for regulating the current flowi

2/80 2

前言

HC50246_2009

1 引言

Microsoft Word - LD5515_5V1.5A-DB-01 Demo Board Manual

1 VLBI VLBI 2 32 MHz 2 Gbps X J VLBI [3] CDAS IVS [4,5] CDAS MHz, 16 MHz, 8 MHz, 4 MHz, 2 MHz [6] CDAS VLBI CDAS 2 CDAS CDAS 5 2

第 31 卷 Vol. 31 总第 122 期!"#$%&' Z[\ ]^ _` a, :b c $ ' X $, C $ b c! >, O 47 2$b c 1 X, 9?, S, 4b c =>01, ; O 47 ' 0 $ 01 #, 04b c

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m +

Notebook & Tablet PC / MLCC Chip-R RF devices Products \ Application Function List

Microsoft PowerPoint - ATF2015.ppt [相容模式]

应用笔记 MF RC500 匹配电路和天线的设计

FI 325P Type FI 212C245XX FI 212C24551 FI 212C FI 212C35568 FI 212P2453 FI 212P2453/ FI212P8928/ FI212P85912 FI 212P89213/ FI 212P8599 FI 212P39

Microsoft PowerPoint - CH 04 Techniques of Circuit Analysis

72 (2001) group waves. Key words: Correlation coefficient for consecutive wave heights, mean run length (1993) (1996) (1998) (1999) (1993) (

untitled

/MPa / kg m - 3 /MPa /MPa 2. 1E ~ 56 ANSYS 6 Hz (a) 一阶垂向弯曲 (b) 一阶侧向弯曲 (c) 一阶扭转 (d) 二阶侧向弯曲 (e) 二阶垂向弯曲 (f) 弯扭组合 2 6 Hz

输电线路智能监测系统通信技术应用研究

IEC A( ) B C D II

教育部九十二學年度大專校院通訊科技專題製作競賽

12 Differential Low-Power 6x6 12 bit multiply 1

PowerPoint Presentation

g 100mv /g 0. 5 ~ 5kHz 1 YSV8116 DASP 1 N 2. 2 [ M] { x } + [ C] { x } + [ K]{ x } = { f t } 1 M C K 3 M C K f t x t 1 [ H( ω )] = - ω 2

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

07-3.indd

Microsoft PowerPoint - STU_EC_Ch08.ppt

System Design and Setup of a Robot to Pass over Steps Abstract In the research, one special type of robots that can pass over steps is designed and se

手册

40 强 度 与 环 境 2010 年 强 烈 的 振 动 和 冲 击 载 荷, 这 就 对 阀 门 管 路 等 部 件 连 接 的 静 密 封 结 构 提 出 了 很 高 的 要 求 某 液 体 火 箭 发 动 机 静 密 封 涉 及 高 压 超 低 温 大 尺 寸 三 个 严 酷 条 件, 具

MHz 10 MHz Mbps 1 C 2(a) 4 GHz MHz 56 Msps 70 MHz 70 MHz 23 MHz 14 MHz 23 MHz 2(b)

實驗八:圓極化波微帶天線設計及量測

热设计网

高频电疗法

MACRO ECONOMY AND MICRO OPERATION 2016 ( 30%~50% ; 1 ) ; : ? 80 : 1993 ; ; ( ) ; 1. ;2014 ( 1 ) ( ) 105

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

The Development of Color Constancy and Calibration System

cm /s c d 1 /40 1 /4 1 / / / /m /Hz /kn / kn m ~

Keysight E5071C ENA 9 khz 4.5/6.5/8.5 GHz 100 khz 4.5/6.5/8.5 GHz T 300 khz 14/20 GHz T

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3

Vol. 36 ( 2016 ) No. 6 J. of Math. (PRC) HS, (, ) :. HS,. HS. : ; HS ; ; Nesterov MR(2010) : 90C05; 65K05 : O221.1 : A : (2016)


Microsoft PowerPoint - Sens-Tech WCNDT [兼容模式]

論文集29-1_前6P.indd

Chroma 61500/ bit / RMS RMS VA ()61500 DSP THD /61508/61507/61609/61608/ (61500 ) Chroma STEP PULSE : LISTLIST 100 AC DC

soturon.dvi

EE Lecture 11 (Wireless Communications Systems)

沒有投影片標題

投影片 1

ii

Microsoft PowerPoint - Aqua-Sim.pptx

m m m ~ mm

國立中山大學學位論文典藏.PDF

LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva

# # #

892213E006146

KUKA W. Polini L. Sorrentino Aized Shirinzadeh 6 7 MF Tech Pitbull Fox Taniq Scorpo Scorpo Compositum Windows KUKA 1 P 1 P 2 KU

McGraw-Hill School Education Group Physics : Principles and Problems G S 24

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

摘 要 張 捷 明 是 台 灣 當 代 重 要 的 客 語 兒 童 文 學 作 家, 他 的 作 品 記 錄 著 客 家 人 的 思 想 文 化 與 觀 念, 也 曾 榮 獲 多 項 文 學 大 獎 的 肯 定, 對 台 灣 這 塊 土 地 上 的 客 家 人 有 著 深 厚 的 情 感 張 氏 於

N1010A FlexDCA 软 件 获 取 安 装 N1010A FlexDCA 是 安 捷 伦 采 样 示 波 器 新 的 GUI 应 用 软 件, 在 86100D 主 机 内 已 经 预 先 安 装 此 软 件 我 们 有 2 个 免 费 版 本 的 软 件 可 以 通 过 下 面 连 接

y 1 = 槡 P 1 1h T 1 1f 1 s 1 + 槡 P 1 2g T 1 2 interference 2f 2 s y 2 = 槡 P 2 2h T 2 2f 2 s 2 + 槡 P 2 1g T 2 1 interference 1f 1 s + n n

<4D F736F F D20C9CFBAA3BFC6BCBCB4F3D1A7D0C5CFA2D1A7D4BA C4EAC7EFBCBEC8EBD1A7B2A9CABFD7CAB8F1BFBCCAD4CAB5CAA9CFB8D4F22D C8B7B6A8B8E5>

Microsoft Word 谢雯雯.doc

Microsoft Word tb 何颖


第一章

Microsoft PowerPoint - Ch5 The Bipolar Junction Transistor


Mechanical Science and Technology for Aerospace Engineering October Vol No. 10 Web SaaS B /S Web2. 0 Web2. 0 TP315 A

(p.29). (a) F Qq r 2 ()() N (b) Q 2 r 2 F ( 2 )() Q 0 5 C 2. (a) F (b) F 3. 7 (p.42). (a) T (b) F (c) T 2. (a) A (b) (c) 4. (a) 4 (b) (

2 193 EMAT F a λ 1 a λ 1 /2 EMAT 8 9 EMAT H = J C 1 B = μh EMAT E = - B 3 t J = γe F = J B + B S 5 H J C B μ EMAT E EMAT EMAT γ J ANSYS B

Transcription:

:.4GHz ISM Design of.4 GHz Planar Filters for ISM Band : : 86059 :

Series IV Sonnet FR 4

Abstract By means of the Step Impedance Resonator and Two Step Impedance Filters architecture, two central frequency with.4 GHz, higher and lower than the passband which finally has two transmission zero poles Step Impedance Flat Filter could be carried out, as I describe in this dissertation. This thesis includes two points, one for circuit designation, and the other is experiments. According to the structure of filter, the input admittance matrix of the filter is obtained with the advantage of network analyses and linear algebraic techniques. The matrix enables us to establish an equivalent circuit model of a step impedance filter. Based on the filter theory, the types of the capacitor and inductor coupling are calculated to derive a prototype bandpass filter. Finally, making the equivalent circuits and filter prototypes matched, six step impedance filters could be designed, and simulated each filter with Series IV and Sonnet program for their frequency response. As concerns about the experiments, a microstrip step impedance filter with couple lines is made on an FR4 double-sided circuit board. The frequency response of the filter is measured. Regardless of the possible experimental errors, the measurement approximately has the same result as the simulation. This experiment provided the equivalent circuit model of a step impedance filter and filter design procedures are correctly in proposed. 3

4

...3 4 5...7 0......3 5.4 5 7. 7. 0.3 S domain.. 7...34 3. 34 5

3...34 3.3..38..84 4....... 84 4..84 4.3.88 4.4 Type A.90 4.5 Type D.95.99 00 6

- 4 - (a).9 (b) 9-0 -3 One port...3-4 π....4-5 S domain..5-6 Low pass to band pass transformation...8-7 S domain 9 (a) 9 (b) 9-8 open stub short stub.30-9 3 (a).3 (b) 3 3-36 3-37 3-3 Type A..43 3-4 Type A..46 7

3-5 Type A Strip line.. 48 3-6 Type A..50 3-7 (a) Type A Microstrip line...5 (b) Type A 5 3-8 Type A Sonnet..54 3-9 Sonnet Type A.55 3-0 Type B.59 3- Type B.60 3- Type C.6 3-3 Type C.64 3-4 Type C Strip line.65 3-5 Type D.7 3-6 Type D.73 3-7.74 3-8 Sonnet Type D 75 3-9 Type E II..79 3-0 Type E..79 3- Type F..8 3- Type F strip line..83 4- (a) Type A.86 (b) Type D...86 8

4- TRL 89 4-3...90 4-4 Type A...9 4-5 Type A (a) S (b) S..93 4-6 Type A (a) S (b) S..94 4-7 Type D..95 4-8 Type D (a) S (b) S..97 4-9 Type D (a) S (b) S..98 9

-...3-7 - 3 3-39 3- Type A..4 3-3 Type A even mode odd mode...47 3-4 Type A Strip line.. 47 3-5 Type A...50 3-6 Type A...5 3-7 Type B...58 3-8 Type B even mode odd mode..6 3-9 (a) Type C.. 63 3-9 (b) Type C even mode odd mode....63 3-9 (c) Type C Strip line..... 65 3-9 (d) Type C Microstrip line...66 3-0 (a) Type D..70 3-0 (b) Type D even mode odd mode...70 3-0 (c) Type D Strip line.70 3-0 (d) Type D Microstrip line..7 0

3- Type E.78 3- Type E even mode odd mode..78 3-3 (a) Type F even mode odd mode..8 3-3 (b) Type F Strip line..8 4- (a) Type A Sonnet.....87 4- (b) Type D Sonnet.....88

- Wireless LAN Personal communication system Mobil satellite communication system Radio frequency, RF IC [ ] - (-) [3] 90 Zobel

Image parameter method [4 5] 950 Darlington Insertion loss method [6 7] passband stopband Dielectric resonator, DR [8 9] DR RF - IC DR Multi-layer ceramic, MLC [0 ] Step impedance resonator, SIR [-5] 3

: Receiver Image frequency Transmission zero (-) (Microstrip Line) Step impedance planar filter - 50Ω 50Ω 4

-3 Y-Matrix Lump element Prototype Series IV Sonnet -4 5

[6,7] 6

- (stepped impedance resonators)[] 979 M. Maktmoto S. Yamashita insertion loss spurious response -(a) Z Z l l l l +l Impedance ratio K Z K = tan βl tan β l (-) Z -(a) (-) open stub resonator β = β = β = phase constant (-) tanθ (tanθ T K = (-3) + tanθ T tanθ tanθ ) where θ i 7

θ T = θ + θ (-4) θ = θ = tan K θ T -(b) θ θ K T 8

Inner conductor Z Z l l Outer conductor l -(a) θ T =θ +θ Z Z K=Z /Z θ θ 50 0.0 6.0 0 4.0 θ T 90 0.6.0.0 60 0.4 0. 30 K=0. 0 30 60 90 θ -(b) 9

- - a a l Yup b l 50Ω 50Ω Ydown c l d l - - TEM Transverse Electromagnetic Wave 0

[] Step - [Y up ] [Y down ] a b c d l 50Ω : a b { } [ Y ] [ Y ] a b [ ] = S [ I ] + S [ Y ][ Y ] up ( ) Y + (-5) d c { } [ Y ] [ Y ] d c [ ] = S [ I ] + S [ Y ][ Y ] down ( ) Y + (-6) [ Y ] = [ Y ] + [ Y ] total up down a b { } [ Y ] [ Y ] d c d c { I + S Y Y } [ Y ] [ Y ] a b = [ I ] + S [ Y ][ Y ] ( ) S + + [ ] [ ][ ] ( ) S + (-7) S = j tan( βl) l [Y a ] [Y b ] [Y c ] [Y d ] a b c d characteristic Y-Matrix Step

(-7) [ ] [ ] [ ] down up total Y Y Y + = = ( ) ( ) [ ] ( ) ( ) [ ] O S S S S O S S S S c d c d b a b a c d c d b a b a + + + + + + + + + + + λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ (- 8) od d ed d oc c ec c ob b eb b oa a ea a Y Y Y Y Y Y Y Y = = = = = = = = λ λ λ λ λ λ λ λ (-9) [ ] = O (-0) [ ] = O (-) Step 3 (a). one port -3 ( ) ( ) ( ) ( )... t Y t Y t Y t Y 3 + + + =, t=jω -

- Y n K K = t t o i ( t) + K t +... i= t + + ωi -3 K o L o L o t Lo = H -4 Ko K t C C C = K F -5 t K t i + ω i Ki C i = F, L H i = -6 ω K i Y (t) Y (t) Y 3 (t) i Y(t) -3 One port 3

4 (b). [Y total ] -8 π -4 [Y total ] [ ] = Y Y Y Y Y total -7 Y =Y Y =Y ( ) ( ) ( ) S Y, S Y S Y + ( ) ( ) ( ) ( ) ( ) + + + + + + + + + + + = c d c d b a b a c d c d b a b a S S S S S S S S S Y λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ (-8) ( ) ( ) ( ) ( ) + + + + + = + c d c d b a b a S S S S S Y S Y λ λ λ λ λ λ λ λ -9-4 π -Y Y +Y Y +Y

Step 3 (a) (-8) (-9) : SC SC SC SC + S LC + S LC + S L3C3 + S L4C 3 4 Y ( S ) = + + + (-0) 4 SC SC + S L5C5 + S L6C 5 6 Y ( S) + Y ( S) = + (-) 6 (-9) (-8) (-9) (-0) (-) S domain -5 L C L 3 C 3 L C L 4 C 4 L 5 L 6 L 5 L 6 C5 C6 C5 C6-5 S domain 5

Y Y L + Y + Y ea eb =, C = ( Yea Y ) - ( ) eb ea eb Y Y L + ed ec =, C = ( Y ) ed Y -3 ( Y + Y ) ec ed ec Y Y L + oa ob =, C3 = ( Yoa Y ) -4 ( Y + Y ) 3 ob oa ob Y Y L + od oc =, C4 = ( Yod Y ) -5 ( Y + Y ) 4 oc od oc Y Y L + ea eb =, C5 = ( Yea Y ) -6 ( Y + Y ) 5 eb ea eb Y Y L + ed ec =, C6 = ( Yed Y ) (-7) ( Y + Y ) 6 ec ed ec (-) (-7) L,,,,, -3 L,, 4, 4, 6, 6 short stub open stub 6

-3 S domain - Chebyshev N f O.445GHz 83MHz passband f BL f BH.4GHz.483GHz passband ripple 0.dB passband VSWR.36 83 MHz - Normalized Chebyshev lowpass prototype -6 Normalized Chebyshev lowpass prototype 7

g i Li Ci g j L j C j -6 Lowpass to bandpass transformation J inverter K inverter J inverter J inverter S domain -7 a b -7 a J inverter -7 b J inverter -7 frequency domain open stub short stub -8 a b 8

J C L PC C PC L PC C PC (a) J L L PL C PL L PL C PL (b) -7 S domain 9

ZC ZLPC ZC PC ZLPC ZC PC (a) ZL ZL PL ZCPL ZL PL ZC PL (b) -8 open stub short stub 30

-8 open stub short stub - - -8 Series IV -9-9 a b -8 a b S S GHz insertion loss return loss db - : 3

S IL,RL (db) S (a) -9 3

IL,RL (db) S S (b) -9 33

3-3- 3-3 3-3- frequency domain Type A Type F Type A Type C J inverter Type D Type F J inverter 3-3- a b 3- I L 5 C 5 L 6 C 6 I UP I DN I UP -3 I DN 34

II L C L 3 C 3 L C L 4 C 4 II UP II DN II UP -3 II DN 3- a I L PC C PC II C 3- b I L PL C PL II L frequency domain passband 3-3-(a),(b) I passband II 35

L C L 3 C 3 II UP L C L4 II DN C4 L 5 L 6 II L 5 L 6 C 5 C 6 C 5 C 6 I UP I DN I I UP I DN 3-36

C I L PC C PC II L PC C PC (a) L I L PL C PL II L PL C PL (b) 3-37

3-3 Step 3-3- 3- Series IV Step Step (-) (-7) even mode odd mode Step 3 Step even mode odd mode Series IV (S,S ) Step even mode odd mode Step 4 (Z e >Z o ) Step even mode odd mode 38

Strip Line Microstrip Line (W) (S) (L) (3-) : 3- Step 5 Step 4 (W) (S) (L) Series IV Step Coupled microstrip (W) (S) (L) Quasi-TEM even mode odd mode Coupled microstrip Step 6 Step 5 (W) (S) (L) 39

Series IV (W) (S) (L) Sonnet Type A Type F Type A Type C Type D Type F : Type A Type B Type C Type D Type E Type F II f <f 3 f >f3 f >f 3 f <f 3 f >f 3 f >f 3 f >f 4 f <f4 f <f 4 f >f 4 f <f 4 f <f 4 f L C L 5 C 5 f L C L 6 C 6 f 3 L 3 C 3 f 4 L 4 C 4 40

3-3. Type A Type A 3- I ZL 5 ZC 5 ZL 6 ZC 6 II ZL ZC ZL ZC ZL 3 ZC 3 ZL 4 ZC 4 3-(a) Type A I I 3-3 a I passband C PC L PC f P =.5GHz f O =.445GHz Type A L 5 C 5 f=f P L 5 C 5 f =.09GHz f O L 6 C 6 f=f P L 6 C 6 f =3.08GHz f O L 5 C 5 L 6 C 6 f=f P Type A II II 3-3 b Type A L =-L 5 C =(-/)C 5 3-3(a) f L =-L 6 C =(-/)C 6 3-3(a) f even mode L 3 C 3 f 3 =.GHz L 4 C 4 f 4 =.85GHz odd mode f 3 >f II up passband II passband Type A L 4 C 4 f 4 f II DN passband II DN passband 4

( ) II UP passband ( ) Type A II II passband ( ) II UP II DN Type A II passband f 3 f LA =.0 GHz f f LB =.7 GHz f LA L 3 C 3 L C Type A passband f LA f LB Type A 3- I II 3-4(a) Series IV 3-4(b) ZL ZC ZL ZC ZL 3 ZC 3 ZL 4 ZC 4 ZL 5 ZC 5 ZL 6 ZC 6 Type A Filter -04-4 -50-30 94 5 5 5 5 5 3- Type A 4

Type A I Prototype I Im[Y] Type A f 0 =.44GHz Prototype f=.09ghz fp=.5ghz f=3.08ghz 3-3(a) Type A I 43

Type A II Prototype II Im[Y] Prototype Type A f f 3 f 0 f 4 f fla=.0ghz flb=.7ghz 3-3(b) Type A II 44

3-4 Type A S S insertion loss return loss db 3-4 Type A low side f LA =.03GHz f LB =.7GHz Type A Rx insertion loss rejection Type A 3- Type A (-) (-7) Type A a b c d even mode odd mode even mode odd mode Z ea Z oa Z eb Z ob Z ec Z oc Z ed Z od 3-3 Series IV Linecalc Strip line Type A 3-4 3-4 Series IV Type A 3-5 insertion loss return loss 3-4 stripline 45

Type A IL,RL (db) S S f LA =.0GHz f LB =.7GHz 3-4 Type A 46

3-3 Type A even mode odd mode 3-4 Type A Strip line 47

Type A Strip line IL,RL (db) S S 3-5 Type A Strip line 48

strip line FR 4 Microstrip line Type A 3-3 Type A even mode odd mode Linecalc Type A 3-5 Series IV Type A 3-6 insertion loss return loss type A f LA f LB S S -0dB Quasi-TEM even mode odd mode 3-5 passband Type A a b c d b c 3-6 Type A 3-7(a) Type A 3-7(a) even mode odd mode 3-7(a) Series IV 3-7(b) 3-7(b) 49

IL,RL (db) S S 3-6 Type A 50

3-7(a) Type A Microstrip line 5

IL,RL (db) S S Ideal 3-7(b) Type A 5

3-6 Sonnet Type A Sonnet 3-8 800mil 900mil S S 3-9 (a) insertion loss return loss Type A.445GHz 00MHz VSWR.38 -.445GHz 83MHz VSWR.36 Series IV f LA 0MHz 3-9(a) Type A S S Conductor loss Dielectric loss 3-9(b) type A S S.4GHz loss 3dB.445GHz loss 0.9dB.5GHz loss.6db 3-9 c type A S S.4GHz loss 6.dB.445GHz loss 3.8dB.5GHz loss 5dB 3-9 d type A S S.4GHz loss 8dB.445GHz loss 4.6dB.5GHz loss 5.8dB 3-9 a 3-9 d 70% 30% passband loss group delay passband loss group delay 53

800mil 900mil 3-8 54

IL,RL (db) S SeriesIV S Sonnet (a) IL,RL (db) S S (b) 3-9 Sonnet Type A 55

IL,RL (db) S S (c) IL,RL (db) S S (d) 3-9 Sonnet Type A 56

3-3. Type B Type B Type B I I 3-3. Type A I 3-0 a Type B I I Type B II II 3-0 b Type B L =-L 5 C =(-/)C 5 3-0(a) f L =-L 6 C =(-/)C 6 3-0(a) f even mode L 3 C 3 f 3 L 4 C 4 f 4 odd mode f 3 <f II UP passband II passband f o Type B L 4 C 4 f 4 f II DN passband II DN passband ( ) passband ( ) Type B II II passband ( ) II UP II DN Type B II passband f f H f 3 f L f L L C L 3 C 3 II UP 57

Type B passband f L f H Type B 3-7 I II Series IV 3- ZL ZC ZL ZC ZL 3 ZC 3 ZL 4 ZC 4 ZL 5 ZC 5 ZL 6 ZC 6 Type B Filter -04-4 -50-30 38 9 46 8 5 5 5 3-7 Type B 3- Type B S S insertion loss return loss db 3- Type B f L =.7GHz f H =.9GHz Type B image rejection 58

Im[Y] Type B f 0 Prototype f f p f (a) I Im[Y] Type B Prototype f L f H f 3 f f 0 f f 4 (b) II 3-0 Type B 59

IL,RL (db) S S f L f H 3- Type B Type B Type A Type B even mode odd mode 3-8 even mode odd mode 3-8 a b even mode odd mode Type C a b even mode odd mode 60

3-8 Type B even mode odd mode 3-3.3 Type C Type C Type C I I 3-3. Type A I 3- a Type C I I Type C II II Type B a b even mode odd mode ZL 3 ZC 3 Z ea Z oa Z eb Z ob 3- b Type B f L ZL 3 ZC 3 f 3 Type B f 3 f L L C L 3 C 3 f 3 f L Type B Type C passband f H 6

Im[Y] Type C f 0 Prototype f f (a) I Im[Y] Type C Prototype f 3 f 0 f H f f f 4 (b) II 3- Type C 6

Type C 3-9(a) I II Series IV 3-3 3-3 Type C S S insertion loss return loss db 3-3 Type C high side f H =.9GHz Type C Type A Type C even mode odd mode 3-9(b) 3-9(b) a b even mode odd mode Type B ZL ZC ZL ZC ZL 3 ZC 3 ZL 4 ZC 4 ZL 5 ZC 5 ZL 6 ZC 6 Type C Filter -04-4 -50-30 9 4 46 8 5 5 5 3-9(a) Type C 3-9(b) Type C even mode odd mode 63

IL,RL (db) S S f H =.9GHz 3-3 Type C Type C even mode odd mode Series IV Linecalc Strip line Type C 3-9(c) Series IV Type C 3-4 insertion loss return loss 3-3 Type C 64

3-9(c) Type C Strip line IL,RL (db) S S 3-4 Type C Strip line 65

FR 4 Microstrip line Type C 3-9(b) Type C even mode odd mode Linecalc Type C 3-9(d) 3-9(d) Type C Microstrip line 3-9(c) 3-9(d) a a even mode odd mode 66

3-3.4 Type D Type D Type I I 3-5 a I passband C PC L PC f P f O Type D L 5 C 5 f=f P L 5 C 5 f f O L 6 C 6 f=f P L 6 C 6 f f O L 5 C 5 L 6 C 6 f=f P Type D II II 3-5 b Type D f 3 >f II UP passband II passband Type D L 4 C 4 f 4 L C f II DN passband II DN passband ( ) II UP passband ( ) Type D II II passband ( ) II UP II DN Type D II passband f 4 f HA =.65 GHz f f HB =.98 GHz f HB L 4 C 4 L C 67

Type D passband f HA f HB Type D 3-0(a) I II Series IV 3-6 3-6 Type D insertion loss return loss db 3-6 Type D high side f HA =.65GHz f HB =.98GHz Type D Tx Type D Type A Type D even mode odd mode 3-0(b) Type D Strip line 3-0(c) Type D FR 4 Microstrip line 3-0(d) 3-0(d) Type D b c Sonnet Type D Sonnet 3-7 S 68

S 3-8 (a) insertion loss return loss Type D.445GHz 00MHz VSWR.38 -.445GHz 83MHz VSWR.36 f HA =.6GHz f HB =3.4GHz 3-6 Type D f HA =.65GHz f HB =.98GHz 3-8(a) f HB 3-6 f HB 40MHz b c Type D 3-8(a) Type D S S Conductor loss Dielectric loss 3-8(b) Type D S S.4GHz loss 3.dB.445GHz loss 0.8dB.5GHz loss 3.8dB 3-8 c Type D S S.4GHz loss 5.4dB.445GHz loss 4.0dB.5GHz loss 7.0dB 3-8 d Type D S S.4GHz loss 8dB.445GHz loss 5.5dB.5GHz loss 8.46dB 3-8 a 3-8 d 70% 30% 69

ZL ZC ZL ZC ZL 3 ZC 3 ZL 4 ZC 4 ZL 5 ZC 5 ZL 6 ZC 6 Type D Filter -6-4 -74-36 9 69 33 58 37 8 3-0(a) Type D 3-0(b) Type D even mode odd mode 3-0(c) Type D Strip line 70

7

Im[Y] Type D Prototype f f p f 0 f (a) I Im[Y] Type D f f 3 f 0 f L f H f4 f Prototype (b) II 3-5 Type D 7

IL,RL (db) S S f HA f HB 3-6 Type D 73

3-7 74

IL,RL (db) S S f HA f HB IL,RL (db) (a) S S (b) 3-8 Sonnet Type D 75

IL,RL (db) S S (c) IL,RL (db) S S (d) 3-8 Sonnet Type D 76

3-3.5 Type E Type E Type D I I 3-3.4 Type D I Type E II II 3-9 L 3 C 3 f 3 L C f II UP passband II passband Type D C 4 f 4 L C f II DN passband II DN passband ( ) II UP passband ( ) Type E II II passband ( ) II UP II DN Type E f 0 f f L f 4 f H f H f H f H L C L 4 C 4 Type E passband f H f H passband f L L 4 Type E 3- I II Series IV 77

3-0 3-0 Type E S S insertion loss return loss db 3-0 Type E f L =.GHz f H =.85 GHz f H =3.45GHz Type E Type A Type E even mode odd mode 3- even mode odd mode 3- c d even mode odd mode Type F c d even mode odd mode ZL ZC ZL ZC ZL 3 ZC 3 ZL 4 ZC 4 ZL 5 ZC 5 ZL 6 ZC 6 Type A Filter -6-4 -74-36 80 6 88 43 58 37 8 3- Type E 78 3- Type E even mode odd mode

Im[Y] Type E f L f 0 f f 4 f 3 f f H f H Prototyp 3-9 Type E II IL,RL (db) S S fl f H f H 3-0 Type E 79

3-3.6 Type F Type F Type C Type E c d even mode odd mode even mode odd mode Type E passband 3- Type F insertion loss return loss f L Type F Type A Type F even mode odd mode 3-3(a) 3-3(a) c d even mode odd mode Type F Strip line 3-3(b) 3-3(b) Series IV Type F 3- insertion loss return loss 3- Type F Type A Type D 80

3-3(a) Type F even mode odd mode 3-3(b) Type F Strip line 8

IL,RL (db) S S f L 3- Type F 8

IL,RL (db) S S 3- Type F 83

4- Type A Type D Type D.. Protel Type A Type D 84

3. 4. 5. FR 4 90 0 8~0 6. 7. Type A Type D Type D 85

4-(a) Type A 4-(b) Type D 86

Type A Type A Sonnet 4-(a) Type A Sonnet Type A a mil b c mil 0.5mil d 0.3mil mil 87

Type D Type D Sonnet 4-(b) Type D Sonnet Type D a.4mil b c mil.4mil d mil.3mil 4-3 88

HP879D Calibration TRL Through Reflection Line TRL 4-.4GHz 50 55 mil Through l 55mil 50 Reflection l /4.4GHz /4 655 mil Line l/4 /4.4GHz Line S 90 Through l l Reflection λ/4 l Line l+λ/4 4- TRL 4-3 TRL Through 89

Cable Wiltron 3680-0 Type A Cable 4-3 4-4 Type A 4-4 HP879D Type A S S insertion loss return loss Type A passband.395ghz.49ghz.44ghz f O =.445GHz BW=83MHz 90

MHz BW 4% Type A insertion loss passband 6.8dB 5.3dB 4.9dB low side.05ghz.48ghz passband VSWR.68 IL,RL (db) S S.48GHz.05GHz f LA f LB 4-4 Type A 4-5 a b Type A S 9

S Type A loss Sonnet 4-5 a Type A S 3dB 4-5 b Type A f LA =.05GHz f LB =.48GHz f LA =.03GHz f LB =.65GHz MHz 7MHz 4- Type A 4-(a) Sonnet 4-6 4-6 a b 4-6 a S 4-6 b Type A 9

db (a) S db MHz 7MHz (b) S 4-5 Type A (a) S (b) S 93

db (a) S db (b) S 4-6 Type A (a) S (b) S 94

4-5 Type D 4-7 HP879D Type D S S insertion loss return loss Type D passband.4ghz.49ghz.445ghz f 0 =.445GHz BW=83MHz 3MHz BW 0.8% Type D insertion loss passband 6.4dB 7.5dB 5.dB high side.68ghz 3.8GHz passband VSWR. IL,RL (db) S S 4-7 Type D 95

4-8 a b Type D S S Type D loss Sonnet 4-8 a Type D S 3dB 4-8 b Type D f HA =.68GHz f HB =3.8GHz f HA =.6GHz f HB =3.4GHz 60MHz 58MHz Type A 4- Type D 4-(b) Sonnet 4-9 4-9 a b 4-9 a S 4-9 b 35MHz 8MHz Type D 96

db (a) S db f HA f HA 58MHz 60MHz f HB f HB (b) S 4-8 Type D (a) S (b) S 97

db (a) S db 35MHz 8MHz (b) S 4-9 Type D (a) S (b) S 98

Type A Type D FR 4 Type A Type D Type A insertion loss 4.9dB Type D insertion loss 5.dB cm 3cm () () (3) LTCC 99

[], Basic Theory and Design of Microwave Filter,, [],,,,pp.-08,. [3],, [4] D. M. Pozar, Microwave Engineering Addision-Wesley Publishing Company Inc., U.S.A., 990. [5] R. E. Collin, Foundations for Microwave Engineering ed McGRAW-HILL Inc., New York, 99. [6] A. S. Sedra, and P. O. Brackett, Filter Theory and Design Active and Passive Matrix Publishers Inc., 978. [7] J. Helszajn, Microwave Planar Passive Circuit and Filters Wiley Inc., 994. [8] T. Nishikawa, RF Front End Circuit Components Miniaturized Using Dielectric Resonators for Cellular Portable Telephone, IEICE Trans., Vol. E74, No.6, pp.556-56, Jun. 99. [9] S. B. Cohn, Microwave Bandpass Filters Containing High-Q Dielectric Resonators, IEEE Trans. Microwave Theory Tech., Vol. MTT-6, No.4, pp.8-7, Apr. 968. [0] T. Ishizaki, M. Fujita, H. Kagata, T. Uwano, and H. Miyake, A Very Small Dielectric Planar Filter for Protable Telephones, 993 IEEE MTT-S Digist., H-, pp.77-80, 993. [] H. Miyke, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, A Miniaturized Monolithic Dual Band Filter Using Ceramic Lamination 00

Technique for Dual Mode Portable Telephones, 997 IEEE MTT-S Digist., pp.789-79, 997. [] M. Makimoto, and S. Yamashita, Compact Bandpass Filter Using Stepped Impedance Resonators, Proc. IEEE., Vol.67, No. pp.6-9, Jan.979. [3] G. Dacheng, A Compact Step Impedance Stripline Bandpass Filter, 99 IEEE International Conference on Circuits and Systems., pp.960-963, Jun. 99. [4] T. Ishizaki, and T. Tomoki, A Stepped Impedance Comb-Line Filter Fabricated by Using Ceramic Lamination Technique, 994 IEEE MTT-S Digist., WEC-4, pp.67-60, 994. [5] H. C. Chang, C. C. Yeh, W. C. Ku, and K. C. Tao, A Multilayer Bandpass Filer Integrated into RF Module Board, 996 IEEE MTT-S Digist., WEC-4, pp.69-6, 996. [6] G. F. Engen, and C. A. Hoer, Thru-Reflect-Line An Improved Technique for Calibrating the Dual Six-Port Automatic Network Anajyzer, IEEE Trans. Microwave Theory Tech., Vol. MTT-7, NO., pp.987-993, Dec. 979. [7] Hewlett-Packard Product Note 850-8A, Applying the HP 850 TRL Calibration for Non-Coaxial Measurements, 0