untitled

Similar documents
* CUSUM EWMA PCA TS79 A DOI /j. issn X Incipient Fault Detection in Papermaking Wa

Stochastic Processes (XI) Hanjun Zhang School of Mathematics and Computational Science, Xiangtan University 508 YiFu Lou talk 06/

Time Estimation of Occurrence of Diabetes-Related Cardiovascular Complications by Ching-Yuan Hu A thesis submitted in partial fulfillment of the requi

1 GIS 95 Y = F y + (1 F) (1) 0 0 Y0 kg/hm 2 /day F y 0 y c kg/hm 2 /day [12] y m 20 kg/hm 2 /hour Y = cl cn ch G [ F( y ) T m yo + (2) (1 F)(

闲 旅 游 现 已 成 为 城 市 居 民 日 常 生 活 的 重 要 部 分 袁 它 的 出 现 标 志 着 现 代 社 会 文 明 的 进 步 遥 据 国 外 学 者 预 测 袁 2015 年 左 右 袁 发 达 国 家 将 陆 续 进 入 野 休 闲 时 代 冶 袁 发 展 中 国 家 也 将

Oates U

Microsoft Word - 33-p skyd8.doc

Welch & Bishop, [Kalman60] [Maybeck79] [Sorenson70] [Gelb74, Grewal93, Maybeck79, Lewis86, Brown92, Jacobs93] x R n x k = Ax k 1 + Bu k 1 + w

,

普通高等学校本科专业设置管理规定

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

IP TCP/IP PC OS µclinux MPEG4 Blackfin DSP MPEG4 IP UDP Winsock I/O DirectShow Filter DirectShow MPEG4 µclinux TCP/IP IP COM, DirectShow I

,,,,,,,,,, ; (),,,,,,,, 1862,1864 8,,() () () () () () (), :,,,,,,,,,,,,,,,, 95 %,, 1.,,, 20 (1838 ) (1873 ), ( )


第16卷 第2期 邯郸学院学报 年6月

%

168 健 等 木醋对几种小浆果扦插繁殖的影响 第1期 the view of the comprehensive rooting quality, spraying wood vinegar can change rooting situation, and the optimal concent

Process Data flow Data store External entity 6-10 Context diagram Level 0 diagram Level 1 diagram Level 2 diagram

全文6-1陳文獻.doc

[1] Liu Hongwei,2013, Study on Comprehensive Evaluation of Iron and Steel Enterprises Production System s Basic Capacities, International Asia Confere

Microsoft Word - 林文晟3.doc

Microsoft Word - 24.doc


~ ~ ~ ~ ~ ~ ~ % % ~ 20% 50% ~ 60%

動 由 93 年 舉 辦 2 萬 4,702 場 次, 增 加 至 100 年 舉 辦 場 次 已 達 5 萬 9,300 場, 成 長 約 140%; 參 與 各 類 藝 文 活 動 人 數 亦 由 93 年 有 9,581 萬 9,000 人 次, 增 加 至 100 年 達 2 億 63 萬

(Pattern Recognition) 1 1. CCD

Shanghai International Studies University THE STUDY AND PRACTICE OF SITUATIONAL LANGUAGE TEACHING OF ADVERB AT BEGINNING AND INTERMEDIATE LEVEL A Thes

标题

:,,,, ;,,,,, Becker Tomes(1986), ( ), ( ),, ;,,,, , (CNHS) , ( ),CHNS,, CHNS :CHNS,, 30 %, 30 %, 30 % (1992),


Microsoft Word - Probability.doc

6張謇教育思想之研究.doc

892213E006146

Microsoft Word 張嘉玲-_76-83_

标题


Microsoft Word tb 赵宏宇s-高校教改纵横.doc

% % 34

,, :, ;,,?, : (1), ; (2),,,, ; (3),,, :,;; ;,,,,(Markowitz,1952) 1959 (,,2000),,, 20 60, ( Evans and Archer,1968) ,,,

Microsoft Word - 建構企業訓練之課程發展模式.doc

ZUBAN.dvi

UDC Empirical Researches on Pricing of Corporate Bonds with Macro Factors 厦门大学博硕士论文摘要库

穨1-林聖欽.doc

May Arab World Studies No

1

2004年臺灣人口學會年會應徵論文摘要

Centre link Ernst Hass integration

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m +

课题调查对象:

IPCC CO (IPCC2006) 1 : = ( 1) 1 (kj/kg) (kgc/gj) (tc/t)

untitled

: p = i p i 21, 1991,,,, M 0 M 1 M 2 ;, 1990, : (1990,2000) 2001 (1996, ) ( ) ( ) ( ) ( ) (1997

92

<4D F736F F D20C9CFBAA3BFC6BCBCB4F3D1A7D0C5CFA2D1A7D4BA C4EAC7EFBCBEC8EBD1A7B2A9CABFD7CAB8F1BFBCCAD4CAB5CAA9CFB8D4F22D C8B7B6A8B8E5>

Microsoft Word - 专论综述1.doc

,.,,.. :,, ,:, ( 1 ). Π,.,.,,,.,.,. 1 : Π Π,. 212,. : 1)..,. 2). :, ;,,,;,. 3

Schumpeter Mensch Freeman Clark Schumpeter Mensch 1975 technological stalemate 2000 Van Dujin 1977 OECD 1992 Freeman 1982 Van


南華大學數位論文

标题

南華大學數位論文

Wuhan Textile University M. A. S Dissertation Emotional Design of Home Textile Based on the Chinese Traditional Culture Wedding Bedding for Example Ca

g 100mv /g 0. 5 ~ 5kHz 1 YSV8116 DASP 1 N 2. 2 [ M] { x } + [ C] { x } + [ K]{ x } = { f t } 1 M C K 3 M C K f t x t 1 [ H( ω )] = - ω 2


Transcription:

SC 93246H327032

(EWMA) 3 EWMA (defects) (Poisson distribution) (compound Poisson process) Brook and Evans EWMA (ARL) EWMA (geometric Poisson EWMA control schemes) The Study on Detecting Small Shifts in Quality Levels with the Geometric Poisson Process Using EWMA Control Schemes Abstract It is well known that the exponentially weighted moving average (EWMA) control schemes can better detect small shift of process mean in a short period of time than the conventional 3-sigma control charts do. However, an effective EWMA control scheme has to be with correct underling distribution in describing the characteristic of process quality. In process control, the common situation is to assume that the Poisson distribution holds for count data, such as the conventional c-chart. In contemporary modern production environment, the production process is usually more complex than others. In fact the control schemes based on compound Poisson distribution are more appropriately used in controlling the defects. Applying the Markov chain approach by Brook and Evans to calculate the average run length (ARL), we take one step further, in this study, to develop the EWMA control scheme for the geometric Poisson production process to detect a small sustained shift in the mean. Using the EWMA control schemes we can detect possible shift at the early beginning of the process change, and improve the quality level of the production process. Key words: geometric Poisson, exponentially weighted moving average (EWMA), average run length (ARL), Markov chain

. (number of defects) (defective item) (defects) (false alarm rate) (Albin and Friedman, 989; Gardiner, 987) Stapper (985)Albin and Friedman (989) Friedman and Albin (99) eyman s Type A Randolph and Sahinoglu (995) (geometric Poisson distribution) (software quality control) (Shewhart, 93) ( 200) (exponentially weighted moving average EWMA )( Roberts, 959) (cumulative sum control chart CUSUM )( Page, 954) (Crowder, 989; Fu et al., 2002) EWMA (average run length, ARL) (RL) ARL RL ARL ARL ARL 2 ARL ARL 2 EWMA ARL ARL 2 ARL EWMA 3 Brook Evans (972) Brook Evans (972) EWMA 2. Poisson( λ )^ geometric( p) (Randolph and Sahinoglu, 995) Sherbrooke (966), λp 2

λt PXt [ ( ) = 0] = e λ x PXt x p p x x y λ t ( t) e x y y [ ( ) = ] = ( ), =,2, y= y! y λ > 0, 0 < p < t 0 (t=) Chen et al. (2005) X EX ( ) = λ () p + p Var( X ) = λ ( p) 2 (2) 3. 3.. (EWMA) EWMA EWMA Zt = wdt + ( w) Zt 0 < w, t =, 2,..., n,... w Z t t X t EWMA X t t Z t (Montgomery 996) 2 w σ 2 Z t σ ( ) (3) 2 w EWMA h h w hu = u0 + KUσ ( ) 2 w w hl = u0 KLσ ( ) (5) 2 w K U K L K K U = K L = K Z t > h U Z t < h L EWMA EWMA (ARL) EWMA ARL U L (4) 3.2. (Markov chain approach) Brook and Evans (972) EWMA ARL (number of defects) D EWMA 3

Z = wd + ( w) Z 0 < w, t =, 2,..., n,... t t t Z t > h U Z t < h L Borror et al. (998)Z t [ hl, hu] h L h U Subinterval jth sub-interval { m k ith sub-interval { Z t+ Z t hl L j U j (2k )( h h ) U L h + L 2 hu ( j )( h h ) U L h + L j( h h ) U L h + L [ hl, hu] i [ Li, Ui] E i mi E i hl hu Li U i i( E i ) Z E i E i (transition) t (random walk) E i E j D Z t [ hl, hu] (in control) Zt Z t+ E i E j Z t [ hl, hu] (out of control) (absorbing state) ARL Zt i (Z t= 0 E i ) (2i )( hu hl) Z0 = mi = hl + 2 E i ( Li U i ) i Li = hl + ( hu hl ) Ui = hl + i ( hu hl) Z t (Brook and Evans, 972) P ij E i E j (transition probability) P i, = Pr (E i E ) P i,j = Pr (E i E j ) P i,+ = Pr (E i E + ) P +,i = 0, P +,+ = i =, 2,, j =, 2,,. E + P 4

P P P P P P P P P P P P P= P P P P P P P P P P P P P P P P P P P,,2,3, j,, + 2, 2,2 2,3 2,j 2, 2, + i, i,2 i,3 i, j i, i, +,,2,3, j,, + +, +,2 +,3 +, j +, +, + P = R A 0 D s (sth factorial moment) (I R) u (s) = sru (s ) (s = 2, 3, ) (6) I u (s) D i (i =, 2,, )s R P s = (6)u = (I R) u ARL u ( + )/2 ( ) Z0 = u0 EWMA ARL u0 Borror et al. (998) E i E j P ij Pij = Pr ( Ei Ej ) (2i )( hu hl) = Pr Lj < Zt < U j Zt = hl + 2 = P L < wx + w Z < U { ( ) } r j t t j j 2i = Pr hl + ( hu hl) < wxt + ( w) [ hl + ( hu hl)] 2 < j h + L ( hu hl) hu hl = Pr hl + [ 2( j ) ( w)(2i ) ] < Xt 2w (7) hu hl < hl + [ 2 j ( w)(2i ) ] 2w w K (6)(7) EWMA ARL 4. EWMA 2.5 4.0 ( 5

200) 25 λ = 2 p = 0.2 20 λ = 3 p = 0.25 : : λ p E(X) V(X) 2 0.20 2.5 3.75 25 3 0.25 4.0 6.67 20 ARL ARL 2 2.5 4.0 EWMA K = 3.3 w = 0. 2 2: EWMA K w h L h U ARL ARL 2 3.3 0..3030 3.6970 345.39 3.55 EWMA ( 25 (y) (x) 20 ) EWMA 5.5 4.5 3.5 h U = 4.4633 2.5 u 0 = 2.5.5 0.5 5 9 3 7 2 25 29 33 37 4 45 h L =.7867 EWMA 29 ( Z 29 = 4.205) 2.5 4.0 4 ( 29 25 = 4 ) 3.55( ARL2 = 3.55) K = 3.3 w = 0. ARL 782 h U =4.4633h L =.7867 ARL =782 (I 6

728 ) K ( w K=2.84w = 0.5 ARL 383.6 K=2.84w=0.5 ARL 2.5 5.36 ( 728 2.5 ) I 5 EWMA EWMA (w K) w K w Z t K EWMA w 0.05 0.25 w = 0.05 w = 0.0 w = 0.5w = 0.20 K K = 3 EWMA w w 0. K 3 2.6 2.8 (Montgomery, 996) EWMA () Z = u 0 0 (ARL ) w( 0< w < ) K (2) Brook and Evansn (972) (transition probability matrix) (4)(5)(6)(7) EWMA w K ARL (3) (h U h L ) ( 0.5σ σ) (2) EWMA ARL 2 (4) ()(3) ARL ARL 2 I II w K EWMA 2 ARL w K w K (h U h L ) ARL 2 (ARL, ARL 2 ) ARL ARL 2 w K 4 4 2.5 4.0 ARL K w h L h U ARL ARL 2 3.30 0.000.3030 3.6970 2.3940 345.39 3.55 3.25 0.0880.3976 3.6024 2.2048 345.0 3.65 3.20 0.0800.4672 3.5328 2.0656 343.34 3.74 3.5 0.072.543 3.4569.938 345.26 3.95 3.0 0.0620.6233 3.3767.7534 346.58 4.7 3.00 0.0500.7404 3.2596.592 333.39 4.46 7

(ARL, ARL 2 )(345.39, 3.55) ARL ARL 2 w K 0. 3.3 X t w w=0.5 w Z t ( h L h U ) 4 Z t Z t w 6 EWMA (geometric Poisson process) EWMA Brook and Evans EWMA ARL p [ hl, hu] Brook and Evans EWMA EWMA EWMA EWMA 7 7- (geometric Poisson EWMA control schemes) ARL 2 3 7-2 2 I EWMA Brook Evans RL 3 EWMA 8

200 pp.07~3 200 Journal of the Chinese Institute of Industrial Engineers, Vol. 8, o. 6, pp. -8. Albin, S. L. and D. J. Friedman, 989, The Impact of Clustered Defect Distributions in IC Fabrication, Management Sciences, 35(9), 066-078. Borror, C. M., Champ, C. W., and Rigdon, S. E., 998, Poisson EWMA control charts, Journal of Quality Technology, 30(4), 352-36. Brook, D. and Evans, D. A., 972, An approach to the probability distribution of CUSUM run length, Biometrika, 59(3), 539-549. Chen, C. W., Randolph, P. H., and Liou, T. S., 2005, Using CUSUM control schemes for monitoring quality levels in compound Poisson production environment: the geometric Poisson process, Quality Engineering, 7(2), 207-27. Crowder, S. V., 989, Design of exponentially weighted moving average schemes, Journal of Quality Technology, 2, 55-62. Friedman, D. J. and Albin, S. L., 99, Clustered defects in IC fabrication: impact on process control charts, IEEE Transactions on Semiconductor Manufacturing, 4(), 36-42. Fu, J. C., Spiringa, F. A. and Xie, H., 2002, On the average run lengths of quality control schemes using a Markov chain approach, Statistics & Probability Letters, 56, 369 380. Gardiner, J. S., 987, Detecting small shifts in quality levels in a near-zero defect environment for integrated circuits, Unpublished Doctoral Dissertation, University of Washington, Seattle, Washington. Montgomery, D. C., 996, Introduction to Statistical Quality Control, 3 rd ed., John Wiley & Sons, Inc., ew York, Y. Page, E. S., 954, Continuous inspection schemes, Biometrika, 4, 00-5. Randolph, H. P. and Sahinoglu, M., 995, A stopping rule for a compound Poisson random variable, Applied Stochastic Models and Data Analysis,, 35-43. Roberts, S. W., 959, Control charts based on geometric moving average, Technometrics,, 234-250. Sherbrooke, C. C., 966, Discrete compound Poisson process and tables of the geometric Poisson distribution, Memorandum RM-483-PR, The Rand Corporation, Santa Monica, CA. Shewhart, W. A., 93, Economic Control of Quality of Manufactured Product, Van ostrand, ew York, Y. Stapper, C. H., 985, The Effects of Wafer to Wafer Defect Density Variations on Integrated Circuit Defect and Fault Distribution, IBM Journal of Research Development, 29(), 87-97. 9