127192 214 11
Submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy in Applied Mathematics THEORETICAL MODELING AND ANALYSIS OF NEURONAL DENDRITIC INTEGRATION SONGTING LI Supervised by Prof. DAVID CAI Prof. DOUGLAS ZHOU DEPARTMENT OF MATHEMATICS SHANGHAI JIAO TONG UNIVERSITY SHANGHAI, P.R.CHINA November 214
献给我的家人
,.,,..,..,.,,.,.,.,, HH IF.,,.,., -.,.,.,,.,., - - -,.,,. i
,.,.,.,IF., IF, DIF., DIF., DIF,.,.,, IF HH, DIF DHH., DHH, HH,..,,.,,.,,.,..,..,,.,,,,,, ii
ABSTRACT THEORETICAL MODELING AND ANALYSIS OF NEURONAL DENDRITIC INTEGRATION ABSTRACT A neuron, as a fundamental unit of brain computation, exhibits great computational power in processing input signals from neighboring neurons. It receives thousands of spatially distributed synaptic inputs from its dendrites and then integrates them at the soma, leading to the neuronal information processing. This procedure is called dendritic integration. Dendritic integration rules are under active investigation in order to elucidate information coding in the brain. In the thesis, we present our work on theoretical modeling and analysis of dendritic integration in the following six chapters. To be specific, we introduce the background knowledge in Chapter 1 and Chapter 2, and introduce our own research work from Chapter 3 to Chapter 6. In Chapter 1, we introduce basic neurophysiology for mathematicians who are not familiar with neuroscience. We also review the current progress in the experimental and theoretical investigation on dendritic integration. We finally point out the scientific contribution and novelty of our work. In Chapter 2, we introduce two types of neuron models to characterize neuronal electrophysiological properties described in Chapter 1. A neuron can be modeled as an idealized point with electrical circuit structure, such as the HH model and the IF model. On the other hand, a neuron can also be modeled as a spatially extended tree with conductive cable structure, such as the two-compartment and multi-compartment cable models. All these models can describe neuronal behavior effectively in different aspects, therefore, they will be used in our following theoretical study of dendritic integration. In Chapter 3, we reveal theoretically the underlying mechanism of a dendritic in- iii
tegration rule for a pair of excitatory (E) and inhibitory (I) synaptic inputs discovered in a recent experiment. Starting with the two-compartment neuron model, we construct its Green s function and carry out an asymptotic analysis to obtain its solutions. Using these asymptotic solutions, in the presence of E-I inputs, we can fully explain all the experimental observations. We then extend our analysis with multi-compartment neuron model to characterize the E-I dendritic integration on dendritic branches. The novel characterization is confirmed by a numerical simulation of a biologically realistic neuron as well as published experimental results. In Chapter 4, we theoretically generalize the dendritic integration rule in Chapter 3 to describe the spatiotemporal dendritic integration for all types of inputs, including a pair of E-I, E-E, I-I inputs and multiple inputs with mixed types. In addition, the general dendritic integration rule is valid at any time during the dendritic integration process for inputs with arbitrary arrival time difference. The general rule is derived analytically from the two-compartment neuron model. However, we also verify it in a simulation of the realistic neuron and in experiments. The general rule finally leads us to a novel graph representation of the dendritic integration process, which is demonstrated to be functionally sparse. In Chapter 5, we address the theoretical issue of how much the dendritic integration rule discovered in the experiment can be accounted for using the somatic membrane potential dynamics described by the point neuron model. We demonstrate both analytically and numerically that the IF model can explain partial of the experimental results. Inspired by a two-port analysis, we then modify the IF model to the DIF model to characterize all the experimental observations. Meanwhile, the DIF model provides experimental testable predictions. In Chapter 6, we systematically investigate the performance of the point neuron models in characterizing the spatiotemporal dendritic integration effect. We demonstrate numerically that, compared with the standard IF model and HH model, our DIF model and DHH model can accurately capture the membrane potential produced by the two-compartment neuron model with a passive or an active soma, respectively. In particular, our DHH model can accurately predict the spike time of the two-compartment neuron model, whereas the prediction error made by the HH model is significantly iv
ABSTRACT large. In addition, the HH model occasionally predicts a fake spike. The scientific contribution and the novelty of our work can be summarized as follows. First, the nonlinearity in the cable equation with time-dependent synaptic inputs makes its analytical solution difficult to obtain. Here we analytically solve the cable equation via the asymptotic analysis, and apply the asymptotic solutions to reveal the underlying mechanism of the dendritic integration rule discovered experimentally. In addition, the previous research work on dendritic integration are mainly qualitative and specific. Here we propose a general dendritic integration rule to quantitatively describe dendritic integration for all types of synaptic inputs. The general rule is further confirmed in the realistic simulations and real experiments. Moreover, point neuron models are considered only to describe the somatic membrane potential in previous works. Here we incorporate the dendritic integration effect into point neuron models successfully. Contrast to the cable model, our effective point neuron model can be potentially used in a large scale simulation of a network of neurons with dendrites to reduce the computational cost. KEY WORDS: dendritic integration, synaptic integration, neuronal computation, cable theory, Green s function, asymptotic analysis, point neuron model v
ABSTRACT i iii vii xiii xv 1 1.1................................ 1 1.1.1.............................. 1 1.1.2.............................. 1 1.1.3.............................. 4 1.2................................ 4 1.3................................ 6 1.4................................ 8 1.5................................ 1 1.6................................ 11 1.6.1......................... 11 1.6.2......................... 14 1.6.3.......................... 16 19 2.1................................. 19 2.1.1 HH............................ 22 vii
2.1.2 IF............................. 27 2.2................................ 28 2.2.1......................... 29 2.2.2.......................... 31 2.2.3.......................... 32 33 3.1................................ 33 3.2................................ 35 3.2.1............................ 37 3.2.2.......................... 37 3.2.3............................ 38 3.2.4............................ 41 3.2.5............................ 44 3.3................................ 48 3.3.1............................ 48 3.3.2............................ 5 3.3.3............................ 53 55 4.1 -............................... 55 4.1.1............................ 55 4.1.2............................ 58 4.1.3............................ 61 4.2 -............................... 63 4.2.1............................ 63 4.2.2............................ 65 4.2.3............................ 66 4.3 -............................... 68 viii
4.3.1............................ 68 4.3.2............................ 69 4.3.3............................ 7 4.4................................ 72 4.4.1............................ 72 4.4.2............................ 74 4.4.3............................. 74 77 5.1 IF................................. 77 5.1.1............................ 77 5.1.2............................ 79 5.2 DIF................................ 81 5.2.1............................ 82 5.2.2............................ 83 5.2.3............................ 85 5.2.4............................ 86 5.2.5............................ 86 5.2.6............................ 89 93 6.1 DIF................................ 93 6.1.1 -........................... 93 6.1.2 -........................... 96 6.1.3 -........................... 98 6.2 DHH................................ 1 6.2.1 -........................... 1 6.2.2 -........................... 14 6.2.3 -........................... 18 6.3................................ 19 ix
115 119 127 129 x
1 1............................ 2 1 2............................ 3 1 3............................ 9 1 4......................... 12 1 5......................... 15 2 1............................. 2 2 2......................... 23 2 3....................... 25 2 4........................ 27 2 5 - IF........................... 28 2 6............................. 3 2 7............................ 31 3 1 -....................... 34 3 2 -....................... 36 3 3......................... 45 3 4 -.................. 46 3 5........................... 49 3 6........................ 54 4 1 κ EI............. 59 4 2 -................ 6 4 3 -.................. 61 4 4 -................. 62 4 5 -.................. 63 xi
4 6 -................. 64 4 7 -.................. 66 4 8 -................. 67 4 9 -..................... 68 4 1 -.................. 7 4 11 -................ 71 4 12 -.................. 72 4 13 -................ 73 4 14..................... 75 4 15.......................... 76 5 1 IF................... 78 5 2 IF....................... 79 5 3........... 81 5 4 IF.................... 85 5 5 β............... 87 5 6................... 88 5 7..................... 89 5 8................... 9 5 9 κ M κ......................... 91 5 1 DIF........................ 92 6 1 - DIF................. 96 6 2 - DIF............... 97 6 3 - DIF..................... 99 6 4 - DIF..................... 11 6 5 - DHH................ 14 6 6 - DHH.............. 15 6 7 - DHH.................... 17 xii
6 8 DHH..................... 18 6 9 - DHH.................... 11 6 1........................ 114 xiii
v v r v th g E f E ε E g I f I ε I g L ε L g Na E Na g K E K G E G I c S d l xv
,. [1, 2], (synapse),,..,,.. 1.1,,.,, 1 1.,., (dendrites), (soma) (axon), 1 2. 1.1.1...,, 1 2. (presynaptic), (postsynaptic).,,, ( ).,. 1.1.2,.. 1
神经元树突整合的理论模型与分析 上海交通大学博士学位论文 A B C D E F 图 1 1 神经元的多样性. (A) 椎体神经元, 记录自猕猴前额叶皮层 [3], 长约 696µm. (B) 星型 神经元, 记录自小鼠内嗅皮层 [4], 长约 39 µm. (C) 蒲氏神经元, 记录自大鼠小脑 [5], 长约 118µm. (D) 篮状神经元, 记录自大鼠体感皮层 [6], 长约 267µm. (E) 颗粒神经元, 记录自大鼠 海马区 [7], 长约 288µm. (F) 运动神经元, 记录自猫的脊髓 [8], 长约 1.5mm. 以上数据均下载 自 NeuroMorpho.Org [9]. Fig 1 1 The diversity of neuronal morphology. (A) A pyramidal cell in macaque prefrontal cortex with a length of 696µm [4] [3]. (B) A stellate cell in rat entorhinal cortex with a length of 39 µm. (C) A Purkinje cell in mouse cerebellum with a length of 118µm [5]. (D) A basket cell in rat somatosensory cortex with a length of 267µm [6]. (E) A granule cell in rat hippocampus with a length of 288µm [7]. (F) A motor neuron in cat spinal cord with a length of 1.5mm [8]. All data is downloaded from NeuroMorpho.Org [9]. 2
1 2..,,,,.,,.,. [1]. Fig 1 2 The typical structure of a neuron. The postsynaptic neuron receives synaptic inputs from a presynaptic neuron. When an action potential is initiated and propagated to the axon terminal of the presynaptic neuron, neurotransmitters will be released. These neurotransmitters will bind to some specific channel receptors and invoke the open of the ion channels in the postsynaptic neuron. Consequently, the ionic currents will flow inward or outward the membrane thus change the local membrane potential of the postsynaptic neuron. The ionic currents inside the postsynaptic neuron will then flow towards the soma along the dendrites. In the end, the soma integrates all synaptic inputs and generates an action potential at the axon hillock once its membrane potential crosses a certain threshold. The action potential will then prorogate along the axon towards the downstream neurons. Figure is modified from Ref. [1]. 3
, [11 13]. 1.1.3,. (threshold), (axon hillock) 1ms 2ms, 1mV, (action potential). 1.4.. (myelin),,, 1mV.,. (receptor),,. (chemical synapse)., ( ). 1.2,., (ion channel),. (gated) (nongated)., (leak).,,..,,.,,.,,,,. (reversal potential).,. 4
. x [C](x), ϕ(x), (Fick s law), J diff J diff = D [C] x, D,. J diff..,,,. J drift J drift = µz[c] ϕ x. µ (mobility), z (valence)., J total = D [C] x µz[c] ϕ x., D µ, D = k BT q µ, k B, T, q. J total = k BT q µ [C] x µz[c] ϕ x. (1 1) (1 1) Nernst-Planck., ( ). ϕ x = k BT [C] zq[c] x. Nernst (1 2) E ϕ in ϕ out = k BT zq ln [C] in [C] out. (1 2) 5
E. K + [14],, 5mM, 14mM. 37 o C, k B T /q = 26.73mV, E K = 62 ln ( 14) = 89.7mV. 5,, -7mV. (resting potential).,.,,,,. (hyperpolarization)., E Na = +55mV.,,,,. (depolarization).,,.. 1.3 1.2.., -7mV.,., Nernst-Planck (1 1).,,,.,, Nernst-Planck.,, Goldman, Hodgkin Katz [15, 16]. Nernst-Planck 6
v r, ϕ(x) x, l, dϕ/dx = v r /l., µ., η,, [C], η[c]., Nernst-Planck J = µ k BT q η [C] x µ zη[c] v r l, < x < l [C]() = [C] in, [C](l) = [C] out. [17] ( e λ [C] out [C] ) in J = P λ, e λ 1 P = µ ηk B T lq (permeability).. λ λ = zqv r k B T. Na +,K + Cl,,, J Na + J K + J Cl =. v r = k BT q ( PNa [Na] out + P K [K] out + P Cl [Cl] ) out ln P Na [Na] in + P K [K] in + P Cl [Cl] in (1 3) 7
(1 3) Goldman-Hodgkin-Katz (GHK). [14], P K : P Na : P Cl = 1 :.3 :.1, [K] in = 4mM, [Na] in = 5mM, [Cl] in = 4mM, [K] out = 1mM, [Na] out = 46mM, [Cl] out = 54mM. (1 3) 74mV,. GHK (1 3), Nernst (1 2). 1.4.,,. ( -55mV), [18, 19]...,. 1 3,,,.,. 1.2,,,.,,,.,.,,. 1ms 2ms, 1mV.,,,. (refractory period).,,,,., 8
E Na V Na + channels close Na + channels open K + channels open Threshold V R E K Refractory period time 1 3.,,.,,,. [14]. Fig 1 3 The action potential. During the upstroke, Na + channels are open and the membrane potential approaches the Na + reversal potential. During the downstroke, Na + channels are closed, K + channels are open, and the membrane potential approaches the K + reversal potential. Figure is modified from Ref. [14]. 9
,.,. 1.5. 1 1,.,,.,. (EPSP).,,. (IPSP).. (glutamate), AMPA NMDA. AMPA. NMDA,. EPSP, mv., AMPA, NMDA.,,,., AMPA. γ- (GABA), GABA A GABA B. GABA A,, -8mV,, IPSP. GABA A, IPSP,., GABA B,,,.,, -1mV., GABA A, GABA B. 1
1.6 [2].,,, [21] [22]., [23, 24], [12, 25].,,,,.,.,,..,,. 1.6.1 [12, 26].,.,,. (passive).,,,.,.,.,,,., [27]., EPSP EPSP [27]., EPSP EPSP., 11
++ + + + + + Excitatory Input + + + + + 1 4. EPSP EPSP EPSP ( ). +,. Fig 1 4 Passive dendritic filtering effect. Activation of a excitatory input on an apical dendrite produces a local EPSP that is larger and faster than the EPSP recorded at more proximal locations and at the soma (as indicated by recording electrode symbols). The ion concentration is indicated by + and the current flow is indicated by arrows.. 1 4., [28]., 1-2µm, 2µm.,,.,,,.. [26]..,, (Summed Somatic Potential, SSP). 12
,, EPSP,., EPSP, EPSP..,,.,, (driving force), EPSP.,, EPPS.,,, [29], [3, 31] [32]. [33]., [34]., [35, 36]. H, [37]... [38, 39] [19].,,.,.,,.,,,,.,,.,., 13
,,,,,. 4:1 [4].., [41 44]., [45] γ [46].., [47], [48] [49], [5 52]. [53].,, (hyperpolarization) (shunting inhibition).,.,. [54, 55].,,,. [55, 56]. [57],, IPSP,,, 1 5. 1.6.2, [17, 58].,.,,. 14
Excitatory input Inhibitory input EPSP IPSP SSP 1 5. ( ) ( )., IPSP ( ).,, ( SSP) EPSP ( ) IPSP ( ).. Fig 1 5 The interaction between a pair of excitatory and inhibitory inputs. A single excitatory synapse (circle) on an apical dendrite is shunted by an inhibitory synapse (triangle) on the path between the synapse and the soma. Note that the individual IPSP amplitude is nearly zero (middle) when the inhibitory input is given alone. However, when both inputs are given, the summed somatic potential (SSP on the right) is much smaller than the sum of the individual EPSP (left) and IPSP (middle). Three recording sites are indicated by recording electrode symbols.,.,, [58, 59].,.,Wilfrid Rall [6], (cable theory). 2.2.1. [61, 62].,,.,..,, [63] 15
,.,., [58].,., [64, 65],,.,,., [61].., :EPSP, [66, 67]. [68, 69].,, [7]... 1.6.3, :,,,.,,.,,.,, -,,,..., ( 2.1)., 16
. PDE, ODE,. 17
.,.,... 2.1,.,,.. 1.3.,,.,.,. 2 1,.,,., I cap = dq dt, 19
A C v B g V reversal I inj c 2 1. (A). 3-5nm.. [71]. (B).,.,,.,. (C). Fig 2 1 Equivalent circuit model. (A) Schematic representation of a small patch of typical membrane. The 3-5nm thin bilayer of lipids isolates the extracellular side from the intracellular side. From an electrical point of view, the resultant separation of charge across the membrane acts as a capacitance. Ion channels inserted into the membrane provide a conduit through the membrane. Figure is modified from Ref. [71]. (B) The associated electrical circuit for this patch consisting of a capacitance and a conductance in series with a battery. The conductance mimics the behavior of ion channels inserted throughout the membrane and the battery accounts for the ion channel s reversal potential. Note that here we only consider one type of ion channel, however, multiple types of channels can be connected in parallel. (C) The electrical circuit representation for the whole membrane. 2
q. c, v, q = cv. I cap = c dv dt. (2 1),., c = 1µF/cm 2[72]., [73] I leak = g L (v ε L ), (2 2) g L ( ). ε L.,., I inj,, I cap + I leak = I inj. c dv dt = g L(v ε L ) + I inj. (2 3), I Na I Na = g Na (v E Na ), g Na, E Na. I K I K = g K (v E K ), g K, E K. (2 3) c dv dt = g L(v ε L ) g Na (v E Na ) g K (v E K ) + I inj. (2 4) g L,, g Na,g K v, g L v., (2 4),. g Na g K 2.1.1. 21
2.1.1 HH HH Hodgkin Huxley 1952 [74],.. 2.1.1.1, HH., c dv dt = g L(v ε L ) g Na (v E Na ) g K (v E K ) + I inj. g Na g K. g Na g K,. (voltage clamp),., I inj [75]., v, g Na g K, I cap = cdv/dt.,. g L.,,,. I inj,, g L ε L. I inj g L (v ε L ). (2 5) mv. 2 2,, I inj,..,,.,. Hodgkin Huxley., 22
I K I inj I Na 1 2 3 4 5 6 Time (ms) -65 mv mv 2 2. mv.,.. Fig 2 2 Numerically computed voltage-clamp experiment. The membrane potential is stepped from the resting potential to mv. This result indicates an inward current followed by an outward current. The K + and Na + currents are also shown here. 23
., I inj I K.,, g K g K (v) = I K v E K.,, I Na = I inj I K. g Na g Na (v) = I Na v E Na. 2 3 g Na g K 4. g Na g K.,, g Na., g K.., ( ) m ( ) h.., m h., m,., h,,.,, Hodgkin Huxley g K = ḡ K n 4, g Na = ḡ Na m 3 h, (2 6) ḡ K ḡ Na, n,m h,, 1. n 4 :,. m 3 h :.,. 24
4 V C (mv) 4 g 2 2 Na (ms / cm ) (ms / cm ) g K 3 2 1 4 2 1 2 3 4 5 6 7 Time (ms) 2 3... Fig 2 3 The voltage dependence of the sodium and potassium conductances in simulation. The membrane potential is stepped to different values and the resulting K + and Na + conductances are obtained numerically. 2.1.1.2 (m,n h),,,., C α(v) O, β(v) C O, α(v), β(v),. r (r = m, n, h), 1 r,, dr dt = α r(v)(1 r) β r (v)r. (2 7) 25
(2 7) dr dt = 1 τ r (v) (r r), (2 8) (2 8) r = τ r = α r (v) α r (v) + β r (v), 1 α r (v) + β r (v). r(t) = r (v) + (r() r (v))e t/τr(v), (2 9) r(). (2 9), v, r τ r (v) r (v)., Hodgkin Huxley, α n (v) =.1(v + 55) 1 exp( (v + 55)/1), β n (v) =.125exp( (v + 65)/8), α m (v) =.1(v + 4) 1 exp( (v + 4)/1), β m (v) = 4exp( (v + 65)/18), α h (v) =.7exp( (v + 65)/2), β h (v) = 1 1 + exp( (v + 35)/1). HH ḡ Na = 12mS/cm 2, ḡ K = 36mS/cm 2, E Na = +5mV, E K = 77mV, g L =.3mS/cm 2, ε L = 54.4mV. 26
steady state 1 h.8.6 m.4.2 n -1-8 -6-4 -2 2 4 V (mv) (ms) 8 h 6 n 4 2 m -1-8 -6-4 -2 2 4 V (mv) 2 4... Fig 2 4 Gating variable functions. Left is the steady-state opening of the gates and right is their corresponding time constants. 2 4, n m,, mv 1.,, n m., h,,., τ m τ n τ h,,,,.. 2.1.2 IF HH,.,,.,,. HH - (Integrate-and-Fire, IF) [73] c dv dt = g L(v ε L ) + I inj. (2 1) IF (2 1),. v v th,, v ε L, 2 5. 27
-55 mv -7 mv 5 1 15 2 25 3 35 2 na 5 1 15 2 25 3 35 Time (ms) 2 5 - IF. IF 2nA., -7mV, -55mV. ( ) IF, ( ). Fig 2 5 Response of the IF model to a 2nA step current. The resting potential is set to be -7mV and the threshold is set to be -55mV. The action potential (marked by grey) is removed from the IF model and the voltage at the threshold (marked by red) is reset to the resting potential immediately. IF 197 [73]., IF [76, 77]. IF c = 1µF/cm 2, g L =.5mS/cm 2. 2.2,,. 1.6,,.,., Wilfrid Rall [6],.,,,. 28
2.2.1 (compartment), 2 6. [17, 72],. [x, x + x], d, πd x.,, πd x(i cap + I leak I inj ) = I long (x) I long (x + x). I long. I cap I leak (2 1) (2 2), cπd x v t = g Lπd x(v ε L ) + πd xi inj + I long (x) I long (x + x). (2 11) I long. [x, x + x], R a R a = r a 4 x πd 2. r a., [x, x + x] x, I long = πd2 v(x) v(x + x). 4r a x I long (x) = πd2 4r a v x. (2 12) (2 12) (2 11), cπd x v t = g Lπd x(v ε L ) + πd xi inj πd2 v 4r a x + πd2 v x 4r a x. (2 13) x+ x (2 13) x, c v t = g L(v ε L ) + I inj + d 4r a 2 v x 2. (2 14) (2 14),.. 29
I cap (x,t) I leak (x,t) I inj (x,t) d I long (x,t) I long (x+ x,t) x x x+ x 2 6.. ( ),. Fig 2 6 Passive cable model. Upper, a schematic plot of a neuron. Lower, the cable model with different current sources representing a small segment of the neuron s dendrites (marked by the black box). 3
A B C 2 7.(A). (B). (C). Fig 2 7 Spatial neuron model. (A) A schematic plot of a pyramidal neuron. (B) Two-compartment model. (C) Multi-compartment model. 2.2.2 (two-compartment). 2 7.B, l d, S.,.,,.,, (2 14) x = l v x =. (2 15) x=l,,, cs vs t = g LSv s + I dend, v s, I dend, (2 12) x =., 31
v s (t) = v(, t), x = v(, t) c = g L v(, t) + πd2 v t 4Sr a x. (2 16) x= 2.2.3,,, (multi-compartment). 2 7.C,, 2 14.. 1,2,...,n + 1 l 1,l 2,...,l n+1, d 1,d 2,...,d n+1. 1 n n + 1., πd2 n+1 v n+1 4r a = xn+1 =l n+1 x n+1 n j=1 πd 2 j 4r a v j x j xj =. v n+1 (l n+1, t) = v 1 (, t) = v 2 (, t) =... = v n (, t). (2 17), (2 15),, (2 16). 32
,. 1.6.,,., [59].,, [59]., [59], [59]. 3.1 [59]. 3 1.A., EPSP,.,, IPSP,.,, (summed somatic potential, SSP). [59], SSP EPSP IPSP (linear sum), 3 1.B. SSP EPSP+IPSP (shunting component, SC), V SC (t) V S (t) V E (t) V I (t), (3 1) V SC, V S, V E, V I SSP, EPSP, IPSP. EPSP t p, EPSP, IPSP SSP V E (t p ),V I (t p ) V S (t p ). 33
A B EPSP Linear sum SSP IPSP SC 5 ms 2 mv C D 2 (mv) SC 4 2 E: 15-175 µm I : 53-7 µm 2 4 IPSP (mv) (mv) SC 1 E: 19-21 µm I: 8-1 µm 5 1 EPSP (mv) 3 1 - [59]. (A). ( 232µm 129µm). 1µm. (B), EPSP, IPSP, SSP, SC, Linear sum. SC SSP Linear sum. (C) EPSP (9-1mV), SC IPSP.. R=.974. (D) IPSP (1.1-1.3mV), SC EPSP.. R=.965. [59]. Fig 3 1 Dendritic integration of a pair of excitatory and inhibitory inputs in experiments [59]. (A) Image of a rat CA1 pyramidal neuron. Arrows indicate excitatory and inhibitory input locations (at 232 and 129µm from the soma, respectively). (Scale bar: 1µm.) (B) Examples of EPSP, IPSP, SSP, SC and their linear sum response to a pair of concurrent excitatory and inhibitory inputs. SC is defined as the difference between the SSP and the linear sum. (C) SC vs. IPSP amplitude, measured for a fixed EPSP amplitude (9 1 mv). Data are from four cells. Line indicates linear fit (R=.974). (D) SC vs. EPSP amplitude, measured for a fixed IPSP amplitude (1.1 1.3 mv). Data are from four cells. Line indicates linear fit (R=.965). Figures are modified from Ref. [59]. 34
[59],,,, t p, V SC (t p ) V I (t p ) ( 3 1.C), V SC (t p ) V I (t p ).,,, t p, V SC (t p ) V E (t p ) ( 3 1.D), V SC (t p ) V E (t p )., t p SC IPSP EPSP, SC EPSP IPSP, [59], V SC /V I V E, V SC /V E V I.,, 3 2.A. V SC (t p ) = κv E (t p )V I (t p ). κ, EPSP IPSP., V SC (3 1), t p, V S (t p ) = V E (t p ) + V I (t p ) + κv E (t p )V I (t p ). (3 2) [59] κ. 3 2.B,, κ,, κ,. 3.2 [59].,.., (i) κ,(ii) κ. κ. 35
( or S C / I P SP ) S C / E P SP A 2 1 4 8 IPSP (or EPSP ) (mv) - 1 ) mv ( κ B I (µm).3 35 2.2 5.1. 15 3 45 E location (µm) 3 2 -. (A) EPSP, SC EPSP IPSP ( ) SC IPSP EPSP ( ).. EPSP 1-1mV, IPSP.2-4mV. 11 45 µm. : R=.96, κ=.142, n=11; R=.92, κ=.145, n=1. (B) κ., κ,, κ.. [59]. Fig 3 2 Dendritic integration rule for a pair of excitatory and inhibitory inputs in experiments. (A) Ratio between measured SC and EPSP (SC/EPSP) plotted against IPSP (red circle) and SC/IPSP plotted against EPSP (blue square) at the time when EPSP reaches its peak value. Data are from the same cell in the slice recording. The amplitudes of the paired EPSP and IPSP were randomly set in the range of 1 1mV and.2 4mV, respectively. Excitatory and inhibitory input locations were fixed at 11µm and 45µm. Lines indicate linear fit (red: R=.96, slope κ=.142, n=11; blue: R=.92, slope κ=.145, n=1). (B) The shunting coefficient κ as a function of the excitatory input location. for a fixed location of the inhibitory input on the dendritic trunk, κ increases as the distance between the excitatory input and the soma increases when the excitatory input is located in between the soma and the inhibitory input, whereas κ remains almost constant when the excitatory input is located further away from the soma than the inhibitory input. Three different inhibitory input locations are marked by different colors. Figures are modified from Ref. [59]. 36
3.2.1,. I syn [63], I syn = g syn (v ε syn ). (3 3) g syn, v, ε syn. g syn,,. g syn [72] g syn = fg(t), f, g(t), g(t) = N(e t σ d e t σr )Θ(t), (3 4) σ r g(t), σ d g(t), Θ(t) Heaviside,, N g(t) 1, 3.2.2 ( σr ) σr σ N = [ d σr σ d ( σr ) σd σ d σr ] 1. σ d,,,. ( 2.2.2 2 7.B),, l, d., -., cπd x v t = g Lπd xv + I syn + I long (x) I long (x + x), (3 5) v ( v = mv), c, g L. I syn, I syn = πd q=e,i x+ x x 37 G q (v ε q )dx,
G E G I, ε E ε I. x = x E, x = x I, G E (x, t) = f E g E (t)δ(x x E ), G I (x, t) = f I g I (t)δ(x x I ). f E f I. g E g I (3 4), t g E (t) = N E (e σ Ed e t σ Er )Θ(t), g I (t) = N I (e t σ Id e t σ Ir )Θ(t). 2.2.1 I long (2 12), (3 5) x, c v t = g Lv q=e,i f q g q (t)δ(x x q )(v ε q ) + d 4r a 2 v x 2. (3 6) r a. 2.2.2, v x =, (3 7) x=l v(, t) c t = g L v(, t) + πd2 4Sr a v x. (3 8) x= S., v(x, ) =. (3 9) 3.2.3, (3 6) (3 7)-(3 9)., δ, G(x, y, t) c G t = g LG + d 2 G + δ(x y)δ(t), (3 1) 4r a x2 38
G(, y, t) c = g L G(, y, t)+ πd2 G(x, y, t) t 4Sr a x, x= G x =, and G(x, y, ) =. x=l, τ = t/c, ξ = x 4r a /d, η = y 4r a /d, λ = l 4r a /d, (3 1) H τ = g LH + 2 H + δ(ξ η)δ(τ), (3 11) ξ2 H(, η, τ) τ = g L H(, η, τ)+γ H(ξ, η, τ) ξ, ξ= H ξ =, and H(ξ, η, ) =, ξ=λ γ = πd2 r a d. 2S (3 11), LH(ξ, η, s) = A(η, s)e s+g L (ξ λ) + B(η, s)e s+g L (λ ξ) + e s+gl ξ η 2, (3 12) s + g L ( B(η, s) ), 1 s+gl [A(η, s) cosh( s + g L (λ ξ)) sinh( s + g L (η ξ))] for ξ η, LH(ξ, η, s) = 1 s+gl A(η, s) cosh( s + g L (λ ξ)) for ξ > η, (3 13) A(η, s) = (s + g L) sinh( s + g L η) + γ s + g L cosh( s + g L η) (s + g L ) cosh( s + g L λ) + γ s + g L sinh( s + g L λ). (3 14), (3 14) ζ(s). (3 13), (3 13), ζ(s) =. 39
ζ(s) =, LH(ξ, η, s). LH(ξ, η, s) LH(ξ, η, s) = n H n (ξ, η) s + k n, (3 15) H n (ξ, η) s, s = k n. (3 15), H(ξ, η, τ) = n H n (ξ, η)e k nτ. (3 16), (3 11), (3 16) k n H n (ξ, η). s = k n. w n = i k n + g L λ, ζ(s) = tan(w n ) = w n γλ, (3 17)., n 1, (3 17) w n (n 1/2)π < w n < (n + 1/2)π ; n =, w =. H n (ξ, η). s = k n C n,,., LH(ξ, η, s) ( 1 LHds = 2πi s C n LH (3 13)-(3 15) (3 18), ) 1. (3 18) s= kn H n (ξ, η) = γd n cos [w n (1 ξ/λ)] cos [w n (1 η/λ)], (3 19) D n = 2 [γλ + γλwn 1 sin(w n ) cos(w n ) + 2 cos 2 (w n )] 4
n. (3 1) G(x, y, t) G(x, y, t) = 4ra H(ξ, η, τ). (3 2) c 2 d 3.2.4 I inj, (3 6). v(x, t) = G(x, y, t) I inj (y, t) (3 21),., (3 6) v,., (3 6),. (3 6), EPSP ( 5mV ), f E., IPSP ( -2mV ), f I. x E x I, v(x, t; x E, x I ) f E f I v = fe m fi n v mn (x, t; X ), (3 22) k=m+n=k X {x E, x I }. x E X m ; x I X n. (3 22) (3 6),,. O(1), c v t = g L v + d 4r a 2 v x 2. (3 23) (3 7)-(3 9), v =. (3 24),,. 41
O(f E ), c v 1 t = g L v 1 + d 4r a 2 v 1 x 2 + g E(t)δ(x x E )ε E, (3 25) (3 25) I syn = g E (t)δ(x x E )ε E,, (3 25) v 1 = G(x, x E, t) [ε E g E (t)]. (3 26).. (3 26) x E ε E g E (t), mv x E I syn = g E (t)( ε E )., v 1 v, v x E. O(fE 2 ), c v 2 t = g L v 2 + d 4r a 2 v 2 x 2 g E(t)δ(x x E )v 1. (3 27) (3 27) I syn = g E (t)δ(x x E )v 1, v 1 (3 26), (3 27) v 2 = G(x, x E, t) [ g E (t)v 1 (x E, t; x E )]. (3 28). (3 28) x E I syn = g E (t)v 1 (x E, t; x E ). 42
, v 2 v 1, v 1 x E.., O(f I ), O(fI 2 ), O(f E f I ), v 1 = G(x, x I, t) [ε I g I (t)]. (3 29) v 2 = G(x, x I, t) [ g I (t)v 1 (x I, t; x I )]. (3 3) c v 11 t = g L v 11 + d 4r a 2 v 11 x 2 g E(t)δ(x x E )v 1 g I (t)δ(x x I )v 1, (3 31) v 11 = G(x, x E, t) [ g E (t)v 1 (x E, t; x I )] + G(x, x I, t) [ g I (t)v 1 (x I, t; x E )]. (3 32) (3 6)., Crank-Nicolson,.1ms, 1µm. [58, 59], 3 1.,, 3 3., EPSP V E f E v 1 + fev 2 2, (3 33) IPSP SSP V I f I v 1 + f 2 I v 2, (3 34) V S = V E + V I + V SC, (3 35) V SC [59], V SC f E f I v 11. (3 36) 43
3 1. Table 3 1 Parameters for two-compartment neuron model. c 1. µf cm 2 g L.5 ms cm 2 ε L / mv ε E 7 mv ε I -1 mv S 9π µm 2 r a 1 Ω cm l 6 µm d 1 µm σ Er 5 ms σ Ed 7.8 ms σ Ir 6 ms σ Id 18 ms 3.2.5, (3 33)-(3 36)., SC V SC, (3 36)., κ = V SC V E V I v 11 (, t; x E, x I ) v 1 (, t; x E )v 1 (, t; x I ). (3 37) ( (3 33)-(3 36)), 3 3. (3 37) κ.,, f E f I EPSP IPSP. (3 37), κ (leading order) f E f I, κ EPSP IPSP. (3 2), κ (3 37). 44
A B C EPSP (mv) 4 3 2 1 1st 2nd n.s. 5 1 Time (ms) IPSP (mv).5 1 1.5 1st 2nd n.s. 5 1 Time (ms) SSP (mv) 3 2 1 1st 2nd n.s. 1 5 1 Time (ms) 3 3. (A)EPSP. (B) IPSP. (C) SSP.,, (3 6). 3 1. Fig 3 3 Asymptotic solutions of various orders for the two-compartment cable model (3 6) for (A) EPSP, (B) IPSP, and (C) SSP in comparison with numerical solutions of Eq. (3 6). The dashed blue line is the first order approximation. The red circle is the second order approximation. The black solid line is the numerical solution of the full Eq. (3 6). Parameters in our simulation can be found in Table 3 1. κ EPSP IPSP, 3 4.A. [59] κ, 3 2. ε E = 7mV ε I = 1mV, (3 26),(3 29) (3 32), (3 32) G(x, x E, t) [ g E (t)v 1 (x E, t; x I )]. (3 38) (3 32) v 11 v 11 G(x, x I, t) [ g I (t)v 1 (x I, t; x E )], (3 39) I syn = g I (t)v 1 (x I, t; x E ). x I v 1 (x I, t; x E ). (3 39), x I, κ κ G(, x I, t) [ g I (t)v 1 (x I, t; x E )]. (3 4) v 1 (, t; x E ) 45
A B SC/EPSP (or SC/IPSP) 1.5 1.5 2 Experiment 1 4 8-1 ) mv ( κ.2.1 Experiment.3.2.1 1 3 45 35 2 5 4 8 IPSP (or EPSP) (mv) 1 3 5 E location (µm) 3 4 -. (A) (3 6) (3 2) SC EPSP (SC/EPSP) IPSP ( ) SC IPSP (SC/IPSP) EPSP ( ). EPSP IPSP (.2mV-3mV), SC/EPSP IPSP., IPSP EPSP (1mV-8mV), SC/IPSP EPSP. x E = 3µm, x I = 24µm.. (B) (3 6) κ : 5µm, 2µm 35µm, κ.. [59], x-y,. 3 1. Fig 3 4 Numerical experiments on dendritic integration rule for a pair of E-I inputs. (A) Simulation results of the two-compartment neuron model (3 6) in confirmation of the rule (3 2): Ratio of SC to EPSP (SC/EPSP) plotted against IPSP (red circle) and SC/IPSP plotted against EPSP (blue square). Fixing EPSP amplitude while varying IPSP amplitude from.2mv to 3mV, SC/EPSP increases linearly with IPSP. Similarly, fixing IPSP amplitude while varying EPSP amplitude from 1mV to 8mV, SC/IPSP increases linearly with EPSP. Lines indicate linear fit. Stimuli are given at x E = 3µm, x I = 24µm. Inset: experimental results (the inset is modified from Ref. [59]). (B) Spatial asymmetry of shunting coefficient κ in the model (3 6): κ as a function of distance between E location and the soma for three fixed I locations at 5µm, 2µm and 35µm, respectively (marked by colored lines). Inset: experimental results for the same set of the I locations (the inset is modified from Ref. [59]). The insets have the same axis labels as in the main figures. Parameters in our simulation can be found in Table 3 1. 46
l 1, (3 17) w =, w n (n 1 2 )π n 1. k = g L, k n αw 2 n/l 2 n 1, α = d/4r a. (3 2) (3 26), v 1 (x I, t; x E ) v 1 β 1+γl e g Lt/c g E + 2βclg E αγ 1 w 2 n=1 n ( cos [w n 1 x I l )] ( cos [w n 1 x E l )]. (3 41) β = γε E 4ra c 2 d., 2 x E v 1 (x I, t; x E ) 2 v 1 x 2 E βcg E αγl n=1 = βcg E αγl = βcg E αγl [ ( xi + x E cos 2l [ ( ) xi + x E cos nπ 2l n=1 ( xi x E cos 2l [ ( ) xi + x E δ c 2l ) nπ + cos ) ( xi x E (2n 1)π + cos 2l ( xi + x E cos l δ c ( xi + x E l ( xi x E l ) ) nπ )] nπ δ c ( xi x E 2l ) )] (2n 1)π ( )] xi x E + δ c, l δ c 2 [78] (Dirac Comb). x E,I [, l], x E = x I δ., xe v 1 (x I, t; x E ) x E. (3 41), xe v 1 (x I, t; x E ) = (3 42) x E = l. x E [, x I ], xe v 1 (x I, t; x E ) x E [x I, l], xe v 1 (x I, t; x E ) =., 47
v 1 (x I, t; x E ), x E, x E = x I, x E > x I., v 1 (, t; x E ) x E [, l]. (3 4), l 1 κ. κ l. 3 4.B,., κ. x I, G(, x I, t) g I (t). x E [, x I ], x I v 1 (, t; x E ) v 1 (x I, t; x E ). x E x I, x E, v 1 (, t; x E )., x E x I, v 1 (x I, t; x E )., x E [, x I ], (3 4), κ x E. x E > x I, x E x I, v 1 (, t; x E ) v 1 (x I, t; x E ). (3 4), κ., (3 2) EPSP t p,. 3.3 3.3.1 [59].,...,., ( 2.2.3).,, 3.2.4 3.2.5.,, (3 2)., κ : 3 5.A, ( 3 5.A ), 48
A B.16 Branching Point C.16 I soma I I E I S I E, E I E κ (mv 1 ).12.8.4 1 2 3 4 E distance (µm).14.12.1.8.6.4.2 κ (mv 1 ) I 3 5. (A). (B) κ. ( ), ( ). ( ). (C) ( ), κ. κ. Fig 3 5 Spatial dependence of κ. (A) A schematic branched dendrite. (B) Spatial profiles of κ as a function of the E input location along the trunk of a realistic neuron (marked orange in the inset) for a fixed I input on a branch (red square). The dashed vertical line indicates the location of the branching point (green dot) along the trunk. (C) κ values (color-coded) for an I input (red dot) fixed at the apical trunk, with an E input scanned throughout the active dendrite. ( 3 5.A ).,,., κ x E ;, κ., κ. x E, x E x I,. κ (3 4), κ x E x E, (3 4), x I,κ v 1 (, t; x E ) v 1 (x I, t; x E ). x E ( 3 5.A ), I E, v 1 (x, t; x E ). E ( 3 5.A ), I E. E, I E,, I S, x I, I I. x E E 49
E I E, x I I S I I.,, v 1 (, t; x E ) x I v 1 (x I, t; x E ). (3 4), E E, κ. 3.3.2,. [59]., NEURON, Crank-Nicolson. CA1, Duke-Southampton Archive [79], 2.. : g Na g Kd A g p K A g d K A H g h AMPA,NMDA,GABA A,GABA B. [8 82]. AMPA,NMDA, GABA A dr dt = α[c](1 r) βr r, 1.α β,[c]. I syn = g syn (v ε syn ), (3 43) 5
v, ε syn, g syn. AMPA GABA A, ḡ ; NMDA, g syn = g syn = ḡr, (3 44) ḡr, (3 45) 1 +.33 [Mg 2+ ]e.6v [Mg 2+ ]. GABA B,, g syn = ḡgn G n + K D, (3 46) G G-, n G-, K D. G dr dt = K 1[C](1 r) K 2 r, (3 47) dg dt = K 3r K 4 G, (3 48) K 1, K 2,K 3, K 4 G-. [66, 67, 8 82]. [59]. [83]. [34]. A, 35µm [35, 36]. H, [37].AMPA, [84 87]., g Na = 3mS/cm 2, g Na = 6mS/cm 2, g Kd = 5mS/cm 2, A x 1µm, ( g p K A (x) = ḡ KA 1 + x ), (3 49) 7 51
1µm < x 35µm, ( gk d A (x) = ḡ KA 1 + x ), (3 5) 7 x > 35µm g d K A (x) = 6.5 ḡ KA, (3 51) ḡ KA = 5mS/cm 2. H g h (x) = g s + g e g s 1 + exp[(l 2x)/(2δl)], (3 52) g s = 2µS/cm 2 (s ), g e = 1g s (e ), l = 6µm (l ), δl = 5µm. ( ) NMDA AMPA GABA B GABA A.6. R(x) =.6 1 + x. (3 53) l/2 : ( ) r m = r s + r e r s 1 + exp[(l 2x)/(2δl)], (3 54) r a = 8Ωcm, c = 1µF /cm 2, T = 34 o C, v r = 7mV. : E Na = +55mV, E K = 9mV, E h = 3mV, E AMP A = E NMDA = mv, E GABAA = 8mV, E GABAB = 9mV. 3 5.B, ( ),, κ, ( 3 5.B )., 3 5.C, ( 3 5.C ),κ. 3 5.B 3 5.C. 52
3.3.3 κ, [59]. 3 6. 3 6.A,,., κ..,, κ. 3 6.B,,., κ κ..,κ, κ. 3 6.C,,,., κ..,, κ. 3 6.D,,,., κ κ..,, κ. 53
A κ (mv 1 ) EI.3.25 I E 2 E1 B κ (mv 1 EI ).3.25 I E E 2 1.2 E1 E2.2 E1 E2 C κ (mv 1 ) EI.3.2 E 1 I E 2 D κ (mv 1 ) EI.3 E2 I E1.2.1.1 E1 E2 E1 E2 3 6. [59].,,. (I) (E1,E2).. (A) I,E1 E2 I., κ.(b) I, E1 E2 I., E1 κ E2 κ. (C) I,E1 E2, I., κ. (D) I, E1 E2, I., E2 κ E1 κ. [59]. Fig 3 6 Shunting coefficient κ in branched dendrites measured in experiments. Data are from Ref. [59]. The data in grey was collected from 7 neurons and lines connect data from the same cell. The data in black is the average of the data in grey. In all figure panels, the locations of the inhibitory input (I) and excitatory inputs (E1 and E2) are marked by blue dot and red dots, respectively. The I path is marked by green. (A) The inhibitory input I at an oblique branch: κ is nearly constant for two distal E1 and E2 on the same branch. (B) As in (A) except that E1 and E2 are more proximal than I. κ is significantly different at E1 and E2 sites. (C)The inhibitory input I at the trunk: κ is nearly constant between E1 at the trunk and E2 at the oblique branch. (D) The inhibitory input I at an oblique branch: κ is significantly different between E1 and E2, where E1 is on the same branch as I and E2 is on a different branch. Figures are modified from Ref. [59]. 54
[59] (3 2)., (3 2) -, EPSP.,,. (3 2), (i), -, -, -, - ; (ii), EPSP ; (iii),.,. -, -, -,. :.. 4.1-4.1.1.,, 3.2.2.,, l, d. x. x = x E t = t E, x = x I t = t I, v c v t = g Lv q=e,i f q g q (t t q )δ(x x q )(v ε q ) + d 4r a 2 v x 2, (4 1) 55
v, c, r a, g L. f E f I. g E g I, 3.2.1. ε E ε I. 3.2.2,,, v x =, x=l (4 2) v(, t) c = g L v(, t) + πd2 v t 4Sr a x, x= (4 3) S., v(x, ) =. (4 4), 3.2.2, t E t I., v(x, t) f E f I v(x, t) = k=m+n=k f m E f n I v mn (x, t). (4 5) (4 5) (6 1)-(6 1),, v mn (x, t). v mn (x, t) (m + n 2). O(1), O(f E ), v (x, t) =. (4 6) v 1 (x, t) = G(x, x E, t) [ε E g E (t t E )], (4 7). G(x, y, t), 3.2.3. O(f 2 E ), v 2 (x, t) = G(x, x E, t) [ g E (t t E )v 1 (x E, t)], (4 8) O(f I ), v 1 (x, t) = G(x, x I, t) [ε I g I (t t I )], (4 9) 56
O(f 2 I ), O(f E f I ), v 2 (x, t) = G(x, x I, t) [ g I (t t I )v 1 (x I, t)]. (4 1) v 11 (x, t) = G(x, x E, t) [ g E (t t E )v 1 (x E, t)] + G(x, x I, t) [ g I (t t I )v 1 (x I, t)]. (4 11) ε E =7mV ε I = 1mV, (4 11) v 11 v 11 (x, t) G(x, x I, t) [ g I (t t I )v 1 (x I, t)]. (4 12) 3.2.4,,,, EPSP, V E (t) f E v 1 (, t) + fev 2 2 (, t). (4 13), IPSP, V I (t) f I v 1 (, t) + fi 2 v 2 (, t). (4 14), SSP, V S (t) V E (t) + V I (t) + f E f I v 11 (, t). (4 15) V SC (t) SSP EPSP+IPSP, V SC (t) f E f I v 11 (, t). (4 16) ε I mv, V I, V SC., V I,V SC, [59]., O(f E f I ). κ EI κ EI (t; t E, t I, x E, x I ) = V SC V E V I G(, x I, t) [g I (t t I )G(x I, x E, t) g E (t t E )] ε I G(, x E, t) g E (t t E ) G(, x I, t) g I (t t I ), (4 17a) (4 17b) 57
κ EI EPSP IPSP, f E f I (4 17b). (4 17a), V S (t) = V E (t) + V I (t) + κ EI (t)v E (t)v I (t). (4 18) κ EI EPSP IPSP., κ EI x E x I., κ EI t τ = t E t I, 4 1. (4 18) EPSP IPSP, (4 18) 4.1.2 (4 18),,.. 4 1.A, 3.3.2. (t E = t I ), 4 2.A, x E = 283µm x I = 151µm, SSP EPSP IPSP., (4 18) EPSP t p., f E EPSP.5mV 6mV, f I IPSP -.5mV -3mV. f E f I, EPSP, IPSP SSP. f E f I, 9 { EPSP, IPSP, SSP }. t p SC V SC (t p ) EPSP IPSP, V E (t p )V I (t p ). 4 3.A, κ EI (t p ) EPSP IPSP. [59]., (4 18) t, t p. κ EI (t) t p τ < t < t p + τ, τ = 1ms. 58
κ EI (t,τ) E t I τ t E t 1µm I EPSP IPSP 4 1 κ EI. -, κ EI t τ... ( ) IPSP EPSP,. ( ) κ EI EPSP,. Fig 4 1 Shunting coefficient κ EI as a function of time t and input arrival difference τ for a fixed pair of excitatory and inhibitory input locations. Left, a morphological plot of a pyramidal neuron. The excitatory and inhibitory input locations are indicated by arrows. Right, (lower) an IPSP arrives at the soma earlier than an EPSP. The arrival times are indicated by vertical dashed lines. (upper) The shunting coefficient κ EI remains at zero until the time when the EPSP starts. 59
A EPSP Linear Sum B EPSP Linear Sum SSP SSP t p IPSP SC 5ms 2mV IPSP SC 5ms 2mV 4 2 -. (A), EPSP, IPSP, SSP SC EPSP+IPSP. t p EPSP. (B) (A), IPSP EPSP 2ms. 3.3.2. x E = 283µm, x I = 151µm. Fig 4 2 The membrane potential profiles for a pair of concurrent and non-current E-I inputs. (A) An example of EPSP, IPSP, SSP, SC, and the corresponding linear sum when the EPSP and the IPSP are elicited concurrently. Here t p denotes the time when EPSP reaches its peak value. (B) The same as (A) except that the IPSP is elicited 2ms before the EPSP. The results are obtained in the realistic neuron model simulation which is described in detail in Section 3.3.2. The excitatory input is given at the location x E = 283µm and the inhibitory input is given at the location x I = 151µm. 2ms, EPSP, EPSP,. t, κ EI (t) 9 { EPSP, IPSP, SSP }. 4 3.B, t, κ EI., R 2 1.,V SC (t) V E (t)v I (t). t,κ EI EPSP IPSP., t p,, EPSP IPSP mv., SC, (4 18) κ EI = mv 1. (t E t I ), 4 2.B, 2ms, (4 18), 4 4.A-B.,. 6
A V SC (mv) x1-1 9 6 3 4 8 12 V E V I (mv 2 ) B R 2 κ EI x1 1.5 2 1 1 2 1.5 2 1 1 2 Time (ms) 4 3 -. (A) EPSP. (B) t p τ < t < t p + τ, τ = 1ms. ( ) V SC V E V I R 2. ( ) κ EI (t) ( mv 1 ),. 95%. (A). Fig 4 3 Numerical results for the dendritic integration of a pair of concurrent excitatory and inhibitory inputs. (A) Dendritic integration at the EPSP peak time. (B) Dendritic integration in the time interval t p τ < t < t p + τ, τ = 1ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V E V I at different times. (lower) The shunting coefficient κ EI (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A). 4.1.3, (4 18). CA1., x E 1µm, x I 5µm., EPSP 1mV 8mV, IPSP -.5mV -3mV., 1ms, SC V SC EPSP IPSP V E V I, V E V I 1,.,. 61
A x1-1 B 6 1 R 2.5 V SC (mv) 4 2 2 1 1 2 1 3 6 9 x1 κ EI.5 2 1 1 2 V E V I (mv 2 ) Time (ms) 4 4 -. IPSP EPSP 2ms. (A) EPSP. (B) t p τ < t < t p + τ, τ = 1ms. ( ) V SC V E V I R 2. ( ) κ EI (t) ( mv 1 ),. 95%. (A). Fig 4 4 Numerical results for the dendritic integration of a pair of nonconcurrent excitatory and inhibitory inputs. IPSP is elicited 2ms before the EPSP. (A) Dendritic integration at the EPSP peak time. (B) Dendritic integration in the time interval t p τ < t < t p + τ, τ = 1ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V E V I at different times. (lower) The shunting coefficient κ EI (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A). (t E = t I ), t p SC V SC (t p ) EPSP IPSP, V E (t p )V I (t p ), 4 5.A. κ EI EPSP IPSP, (4 18). t p τ < t < t p + τ, τ = 1ms, V SC (t) V E (t)v I (t), 4 5.B. (4 18). (t E t I ), 2ms, (4 18) EPSP, 4 6.A-B., R 2.77.81, R 2.9.99. (4 18). 62
A B 3 1 R 2.5 V SC (mv) 2 1 κ EI x1 2 1 1 2 4 2 4 8 12 2 1 1 2 V E V I (m V 2 ) Time (ms) 4 5 -. (A) EPSP. (B) t p τ < t < t p + τ, τ = 1ms. ( ) V SC V E V I R 2. ( ) κ EI (t) ( mv 1 ),. 95%. (A). Fig 4 5 Experimental results for the dendritic integration of a pair of concurrent excitatory and inhibitory inputs. (A) Dendritic integration at the EPSP peak time. (B) Dendritic integration in the time interval t p τ < t < t p + τ, τ = 1ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V E V I at different times. (lower) The shunting coefficient κ EI (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A). 4.2-4.2.1 - (4 18).., [26],,., x = x E1 t = t E1 f E1, x = x E2 t = t E2 f E2 63
A B 1 V SC (mv) 4 2 R 2.5 2 1 1 2 4 κ EI x1 2 5 1 15 2 1 1 2 V E V I (mv 2 ) Time (ms) 4 6 -. IPSP EPSP 2ms. (A) EPSP. (B) t p τ < t < t p + τ, τ = 1ms. ( ) V SC V E V I R 2. ( ) κ EI (t) ( mv 1 ),. 95%. (A). Fig 4 6 Experimental results for the dendritic integration of a pair of nonconcurrent excitatory and inhibitory inputs. IPSP is elicited 2ms before the EPSP. (A) Dendritic integration at the EPSP peak time. (B) Dendritic integration in the time interval t p τ < t < t p + τ, τ = 1ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V E V I at different times. (lower) The shunting coefficient κ EI (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A)., c v t = g Lv q=e1,e2 f q g E (t t q )δ(x x q )(v ε E ) + d 2 v (4 19) 4r a x 2, 3.2.2,,, v x =, (4 2) x=l v(, t) c t = g L v(, t) + πd2 4Sr a 64 v x, (4 21) x=
, v(x, ) =. (4 22), (4 19) f E1 f E2, ( ) EPSP SSP, V S (t) = V E1 (t) + V E2 (t) + κ EE (t)v E1 (t)v E2 (t), (4 23) V E1 V E2 f E1 f E2 EPSP. V S SSP. 4.1.1, κ EE (t), EPSP. κ EE - κ EI,. 4.2.2 (4 23),. (t E1 = t E2 ), x E1 f E1, EPSP 1. x E2 f E2, EPSP 2. x E1 x E2 f E1 f E2, SSP. f E1 f E2 EPSP 1 EPSP 2.5mV 2mV, 1 { EPSP 1, EPSP 2,SSP }., EPSP 1 t p, V SC (t p ) = V S (t p ) V E1 (t p ) V E2 (t p )., V SC V E1 (t p )V E2 (t p ), 4 7.A. κ EE EPSP 1 EPSP 2, (4 23) t p., 4 7.B, (4 23) t p τ < t < t p + τ, τ = 1ms. 65
A x1-1 1.5 B 1 R 2.5 V SC (mv) 1.5 x1 2 2 1 1 2 4 2 4 κ EE 2 2 1 1 2 V E1 V E2 (m V 2 ) Time (ms) 4 7 -. (A) EPSP. (B) t p τ < t < t p + τ, τ = 1ms. ( ) V SC V E1 V E2 R 2. ( ) κ EE (t) ( mv 1 ),. 95%. (A). Fig 4 7 Numerical results for the dendritic integration of a pair of concurrent excitatory inputs. (A) Dendritic integration at one of the EPSPs peak time. (B) Dendritic integration in the time interval t p τ < t < t p +τ, τ = 1ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V E1 V E2 at different times. (lower) The shunting coefficient κ EE (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A). (t E1 t E2 ),, (4 23), 4 8., ( V E1 V E2 > 5mV), (4 23)..,. 4.2.3 κ EE ( 1 2 ) κ EI ( 1 1 ). κ EE = mv 1 66
A x1-2 B 1 V SC (mv) 2 1.5 1 1.5 κ R 2 EE x1 2.5 2 1 1 2 2 1 2 1 1 2 V E1 V E2 (m V 2 ) Time (ms) 4 8 -. EPSP EPSP 2ms. (A) EPSP. (B) t p τ < t < t p + τ, τ = 1ms. ( ) V SC V E1 V E2 R 2. ( ) κ EE (t) ( mv 1 ),. 95%. (A). Fig 4 8 Numerical results for the dendritic integration of a pair of nonconcurrent excitatory inputs. One of the EPSPs is elicited 2ms earlier than the other. (A) Dendritic integration at one of the EPSPs peak time. (B) Dendritic integration in the time interval t p τ < t < t p + τ, τ = 1ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V E1 V E2 at different times. (lower) The shunting coefficient κ EE (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A)., SSP EPSP. V S (t) = V E1 (t) + V E2 (t). (4 24) [88]..,, 4 9. 4.1.3. 67
A B 8 16 6 12 SSP (mv) 4 SSP (mv) 8 2 4 2 4 6 8 Linear Sum (mv) 4 8 12 16 Linear Sum (mv) 4 9 -., (A) (B). (B) EPSP EPSP 2ms. x E1 5µm x E2 1µm. Fig 4 9 Dendritic integration of a pair of excitatory inputs in experiments. Our experimental result shows the nearly linear summation for a pair of concurrent excitatory inputs (A) and nonconcurrent excitatory inputs with arrival time difference 2ms (B). Two excitatory inputs are given at the location x E1 5µm and at x E2 1µm. 4.3-4.3.1., x = x I1 t = t I1 f I1, x = x I2 t = t I2 f I2, c v t = g Lv q=i1,i2 f q g I (t t q )δ(x x q )(v ε I ) + d 2 v (4 25) 4r a x 2,,, v x =, (4 26) x=l 68
v(, t) c t = g L v(, t) + πd2 4Sr a, v x, (4 27) x= v(x, ) =. (4 28), (4 25) f I1 f I2, ( ) IPSP SSP, V S (t) = V I1 (t) + V I2 (t) + κ II (t)v I1 (t)v I2 (t), (4 29) V I1 V I2 f I1 f I2 IPSP. V S SSP. 4.1.1, κ II (t), IPSP. 4.3.2 (4 29),. (t I1 = t I2 ),, x I1 = 94µm f I1, IPSP 1. x I2 = 151µm f I2, IPSP 2. x I1 x I2 f I1 f I2, SSP. f I1 f I2 IPSP 1 IPSP 2 -.5mV -3mV, 1 { IPSP 1,IPSP 2,SSP }., IPSP 1 t p, V SC (t p ) = V S (t p ) V I1 (t p ) V I2 (t p )., V SC V I1 (t p )V I2 (t p ), 4 1.A. κ II IPSP 1 IPSP 2, 69
A B 1 R 2 1.5 V SC (mv).5 1 1 2.2 κ II.1 2 4 6 8 V I1 V I2 (mv 2 ) 1 1 2 Time (ms) 4 1 -. (A) IPSP. (B) t p 5ms < t < t p + 15ms. ( ) V SC V I1 V I2 R 2. ( ) κ II (t) ( mv 1 ),. 95%. (A). Fig 4 1 Numerical results for the dendritic integration of a pair of concurrent inhibitory inputs. (A) Dendritic integration at one of the IPSPs peak time. (B) Dendritic integration in the time interval t p 5ms < t < t p + 15ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V I1 V I2 at different times. (lower) The shunting coefficient κ II (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A). t p., 4 1.B, (4 29) t p 5ms < t < t p + 15ms., (4 29), 4 11. 4.3.3, x I1 5µm, x I2 1µm., IPSP 1 IPSP 2 -.5mV -3.5mV. (t I1 = t I2 ), t p SC V SC (t p ) 7
A B 1.5 R 2 1.5 V SC (mv) 1.5 κ II 1 1 2.2.1 4 8 12 V I1 V I2 (mv 2 ) 1 1 2 Time (ms) 4 11 -. IPSP IPSP 2ms. (A) IPSP. (B) t p 5ms < t < t p +15ms. ( ) V SC V I1 V I2 R 2. ( ) κ II (t) ( mv 1 ),. 95%. (A). Fig 4 11 Numerical results for the dendritic integration of a pair of nonconcurrent inhibitory inputs. One of the IPSPs is elicited 2ms earlier than the other. (A) Dendritic integration at one of the IPSPs peak time. (B) Dendritic integration in the time interval t p 5ms < t < t p + 15ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V I1 V I2 at different times. (lower) The shunting coefficient κ II (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A). IPSP 1 IPSP 2, V I1 (t p )V I2 (t p ), 4 12.A. κ II IPSP 1 IPSP 2, (4 29). t p 5ms < t < t p + 15ms, V SC (t) V I1 (t)v I2 (t), 4 12.B. (4 29). (t I1 t I2 ), 2ms, (4 29) IPSP, 4 13. 4.1.3. 71
A B 1.5 1 R 2.5 V SC (mv) 1..5 1 1 2.2 κ II.1 2 4 6 V I1V I2 (mv 2 ) 1 1 2 Time (ms) 4 12 -. (A) IPSP. (B) t p 5ms < t < t p + 15ms. ( ) V SC V I1 V I2 R 2. ( ) κ II (t) ( mv 1 ),. 95%. (A). Fig 4 12 Experimental results for the dendritic integration of a pair of concurrent inhibitory inputs. (A) Dendritic integration at one of the IPSPs peak time. (B) Dendritic integration in the time interval t p 5ms < t < t p + 15ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V I1 V I2 at different times. (lower) The shunting coefficient κ II (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A). 4.4 4.4.1,., [28].., c v t = g Lv q=e,i G q (v ε q ) + d 4r a 2 v x 2, (4 3) 72
A 2. B 1 1.5 R 2.5 V SC (mv) 1. 1 1 2.2.5 κ II.1 4 8 12 1 1 2 V I1 V I2 (mv 2 ) Time (ms) 4 13 -. IPSP IPSP 2ms. (A) IPSP. (B) t p 5ms < t < t p +15ms. ( ) V SC V I1 V I2 R 2. ( ) κ II (t) ( mv 1 ),. 95%. (A). Fig 4 13 Experimental results for the dendritic integration of a pair of nonconcurrent inhibitory inputs. One of the IPSPs is elicited 2ms earlier than the other. (A) Dendritic integration at one of the IPSPs peak time. (B) Dendritic integration in the time interval t p 5ms < t < t p + 15ms. (upper) R 2 for the goodness of the linear fitting of V SC vs. V I1 V I2 at different times. (lower) The shunting coefficient κ II (t) (in the unit of mv 1 ) as the slope of the linear fitting is plotted at different times. The error bar indicates 95% confidence interval. The circle marked by red indicates the case in (A). G q = M q i=1 j=1 f ij q g q (t t ij q )δ(x x i q), (4 31) q {E, I}. q, fq ij ith jth, t ij q ith jth, x i q ith., SSP 73
f ij q (i, j N,q {E, I}), V S (t) = p V p E (t) + q V q I (t) + i,j κ ij EI (t)v E(t)V i j I (t) + κ kl EE(t)VE k (t)ve(t) l + κ mn II (t)vi m (t)vi n (t). k,l m,n (4 32),SSP EPSP IPSP,. κ ij EE, κkl EI κmn II., 4.2, (4 32) κ ij EE mv 1. 4.4.2, (4 32). (4 32).. CA1,, [89]. 15 5, 4 14.A., ms 1ms. (4 32) SSP SSP, κ EI, κ EE κ II., EPSP IPSP VE i j, i = 1, 2,..., 15 VI, j = 1, 2,..., 5. (4 32) SSP., (4 32) SSP, 4 14.B 4 14.C., SSP EPSP IPSP. 4.4.3 (4 32),., 74
A B C Membrane Potential (mv) 3 2 1 Linear Sum Predicted SSP Simulated SSP 2 4 6 8 1 Time (ms) Linear Sum (mv) or Predicted SSP (mv) 3 2 1 1 2 3 Simulated SSP (mv) 4 14. (A) 15 ( ) 5 ( ). (B) ms 1ms, SSP ( ) (4 32) SSP ( ), ( ). (C) ( ) (4 32) SSP ( ) SSP. (B) ms 1ms., 1.. SSP SSP. Fig 4 14 Dendritic integration of multiple synaptic inputs. (A) Distribution of 15 excitatory inputs (red dots) and 5 inhibitory inputs (blue dots) at the dendritic arbor of the model neuron. (B) By setting the arrival time of each stimulus randomly distributed from ms to 1ms, the SSP (black dots) from the simulation of the realistic neuron model nearly overlaps with the SSP (red) predicted by the bilinear rule (4 32) while deviating from the trace of the direct linear summation of all postsynaptic potentials elicited separately (blue). (C) The direct linear sum (blue) and the SSP (red) predicted by rule (4 32) are plotted against the SSP from the simulation of the realistic neuron model. Here, the data are points on the corresponding curves in (B) sampled uniformly from ms to 1ms. For guiding the eye, the slope of the grey line is unity. It can be observed that the red dots fall on the grey line. This indicates that the predicted SSP is equal to the simulated SSP at any time..,, SC..,, 4 15.A.,.,, mv,. 75
A B C D Normalized SC 1 4 15. (A) 15 ( ) 5 ( ). (B)-(D) 2ms, 5ms, 8ms. SC. - 4 14. Fig 4 15 Graph representation of dendritic integration. (A) A complete dendritic graph with 15 excitatory inputs (red) and 5 inhibitory inputs (blue). (B)-(D) Activated dendritic graph at time 2ms, 5ms and 8ms, respectively. The color of an edge in (B-D) denotes the normalized SC value. Data are collected from simulations in Fig. 4 14.., 4 15.A, ( ), 4 15.B-D.., 1 4 [2]. [9, 91], 1 [92, 93]. 1 5. 1ms ( ) 1 3., 1 6., 1 8. ( 1 2 ). 76
,., PDE,.,,, [59]. 5.1 IF [73, 74, 94 99].,, [1].,, IF. IF 2.1.2., IF, v c dv dt = g L(v ε L ) f E g E (v ε E ) f I g I (v ε I ), (5 1) c, g L, f E f I, g E g I, (3 4). ε L, ε E ε I. 5.1.1 IF [59] ( ). IF,, EPSP c dv dt = g L(v ε L ) f E g E (v ε E ), (5 2), IPSP c dv dt = g L(v ε L ) f I g I (v ε I ), (5 3) 77
5 1 IF. IF EPSP IPSP, EPSP IPSP,. IF, f E = 11.6µS/cm 2, σ Er = 5ms, σ Ed = 7.8ms, f I = 37.1µS/cm 2, σ Ir = 6ms, and σ Id = 18ms. Fig 5 1 Reproduced profiles of EPSP and IPSP by the IF model. The blue lines are produced from the IF model, the light gray lines represent EPSP and IPSP measured in the experiment from different trials, and the red lines represent the trial-averaged responses in the experiment. Parameters in the IF model are chosen as follows, f E = 11.6µS/cm 2, σ Er = 5ms, σ Ed = 7.8ms, f I = 37.1µS/cm 2, σ Ir = 6ms, and σ Id = 18ms. (differential evolution) [11] g E σ Er = 5ms σ Ed = 7.8ms, g I σ Ir = 6ms σ Id = 18ms, IF EPSP, IPSP [59] EPSP, IPSP, 5 1., SSP c dv dt = g L(v ε L ) f E g E (v ε E ) f I g I (v ε I ). (5 4), Runge-Kutta (5 2)-(5 4)., EPSP, IPSP, SSP, SC V E, V I, V S, V SC. t p EPSP. IF [59] V S (t p ) = V E (t p ) + V I (t p ) + κv E (t p )V I (t p ), (5 5) 78
A B SC/IPSP & SC/EPSP.4.3.2.1 (mv 1 ) κ.84.8.76 (m V 1 ) κ.3 Experiment.2.1 1 3 45 E Location (µ m) 2 4 6 EPSP & IPSP (mv).72 5 15 25 35 E Location (µm) 5 2 IF. (A) IF (5 5). (B) IF κ. [59]. Fig 5 2 Dendritic integration rule in the IF model. (A) The bilinear dendritic integration rule (5 5) is verified in the IF model. (B) Shunting coefficient κ as a function of the excitatory input location in the IF model. Inset, experimental results [59] for comparison. V SC V SC = V S V E V I t p V E V I. [59], IF, f E EPSP, f I IPSP, V SC (t p ) V I (t p )., f I IPSP, f E EPSP, V SC (t p ) V E (t p ). 5 2.A, EPSP,SC/EPSP IPSP ; IPSP,SC/IPSP EPSP,,, [59]. (5 5) IF. 5.1.2 IF (5 5). IF ODE,,, (5 2) 79
v = 1 c t ε E f E g E (u)e g L (u t) c e u f E g E (v) t c dv du. (5 6) f E, (5 6) Taylor, EPSP V E (t) 1 t ( ε E f E g E (u)e g L (u t) c 1 + c u, (5 3) v = 1 c t t f E g E (v) ) dv du. (5 7) c ε I f I g I (u)e g L (u t) c e u f I g I (v) t c dv du. (5 8), f I, (5 8) Taylor, IPSP V I (t) 1 t ( u ε I f I g I (u)e g L (u t) f I g I (v) ) c 1 + dv du. (5 9) c c, (5 4) v = 1 c t g S e g L (u t) c e u t t g S (v) c dv du. (5 1) g S f E g E + f I g I, g S ε E f E g E + ε I f I g I. (5 1) Taylor, SSP V S (t) 1 t ( u g S e g L (u t) g S (v) ) c 1 + dv du. (5 11) c c κ, κ t Q(f, x) t [ε Eg I (u)q(g E, u) + ε I g E (u)q(g I, u)]du, (5 12) ε E ε I Q(g E, t)q(g I, t) Q(f, x) = x e g L(y t)/c f(y)dy. (5 13) EPSP IPSP f E f I (5 12), κ. (5 5). (3.2.4) κ (5 12),. 8
5 4 σ (ms) 3 2 1 rise decay 5 1 15 2 25 3 Distance (µm) 5 3., EPSP [87]. Fig 5 3 Spatial dependence of the rise (red square) and the decay (blue circle) time constants for excitatory conductance. Rise and decay time constants as a function of distance are obtained by fitting EPSP profiles [87] at different excitatory input locations. 5.2 DIF [59],, κ,, κ,. IF,, κ. κ (5 12),κ g E g I. [87], EPSP. [87], [11] g E, 5 3., IF,,κ,, 5 2.B., κ, IF. 81
5.2.1 IF, (5 5). [12], NMDA,,. I ex = G E (t)(ε E V E E (t)), I in (t) = G I (t)(ε I V I I (t)), VE E, V I I,G E = f E g E,G I = f I g I. [58],, i I i (t), j V j (t) V j (t) = K ij (t) I i (t), K ij (t),, *.,,., EPSP V E = K ES G E (ε E V E E ) EPSP V E E = K EE G E (ε E V E E ). V E = K ESG E ε E 1 + K EE G E.,, IPSP V I = K ISG I ε I 1 + K II G I., V S = K ES G E (ε E V E ) + K IS G I (ε I V I ), 82
V E V I V E = K EE G E (ε E V E ) + K IE G I (ε I V I ) V I = K II G I (ε I V I ) + K EI G E (ε E V E ). V E = K EEG E ε E + K IE G I ε I + (K EE K II K EI K IE )G E G I ε E 1 + K EE G E + K II G I + (K EE K II K EI K IE )G E G I, V I = (K EEG E ε E + K IE G I ε I )K EI G E + (K EI G E ε E + K II G I ε I )(1 + K EE G E ) 1 + K EE G E + K II G I + (K EE K II K EI K IE )G E G I, V S = K ESG E ε E + K IS G I ε I + (K ES K II K IS K EI )G I G E ε E + (K IS K EE K ES K IE )G E G I ε I 1 + K EE G E + K II G I + (K EE K II K EI K IE )G E G I. [58, 59], K EE G E, K II G I, K IE G I, K EI G E 1 2 1 1,. Taylor, V E K ES (1 K EE G E )G E ε E, V I K IS (1 K II G I )G I ε I, V S K ES (1 K EE G E )G E ε E +K IS (1 K II G I )G I ε I K ES K IE G E G I ε I K IS K EI G E G I ε E. V S V E + V I ( K IE + K EI )V E V I. (5 14) K IS ε E K ES ε I κ = K IE K EI, K IS ε E K ES ε I (5 14) [59] (5 5). 5.2.2, [59],.. (5 14), G E G I, 83
V E V I. G E G I (5 5)., IF c dv dt = g L(v ε L ) G E (1 + αg I )(v ε E ) G I (1 + βg E )(v ε I ), (5 15) c, g L, G E = f E g E G I = f I g I. ε L, ε E ε I. IF, G E G I α β.. (5 15) IF. α β., α β (5 5). (5 15), EPSP V E = G Eε E G E + g L. IPSP SSP V I = G Iε I G I + g L. V S = G Eε E + G I ε I + (αε E + βε I )G E G I G E + G I + (α + β)g E G I + g L V S = V E + V I + κv E V I α β α + β = 1 g L αε E + βε I = ε E + ε I + κε E ε I g L. α = ε E + kε E ε I g L (ε E ε I ) β = 1 g L ε E + kε E ε I g L (ε E ε I ). 84
- ) SC/IPSP & SC/EPSP A.8.6.4.2 B 3 2 1 1 (m V κ.3 Experiment.2.1 1 3 45 E Location ( µ m) 2 4 6 EPSP & IPSP (mv) 1 2 3 4 E Location ( µ m) 5 4 IF. (A) IF (5 5). α = 8kΩ cm 2, β = 7kΩ cm 2. (B) IF α. [59]. Fig 5 4 Dendritic integration rule in the modified IF model. (A) The bilinear dendritic integration rule (5 5) is verified in the modified IF model. Parameters α = 8kΩ cm 2, β = 7kΩ cm 2. (B) Shunting coefficient κ as a function of the excitatory input location in the IF model. Inset, experimental results [59] for comparison., (5 15) g L, v, v dv dt. g L, α = kω cm 2 β = kω cm 2, IF (5 15) IF. IF IF, α β κ. 5.2.3 IF (5 5),. Runge-Kutta, EPSP, V E, V I, V S (5 5), 5 4.A., EPSP (5 5). 85
5.2.4 5.1.2 IF (5 5) κ M = κ + (αε E + βε I ) t g E(u)g I (u)e gl(u t)/c du, (5 16) ε E ε I Q(g I, t)q(g E, t) κ M IF, κ IF (5 12). Q(, t) (5 13). (5 16), κ 5.1.2 EPSP IPSP. EPSP IPSP, f E f I (5 16)., κ M, IF (5 15). ε I = 1mV ε E = 7mV, κ M κ M κ + α t g E(u)g I (u)e gl(u t)/c du, (5 17) ε I Q(g E, t)q(g I, t) κ M β.. 5 5, κ M β β = 1,, 1kΩ cm 2,., κ α. IF, β = kω cm 2 c dv dt = g L(v ε L ) G E (1 + αg I )(v ε E ) G I (v ε I ) (5 18) (5 18) - - (Dendritic-Integration-Rule-Based IF, DIF).,., κ, (5 17) α., α κ. 5 4.B. 5.2.5 (5 5), DIF [59], : 86
2 1.5 β = 1 β = β = 1 (mv 1 ) 1 κ.5 2 4 6 8 1 Time (ms) 5 5 β. β β = 1,, 1kΩ cm 2. α α = 8kΩ cm 2. κ M β. Fig 5 5 The shunting coefficient as a function of time with three different values of β. β = 1,, 1kΩ cm 2. Here α is fixed as α = 8kΩ cm 2. It can be seen that, k M is almost independent of the parameter β. [59],, SC., I inj (t) I inj = f σ rσ d (e σ d σ r t σ d e t σr ) (5 19) f, σ r σ d [58]. DIF c dv dt = g L(v ε L ) f E g E (v ε E ) + I inj., 5 6,,. [59],,. (i), SC. (ii), SC ;, SC. (i) :, SC V E V I,, V E V I. DIF, 5 7. (ii) : κ, DIF α. 87
Linear sum (mv) 15 1 5 "IPSP"= 2.6mV "IPSP"= 1.3mV Linear fit Linear sum (mv ) 5 1 15 Measured sum (mv ) 5 1 15 Measured sum (mv) 15 1 5 5 6. DIF, -2.6mV ( ) -1.3mV ( ). σ r = 4ms, σ d = 1ms. 5 1. : ( [59]). Fig 5 6 The shunting compoent vanishes under direct current injection hyperpolarization. Here, the inhibition is caused by direct injection of the inhibitory current to the soma of the DIF neuron with its amplitude at -2.6mV (red circle) and at -1.3mV (red square). Time constants of the injected hyperpolarized current are chosen as σ r = 4ms, σ d = 1ms. Time constants of the excitatory conductance are chosen as those in Fig. 5 1. Inset: experimental results (Figure is modified from Ref. [59]).,, SC. DIF, 5 7. [59], ( ) -1mV mv, SC. DIF, SC SC = 1 t [ε c 2 E G I (u)q(g E, u) + ε I G E (u)q(g I, u) (αε E c + βε I c)g E (u)g I (u)e g L(u t)/c ] du. ε I = 1mV ε E = 7mV, SC ε E c 2 t [ GI (u)q(g E, u) αcg E (u)g I (u)e g L(u t)/c ] du. 88
SC (mv) 3 2 SC (mv) 3 2 1 1 5 t I t E (ms) 1 1 5 t I t E (ms) distal proximal 5 7., DIF α ( ) ( ). : ( [59]). Fig 5 7 SC vs. the relative time delay between IPSP and EPSP. For a fixed inhibitory input site, we choose two different α values representing two input sites for excitation: one corresponds to the distal dendrite (red circle online) and the other corresponds to the proximal dendrite (blue square online). Inset: experimental measurement (Figure is modified from Ref. [59]). SC ε I. DIF, 5 8. 5.2.6 DIF,. DIF,, κ κ M t. 5 9, t, κ,, κ M. (5 17), κ κ M αc t G E(u)G I (u)e GL(u t)/c du, (5 2) ε I Q(G I, t)q(g E, t) (remainder). t, t 3 t 4, t 1., 89
3 SC (mv) 2 SC (mv) 3 2 1 DF=m V DF= 1mV 1 DF=mV DF= 1mV 5 8. DIF (,DE) -1mV mv, SC. : ( [59]). Fig 5 8 SC is not affected by changing inhibitory reversal potential in the DIF neuron. SC does not change much if the driving force (DF) for IPSP is changed from -1mV to mv. Inset: experimental measurement (modified from Ref. [59]). EPSP, IPSP, SSP, κ.,, t =,,, κ.,,. [76], DIF (5 18) G E, G I G S G S G E + G I + αg E G I. (5 21),,, DIF (5 18)., DIF SC, SSP EPSP IPSP., κ M (5 16), κ, κ.,, (5 5)., 9
2 1.5 x1 3 (mv 1 ) κ 1.5 1 Remainder term 1.5 exact asymptotic x1-3 5 1 Time (ms) M κ κ*.5 Remainder 2 4 6 8 1 Time (ms) 5 9 κ M κ., κ M ( ) κ M κ ( ), κ ( ). : (5 2) ( ) 1( ) t. Fig 5 9 The asymptotic behaviors of κ M and κ. When time goes to zero, κ M (red) and the remainder term defined as κ M κ (blue) tend to infinity, whereas, κ (green) approaches a finite value. Inset: The remainder term (blue) from Eq. (5 2) overlaps with its asymptotic solution (red) which is 1. t, 5 1., DIF. 91
A B DIF (mv 1 ) κ C T-C D SC/IPSP & SC/EPSP GSC/GI & GSC/GE GE & GI EPSP & IPSP (mv) 5 1 DIF. (A) (T-C) κ ( ) DIF κ. (B) EPSP. α. (C),. (D),., 3 1, (A-C), x E = 3µm x I = 24µm. Fig 5 1 Numerical verification of the DIF model prediction. (A) κ curve computed by the twocompartment neuron model (T-C, marked in blue) is almost overlap with the one predicted by DIF model (red). (B) Bilinear integration rule holds for conductances at the time when EPSP reaches its peak. (inset: the slope α is a constant as time changes) (C) The SC term disappears when a pair of depolarized and hyperpolarized current are injected at dendrites. (D) Bilinear integration rule holds when synaptic inputs are given at soma. Parameters used in the two-compartment model can be found in Table 3 1. Synaptic inputs are given at the location x E = 3µm and x I = 24µm for (A-C). 92
, DIF, [59]. DIF α -, EPSP κ.,dif.,.,,., DIF, IF ;, HH DHH, HH. DHH HH,,. 6.1 DIF,.,, DIF IF, DIF. 6 1. 6.1.1 -. ( 2.2.2) c v t = g Lv q=e,i f q g q (t t q )δ(x x q )(v ε q ) + d 4r a 2 v x 2, 93
6 1. Table 6 1 Parameters for passive neuron models. c 1. µf cm 2 g L.5 ms cm 2 ε L -7 mv ε E mv ε I -8 mv d s 3 µm r a 1 Ωcm l 6 µm d 1 µm σ Er 5 ms σ Ed 7.8 ms σ Ir 6 ms σ Id 18 ms v ( ), c, r a, g L. f E f I. g E g I, 3.2.1. ε E ε I. 2.2.2, v x =, x=l v(, t) c t = g L v(, t) + πd2 4Sr a v x, x= S., v(x, ) =. t E, x E f E, t I, x I f I, 94
EPSP, IPSP, SSP., v, IF (G E G I ) c dv dt = g L(v ε L ) G E (v ε E ) G I (v ε I ) G E G I. DIF IF,,DIF IF EPSP/IPSP EPSP/IPSP. SSP, G E, G I, [11] DIF c dv dt = g L(v ε L ) G E (1 + α EI G I )(v ε E ) G I (v ε I ), α EI. α EI DIF SSP SSP. α EI EPSP κ, α EI. DIF. f E, f I,, DIF, IF SSP. (t E = t I ), 6 1.A, DIF SSP SSP., IF SSP SSP 1mV., IF SSP 1%.,, DIF α EI, f E f I. EPSP (1 8mV) IPSP (-1mV -4mV), α EI. 6 1.B, α EI ( 1 ).,. α EI, DIF SSP, 6 2.,, DIF α EI SSP. 6 1 6 2, DIF IF. 95
A Membrane potential (mv) 8 6 4 2 DIF IF T-C B α EI (kω cm 2 ) 3 2 1 I(µm) 5 35 2 5 2 5 1 Time (ms) 1 2 4 6 Location (µm) 6 1 - DIF. (A) DIF SSP ( ) (T-C) SSP ( ), IF SSP ( ) SSP 5%. x E = 54µm, x I = 48µm. (B), α EI. 4 4 ( ). 1. Fig 6 1 The performance of the DIF model with a pair of concurrent excitatory and inhibitory inputs. (A) The SSP predicted by the DIF model (dash red) is almost overlap with the one produced by the two-compartment (T-C) model (blue). The difference between the SSP produced by the IF model (red solid) and by the two-compartment model is approximately 5%. Stimuli are performed at the locations x E = 54µm and x I = 48µm. (B) The spatial profile of the coefficient α EI as a function of excitatory input location. Four different inhibitory locations are fixed (colored dash lines). Error bar is one standard deviation. 6.1.2 - x = x E1 t = t E1 f E1, x = x E2 t = t E2 f E2, c v t = g Lv q=e1,e2 f q g q (t t q )δ(x x q )(v ε E ) + d 2 v 4r a x 2 v x =, x=l 96
Membrane potential (mv) 8 6 4 2 A DIF IF T-C 2 5 1 Time (ms) Membrane potential (mv) 8 6 B 4 2 2 5 1 Time (ms) Membrane potential (mv) 8 6 C 4 2 2 5 1 Time (ms) Membrane potential (mv) 8 6 D 4 2 2 5 1 Time (ms) Membrane potential (mv) 8 6 E 4 2 2 5 1 Time (ms) Membrane potential (mv) 8 6 F 4 2 2 5 1 Time (ms) 6 2 - DIF. (A) 1ms (B) 3ms (C) 5ms (D) -1ms (E) -3ms (F) -5ms. (A-F) (T-C) x E = 54µm, x I = 48µm. Fig 6 2 The performance of the DIF model with a pair of nonconcurrent excitatory and inhibitory inputs. The arrival time difference between the excitatory and the inhibitory input is (A) 1ms (B) 3ms (C) 5ms (D) -1ms (E) -3ms (F) -5ms. (A-F) The input locations in the two-compartment (T-C) model are given at x E = 54µm, x I = 48µm. v(, t) c t = g L v(, t) + πd2 4Sr a v x, x= v(x, ) =., EPSP 1, EPSP 2, SSP., v, IF (G E1 G E2 ) c dv dt = g L(v ε L ) G E1 (v ε E ) G E2 (v ε E ) 97
G E1 G E2. SSP, [11] DIF c dv dt = g L(v ε L ) (G E1 + G E2 + α EE G E1 G E2 )(v ε E ) α EE. f E1, f E2,, DIF, IF SSP. 6 3.A, DIF SSP SSP. IF SSP SSP.3mV. EPSP (1 5mV), α EE. 6 3.B, α EE., DIF SSP, 6 3.C-D.,,., DIF IF, 6 3.D. 6.1.3 - x = x I1 t = t I1 f I1, x = x I2 t = t I2 f I2, c v t = g Lv q=i1,i2 f q g q (t t q )δ(x x q )(v ε I ) + d 2 v 4r a x 2 v(, t) c t v x =, x=l = g L v(, t) + πd2 4Sr a v(x, ) =. v x, x=, IPSP 1, IPSP 2, SSP., v, 98
A Membrane potential (mv) 7 6 5 4 3 2 1 DIF IF T-C 5 1 Time (ms) B α EE (kω cm 2 ) 4 3 2 1 E(µm) 35 2 5 1 2 4 6 Location (µm) C 7 D 6 Membrane potential (mv) 6 5 4 3 2 1 5 1 Time (ms) Membrane potential (mv) 5 4 3 2 1 5 1 Time (ms) 6 3 - DIF. (A) EPSP ( ). (B) EPSP, α EE EPSP.. 1. (C) EPSP EPSP 1ms. (D) EPSP EPSP 3ms. (A,C,D) (T-C) 42µm 45µm. Fig 6 3 The performance of the DIF model with a pair of excitatory inputs. (A) Two EPSPs arrive at the soma simultaneously. (B) For a fixed excitatory input location, the coefficient α EE as a function of the the other excitatory input location. Three different fixed locations are marked by colored dash lines. Error bar indicates one standard deviation. (C) One EPSP arrives at the soma 1ms earlier than the other one. (D) One EPSP arrives at the soma 3ms earlier than the other one. (A,C,D) Legend is shared. Two excitatory inputs in the two-compartment (T-C) model are given at 42µm and 45µm away from the soma, respectively. 99
IF (G I1 G I2 ) c dv dt = g L(v ε L ) G I1 (v ε I ) G I2 (v ε I ), G I1 G I2. SSP, [11] DIF c dv dt = g L(v ε L ) (G I1 + G I2 + α II G I1 G I2 )(v ε I ) α II. f I1, f I2,, DIF, IF SSP. 6 4.A, DIF SSP SSP. IF SSP SSP.5mV. IPSP (-1-2mV), α II. 6 4.B, α II., DIF SSP, 6 4.C-D.,,. 6.2 DHH,,. DIF HH, HH DHH (Dendritic-integration-rule-based HH, DHH).,, DHH HH, DHH,, DHH. 6 2. 6.2.1 -. t E, x E f E, 1
A B 3 I(µm) Membrane potential (mv) 1 2 3 DIF IF T-C 5 1 Time (ms) α II (kω cm 2 ) 2 1 35 2 5 1 2 4 6 Location (µm) C D Membrane potential (mv) 1 2 3 Membrane potential (mv) 1 2 5 1 Time (ms) 3 5 1 Time (ms) 6 4 - DIF. (A) IPSP ( ). (B) IPSP, α II IPSP.. 1. (C) IPSP IPSP 1ms. (D) IPSP IPSP 3ms. (A,C,D) (T-C) 42µm 45µm. Fig 6 4 The performance of the DIF model with a pair of inhibitory inputs. (A) Two IPSPs arrive at the soma simultaneously. (B) For a fixed inhibitory input location, the coefficient α II as a function of the the other inhibitory input location. Three different fixed locations are marked by colored dash lines. Error bar indicates one standard deviation. (C) One IPSP arrives at the soma 1ms earlier than the other one. (D) One IPSP arrives at the soma 3ms earlier than the other one. (A,C,D) Legend is shared. Two inhibitory inputs in the two-compartment (T-C) model are given at 42µm and 45µm away from the soma, respectively. 11
6 2. Table 6 2 Parameters for active neuron models. c 1. µf cm 2 g L.3 ms cm 2 ε L -54.4 mv g Na 12 ms cm 2 g K 36 ms cm 2 ε Na 5 mv ε K -77 mv ε E mv ε I -8 mv d s 3 µm r a 1 Ωcm l 6 µm d 1 µm σ Er 5 ms σ Ed 7.8 ms σ Ir 6 ms σ Id 18 ms 12
t I, x I f I, c v t = g Lv v(, t) c t q=e,i f q g q (t t q )δ(x x q )(v ε q ) + d 4r a 2 v x 2, v x =, x=l = g L v(, t) g Na (v(, t) E Na ) g K (v(, t) E K ) + πd2 4Sr a v x. x= g Na g K, 2.1.1.E Na E K.,., v(x, ) =., EPSP, IPSP, SSP., v, HH (G E G I ) c dv dt = g L(v ε L ) g Na (v E Na ) g K (v E K ) G E (v ε E ) G I (v ε I ), G E G I. SSP, [11] DHH c dv dt = g L(v ε L ) g Na (v E Na ) g K (v E K ) G E (1+α EI G I )(v ε E ) G I (v ε I ), α EI. f E, f I,, DHH, HH SSP. (t E = t I ), 6 5.A, DHH SSP SSP.,HH SSP SSP 5%.,, DHH α EI, f E f I. EPSP IPSP, α EI. 6 1.B, α EI., 13
A 2 B 4 Membrane potential (mv) 1.5 1.5 DHH HH T-C α EI (kω cm 2 ) 3 2 1 I(µm) 5 35 2 5.5 5 1 Time (ms) 1 2 4 6 Location (µm) 6 5 - DHH. (A) DHH SSP ( ) SSP ( ), HH SSP ( ) SSP 5%. (T-C) x E = 54µm, x I = 48µm. (B) α EI. 4 4 ( ). 1. Fig 6 5 The performance of the DHH model with a pair of concurrent excitatory and inhibitory inputs. (A) The SSP predicted by the DHH model (dash red) is almost overlap with the one produced by the two-compartment (T-C) model (blue). The difference between the SSP produced by the HH model (red solid) and by the two-compartment model is approximately 5%. Stimuli are performed at x E = 54µm and x I = 48µm. (B) The spatial profile of the coefficient α EI as a function of excitatory input location. Four different inhibitory locations in the two-compartment model are fixed (dash lines). Error bar is one standard deviation.. α EI,DHH SSP, 6 6.,, DHH α EI SSP. 6 5 6 6, DHH HH. 6.2.2 - x = x E1 t = t E1 f E1, x = x E2 t = t E2 14
Membrane potential (mv) 2 1.5 1.5 DHH HH T-C A.5 5 1 Time (ms) Membrane potential (mv) 2 1.5 1.5 B -.5 5 1 Time (ms) Membrane potential (mv) 2 1.5 1.5 C.5 5 1 Time (ms) Membrane potential (mv) 2 1.5 1.5 D -.5 5 1 Time (ms) Membrane potential (mv) 2 1.5 1.5 E.5 5 1 Time (ms) Membrane potential (mv) 2 1.5 1.5 F.5 5 1 Time (ms) 6 6 - DHH. (A) 1ms (B) 3ms (C) 5ms (D) -1ms (E) -3ms (F) -5ms. (A-F) (T-C) x E = 54µm, x I = 48µm. Fig 6 6 The performance of the DHH model with a pair of nonconcurrent excitatory and inhibitory inputs. The arrival time difference between the excitatory and the inhibitory input is (A) 1ms (B) 3ms (C) 5ms (D) -1ms (E) -3ms (F) -5ms. (A-F) Legend is shared. The input locations in the two-compartment (T-C) model are given at x E = 54µm, x I = 48µm. 15
f E2, c v t = g Lv f q g q (t t q )δ(x x q )(v ε E ) + d 2 v 4r a x 2 v(, t) c t q=e1,e2 v x =, x=l = g L v(, t) g Na (v(, t) E Na ) g K (v(, t) E K ) + πd2 4Sr a v(x, ) =. v x, x=, EPSP 1, EPSP 2, SSP., v, HH (G E1 G E2 ) c dv dt = g L(v ε L ) g Na (v E Na ) g K (v E K ) G E1 (v ε E ) G E2 (v ε E ) G E1 G E2. SSP, [11] DHH c dv dt = g L(v ε L ) g Na (v E Na ) g K (v E K ) (G E1 +G E2 +α EE G E1 G E2 )(v ε E ) α EE. f E1, f E2,, DHH HH SSP. 6 7.A, DHH SSP SSP. HH SSP SSP. EPSP, α EE. 6 7.B, α EE., DHH SSP, 6 7C-D.,,. DHH., DHH HH. 6 8.A, DHH, HH 5ms., 6 8.B, HH. 16
A 7 B 4 Membrane potential (mv) 5 3 1 DHH HH T-C α EE (kω cm 2 ) 3 2 1 E(µm) 35 2 5 1 5 1 Time (ms) 2 4 6 Location (µm) C 3 D 3 Membrane potential (mv) 2 1 Membrane potential (mv) 2 1 5 1 Time (ms) 5 1 Time (ms) 6 7 - DHH. (A) EPSP( ) (B) EPSP, α EE EPSP.. 1. (C) EPSP EPSP 1ms. (D) EPSP EPSP 3ms. (A,C,D) (T-C) 42µm 45µm. Fig 6 7 The performance of the DHH model with a pair of excitatory inputs. (A) Two EPSPs arrive at the soma simultaneously. (B) For a fixed excitatory input location, the coefficient α EE as a function of the the other excitatory input location. Three different fixed locations are marked by colored dash lines. Error bar indicates one standard deviation. (C) One EPSP arrives at the soma 1ms earlier than the other one. (D) One EPSP arrives at the soma 3ms earlier than the other one. (A,C,D) Legend is shared. Two excitatory inputs in the two-compartment (T-C) model are given at 42µm and 45µm away from the soma, respectively. 17
A 15 B 15 Membrane potential (mv) 85 65 45 25 5 DHH HH T-C Membrane potential (mv) 85 65 45 25 5 Membrane potential (mv) 4 3 2 1 1 2 Time (ms) -15 5 1 Time (ms) -15 5 1 Time (ms) 6 8 DHH. (A) DHH (T-C) HH. (B) HH.. (A, B) 42µm and 45µm. Fig 6 8 The performance of the DHH model for the action potential case. (A) Spike time in the twocompartment (T-C) model is accurately predicted by the DHH model whereas is predicted earlier by the HH model. (B) The HH model will predict a fake spike. Inset: the zoom in of the dash square region. (A, B) Legend is shared. Two excitatory inputs in the two-compartment model are located at 42µm and 45µm. 6.2.3 - x = x I1 t = t I1 f I1, x = x I2 t = t I2 f I2, c v t = g Lv q=i1,i2 f q g q (t t q )δ(x x q )(v ε I ) + d 2 v 4r a x 2 v(, t) c t v x =, x=l = g L v(, t) g Na (v(, t) E Na ) g K (v(, t) E K ) + πd2 4Sr a v(x, ) =. v x, x= 18
, IPSP 1, IPSP 2, SSP., v, HH (G I1 G I2 ) c dv dt = g L(v ε L ) g Na (v E Na ) g K (v E K ) G I1 (v ε I ) G I2 (v ε I ) G I1 G I2. SSP, [11] DHH c dv dt = g L(v ε L ) g Na (v E Na ) g K (v E K ) (G I1 +G I2 +α II G I1 G I2 )(v ε I ) α II. f I1, f I2,, DHH, HH SSP. 6 9.A, DHH SSP SSP. HH SSP SSP. IPSP, α II. 6 9.B, α II., DHH SSP, 6 9.C 6 9.D.,,. 6.3,, DIF /DHH IF /HH.,. DIF/DHH., x I = 42µm 2Hz,, x E = 45µm 3Hz,, 6 1.D. DIF, c dv dt = I ion + I syn, 19
A x1-1 1 B 3 Membrane potential (mv) -1 2 3 DHH HH T-C α II (kω cm 2 ) 25 2 15 1 5 I(µm) 35 2 5 4 5 1 Time (ms) 2 4 6 Location (µm) C x1-1 1 D x1-1 1 Membrane potential (mv) 1 2 3 Membrane potential (mv) 1 2 3 4 5 1 Time (ms) 4 5 1 Time (ms) 6 9 - DHH. (A) IPSP( ) (B) IPSP, α II IPSP.. 1. (C) IPSP IPSP 1ms. (D) IPSP IPSP 3ms. (A,C,D) (T-C) 42µm 45µm. Fig 6 9 The performance of the DHH model with a pair of inhibitory inputs. (A) Two IPSPs arrive at the soma simultaneously. (B) For a fixed inhibitory input location, the coefficient α II as a function of the the other inhibitory input location. Three different fixed locations are marked by colored dash lines. Error bar indicates one standard deviation. (C) One IPSP arrives at the soma 1ms earlier than the other one. (D) One IPSP arrives at the soma 3ms earlier than the other one. (A,C,D) Legend is shared. Two inhibitory inputs in the two-compartment (T-C) model are given at 42µm and 45µm away from the soma, respectively. 11
I syn = m G i E(V ε E ) i=1 n n p=1 q=p I ion = g L (v ε L ), n G j I (V ε I) j=1 α II pqg p I Gq I (V ε I) m s=1 n t=1 m k=1 m l=k α EE kl G k EG l E(V ε E ) α EI st G s EG t I(V ε E ), αst EI,αkl EE αpq II. αst EI,αkl EE αpq II,DIF IF.,.,, EPSP IPSP. IF G E G I.,, G E G I,. x E x I, DIF SSP SSP, DIF α EI st ;, x E, DIF SSP SSP, αst EE ; x I, DIF SSP SSP, αst II.,,DIF IF SSP. 6 1.A, DIF SSP SSP, IF SSP.,, I ion = g L (v ε L ) g Na (v E Na ) g K (v E K ), 6 1.B, DHH HH., DHH HH. DHH HH. DHH HH, 111
x E1 = 18µm 2Hz, x E2 = 24µm 3Hz,., DHH 5, 2ms, HH 2., HH 3 2ms, 4. 112
A 1ms 2mV B 1mV C ** ** * * * * ** 1ms 1ms 2mV D 113
6 1. (A) 42µm 45µm, IF ( ), DIF ( ) ( ). (B) 42µm 45µm, HH ( ), DHH ( ) ( ). (C) 18µm 24µm, HH ( ), DHH ( ) ( ). DHH 5, 2ms. HH 2. HH 3 ( ) 2ms, 4 ( ). (D) (A-C) 2Hz( ) 3Hz( ). Fig 6 1 The performance of the point neuron models for multiple inputs. (A) Voltage traces produced by the IF model (black), the DIF model (red) and the passive two-compartment model (blue) given one inhibitory and one excitatory poisson train stimulus at the location 42µm and 45µm, respectively. (B) Voltage traces produced by the HH model (black), the DHH model (red) and the active two-compartment model (blue) given one inhibitory and one excitatory poisson train stimulus at the location 42µm and 45µm, respectively. (C) Voltage traces produced by the HH model (black), the DHH model (red) and the active two-compartment model (blue) given two excitatory poisson train stimulus at the location 18µm and 24µm, respectively. Compared with the spikes produced by the two-compartment model, the DHH model predicts accurately all the five spike timing within 2ms while the HH model only predicts two of them correctly. Three of them are predicted earlier than 2ms (labeled by double star) and four fake spikes are predicted (labeled by single star). (D) Two poisson trains with rate 2Hz (black) and 3Hz (blue) are used in (A-C). 114
,.,. :,,,,,,.,.,,,., ;,.,,..,.,.,,, HH IF.,,,.,.., [59]. [59],, EPSP t p, SSP 115
EPSP, IPSP, V S (t p ) = V E (t p ) + V I (t p ) + κv E (t p )V I (t p ), κ, EPSP IPSP., κ...,,.,,.,,, [59]., V S (t) = V 1 (t) + V 2 + κ(t)v 1 (t)v 2 (t), V S, V 1 V 2, κ,,.,., -, -, -., ( ),.,.,,.,.,., [59].,,,., IF 116
κ. κ, IF, DIF. [59], DIF. DIF,.,.,, IF HH, DIF DHH., DHH, HH,.,,.,,.,. 117
[1] WILLIAMS R W, HERRUP K. The control of neuron number[j]. Annual review of neuroscience, 1988, 11(1):423 453. [2] AZEVEDO F A, CARVALHO L R, GRINBERG L T, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain[j]. Journal of Comparative Neurology, 29, 513(5):532 541. [3] ZAITSEV A V, POVYSHEVA N V, GONZALEZ-BURGOS G, et al. Electrophysiological classes of layer 2/3 pyramidal cells in monkey prefrontal cortex[j]. Journal of neurophysiology, 212, 18(2):595. [4] GARDEN D L, DODSON P D, O DONNELL C, et al. Tuning of synaptic integration in the medial entorhinal cortex to the organization of grid cell firing fields[j]. Neuron, 28, 6(5):875 889. [5] VETTER P, ROTH A, HAUSSER M. Propagation of action potentials in dendrites depends on dendritic morphology[j]. Journal of Neurophysiology, 21, 85(2):926 937. [6] WANG Y, GUPTA A, TOLEDO-RODRIGUEZ M, et al. Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex[j]. Cerebral Cortex, 22, 12(4):395 41. [7] CARNEVALE N T, TSAI K Y, CLAIBORNE B J, et al. Comparative electrotonic analysis of three classes of rat hippocampal neurons[j]. Journal of neurophysiology, 1997, 78(2):73 72. [8] CAMERON W E, HE F, KALIPATNAPU P, et al. Morphometric analysis of phrenic motoneurons in the cat during postnatal development[j]. Journal of Comparative Neurology, 1991, 314(4):763 776. [9] ASCOLI G A, DONOHUE D E, HALAVI M. NeuroMorpho. Org: a central resource for neuronal morphologies[j]. The Journal of Neuroscience, 27, 27(35):9247 9251. [1] ETHERINGTON S J, ATKINSON S E, STUART G J, et al. Synaptic Integration[J]. els, 21. [11] HÄUSSER M, MEL B. Dendrites: bug or feature?[j]. Current opinion in neurobiology, 23, 13(3):372 383. 119
[12] LONDON M, HÄUSSER M. Dendritic computation[j]. Annu. Rev. Neurosci., 25, 28:53 532. [13] CUNTZ H, REMME M W, TORBEN-NIELSEN B. The Computing Dendrite[J]. AMC, 1:12. [14] ERMENTROUT G B, TERMAN D H. Mathematical foundations of neuroscience[m], Vol. 64.[S.l.]: Springer, 21. [15] GOLDMAN D E. Potential, impedance, and rectification in membranes[j]. The Journal of General Physiology, 1943, 27(1):37 6. [16] HODGKIN A L, KATZ B. The effect of sodium ions on the electrical activity of the giant axon of the squid[j]. The Journal of physiology, 1949, 18(1):37. [17] TUCKWELL H C. Introduction to theoretical neurobiology[m], Vol. 8.[S.l.]: Cambridge University Press, 25. [18] COLBERT C M, JOHNSTON D. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons[j]. The Journal of neuroscience, 1996, 16(21):6676 6686. [19] STUART G, SPRUSTON N, SAKMANN B, et al. Action potential initiation and backpropagation in neurons of the mammalian CNS[J]. Trends in neurosciences, 1997, 2(3):125 131. [2] DEFELIPE J, FARIÑAS I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs[j]. Progress in neurobiology, 1992, 39(6):563 67. [21] MAINEN Z F, SEJNOWSKI T J. Influence of dendritic structure on firing pattern in model neocortical neurons[j]. Nature, 1996, 382(6589):363 366. [22] WILLIAMS S R, STUART G J. Role of dendritic synapse location in the control of action potential output[j]. Trends in neurosciences, 23, 26(3):147 154. [23] HÄUSSER M, SPRUSTON N, STUART G J. Diversity and dynamics of dendritic signaling[j]. Science, 2, 29(5492):739 744. [24] LAI H C, JAN L Y. The distribution and targeting of neuronal voltage-gated ion channels[j]. Nature Reviews Neuroscience, 26, 7(7):548 562. [25] LIU G. Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites[j]. Nature neuroscience, 24, 7(4):373 379. 12
[26] MAGEE J C. Dendritic integration of excitatory synaptic input[j]. Nature Reviews Neuroscience, 2, 1(3):181 19. [27] JACK J J, NOBLE D, TSIEN R W. Electric current flow in excitable cells[j]. 1975. [28] STUART G, SPRUSTON N, HÄUSSER M. Dendrites[M].[S.l.]: Oxford University Press, 27. [29] CALDWELL J H, SCHALLER K L, LASHER R S, et al. Sodium channel Nav1. 6 is localized at nodes of Ranvier, dendrites, and synapses[j]. Proceedings of the National Academy of Sciences, 2, 97(1):5616 562. [3] JOHNSTON D, HOFFMAN D A, MAGEE J C, et al. Dendritic potassium channels in hippocampal pyramidal neurons[j]. The Journal of physiology, 2, 525(1):75 81. [31] JOHNSTON D, CHRISTIE B R, FRICK A, et al. Active dendrites, potassium channels and synaptic plasticity[j]. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 23, 358(1432):667 674. [32] USOWICZ M M, SUGIMORI M, CHERKSEY B, et al. P-type calcium channels in the somata and dendrites of adult cerebellar Purkinje cells[j]. Neuron, 1992, 9(6):1185 1199. [33] MIGLIORE M, SHEPHERD G M. Emerging rules for the distributions of active dendritic conductances[j]. Nature Reviews Neuroscience, 22, 3(5):362 37. [34] MAGEE J C, JOHNSTON D. Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons.[j]. The Journal of Physiology, 1995, 487(Pt 1):67 9. [35] HOFFMAN D A, MAGEE J C, COLBERT C M, et al. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons[j]. Nature, 1997, 387(6636):869 875. [36] MIGLIORE M, HOFFMAN D, MAGEE J, et al. Role of an A-type K+ conductance in the backpropagation of action potentials in the dendrites of hippocampal pyramidal neurons[j]. Journal of computational neuroscience, 1999, 7(1):5 15. [37] MAGEE J C. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons[j]. The Journal of neuroscience, 1998, 18(19):7613 7624. [38] GOLDING N L, SPRUSTON N. Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons[j]. Neuron, 1998, 21(5):1189 12. 121
[39] GOLDING N L, JUNG H Y, MICKUS T, et al. Dendritic calcium spike initiation and repolarization are controlled by distinct potassium channel subtypes in CA1 pyramidal neurons[j]. The Journal of neuroscience, 1999, 19(2):8789 8798. [4] JOSIC K, RUBIN J, MATIAS M, et al. Coherent Behavior in Neuronal Networks[M].[S.l.]: Springer, 29. [41] GABBIANI F, KRAPP H G, KOCH C, et al. Multiplicative computation in a visual neuron sensitive to looming[j]. Nature, 22, 42(6913):32 324. [42] ARIEL M, KOGO N. Shunting inhibition in accessory optic system neurons[j]. Journal of neurophysiology, 25, 93(4):1959 1969. [43] CHACRON M J. Nonlinear information processing in a model sensory system[j]. Journal of Neurophysiology, 26, 95(5):2933 2946. [44] DAVID F, LINSTER C, CLELAND T A. Lateral dendritic shunt inhibition can regularize mitral cell spike patterning[j]. Journal of computational neuroscience, 28, 25(1):25 38. [45] MITCHELL S J, SILVER R A. Shunting inhibition modulates neuronal gain during synaptic excitation[j]. Neuron, 23, 38(3):433 445. [46] ATALLAH B V, SCANZIANI M. Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition[j]. Neuron, 29, 62(4):566 577. [47] KLAUSBERGER T, SOMOGYI P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations[j]. Science, 28, 321(5885):53 57. [48] DOUGLAS R J, MARTIN K A. Inhibition in cortical circuits[j]. Current Biology, 29, 19(1):R398 R42. [49] TEPPER J M, KOÓS T, WILSON C J. GABAergic microcircuits in the neostriatum[j]. Trends in neurosciences, 24, 27(11):662 669. [5] THOMSON A M, DEUCHARS J. Synaptic interactions in neocortical local circuits: dual intracellular recordings in vitro.[j]. Cerebral Cortex, 1997, 7(6):51 522. [51] MARKRAM H, TOLEDO-RODRIGUEZ M, WANG Y, et al. Interneurons of the neocortical inhibitory system[j]. Nature Reviews Neuroscience, 24, 5(1):793 87. [52] KAPFER C, GLICKFELD L L, ATALLAH B V, et al. Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex[j]. Nature neuroscience, 27, 1(6):743 753. 122
[53] GIDON A, SEGEV I. Principles governing the operation of synaptic inhibition in dendrites[j]. Neuron, 212, 75(2):33 341. [54] KRNJEVIć K, RANDIć M, STRAUGHAN D. Nature of a cortical inhibitory process[j]. The Journal of physiology, 1966, 184(1):49 77. [55] BLOMFIELD S. Arithmetical operations performed by nerve cells[j]. Brain research, 1974, 69(1):115 124. [56] FATT P, KATZ B. The effect of inhibitory nerve impulses on a crustacean muscle fibre[j]. The Journal of physiology, 1953, 121(2):374 389. [57] BORG-GRAHAM L J, MONIER C, FREGNAC Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons[j]. Nature, 1998, 393(6683):369 373. [58] KOCH C. Biophysics of computation: information processing in single neurons[m].[s.l.]: Oxford university press, 24. [59] HAO J, WANG X D, DAN Y, et al. An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons[j]. Proceedings of the National Academy of Sciences, 29, 16(51):2196 21911. [6] RALL W. Theory of physiological properties of dendrites[j]. Annals of the New York A- cademy of Sciences, 1962, 96(4):171 192. [61] RALL W. Theoretical significance of dendritic trees for neuronal input-output relations[m]//. REISS R. Neural Theory and Modeling. Standford: Stanford University Press, 1964:73 97. [62] RALL W. The theoretical foundation of dendritic function: selected papers of Wilfrid Rall with commentaries[m].[s.l.]: MIT press, 1995. [63] BROWN T H, JOHNSTON D. Voltage-clamp analysis of mossy fiber synaptic input to hippocampal neurons[j]. Journal of neurophysiology, 1983, 5(2):487 57. [64] HOLMES W. A continuous cable method for determining the transient potential in passive dendritic trees of known geometry[j]. Biological cybernetics, 1986, 55(2-3):115 124. [65] TIMOFEEVA Y, COX S J, COOMBES S, et al. Democratization in a passive dendritic tree: an analytical investigation[j]. Journal of computational neuroscience, 28, 25(2):228 244. [66] POIRAZI P, BRANNON T, MEL B W. Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell[j]. Neuron, 23, 37(6):977 987. 123
[67] POIRAZI P, BRANNON T, MEL B W. Pyramidal neuron as two-layer neural network[j]. Neuron, 23, 37(6):989 999. [68] POLSKY A, MEL B W, SCHILLER J. Computational subunits in thin dendrites of pyramidal cells[j]. Nature neuroscience, 24, 7(6):621 627. [69] LOSONCZY A, MAGEE J C. Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons[j]. Neuron, 26, 5(2):291 37. [7] SEGEV I, LONDON M. Untangling dendrites with quantitative models[j]. Science, 2, 29(5492):744 75. [71] HILLE B. Ion channels of excitable membranes[m], Vol. 57.[S.l.]: Sinauer Sunderland, MA, 21. [72] DAYAN P, ABBOTT L F. Theoretical neuroscience[m], Vol. 31.[S.l.]: MIT press Cambridge, MA, 21. [73] LAPICQUE L. Recherches quantitatives sur l excitation électrique des nerfs traitée comme une polarisation[j]. J. Physiol. Pathol. Gen, 197, 9(1):62 635. [74] HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[j]. The Journal of physiology, 1952, 117(4):5. [75] JOHNSTON D, WU S M S, GRAY R. Foundations of cellular neurophysiology[m].[s.l.]: MIT press Cambridge, MA, 1995. [76] BADEL L, LEFORT S, BERGER T K, et al. Extracting non-linear integrate-and-fire models from experimental data using dynamic I V curves[j]. Biological cybernetics, 28, 99(4-5):361 37. [77] CARANDINI M, MECHLER F, LEONARD C S, et al. Spike train encoding by regular-spiking cells of the visual cortex[j]. Journal of Neurophysiology, 1996, 76(5):3425 3441. [78] CÓRDOBA A. Dirac combs[j]. letters in mathematical physics, 1989, 17(3):191 196. [79] CANNON R, TURNER D, PYAPALI G, et al. An on-line archive of reconstructed hippocampal neurons[j]. Journal of neuroscience methods, 1998, 84(1):49 54. [8] DESTEXHE A, MAINEN Z F, SEJNOWSKI T J. An efficient method for computing synaptic conductances based on a kinetic model of receptor binding[j]. Neural Computation, 1994, 6(1):14 18. 124
[81] DESTEXHE A, MAINEN Z F, SEJNOWSKI T J. Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism[j]. Journal of computational neuroscience, 1994, 1(3):195 23. [82] KOCH C, SEGEV I. Methods in neuronal modeling: from ions to networks[m].[s.l.]: MIT press, 1998. [83] STUART G, SPRUSTON N. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites[j]. The Journal of neuroscience, 1998, 18(1):351 351. [84] NICHOLSON D A, TRANA R, KATZ Y, et al. Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons[j]. Neuron, 26, 5(3):431 442. [85] SMITH M A, ELLIS-DAVIES G C, MAGEE J C. Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons[j]. The Journal of physiology, 23, 548(1):245 258. [86] ANDRÁSFALVY B K, MAGEE J C. Distance-dependent increase in AMPA receptor number in the dendrites of adult hippocampal CA1 pyramidal neurons[j]. The Journal of Neuroscience, 21, 21(23):9151 9159. [87] MAGEE J C, COOK E P. Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons[j]. Nature neuroscience, 2, 3(9):895 93. [88] CASH S, YUSTE R. Input summation by cultured pyramidal neurons is linear and positionindependent[j]. The Journal of neuroscience, 1998, 18(1):1 15. [89] MEGıAS M, EMRI Z, FREUND T, et al. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells[j]. Neuroscience, 21, 12(3):527 54. [9] GRUNER J E, HIRSCH J C, SOTELO C. Ultrastructural features of the isolated suprasylvian gyrus in the cat[j]. Journal of Comparative Neurology, 1974, 154(1):1 27. [91] SZENTAGOTHAI J. The use of degeneration methods in the investigation of short neuronal connexions.[j]. Progress in brain research, 1964, 14:1 32. [92] STERIADE M, DESCHÊNES M, OAKSON G. Inhibitory processes and interneuronal apparatus in motor cortex during sleep and waking. I. Background firing and responsiveness of pyramidal tract neurons and interneurons.[j]. Journal of neurophysiology, 1974, 37(5):165 192. 125
[93] STERIADE M. Cortical long-axoned cells and putative interneurons during the sleep-waking cycle[j]. Behavioral and Brain Sciences, 1978, 1(3):465 485. [94] FITZHUGH R. Impulses and physiological states in theoretical models of nerve membrane[j]. Biophysical journal, 1961, 1(6):445 466. [95] ROSE R, HINDMARSH J. The assembly of ionic currents in a thalamic neuron I. The threedimensional model[j]. Proceedings of the Royal Society of London. B. Biological Sciences, 1989, 237(1288):267 288. [96] MORRIS C, LECAR H. Voltage oscillations in the barnacle giant muscle fiber[j]. Biophysical journal, 1981, 35(1):193 213. [97] WILSON H R. Simplified dynamics of human and mammalian neocortical neurons[j]. Journal of theoretical biology, 1999, 2(4):375 388. [98] SMITH G D, COX C L, SHERMAN S M, et al. Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model[j]. Journal of Neurophysiology, 2, 83(1):588 61. [99] IZHIKEVICH E M, et al. Simple model of spiking neurons[j]. IEEE Transactions on neural networks, 23, 14(6):1569 1572. [1] IZHIKEVICH E M. Which model to use for cortical spiking neurons?[j]. IEEE transactions on neural networks, 24, 15(5):163 17. [11] STORN R, PRICE K. Differential evolution a simple and efficient heuristic for global optimization over continuous spaces[j]. J Global Optim, 1997, 11(4):341 359. [12] HESTRIN S, NICOLL R, PERKEL D, et al. Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices.[j]. The Journal of physiology, 199, 422(1):23 225. 126
..,,..,,.,.,,.,,.,.,.,,.,. 127
[1] ZHOU D, LI S, ZHANG XH et.al. Phenomenological incorporation of nonlinear dendritic integration using integrate-and-fire neuronal frameworks[j]. PLoS One, 213, 8:e5358. [2] LI S, ZHOU D, CAI D. Analysis of the dendritic integration of excitatory and inhibitory inputs using cable models[j]. Communications in Mathemtical Sciences, accepted. [3] LI S, LIU N, ZHANG XH et al. Bilinearity in spatiotemporal integration of synaptic inputs[j]. PLoS Computational Biology, accepted. 129