國立成功大學數位論文

Size: px
Start display at page:

Download "國立成功大學數位論文"

Transcription

1 Sn-Ag-xSb The Microstructure and Low Cycle Fatigue of Sn-Ag-xSb Lead-Free Solder Joints Cheng-Shyan Lee Hwa-Teng Lee

2

3 Sn-Ag (Sb, 0~10 wt%) Sb 150 C Sn-3.5Ag wt% Sb 1.7mm 150 C Sn-Ag-xSb Sb Sn-3.5Ag C C( 10.05%) Sb Sn-Ag ß-Sn 1.73% Sb Sb ß-Sn % Sb µm SbSn ß-Sn Sb 10.05% 20~30µm SbSn Sb Sn-3.5Ag 89.3N 114.2N(1.73%) 129.0N(3.85%) 140.5N(5.12%) 183.2N(10.05%) ±0.025mm Sb 10.05%Sb Sb Sb II

4 Sb III

5 Abstract The goal of this research is to evaluate the effect of Sb additions (0~10 wt%) on the melting point and microstructure of Sn-Ag solder. The reliability of low cycle fatigue of the solder joint is evaluated by the thermal storage test for 150 C. The materials tested are Sn-3.5Ag with 1.73, 3.85, 5.12 and wt% Sb additions respectively. Single-lap specimens were used to simulate real solder joints. Solder balls of 1.7mm in diameter were prepared in the lab, and re-flowed between two pure Cu substrates. The 150 C thermal storage test is conducted after soldering, and the storage time is 225 and 625 hours respectively. Experimental result shows melting points of the Sn-Ag-xSb solder are increased with greater Sb additions. The melting points are C(Sn-3.5Ag) and C(adding 10.05%) respectively, and the solid-liquid regions also expand as the content of Sb increases. Microstructures of the Sn-Ag solder with different Sb additions are similar and can be characterized as consisting of ß-Sn dendrite and interdenritic eutectic network. Sb atoms are solved in the ß-Sn when adding 1.73 wt% Sb into the Sn-Ag solder, and SbSn compounds of several µm in size are formed in the ß-Sn when adding 3.85 and 5.12 wt% Sb. As Sb addition reaches wt%, cubic SbSn compounds of 20~30 µm in length form in the solder. Shear strength of the as-soldered solder joints is increased with greater Sb additions. The shear strengths are 89.3N(Sn-3.5Ag), 114.2N(1.73%), 129.0N(3.85%), 140.5N(5.12%) and 183.2N(10.05%). In the condition with constant ±0.025mm displacement, fatigue life of the as-soldered joint is approximately increases with greater Sb additions. The reason is the plastic strain of the solder joint is decreases with greater Sb additions. The lesser plastic strain the better fatigue life and the rate of load-drop is increased with greater Sb additions. After 150 C thermal storage, fatigue life will improve IV

6 because of the softening of solder joints. While the creaks that propagate along the interface due to the increased thickness of the Intermetallic Compound (IMC) greatly reduce the fatigue life. Therefore, the fatigue life after thermal storage is influenced by two factors. Fatigue cracks initiate at the location between the IMC layers and the neck of hourglass-shaped specimens. The fracture mode transits from solder fracture mode to mixture mode then to IMC fracture mode with increasing Sb additions and longer storage time. V

7 SEM V

8 ... I... II...IV...VI...VII...IX...XII Sn-3.5Ag Sn-Ag-X Sn-Ag-Sb Sn-Sb Sn-Ag-Sb Coffin-Manson equation VII

9 XRD Sn-3.5Ag Sb Sn-Ag VIII

10 2-1 [1,2,8,12] Sn-Sb [11] Sn-Ag-Sb [34] [43] [57] [68] [63] [63] Shimadzu AG-I Sb DSC XRD Sb Sn-Ag OM Sn-2.91Ag-1.73Sb (500x) Sn-3.14Ag-3.85Sb SEM Sn-2.96Ag-5.12Sb SEM (BSE) EDS Sn-3.08Ag-10.05Sb SEM EDS (1)...50 IX

11 4-8 Sn-3.08Ag-10.05Sb SEM EDS (2) SEM (a)sn-3.5ag (b) 1.73% Sb (c) 3.85% Sb Sn-3.08Ag-10.05Sb Ag 3 (Sn,Sb) EDS Sn-2.96Ag-5.12Sb SEM EDS Sn-3.08Ag-10.05Sb SEM SbSn EDS Sb Sn-3.5Ag hysteresis loops Sn-3.5Ag hysteresis loops Sn-3.5Ag hysteresis loops Sn-3.5Ag Sn-2.91Ag-1.73Sb hysteresis loops Sn-3.14Ag-3.85Sb hysteresis loops Sn-2.96Ag-5.12Sb hysteresis loops Sn-3.08Ag-10.05Sb X

12 hysteresis loops Sb Sn-2.91Ag-1.73Sb Sn-3.14Ag-3.85Sb Sn-2.96Ag-5.12Sb Sn-3.08Ag-10.05Sb Sb Sb (90% load-drop) Sn-3.5Ag (a) (b) (50% load-drop) (c) (50% load-drop) Sn-3.14Ag-3.85Sb ( 50% load-drop) Sn-3.08Ag-10.05Sb ( 50% load-drop) Sn-2.91Ag-1.73Sb ( % load-drop) Sn-3.08Ag-10.05Sb ( % load-drop) [72,73]...91 XI

13 2-1 [17] NCMS 7 [2] Sn-Ag-Sb [9,35] (wt%) Sn-3.5Ag (wt%) [25] (wt%) XII

14 63Sn-37Pb (soldering) 50mg/dl (Environmental Protection Agency) 17 [1] 1990 Lead Exposure Reduction Act S2637 and S (National Center for Manufacturing Sciences, NCMS) IDEALS(Improve Design Life and Environmentally Aware Manufacturing of Electronics Assemblies by Lead-Free Soldering) 1994 (Lead-Free Soldering Research Council)[2] 1

15 WEEE(Waste Electrical and Electronic Equipment) I/O BGA(ball grid array) (flip chip) CSP(chip scale package) DCA(direct chip attachment) [3~5] (coefficient of thermal expansion, CTE) (NCMS) 72 7 [2] Sn-3.5Ag (Sn-Ag) [2,6~8] Sn-Ag Ag 3 Sn Sn-3.5Ag Sn-Ag 2

16 Sb Sn SbSn [9~11] Sb Sn-Ag Sn Sb Ag 3 Sn Sn ε-ag 3 (Sn,Sb) SbSn ε-ag 3 (Sn,Sb) SbSn [12,13] [14] Sn-Ag Sb(1.75~8.78 wt%) Ag 3 Sn Sb Ag 3 Sn Sb Ag 3 Sn Sn Cu 6 Sn 5 Cu 3 Sn Sb [14] Sb 3

17 (soldering) Sn-Pb 231 C Sn-Pb [15,16] 1. Sn-Pb

18 [17] 2-1 [8] ( 200 C) Sn Bi In Sn-58Bi Sn-52In Sn-Pb Sn-9Zn Sn-8Zn-3Bi 2. ( 200~230 C) Sn Cu Ag Bi Sb Sn-3.5Ag Sn-0.7Cu Sn-3.4Ag-4.8Bi Sn-3.8Ag-0.7Cu Sn-2.6Ag-0.8Cu-0.5Sb 3. ( 230 C) Sn-20Au Sn-5Sb Sn-25Ag-10Sb 5

19 2-1 [17] 6

20 280 Sn-20Au Sn-5Sb Sn-0.7Cu Sn-3.5Ag Sn-3Ag-1~10Sb Sn-3.8Ag-0.7Cu Sn-25Ag-10Sb Sn-3.5Ag-0.5Cu-1Zn Sn-2.6Ag-0.8Cu-0.5Sb 210 Sn-3.4Ag-4.8Bi Sn-9Zn Sn-37Pb Sn-8Zn-3Bi Sn-2.8Ag-20In 140 Sn-58Bi Sn-52In 2-1 [1,2,8,12] 7

21 (NCMS) [2] 2-2 NCMS 7 [2] Code Composition Melting point ( C) A4 Sn-3.5Ag 221 A6 Sn-58Bi 139 E4 Sn-3Ag-2Bi 220 F2 Sn-2.6Ag-0.8Cu-0.5Sb 211 F17 Sn-3.4Ag-4.8Bi 210 F21 Sn-2.8Ag-20In 187 F27 Sn-3.5Ag-0.5Cu-1Zn NCMS 7 Sn-58Bi Sn-Ag Sn-Ag Sn-3.5Ag Sn-Ag Sn-3.5Ag 221 C Ag Sn Ag 3 Sn Ag 3 Sn [18~20] (dispersion hardening) Sn-3.5Ag β-sn Sn Ag 3 Sn Sn 8

22 (eutectic network) Kim [19] Sn-Ag β-sn Suganuma [21] 0~4% Ag Sn Ag Ag 3 Sn 4% Ag (primary)ag 3 Sn Ag 3 Sn Flanders [22] Sn-3.5Ag (Imtermetallic Compound, IMC) Cu 6 Sn 5 Cu 3 Sn Ag 3 Cu 6 Sn 5 Sn Ag 3 Sn Cu Bae [23] Sn-3.5Ag Cu Cu Sn-3.5Ag Cu Cu Sn-Ag-Cu Cu (scallop-shaped)cu 6 Sn 5 Cu 6 Sn 5 Sn Cu 6 Sn 5 Yang [18,20] Cu 6 Sn 5 Cu Cu 6 Sn 5 Cu 6 Sn 5 Yu [24] Cu 6 Sn 5 Cu 6 Sn 5 Sn-Ag Ag 3 Sn Sn-3.5Ag [25,26] Sn-Ag 9

23 2-1.2 Sn-Ag-X Sn-3.5Ag [27] Sn-3.5Ag Bi In Zn Cu Sb Bi In Zn Sn-Ag Sn-Pb Kariya [28,29] Sn-3.5Ag Bi In Zn Bi 2 wt% Bi Sn-37Pb 10 wt% In [29] Sn-Ag Yoon [30] Sn-Ag-In -65~150 C β-sn γ-insn 4 β-sn γ-insn 4 Sn-Ag-In Sn-Ag-In Zn [29] Zn Sn-Zn Zn Sn-Ag-Cu Cu Sn-Ag Sn-3.5Ag-0.7Cu 10

24 217.5 C Cu Sn Sn-Ag-Cu Sn-Ag Sn-Ag [29] Sn-Ag [30,31] Sn-Ag-Cu Sn-Ag-Cu Sn-Ag-Cu Sn-Ag-Cu Sn-Ag Sn Cu Ni Cu 6 Sn 5 Ni 3 Sn Sn-Ag-Sb Sb Sn-Ag Sn-Ag Motorola 1977 Sn-25Ag-10Sb [12,13] Sb Ag Ag Sn-Ag-Sb Sb Sn-Ag-Sb Sb 10% Sb β-sn Sn Sn-Sb 1971 Predel Sn-Sb ( 2-2)[11] 11

25 Sb Sn 9.6 wt% Sb Predel 250 C β-sbsn 43~60.5 at% Sb 2 Sn 3 324~242 C Sb 2 Sn 3 43 at% Sb SbSn 9.4 at% Sb β-sn 2-2 Sn-Sb [11] 1997 Vassiliev [32] Predel Sn-Sb β-sbsn β-snsb β -Sn 12 Sb 13 β -Sn 2 Sb 3 β -SnSb 2 Sb at% β β β β fcc NaCl 1998 Oberndorff[74] (diffusion couple) 12

26 Sn Sb 220 C 264 SnSb Sn 3 Sb 4 Sn 4 Sb 3 McCabe [33] Sb Sb 2.9 wt% 126 nm 2 3~5µm SbSn β-sn SbSn Sn-Ag-Sb Sn-Ag-Sb ( 2-3)[34] Sb Sn-Ag Sb β-sn SbSn ζ-ag 9 (Sn,Sb) ε-ag 3 (Sn,Sb) [9,34~36] ζ-ag 9 (Sn,Sb) Ag Masson [9] ε-ag 3 (Sn,Sb) Sn-Ag-Sb Ag-Sn Ag-Sb ε-ag 3 (Sn,Sb) Sn-Ag-Sb Sn-Ag-Sb (invariant equilibria) C C Eq. 2-1 Eq. 2-2 [9,34,35] C Sb Oh [35] C Eq. 2-3 Eq. 2-2 (metastable equilibrium) 2-3 Masson Oh Ag 3 (Sn,Sb) SbSn Sb Sb 13

27 2-3 Sn-Ag-Sb [34] L (Sb) Ag 3 (Sn,Sb) SbSn C... Eq. 2-1 L SbSn Ag 3 (Sn,Sb) β-sn C... Eq. 2-2 L Sb 2 Sn 3 Ag 3 (Sn,Sb) β-sn C... Eq Sn-Ag-Sb [9,35] Reference Reaction Phases Masson and Kirkpatrick [9] Oh et al. [35] C C C C Compositions Ag Sb Sn Ag 3 (Sn,Sb) SbSn Ag 3 (Sn,Sb) SbSn Ag 3 (Sn,Sb) SbSn Ag 3 (Sn,Sb) Sb 2 Sn

28 2-3 (surface mount technology, SMT) SMT (pin through hold, PTH) BGA Flip Chip CSP [4,5] PTH SMT BGA Flip Chip (solder bump) (bending) (vibration) (creep) (thermal cycling) (isothermal fatigue) (thermomechanical fatigue) [37] (thermal shock) [38-40] [41-43] 15

29 1. (bulk solder sample)[41,44-48] ASTM E E E ASTM E Au/Ni/Cu [49] 2. (simple shear sample)[42,50-56] single/double shear lap sample 2-4 (reflow) (hot 16

30 dipping)[57,58] 2-5 Solder Joint Solder Joint Solder Joint Solder Joint 2-4 [43] 2-5 [57] 17

31 3. (actual SMT solder joint)[37,43,59-63] IC IC Coffin-Manson equation (63Sn-37Pb) 0.65T m [64] Cutiongco [65] 18

32 63Sn-37Pb 150 C 2 Coffin-Manson equation f α = ε N θ... Eq. 2-4 p ε p plastic strain range N f fatigue life α fatigue ductility exponent θ fatigue ductility coefficient Tien [64] 25 C 100 C (Sn-rich) (Pb-rich) Shi [41] 63Sn-37Pb 25 C 1~50% Coffin-Manson equation Kanchanomai [46-48] ASTM E Sn-37Pb Sn-3.5Ag Coffin-Manson equation 20 C 0.1Hz 63Sn-37Pb Sn-3.5Ag α Sn-3.5Ag 63Sn-37Pb 63Sn-37Pb (colony) Sn-3.5Ag β-sn 19

33 Ag 3 Sn 2-3µm J da c ( J ) n / dn = C... Eq Sn-37Pb C = n = Sn-3.5Ag C = n =1. 5 Zhao [44,45] ASTM E a 63Sn-37Pb 95Pb-5Sn Sn-3.5Ag CT 63Sn-37Pb (threshold value) K th 0.6MPa m 1/2 95Pb-5Sn 0.4MPa m 1/2 K th (stress ratio)r J th 63Sn-37Pb 95Pb-5Sn 6N/m Sn-3.5Ag 20N/m 63Sn-37Pb Sn-3.5Ag (R= ) (10 Hz) (R 0.5) (0.1 Hz) Sn-3.5Ag Ag 3 Sn Ag 3 Sn Ag 3 Sn Ag 3 Sn Sn Guo [57] 8mm ( 2-5 ) 63Sn-37Pb (load drop parameter)φ φ 20

34 K J W p (area of hysteresis loop) Coffin-Manson equation Solomon[53] LCC/PWB (leaded chip carrier printed wiring board) 63Sn-37Pb 35C 0.3Hz Hz 0.3Hz 1/ Hz 0.3Hz 1/ C 0.3Hz Hz 0.3Hz 1/35 Shi [41] 63Sn-37Pb Hz Hz 10-3 Hz 10-3 Hz α θ Solomon [53,66] Shi [41] frequency-modified Coffin-Manson relationship ( ( ) α k 1 ε p N ν ) = θ... Eq. 2-6 f ν frequency k frequency exponent 21

35 Kanchanomai [67] Hz Sn-3.5Ag hysteresis loop (plastic strain range, ε p hysteresis loop ) (stress range, hysteresis loop ) frequency-modified Coffin-Manson relationship Sn-3.5Ag Mei [52] single lap 63Sn-37Pb [49] Cu 6 Sn 5 Cu 6 Sn 5 22

36 Cu 6 Sn [14,25,26] Chan Li [59,60] LCCC(leadless ceramic chip carriers) FR-4 IMC ( 25 ) IMC 2.8µm IMC 68% Wu [61] SCSP(stacked chip scale package) FR-4 IMC BGA (barrel type) (cylinder type) (hourglass type) 2-6 Ju [63]

37 [68] 2-7 [63] 24

38 2-8 [63] [69] 25

39 3-1 Sn-Ag [26] Sn-Ag Sb(1~2%) 1mm Sb [25] L Sb 150 C [14] Sb 8.78% Sb 4.75 wt% SbSn FR-4 Sb Sb 8.78% Sb 26

40 Sb Sn-Ag McCabe Fine[33] Sb 2.9% SbSn ( 3-1) 3 wt% Sb SbSn 150 C ( ) 8.78 wt% Sb 3-1 ( wt% ) (wt%) Sn Ag Sb SA S S S S

41 Sn-3.5Ag Sn-3Ag-1.5Sb Sn-3Ag-3Sb Sn-3Ag-5Sb Sn-3Ag-10Sb 150 C 0 ~ 625 ICP XRD DSC EDS OM SEM

42 3-2 Sn-3.5Ag Sb Sn-3.5Ag Sn 99.9% Sb 1 Sn-3.5Ag Sn-3.0Ag-xSb (x= ) Sn-3.5Ag 600 C Sn Sb C ( mm) ( 4000 XRD OM SEM mm 0.09mm 6mm ( BS-10) 300 C mm 29

43 1mm 99.95% 50 10mm 3µm ( 30 C) ( 50 C) [18,20] 15 3~4 Sn-Ag Sb C Diameter of solder balll (mm) Sn-3.5Ag Adding 1.73%Sb Adding 3.85%Sb Adding 5.12%Sb Adding 10.05%Sb

44 3-2 Sn-3.5Ag 190 C 270 C Sn-3Ag-1.5Sb 190 C 270 C Sn-3Ag-3Sb 190 C 275 C Sn-3Ag-5Sb 195 C 275 C Sn-3Ag-10Sb 200 C 280 C 3-3 D min =1.8 mm D max =2.3 mm 0.8 mm

45 Sn-Ag Sb Sn-Ag-Sb (Differential Scanning Calorimeter, Shimadzu DSC-50) 2. Sn Sb (ICP-AES, Inductively Coupled Plasma Atomic Emission Spectrometer) ASTM E56[71] EDS(Energy Dispersive X-Ray Spectrometer) 3. Philips XL 40 FEG JXA-840A Leitz Metallux C mm 20 Sb 5 Shimadzu AG-I 3-5 (load cell) 5kN 7 ±0.5% mm/min 1µm (cross head) 0.5mm/min 32

46 % ±0.025mm Shi[41] 1~50% Coffin-Manson model Xie[46] Park[50] Mei[52] Solomon[66] Sb 10% Sn-3.5Ag Sn-3Ag-10Sb Sn-3.5Ag Sn-3Ag-10Sb 3-8 ±0.02~±0.05mm 0.005mm Sn-3.5Ag Sn-3Ag-3Sb Sn-3Ag-10Sb ±0.02mm Sn-3Ag-3Sb Sn-3Ag-10Sb ±0.03mm Sn-3.5Ag 250 ±0.025mm Sn-3.5Ag Sn-3Ag-10Sb 33

47 [64,65] Shi [41] Kanchanomai [67] Sn-37Pb Sn-3.5Ag 1~10-3 Hz 0.1Hz ASTM E [70] 50% (load-drop) 50% 50~90% Sb 90% 3-5 Shimadzu AG-I 34

48 3-3 (25 C) ±0.025mm 0.1Hz 90% F F

49 % Sb Load(N) % Sb 3.85% Sb 1.73% Sb Sn-3.5Ag Displacement(mm) 3-8 Sb 36

50 4-1 Sn-3.5Ag Sn Sb Sn-3.5Ag 4-1 Sn Sb Sn-3.5Ag ( 4-2) 4-3 ICP-AES Ag Sb 1.5wt% 3wt% 1.73wt% 3.85wt% Sn (DSC) ( Sn-3.5Ag ) Sb 1.73%Sb 5.0 C 3.85% 5.12% Sb C C 7.6 C 8.0 C 5.12%Sb 3.85% 5.12% Sb 37

51 Sb 10.05% C 9.1 C Sb 4-1 Sn-3.5Ag (wt%) Sn Ag Sb Pb Bi Fe As

52 4-2 [25] Symbol Sn Ag Sb Density at 20 C, g/cm Coefficient of thermal expansion to / C Electrical resistivity at 18 C, µω-cm % Electrical conductivity Lattice type at 20 C Tetra FCC Rhome Lattice parameter (length), Å Lattice parameter (height), Å Distance of closest approach, Å Specific heat,(at room temperature) cal/g C Heat of fusion, H fus Melting point, C (wt%) Sn Ag Sb Sn-3.5Ag Sn-3Ag-1.5Sb Sn-3Ag-3Sb Sn-3Ag-5Sb Sn-3Ag-10Sb

53 6 5 Sn-3.5Ag 4 mw % 3.85% 5.12% 10.05% Temperature ( ) 4-1 DSC 4-4 ( C) ( C) ( C) Sn-3.5Ag Sn-2.91Ag-1.73Sb Sn-3.14Ag-3.85 Sb Sn-2.96Ag-5.12 Sb Sn-3.08Ag-10.05Sb

54 4-2 XRD XRD ( 4-2) Sn-3.5Ag β-sn ε-ag 3 Sn 1.73% Sb Sn-3.5Ag Sn-Sb ( 2-2) Sb Sn 9.6wt% 2wt% Sb Sn Sn 1.73% Sb Sb Sn Sb 3.85% β-sn ε-ag 3 Sn SbSn Sb 3.85% [9,35] Sn-Ag-Sb ( 2-3)[34] Sn-Ag-Sb C (Eq. 2-2) L SbSn Ag 3 (Sn,Sb) β-sn C Sn-Ag-Sb Sn 10.05% Sb 10.05% Sb C C 10.05% Sb SbSn SbSn SbSn Ag 3 (Sn,Sb) β-sn SbSn Sn-Sb SbSn Sn-Ag-Sb 41

55 4-3 Sb Sn-Ag OM Sn-3.5Ag β-sn (dendrite) Sn (eutectic network) ε-ag 3 Sn Sn-3.5Ag 500 Ag 3 Sn Sb 1.73~5.12%Sb Sn-3.5Ag β-sn 500 β-sn ( 4-4 ) XRD Sb 3.85% SbSn OM SbSn Sb 10.07% β-sn 30~40µm XRD 10.05% Sb SbSn [75] % Sb Ag 3 Sn 10.05% Sb Ag 3 (Sn,Sb) Ag 3 Sn 42

56 4-2 XRD 43

57 200X 500X Sn-3.08Ag-10.05Sb Sn-2.96Ag-5.12Sb Sn-3.14Ag-3.85Sb Sn-2.91Ag-1.73Sb Sn-3.5Ag 4-3 Sb Sn-Ag OM 44

58 4-4 Sn-2.91Ag-1.73Sb (500x) 45

59 OM SbSn % 5.12% Sb 4-5(a) Sn-3.5Ag β-sn Ag 3 Sn β-sn 4-5(b) EDS ( 4-6,4-7) Sb β-sn Sb Sb XRD Sb 3.85% SbSn SbSn EDS Sb 50% µm SbSn 10.05% Sb OM SbSn EDS 40% Sb Sb SbSn 1971 Predel Sn-Sb ( 2-2)[11] Sb 2 Sn 3 324~242 C Sb 2 Sn 3 43% Sb SbSn 9.4% Sb β-sn Sn-3.5Ag β-sn Sb Sn Ag Sn Sb Sn Sn-Sb Sb 10.05% Sb 2 Sn 3 Sb 2 Sn 3 Predel 43% Sb SbSn 9.4% Sb β-sn 43% Sb SbSn Sb β-sn 46

60 Sb 2 Sn 3 EDS 40% Sb 3.85% 5.12% Sn Sb 9.6% SbSn β-sn SbSn Oh C (Eq.2-3) L Sb 2 Sn 3 Ag 3 (Sn,Sb) β-sn C Oh Sn-Sb Sn-Ag-Sb Predel Masson Oh Sn-3.08Ag-10.05Sb C Sb 2 Sn 3 Sb 2 Sn 3 β-sn 43% Sb SbSn β-sn Ag 3 (Sn,Sb) SbSn β-sn 1998 Oberndorff [74] SbSn Sb 3 Sn 4 Sb 4 Sn 3 Sb 3 Sn 4 Sb 43% 1971 Predel Sn-Sb SbSn Sb 43~60.5% Sb 43~60.5% [32] Predel 43% Sb SbSn Sb 3 Sn 4 47

61 (a) (b) 4-5 Sn-3.14Ag-3.85Sb SEM 48

62 (A) Element Wt% At% A B Ag L Sn L Sb L Total Ag L Sn L Sb L Total (B) 4-6 Sn-2.96Ag-5.12Sb SEM (BSE) EDS 49

63 (A) Element Wt% At% A B Ag L Sn L Sb L Total Ag L Sn L Sb L Total (B) 4-7 Sn-3.08Ag-10.05Sb SEM EDS (1) 50

64 (A) Element Wt% At% A B Ag L Sn L Sb L Total Ag L Sn L Sb L Total (B) 4-8 Sn-3.08Ag-10.05Sb SEM EDS (2) 51

65 SbSn Ag 3 Sn β-sn 4-9 β-sn Ag 3 Sn OM Sb Ag 3 Sn Sb 5.12% Ag 3 Sn 10.02% Ag 3 Sn C Ag 3 Sn Sn Sb Ag 3 (Sn,Sb) 4-10 EDS 10.05% Sb Ag 3 Sn Sb 3.85% 5.12% Sb Ag 3 Sn EDS EDS WDS(Wavelength Dispersive X-Ray Spectrometer) 3.85% 5.12% Sb Ag 3 (Sn,Sb) 1.73% Sb Sb β-sn Ag 3 Sn Sb Sb 3.85% SEM SbSn β-sn β-sn Sb β-sn SbSn 10.05% Sb SbSn

66 SbSn 4-13 EDS SbSn Ag Sn-Ag-Sb ε-ag 3 (Sn,Sb) ε-ag 3 (Sn,Sb) SbSn 1µm Sb 53

67 (a) (b) (C) 4-9 SEM (a)sn-3.5ag (b) 1.73Sb (c) 3.85Sb 54

68 (A) Element Wt% At% Ag L A Sn L Sb L Total Ag L B Sn L Sb L Total Ag L C Sn L Sb L Total (B) (C) 4-10 Sn-3.08Ag-10.05Sb Ag 3 (Sn,Sb) EDS 55

69 (A) (B) Element Wt% At% A B Ag L Sn L Sb L Total Ag L Sn L Sb L Total Sn-2.96Ag-5.12Sb SEM EDS 56

70 4-12 Sn-3.08Ag-10.05Sb SEM Element Wt% At% A B Ag L Sn L Sb L Total Ag L Sn L Sb L Total (A) (B) SbSn EDS 57

71 4-3 (single lap) 1.7mm±0.05 (15X) (500X) 4-14 ( φ = 1.7mm) ( mm) β-sn Ag 3 Sn 10.05% Sb SbSn 20µm 58

72 15X 500X Sn-3.08Ag-10.05Sb Sn-2.96Ag-5.12Sb Sn-3.14Ag-3.85Sb Sn-2.91Ag-1.73Sb Sn-3.5Ag

73 Sb Sn-3.5Ag 89.3N 114.2N(1.73%) 129.0N(3.85%) 140.5N(5.12%) 183.2N(10.05%) 1.73% Sb Sb β-sb 3.85% 5.12% Sb SbSn 10.05% 4-16 Sb Sb Sb ( 4-17) [14] [25] 60

74 Max. Load (N) Sn-3.5Ag adding 1.73Sb adding 3.85Sb adding 5.12Sb addind 10.05Sb Load (N) % 3.85% 5.12% 1.73% Sn-3.5Ag Displacement (mm) 4-16 Sb 61

75

76 4-5 Coffin-Manson model [41,46-48,51,53,55,67] Coffin-Manson Hysteresis Loop X 150 C [63,68] [49] 63

77 4-5.1 Sn-3.5Ag 4-18 Sn-3.5Ag Hysteresis Loop 4-19 Sn-3.5Ag (load-drop) 4-18 (+0.025mm) 56N (-0.025mm) -60N 60N -60N ( 5N) Sn-3.5Ag ±0.025mm (cyclic softening) ( ) 0.018mm (ε total ) 2.25% N % Sn-3.5Ag Sn-3.5Ag ( 0.6T m ) Sb Sn-3.5Ag 64

78 ( ) 65

79 Sn-3.5Ag nd,3th 10th 1st 100th 200th Load (N) 0 500th Displacement (mm) 4-18 Sn-3.5Ag hysteresis loops 80 Sn-3.5Ag 40 Load (N) 0 Cycles Sn-3.5Ag 66

80 4-5.2 Sb Sn-Ag Sb 1.73% Sb β-sn 3.14% 5.12% SbSn 10.05% SbSn 4-20 Sn-Ag Sb hysteresis loop (±0.025mm) Sn-3.5Ag Sb 10.05% ±0.025mm 10.05% Sb Sb Sn-3.5Ag 60N 69N( 1.73%) 93N( 3.85%) 108.6N( 5.12%) 113.1N( 10.05%) Sb 5.12% 10.05% 4-21 Sb 1.73%Sb Sn-3.5Ag Sn-3.5Ag Sn-3.5Ag 67

81 Sn-3.5Ag Sb 1.73Sb 3.85% 5.12% Sb Sn-3.5Ag 3.85% 5.12% Sb Sb SbSn 10.05% Sb % Sb 3.85% 5.12% 10.05% Sb 10.05% Sn-3.5Ag Sb Sb (Cu 6 Sn 5 ) 68

82 0hr %Sb,10.05%Sb 3.85%Sb 1.73%Sb Sn-3.5Ag Load (N) Displacement (mm) 4-20 hysteresis loops 150 0hr 100 Load (N) Sn-3.5Ag 1.73%Sb 3.85%Sb 5.12%Sb 10.05%Sb Cycles

83 C Sn-3.5Ag ±0.025mm Hysteresis Loop Cutiongco [65] 4-23 Sn-3.5Ag Sn-3.5Ag 225 Sn-3.5Ag Sb hysteresis loop 4-24~ % Sb

84 4-28 Sb % Sb % Sb ( 4-30) % Sb 625 Sn-3.5Ag Sb 1.73% 225 Sb 3.85% % 3.85% Sb

85 5.12% 10.05% Sb % Sb % Sb [14,25,26] ( 4-33 ) 4-34 ( 6 ) Sb Sb Sn-Ag Sb Sb 5.12% 72

86 Sb Sb Sb 1.73%Sb Sn-3.5Ag Sb Sn-3.5Ag 225 Sb Sb Sb 3.85% 73

87 Sn-3.5Ag 120 Load (N) hr_2nd 225hrs_2nd 625hrs_2nd 625hrs_500th 0hr_500th Displacement (mm) 4-22 Sn-3.5Ag hysteresis loops 80 Sn-3.5Ag 40 Load (N) 0 0hr 225hrs 625hrs Cycles Sn-3.5Ag 74

88 1.73Sb hr 225hrs 625hrs 40 Load (N) Displacement (mm) 4-24 Sn-2.91Ag-1.73Sb hysteresis loops 3.85Sb hr 225hrs 625hrs 40 Load (N) Displacement (mm) 4-25 Sn-3.14Ag-3.85Sb hysteresis loops 75

89 5.12Sb hr 225hrs 625hrs 40 Load (N) Displacement (mm) 4-26 Sn-2.96Ag-5.12Sb hysteresis loops 10.05Sb Load (N) Displacement (mm) 0hr 225hrs 625hrs 4-27 Sn-3.08Ag-10.05Sb hysteresis loops 76

90 140 Max. Load at 2nd cycle (N) %Sb 5.12%Sb 3.85%Sb 1.73%Sb Sn-3.5Ag Storage time (hrs) 4-28 Sb 77

91 Sb Load (N) 0 0hr 625hrs 225hrs Cycles Sn-2.91Ag-1.73Sb Sb hrs Load (N) 0 625hrs 0hr Cycles Sn-3.14Ag-3.85Sb 78

92 Sb 100 Load (N) hrs_fracture in solder 225hrs_fracture in IMC 0hr Cycles Sn-2.96Ag-5.12Sb Sb hrs_fracture in solder 0hr Load (N) 0 625hrs_fracture in IMC Cycles Sn-3.08Ag-10.05Sb 79

93

94 100% 80% 60% Sn-3.5Ag 40% 20% 0% 0 hr 225hrs 625hrs 100% 80% Adding 1.73% Sb 100% 80% Adding 3.85% Sb 60% 60% 40% 40% 20% 20% 0% 0 hr 225hrs 625hrs 0% 0 hr 225hrs 625hrs 100% 80% Adding 5.12% Sb 100% 80% Adding 10.05% Sb 60% 60% 40% 40% 20% 20% 0% 0 hr 225hrs 625hrs 0% 0 hr 225hrs 625hrs 4-34 Sb 81

95 hr 225hrs 625hrs Nf (90% load-drop) Sn-3.5Ag 1.73Sb 3.85Sb 5.12Sb 10.05Sb 4-35 Sb (90% load-drop) 82

96 4-5.4 Sb Sb 4-36 Sn-3.5Ag 1.73% Sb (necking) 3.85% 5.12% Sb 10.05% 4-37 Sn-3.5Ag (a) (b) (c) % % Sn-3.5Ag % Sb 50% 83

97 β-sn % 4-38 SbSn SbSn β-sn SbSn SbSn SbSn % Sb % Sb John[72,73] 84

98 Sn-3.5Ag Sn-2.91Ag-1.73Sb Sn-3.14Ag-3.85Sb Sn-2.96Ag-5.12Sb Sn-3.08Ag-10.05Sb

99 (a) (b) (50% load-drop) (c) (50% load-drop) Sn-3.5Ag 86

100 A B A B 4-38 Sn-3.14Ag-3.85Sb ( 50% load-drop) 87

101 A B A B 4-39 Sn-3.08Ag-10.05Sb ( 50% load-drop) 88

102 A B A B 4-40 Sn-2.91Ag-1.73Sb ( % load-drop) 89

103 4-41 Sn-3.08Ag-10.05Sb ( % load-drop) 90

104 (a) (b) 4-43 [72,73] 91

105 1. Sn-Ag Sb Sn-3.5Ag C C(1.73%) C(3.85%) C(5.12%) C(10.05%) 5.0 C(1.73%) 7.6 C(3.85%) 8.0 C(5.12%) 9.1 C(10.05%) 2. Sn-3.5Ag β-sn Sb( 3.85wt%) Sn-Ag 1.73wt% Sb β-sn 3.85wt% 5.12wt% Sb β-sn µm SbSn Sb 10.05% 20~30µm SbSn Sb 2 Sn 3 Sb 2 Sn 3 43%Sb SbSn β-sn 3. Sb SbSn Sb Sn-3.5Ag 89.3N 114.2N(1.73%) 129.0N(3.85%) 140.5N(5.12%) 183.2N (10.05%) Sb Hz 25 C ±0.025mm Sn-3.5Ag 50% Sn-3.5Ag 5. ±0.025mm Sb 10.05%Sb 92

106 Sb Sb Sb Sn-ag Sb 3.85wt% 225 Sb Sb 5.12wt% Sb 3.85wt% 8. Sb SbSn β-sn 9. 93

107 1. Single Lap 1.8mm 0.8mm Sn-Ag-xSb BGA 2. Sb Sn-Ag SbSn XRD EDS EPMA Sn Sb Sn-Sb SbSn 3. Sn-Ag-xSb Sn-Ag-xSb 94

108 1. Mulugeta Abtew and Guna Selvaduray, "Lead-free Solder in Microelectronics," Materials Science and Engineering R, Vol. 27, 2000, pp ESPEC Technology Report, No. 13, 2002, pp , ",", 90, 2000, pp ,,, ",", 170, 90 2, pp , "IC,", 170, 90 2, pp David Suraski and Karl Seeling, "The Current Status of Lead-Free Solder Alloys," IEEE Transactions on Electronics Packaging Manufacturing. Vol. 24, No. 4, 2001, pp Laura J. Turbini, Gregory C. Munie, Dennis Bernier, Jurgen Gamalski and David W. Bergman, "Examining the Environmental Impact of Lead-Free Soldering Alternatives," IEEE Transactions on Electronics Packaging Manufacturing. Vol. 24, No. 1, 2001, pp B. P. Richard, C. L. Levoguer and C. P. Hunt, "An Analysis of the Current Status of Lead-Free Soldering," DTI Report, D. Bruce Masson and Brink K. Kirkpatrick, "Equilibrium Solidification of Sn-Ag-Sb Thermal Fatigue-resistant Solder Alloys," Journal of Electronic Materials, Vol. 15, No. 6, M. H. N. Beshai, S. K. Habib, A. M. Yassein and G. Saad, "Effect of SnSb Partical Size on Creep Behavior under Power Law Regime of Sn-10%Sb Alloy," Crystal Research and Technology, Vol. 34, No. 1, 1999, pp

109 11. B. Predel and W. Schwermann, "Constitution and Thermodynamics of the Antimony-Tin System," Journal of the Institute of Metals, Vol. 99, 1971, pp Dennis R. Olsen and Keith G. Spanjer, United States Patent, Patent Number: 4,170,472, Dennis R. Olsen and Keith G. Spanjer, "Improved Cost Effectiveness and Product Reliability through Solder Alloy Development," Solid State Technology, 1981, pp , " Sb Sn-Ag,",, ,,",", 2000, pp ,", 90, 2000, pp Anton Zoran Miric and Angela Grusd, "Lead-free Alloys," Soldering & Surface Mount Technology, Vol. 10, No. 1, 1998, pp Wenge Yang, Lawrence E. Felton, Robert W. Messler and JR., "The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints," Journal of Electronic Material, Vol. 24, No. 10, 1995, pp K. S. Kim, S. H. Huh and K. Suganuma, "Effect of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys," Materials Science and Engineering A333, 2002, pp Wenge Yang, Robert W. Messler and JR, "Microstructure Evolution of Eutectic Sn-Ag Solder Joints," Journal of Electronic Material, Vol. 23, No. 8, 1994, pp K. Suganuma, S. H. Huh, K. Kim, H. Nakase and Y. Nakamura, "Effect of Ag Content on Properties of Sn-Ag Binary Alloy Solder," Materials 96

110 Transactions, Vol. 42, No. 2, 2001, pp D. R. Flanders, E. G. Jacobs and R. F. Pinizzotto, "Activation Energies of Intermetallic Growth of Sn-Ag Eutectic Solder on Copper Substrates," Journal of Electronic Materials, Vol. 26. No. 7, 1997, pp K. S. Bae and S. J. Kim, "Interdiffusion Analysis of The Soldering Reactions in Sn-3.5Ag/Cu Couples," Journal of Electronic Materials, Vol. 30, No. 11, 2001, pp K. N. Yu, Fiona Ku and T. Y. Lee, "Morphological Stability of Solder Reaction Products in Flip Chip Technology," Journal of Electronic Materials, Vol. 30, No. 9, 2001, pp , " Sb Sn-Ag,",, , " Sb Cu Sn-Ag,",, Wufeng Feng, Chunqing Wang and M. Morinaga, "Electronic Structure Mechanism for the Wettability of Sn-Based Solder Alloys," Journal of Electronic Materials, Vol. 31, No. 3, 2002, pp Yoshiharu Kariya and Masahisa Otsuka, "Effect of Bismuth on the Isothermal Fatigue Properties of Sn-3.5mass%Ag Solder Alloy," Journal of Electronic Materials, Vol. 27, No. 7, 1998, pp Yoshiharu Kariya and Masahisa Otsuka, "Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) Solder Alloy," Journal of Electronic Materials, Vol. 27, No. 11, 1998, pp S. W. Yoon, C. J. Park, S. H. Hong, J. T. Moon, I. S. Park and H. S. Chun, "Interfacial Reaction and Solder Joint Reliability of Pb-Free Solders in Lead Frame Chip Scale Packages (LF-CSP)," Journal of Electronic Materials, Vol. 29, No. 10, 2000, pp

111 31. D. R. Frear, J. W. Jang, J. K. Lin and C. Zhang, "Pb-Free Solder for Flip-Chip Interconnects," JOM, V. Vassiliev, M. Lelaurain and J. Hertz, "A new proposal for binary (Sn,Sb) phase diagram and its thermodynamic properties based on a new e.m.f. study," Journal of Alloys Compounds Vol. 247, 1997, pp Rodney J. McCabe and Morris W. Fine, ''Creep of Tin, Sb-Solution- Strengthened Tin, and SbSn-Precipitate-Strengthened Tin,'' Metallurgical and Materials Transactions A, Vol. 33A, 2002, pp G. Petzow and G. Effenberg edit, "Ternary Alloys Vol. 2," VCH Verlagsgesellschaft, Chang-Seok Oh, Jae-Hyeok Shim, Byeong-Joo Lee and Dong Nyung Lee, "A thermodynamic study on the Ag-Sb-Sn system," Journal Alloys and Compounds, Vol. 228, 1996, pp Hwa-Teng Lee, Ming-Hung Chen, Shuen-Yuan Hu and Cheng-Shyan Li, "Influence of Sb Addition on Microstructural Evolution of Sn-Ag Solder," IEEE, Electronic Materials and Packaging Conference, J. Lau, T. Marcotte, J. Severine, A. Lee, S. Erasmus, T. Baker, J. Moldaschel, M. Sporer and G. Burward-Hoy, "Solder Joint Reliability of Surface Mount Connectors," Journal of Electronic Packaging, Vol. 115, 1993, pp , ",", No.42, , pp , ",", No. 44, 2000, pp ESPEC Technology Report No. 3, 1997, pp X.Q. Shi, H.L.J. Pang, W. Zhou and Z.P. Wang, "Low cycle fatigue analysis of temperature and frequency effects in eutectic solder alloy," International Journal of Fatigue, Vol. 22, 2000, pp

112 42. John H. L. Pang, Kwang Hong Tan, Xunqing Shi and Z. P. Wang, "Thermal Cycling Aging Effects on Microstructural and Mechanical Properties of a Single PBGA Solder Joint Specimen," IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 1, D. J. Xie, Yan C. Chan, J. K. L. Lai and I. K. Hui, "Fatigue Life Estimation of Surface Mount Solder Joints," IEEE Transactions on Component, Packaging, and Manufacturing Technology-Part B, Vol. 19, No. 3, J. Zhao, Y. Mutoh, Y. Miyashita, T. Ogawa and A. J. McEvily, "Fatigue Crack Growth Behavior in 63Sn-37Pb and 95Pb-5Sn Solder Materials," Journal of Electronic Materials, Vol. 30, No. 4, J. Zhao, Y. Miyashita and Y. Mutoh, "Fatigue crack growth behavior of 96.5Sn-3.5Ag lead-free solder," International Journal of Fatigue, Vol. 23, 2001, pp C. Kanchanomai, S. Yamamoto, Y. Miyashita, Y. Mutoh and A.J. McEvily, "Low cycle fatigue test for solders using non-contact digital image measurement system," International Journal of Fatigue, Vol. 24, 2002, pp C. Kanchanomai, Y. Miyashita and Y. Mutoh, "Low cycle fatigue behavior and mechanisms of a eutectic Sn-Pb solder 63Sn/37Pb," International Journal of Fatigue, Vol. 24, 2002, pp C. Kanchanomai, Y. Miyashita and Y. Mutoh, "Low-Cycle Fatigue Behavior and Mechanisms of a Lead-Free Solder 96.5Sn/3.5Ag," International Journal of Fatigue, Vol. 24, 2002, pp ,,,, ",",, Tac-Sang Park and Soon-Bok Lee, "Mechanical Fatigue Tests of Solder Joint under Mixed-mode Loading Cases," IEEE, Intel Symposium on 99

113 Electronic Materials and Packaging, Hong Tang and Cemal Basaran, "Experimental Characterization of Material Degradation of Solder Joint under Fatigue Loading," IEEE, Inter Society Conference on Thermal Phenomena, Z. Mei, J. W. Morris and Jr., "Fatigue Lives on 60Sn/40Pb Solder Joints Made With Different Cooling Rates," Journal of Electronic Packaging, Vol.114, 1992, pp H. D. Solomon, "The Influence of the Cycle Frequency and Wave Shape on the Fatigue Life of Leaded Chip Carrier Printed Wiring Board Interconnections," Journal of Electronic Packaging, Vol. 115, 1993, pp N. Nir, T. D. Dudderar, C. C. Wong and A. R. Storm, "Fatigue Properties of Microelectronics Solder Joints," Journal of Electronic Packaging, Vol. 113, 1991, pp H. D. Solomon, "Low Cycle Fatigue of Sn96 Solder With Reference to Eutectic Solder and a high Pb Solder," Journal of Electronic Packaging, Vol. 113, 199, pp Ki-Ju Kang, Seon-Ho Choi and Tae-Sung Bae, "Near-Threshold Fatigue Crack Growth at 63Sn37Pb Solder Joints," Journal of Electronic Packaging, Vo l. 124, 2002, pp Z. Guo and H. conrad, "Fatigue Crack Growth Rate in 63Sn37Pb Solder Joints," Journal of electronic Packaging," Vol. 115, 1993, pp Zhenfeng Guo, A. F. Sprecher, Dae Young Jung and H. Conrad, "Influence of Environment on the Fatigue of Pb-Sn Solder Joint," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 14, No. 4, 1991, pp Y. C. Chan, P. L. Tu, A. C. K. So and J. K. L. Lai, "Effect of Intermetallic compounds on the Shear Fatigue of Cu/63Sn-37Pb Solder Joints," IEEE 100

114 Transactions on Components, Packaging, and Manufacturing Technology-Part B, Vol. 20, No. 4, G. Y. Li and Y. C. Chan, "Aging Effects on Shear Fatigue Life and Shear Strength of Soldered Think Film Joints," IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, Vol. 21, No. 4, J.D. Wu, S.H. Ho, C. Y. Huang, C.C. Liao, P.J. Zheng and S.C. Hung, "Board level reliability of a stacked CSP subjected to cyclic bending," Microelectronics Reliability Vol. 42, 2002, pp H. D. Solomon, "Isothermal Fatigue of LCC/PWB Interconnections," Journal of Electronic Packaging, Vol. 114, 1992, pp The-Hua Ju, Wei Lin, Y. C. Lee and Jay J. Liu, "Effects of Ceramic Ball-Grid-Array Package's Manufacturing Variations on Solder Joint Reliability," Journal of Electronic Packaging, Vol. 116, 1994, pp J. K. Tien, B. C. Hendrix and A. I. Attarwala, "Understanding the Cyclic Mechanical Behavior of Lead/Tin Solder," Journal of Electronic Packaging, Vol. 113, 1991, pp E. C. Cutiongco, S. Vaynman, M. E. Fine and D. A. Jeannotte, "Isothermal Fatigue of 63Sn-37Pb Solder," Journal of Electronic Packaging, Vol. 112, 1990, pp H. D. Solomon and E. D. Tolksdorf, "Energy Approach to the Fatigue of 60/40Solder: Part - Influence of Temperature and Cycle Frequency," Journal of Electronic Packaging, Vol. 117, 1995, pp C. Kanchanomai, Y. Miyashita, T. Mutoh and S. L. Mannan, "Influence of frequency on low cycle fatigue behavior of Pb-free solder 96.5Sn-3.5Ag," Materials Science and Engineering, A345, 2003, pp Xingsheng Liu, Shuangyan Xu, Guo-Quan Lu and David A. Dillard, "Stacked solder bumping technology for improved solder joint 101

115 reliability," Microelectronics Reliability Vol. 41, 2001, pp R. W. Neu, D. T. Scott and M. W. Woodmansee, "Thermomechanical Behavior of 96Sn-4Ag and Castin Alloy," Journal of Electronic Packaging, Vol. 123, 2001, pp ASTM E , ASTM E John H. Lau, "Thermal Stress and Strain in Microelectronics Packaging," Van Nostrand Reinhold, John H. Lau, "Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies," McGraw-Hill, P. J. T. L. Oberndorff, A. A. Kodentsov, V. Vuorinen, J. K. Kivilahti and F. J. J. van Loo, "Phase Relations in the Sn-Ag-Sb System at 220, " Berichte der Bunsen-Gesellschaft fur Physikalische Chemie, Vol. 102, No. 9, 1998, pp Hwa-Teng Lee, Ming-Hung Chen, Shuen-Yuan Hu and Cheng-Shyan Li, "Influence of Sb Addition on Microstructural Evolution of Sn-Ag Solder," IEEE 2002 Electronic Materials and Packaging Conference,

116

117

118 Cheng-Shyan Lee (06) ~ ~ ~ ~ ~ ~ Hwa-Teng Lee, Chuan-Lien Yang, Ming-Hung Chen, Cheng-Shyan Li, "Effect of Sb Addition on Microstructure and Shear Strength of Sn-Ag Solder Joints," The 5th International Conference on Fracture & Strength of Solids (FEOFS2003), Tohoku University, Sendai, Japan, , "Sn-Ag-xSb ",,

119 3. Hwa-Teng Lee, Ming-Hung Chen, Shuen-Yuan Hu, Cheng-Shyan Li, "Influence of Sb Addition on Microstructural Evolution of Sn-Ag Solder," IEEE, EMAP conference, ,,,, " Sn-Ag-X,", ,,, " 403Cb+(ESR),",

untitled

untitled 20 1 2010 10 Vol.20 Special 1 The Chinese Journal of Nonferrous Metals Oct. 2010 1004-0609(2010)S1-s0127-05 Ti-6Al-4V 1 2 2 (1. 710016 2., 710049) 500~1 000 20 Ti-6Al-4V(TC4) TC4 800 TC4 800 TC4 TC4 800

More information

Microsoft Word 電子構裝結構分析1221.doc

Microsoft Word 電子構裝結構分析1221.doc 電 子 構 裝 結 構 分 析 徐 祥 禎 ( 義 守 大 學 機 械 與 自 動 化 工 程 學 系 副 教 授 ) 前 言 電 子 構 裝 (Electronic Packaging), 主 要 是 利 用 固 定 接 著 技 術, 將 積 體 電 路 (Integrated Circuit, IC) 晶 片 固 定 在 承 載 襯 墊 (Die Pad) 上, 並 利 用 細 微 連 接 技

More information

mm ~

mm ~ 16 3 2011 6 Vol 16 No 3 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Jun 2011 1 2 3 1 150040 2 150040 3 450052 1 3 4 > 1 ~ 3 > > U414 A 1007-2683 2011 03-0121- 06 Shrinkage Characteristics of

More information

untitled

untitled MSE200 Lecture 10 (CH. 7.3-7.4) Mechanical Properties II Instructor: Yuntian Zhu Objectives/outcoes: You will learn the following: Crack growth rate during fatigue. Fatigue life of cracked coponents. Stages

More information

中溫矽基熱電材料介紹及其應用

中溫矽基熱電材料介紹及其應用 探 討 不 同 成 分 比 例 合 金 熔 煉 與 Te 元 素 摻 雜 對 中 溫 熱 電 合 金 Zn 4 之 熱 電 性 能 影 響 Probing thermoelectric effect in Zn 4 compounds of medium-temperature thermoelectric materials by different alloy elements and Te doping

More information

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig 40 6 2011 6 Vol.40 No.6 Infrared and Laser Engineering Jun. 2011 808 nm 2000 W 1 1 1 1 2 2 2 2 2 12 (1. 710119 2. 710119) : bar 808 nm bar 100 W 808 nm 20 bar 2 000 W bar LIV bar 808 nm : : TN248.4 TN365

More information

T K mm mm Q345B 600 mm 200 mm 50 mm 600 mm 300 mm 50 mm 2 K ~ 0. 3 mm 13 ~ 15 mm Q345B 25

T K mm mm Q345B 600 mm 200 mm 50 mm 600 mm 300 mm 50 mm 2 K ~ 0. 3 mm 13 ~ 15 mm Q345B 25 23 4 2018 8 Vol. 23 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug. 2018 Q345B 1 " 1 2 2 2 1. 150040 2. 200125 Q345B 536. 47 MPa 281 HV Q345B DOI 10. 15938 /j. jhust. 2018. 04. 021 TG444

More information

untitled

untitled 20 6 2010 6 Vol.20 No.6 The Chinese Journal of Nonferrous Metals June 2010 1004-0609(2010)06-1095-07 7150 ( 100088) OM SEM X DSC 7150 480 475 2 h (475 2 h) + (120 24 h) 650 MPa 600 MPa 13.5% 7150 TG113

More information

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip * - 1 1 2 3 1. 100124 2. 100124 3. 210018 - ABAQUS - DOI 10. 13204 /j. gyjz201511033 EXPERIMENTAL STUDY AND THEORETICAL MODEL OF A NEW TYPE OF STEEL-LEAD DAMPING Shen Fei 1 Xue Suduo 1 Peng Lingyun 2 Ye

More information

708 北 京 工 业 大 学 学 报 2011 年 以 往 的 试 验 结 果 进 行 对 比, 选 取 15D 20D 作 为 对 比 参 数, 试 件 参 数 见 表 1. Fig. 1 图 1 试 件 尺 寸 及 配 筋 图 ( mm) Geometry and reinforcement

708 北 京 工 业 大 学 学 报 2011 年 以 往 的 试 验 结 果 进 行 对 比, 选 取 15D 20D 作 为 对 比 参 数, 试 件 参 数 见 表 1. Fig. 1 图 1 试 件 尺 寸 及 配 筋 图 ( mm) Geometry and reinforcement 第 37 卷 第 5 期 2011 年 5 月 北 京 工 业 大 学 学 报 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY Vol. 37 No. 5 May 2011 植 筋 钢 筋 混 凝 土 锚 固 构 件 抗 震 性 能 试 验 研 究 邓 宗 才 1, 钟 林 杭 1, 张 永 方 1, 曾 洪 超 1 2, 范 世 平 ( 1. 北 京 工 业

More information

ph ph ph Langmuir mg /g Al 2 O 3 ph 7. 0 ~ 9. 0 ph HCO - 3 CO 2-3 PO mg /L 5 p

ph ph ph Langmuir mg /g Al 2 O 3 ph 7. 0 ~ 9. 0 ph HCO - 3 CO 2-3 PO mg /L 5 p 1 2 1 2 3 1 2 1. 100054 2. 100054 3. 100036 ph ph ph Langmuir 166. 67 mg /g Al 2 O 3 ph 7. 0 ~ 9. 0 ph HCO - 4 5. 00 mg /L 5 ph doi 10. 13928 /j. cnki. wrahe. 2017. 03. 017 TV213. 4 + TU991. 26 + 6 A 1000-0860

More information

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified 30 1 2013 1 Journal of Highway and Transportation Research and Development Vol. 30 No. 1 Jan. 2013 doi 10. 3969 /j. issn. 1002-0268. 2013. 01. 004 1 2 2 2 2 1. 400074 2. 400067 240 U416. 217 A 1002-0268

More information

TestNian

TestNian Fatigue Damage Mechanism in Very High Cycle Regime Nian Zhou 2012.5.24 Fatigue Low cycle fatigue N f 10 5 cycles Strain-controlled fatigue High cycle fatigue N f f 10 5 cycles Stress-based fatigue Endurance

More information

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm 33 2 2011 4 ol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0104-08 1 1 1 2 361003 3. 361009 3 1. 361005 2. GB50023-2009 TU746. 3 A Study on Single-span RC Frame Reinforced with Steel Truss System Yuan Xing-ren

More information

/MPa / kg m - 3 /MPa /MPa 2. 1E ~ 56 ANSYS 6 Hz (a) 一阶垂向弯曲 (b) 一阶侧向弯曲 (c) 一阶扭转 (d) 二阶侧向弯曲 (e) 二阶垂向弯曲 (f) 弯扭组合 2 6 Hz

/MPa / kg m - 3 /MPa /MPa 2. 1E ~ 56 ANSYS 6 Hz (a) 一阶垂向弯曲 (b) 一阶侧向弯曲 (c) 一阶扭转 (d) 二阶侧向弯曲 (e) 二阶垂向弯曲 (f) 弯扭组合 2 6 Hz 31 3 Vol. 31 No. 3 218 9 Journal of Shijiazhuang Tiedao University Natural Science Edition Sep. 218 1 1 2 1 2 1 1. 543 2. 543 U462. 3 217-2 - 16 A 295-373 218 3-63 - 6 1-4 5-7 8-11 1 11 11 398 mm 86 mm

More information

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315. 31 5 2011 10 JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct. 2011 1000-1301 2011 05-0075 - 09 510405 1 /35 TU3521 P315. 8 A Earthquake simulation shaking table test and analysis

More information

11 : 1345,,. Feuillebois [6]. Richard Mochel [7]. Tabakova [8],.,..,. Hindmarsh [9],,,,,. Wang [10],, (80 µm),.,. Isao [11]. Ismail Salinas [12],. Kaw

11 : 1345,,. Feuillebois [6]. Richard Mochel [7]. Tabakova [8],.,..,. Hindmarsh [9],,,,,. Wang [10],, (80 µm),.,. Isao [11]. Ismail Salinas [12],. Kaw 1344 E 2006, 36(11): 1344~1354 * ** (, 100022).,.,.,.,....,,,,,,,.,.,.,,,.,. Hayashi [1] :., [2] [3~5],,.,,.,. : 2006-03-22; : 2006-06-17 * ( : 50376001) ( : G2005CB724201) **, E-mail: liuzhl@bjut.edu.cn

More information

ISSN: MAX-phase

ISSN: MAX-phase ISSN: 1605-9719 mortezaghadimi@ut.ac.ir 1 MAX-phase Ti SiC Ti SnC P /mmc C = / A = / 1 Nano-laminate 2 Scanning Electron Microscopy (SEM) M n+ AX n M n+ AX n MAX M M n+ AX n X A A n A M (V) (Ti) (Sc) (Hf)

More information

untitled

untitled 21 5 2011 5 Vol.21 No.5 The Chinese Journal of Nonferrous Metals May 2011 1004-0609(2011)05-0968-07 2A14 1, 1, 2, 1, (1. 410083 2. 410100) 2A14 (CCT ) DSC SEM 2A14 2A14 CCT (TEM) 2A14 505 140~380 38.5

More information

LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva

LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva 39 6 2011 12 Journal of Fuzhou University Natural Science Edition Vol 39 No 6 Dec 2011 DOI CNKI 35-1117 /N 20111220 0901 002 1000-2243 2011 06-0923 - 07 350108 105 m 14 69% TU311 3 A Seismic analysis of

More information

标题

标题 第 33 卷 第 6 期 钢 摇 铁 摇 钒 摇 钛 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 2012 年 12 月 IRON STEEL VANADIUM TITANIUM 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 摇 Vol 郾 33,No 郾 6 December 2012 配 碳 比 对 TiO 2 真 空 碳 热 还 原 的 影 响 周 玉 昌 ( 攀 钢 集 团 研 究 院 有 限

More information

#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5

#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5 2011 6 6 153 JOURNAL OF RAILWAY ENGINEERING SOCIETY Jun 2011 NO. 6 Ser. 153 1006-2106 2011 06-0014 - 07 300142 ABAQUS 4. 287 mm 6. 651 mm U455. 43 A Analysis of Impact of Shield Tunneling on Displacement

More information

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10. 22 4 2017 8 Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug. 2017 150080 GPS,,, : 27. 36 km, 2. 51, 110. 43, ; ; ; ; DOI: 10. 15938 /j. jhust. 2017. 04. 015 U469. 13 A 1007-2683

More information

(creep) 500~ ~ 30 MPa 9Cr-1Mo 100 MPa ( ) 9Cr-1Mo Threshold Stress Larson-Miller Manson-Haferd Ω

(creep) 500~ ~ 30 MPa 9Cr-1Mo 100 MPa ( ) 9Cr-1Mo Threshold Stress Larson-Miller Manson-Haferd Ω 9Cr-1Mo 1 2 2 9Cr-1Mo ( ) 9Cr-1Mo Larson-Miller Manson-Haferd MPC Ω 823K 848K 873K 923K Ω 9Cr-1Mo Ω 9Cr-1Mo Larson-Miller Manson-Haferd 9Cr-1Mo Larson-Miller Manson-Haferd Ω 1. 2. 3. (creep) 500~600 15

More information

43 14. 45 3 7 220 1 2 cm /s 2 1. 5 3 1 4 c d 1 /40 1 /4 1 /9 600 0. 129 6 7 1 /6 400 1 /256 000 1. 5 2 2 2. 1 /m /Hz /kn / kn m 6 6 0. 1 ~ 50 600 1 80

43 14. 45 3 7 220 1 2 cm /s 2 1. 5 3 1 4 c d 1 /40 1 /4 1 /9 600 0. 129 6 7 1 /6 400 1 /256 000 1. 5 2 2 2. 1 /m /Hz /kn / kn m 6 6 0. 1 ~ 50 600 1 80 43 14 2013 7 Building Structure Vol. 43 No. 14 Jul. 2013 * 1 1 1 2 3 3 3 2 2 1 100013 2 430022 3 200002 1 40 ETABS ABAQUS TU355 TU317 +. 1 A 1002-848X 2013 14-0044-04 Compairion study between the shaking

More information

标题

标题 第 46 卷 第 12 期 2 0 1 4 年 12 月 哈 尔 滨 工 业 大 学 学 报 JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY Vol 46 No 12 Dec. 2014 装 配 式 混 凝 土 双 板 短 肢 剪 力 墙 拟 静 力 试 验 肖 全 东, 郭 正 兴 ( 东 南 大 学 土 木 工 程 学 院, 210096 南 京 ) 摘 要

More information

76 34 2. 1. 1 Fig. 1 1 a-a b-b a-a σ ma = 74. 4 MPa σ a = 15. 74 MPa σ 0a =90. 15 MPa 0. 9 σ t =135 MPa b-b σ mb = 21. 77 MPa τ b = 13. 789 MPa σ 0b =

76 34 2. 1. 1 Fig. 1 1 a-a b-b a-a σ ma = 74. 4 MPa σ a = 15. 74 MPa σ 0a =90. 15 MPa 0. 9 σ t =135 MPa b-b σ mb = 21. 77 MPa τ b = 13. 789 MPa σ 0b = 34 11 2012 11 SHIP SCIENCE AND TECHNOLOGY Vol. 34 No. 11 Nov. 2012 0 430064 GB150-98 ASME THR3 +. 4 A 1672-7649 2012 11-0075 - 07 doi 10. 3404 /j. issn. 1672-7649. 2012. 11. 017 Stress and fatigue analysis

More information

Deformation mechanism of TWIP steels at high strain rates HUANG Mingxin LIANG Zhiyuan The University of Hong Kong Collaborators: HUANG Wen Shenzhen Un

Deformation mechanism of TWIP steels at high strain rates HUANG Mingxin LIANG Zhiyuan The University of Hong Kong Collaborators: HUANG Wen Shenzhen Un Deformation mechanism of TWIP steels at high strain rates HUANG Mingxin LIANG Zhiyuan The University of Hong Kong Collaborators: HUANG Wen Shenzhen University LIU Rendong WANG Xu Ansteel XIONG Xiaochuan

More information

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe * - - 100084 Q235B ML15 Ca OH 2 DOI 10. 13204 /j. gyjz201508023 STUDY OF GALVANIC CORROSION SENSITIVITY BETWEEN ANY COUPLE OF STUD WELDMENT OR BEAM Lu Xinying Li Yang Li Yuanjin Department of Civil Engineering

More information

Technical Acoustics Vol.27, No.4 Aug., 2008,,, (, ) :,,,,,, : ; ; : TB535;U : A : (2008) Noise and vibr

Technical Acoustics Vol.27, No.4 Aug., 2008,,, (, ) :,,,,,, : ; ; : TB535;U : A : (2008) Noise and vibr 8 8 Technical Acoustics Vol., No. Aug., 8,,, (, 8) :,,,,,, : ; ; : TB;U.+ 9 : A : -(8)--- Noise and vibration tests for fuel cell vehicel and noise sources identification SHEN Xiu-min, ZUO Shu-guang, CAI

More information

0 Kelly Fig. 1 Novel damping wall-structure connection diagram a b S1 c S Fig. 2 Desig

0 Kelly Fig. 1 Novel damping wall-structure connection diagram a b S1 c S Fig. 2 Desig DOI:10.14006/j.jzjgxb.2013.12.007 Journal of Building Structures 1000-6869 2013 12-0045-07 34 12 2013 12 006 Vol. 34 No. 12 Dec. 2013 510405 6% Bouc-Wen Bouc-Wen TU352. 1 TU317. 1 A Performance of novel

More information

34 22 f t = f 0 w t + f r t f w θ t = F cos p - ω 0 t - φ 1 2 f r θ t = F cos p - ω 0 t - φ 2 3 p ω 0 F F φ 1 φ 2 t A B s Fig. 1

34 22 f t = f 0 w t + f r t f w θ t = F cos p - ω 0 t - φ 1 2 f r θ t = F cos p - ω 0 t - φ 2 3 p ω 0 F F φ 1 φ 2 t A B s Fig. 1 22 2 2018 2 Electri c Machines and Control Vol. 22 No. 2 Feb. 2018 1 2 3 3 1. 214082 2. 214082 3. 150001 DOI 10. 15938 /j. emc. 2018. 02. 005 TM 301. 4 A 1007-449X 2018 02-0033- 08 Research of permanent

More information

g 100mv /g 0. 5 ~ 5kHz 1 YSV8116 DASP 1 N 2. 2 [ M] { x } + [ C] { x } + [ K]{ x } = { f t } 1 M C K 3 M C K f t x t 1 [ H( ω )] = - ω 2

g 100mv /g 0. 5 ~ 5kHz 1 YSV8116 DASP 1 N 2. 2 [ M] { x } + [ C] { x } + [ K]{ x } = { f t } 1 M C K 3 M C K f t x t 1 [ H( ω )] = - ω 2 10 2016 10 No. 10 Modular Machine Tool & Automatic Manufacturing Technique Oct. 2016 1001-2265 2016 10-0012 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 10. 004 * 116024 MIMO TH166 TG502 A Dynamic Performance

More information

θ 1 = φ n -n 2 2 n AR n φ i = 0 1 = a t - θ θ m a t-m 3 3 m MA m 1. 2 ρ k = R k /R 0 5 Akaike ρ k 1 AIC = n ln δ 2

θ 1 = φ n -n 2 2 n AR n φ i = 0 1 = a t - θ θ m a t-m 3 3 m MA m 1. 2 ρ k = R k /R 0 5 Akaike ρ k 1 AIC = n ln δ 2 35 2 2012 2 GEOMATICS & SPATIAL INFORMATION TECHNOLOGY Vol. 35 No. 2 Feb. 2012 1 2 3 4 1. 450008 2. 450005 3. 450008 4. 572000 20 J 101 20 ARMA TU196 B 1672-5867 2012 02-0213 - 04 Application of Time Series

More information

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50% 38 2 2016 4 -- 1,2, 100190, 100083 065007 -- 0.25 mm 2.0 mm d 10 = 0.044 mm 640 3 300. Richardson--Zaki,,, O359 A doi 10.6052/1000-0879-15-230 EXPERIMENTAL STUDY OF FLUID-SOLID TWO-PHASE FLOW IN A VERTICAL

More information

~ 10 2 P Y i t = my i t W Y i t 1000 PY i t Y t i W Y i t t i m Y i t t i 15 ~ 49 1 Y Y Y 15 ~ j j t j t = j P i t i = 15 P n i t n Y

~ 10 2 P Y i t = my i t W Y i t 1000 PY i t Y t i W Y i t t i m Y i t t i 15 ~ 49 1 Y Y Y 15 ~ j j t j t = j P i t i = 15 P n i t n Y * 35 4 2011 7 Vol. 35 No. 4 July 2011 3 Population Research 1950 ~ 1981 The Estimation Method and Its Application of Cohort Age - specific Fertility Rates Wang Gongzhou Hu Yaoling Abstract Based on the

More information

. Land Patterns for Reflow Soldering.Recommended Reflow Soldering Conditions (For Lead Free) TYPE PID0703 PID0704 PID1204 PID1205 PID1207 PID1209 L(mm

. Land Patterns for Reflow Soldering.Recommended Reflow Soldering Conditions (For Lead Free) TYPE PID0703 PID0704 PID1204 PID1205 PID1207 PID1209 L(mm .Features: 1.Magnetic Shielded surface mount inductor with high current rating. 2.Low resistance to keep power loss minimum..applications: Excellent for power line DC-DC conversion applications used in

More information

P.1

P.1 P.1 P.2 1. 2. IC 3. 4. IC 5. P.3 (Interconnection).. P.4 (Wafer) (Chip) (MCM) P.5 電子構裝之主要功能 電源供應層 1.有效供應電源 信號分佈層 2.提供信號傳輸 協助散熱 保護元件 3.協助排除耗熱 4.保護電子組件 5.建構人機介面 Images 3D Graphics 建構人機介面 P.6 DIP Dual In-Line

More information

NANO COMMUNICATION 23 No.3 90 CMOS 94/188 GHz CMOS 94/188 GHz A 94/188 GHz Dual-Band VCO with Gm- Boosted Push-Push Pair in 90nm CMOS 90 CMOS 94

NANO COMMUNICATION 23 No.3 90 CMOS 94/188 GHz CMOS 94/188 GHz A 94/188 GHz Dual-Band VCO with Gm- Boosted Push-Push Pair in 90nm CMOS 90 CMOS 94 NANO COMMUNICATION 23 No.3 90 CMOS 94/188 GHz 23 90 CMOS 94/188 GHz A 94/188 GHz Dual-Band VCO with Gm- Boosted Push-Push Pair in 90nm CMOS 90 CMOS 94/188GHz LC class-b 0.70 0.75 mm 2 pad 1 V 19.6 ma (ƒ

More information

H 2 SO ml ml 1. 0 ml C 4. 0 ml - 30 min 490 nm 0 ~ 100 μg /ml Zhao = VρN 100% 1 m V ml ρ g

H 2 SO ml ml 1. 0 ml C 4. 0 ml - 30 min 490 nm 0 ~ 100 μg /ml Zhao = VρN 100% 1 m V ml ρ g 16 6 2018 11 Chinese Journal of Bioprocess Engineering Vol. 16 No. 6 Nov. 2018 doi 10. 3969 /j. issn. 1672-3678. 2018. 06. 004 1 2 1 1 1. 330200 2. 330006 4 Box-Behnken 1 25 g /ml 121 92 min 2 6. 284%

More information

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec 31 6 2011 12 JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec. 2011 1000-1301 2011 06-0159 - 08 1 1 1 1 2 1. 150080 2. 100124 1 2 3 P315. 93 TU 43 TU41 A Shaking table test

More information

Dan Buettner / /

Dan Buettner / / 39 1 2015 1 Vol. 39 No. 1 January 2015 74 Population Research 80 + /60 + 90 + 90 + 0 80 100028 Measuring and Comparing Population Longevity Level across the Regions of the World Lin Bao Abstract Appropriate

More information

24-2_cover_OK

24-2_cover_OK 2 08 Flexible All Solid State Thin Film Li-ion Battery 1 1 2 1 1 2 ( 300Wh/kg) (3.4~3.8 V) ( 1000 cycles) (LiCoO 2 ) (LiPON) (Mica) 26mAhcm -2 mm -1 30 85% LED Abstract With the ever-changing technology,

More information

Microsoft Word _File000003_ doc

Microsoft Word _File000003_ doc Supplementary Information Interfacial Engineering of Silicon Carbide Nanowire/Cellulose Microcrystal Paper towards High Thermal Conductivity Yimin Yao,, Xiaoliang Zeng, *,, Guiran Pan,, Jiajia Sun,, Jiantao

More information

4 155 earthquake resilient structure 1 Yahya Kurama 2 Bulent Erkmen 3 Jose Restrepo 4 Brian Smith C40 HRB mm mm 125 mm 2

4 155 earthquake resilient structure 1 Yahya Kurama 2 Bulent Erkmen 3 Jose Restrepo 4 Brian Smith C40 HRB mm mm 125 mm 2 34 4 2014 8 EARTHQUAKE ENGINEERING AND ENGINEERING DYNAMICS Vol. 34 No. 4 Aug. 2014 1000-1301 2014 04-0154 - 08 DOI 10. 13197 /j. eeev. 2014. 04. 154. dangxl. 020 200092 TU375 P315. 92 A Experimental study

More information

理化视窗19期内文.indd

理化视窗19期内文.indd 首 语 在 送 别 2012 年 迈 进 2013 年 之 际, 谨 代 表 所 领 导 班 子 向 兢 兢 业 业 辛 勤 耕 耘 的 全 所 职 工, 向 为 研 究 所 发 展 做 出 重 要 贡 献 的 离 退 休 老 同 志, 向 潜 心 钻 研 刻 苦 学 习 的 研 究 生 致 以 节 日 的 问 候 和 诚 挚 的 谢 意! 感 谢 大 家 过 去 一 年 在 各 自 的 工 作 岗

More information

Schumpeter Mensch Freeman Clark Schumpeter Mensch 1975 technological stalemate 2000 Van Dujin 1977 OECD 1992 Freeman 1982 Van

Schumpeter Mensch Freeman Clark Schumpeter Mensch 1975 technological stalemate 2000 Van Dujin 1977 OECD 1992 Freeman 1982 Van 32 1 2011 1 Science Research Management Vol. 32 No. 1 January 2011 1000-2995 2011 01-009 - 0001 310058 GDP F204 F037. 1 A Van Dujin 1977 1 Keynes Keynes 2008 90 2009-10 2010-05. 70573092 INDIA&CHINA 2000-2050

More information

KJWJ01 Fig. 1 Geological map of the Kajiwa landslide PDH01 60 ~ 70m 80 ~ 90m 80m 2 930m 556m 641m 598m m m 3 2 Ⅰ m 2

KJWJ01 Fig. 1 Geological map of the Kajiwa landslide PDH01 60 ~ 70m 80 ~ 90m 80m 2 930m 556m 641m 598m m m 3 2 Ⅰ m 2 Vol. 39 No. 1 Jan. 2012 HYDROGEOLOGY & ENGINEERING GEOLOGY 39 1 2012 1-621701 - - P642. 2 A 1000-3665 2012 01-0058-07 2 ~ 4 2 r 3 3 1 col + dl 500 ~ 1 050m Q 4 2 Q del 4 3 8 ~ 50 ~ 60m 10 r 4 1 2 1 2 2.

More information

鋼構造論文集第 20 巻第 79 号 (2013 年 9 月 ) AN EVALUATION METHOD FOR ULTIMATE COMPRESSIVE STRENGTH OF STAINLESS STEEL PLATES BASED ON STRESS-STRAIN DIAGRAM * **

鋼構造論文集第 20 巻第 79 号 (2013 年 9 月 ) AN EVALUATION METHOD FOR ULTIMATE COMPRESSIVE STRENGTH OF STAINLESS STEEL PLATES BASED ON STRESS-STRAIN DIAGRAM * ** 鋼構造論文集第 20 巻第 79 号 (2013 年 9 月 ) AN EVALUATION METHOD FOR ULTIMATE COMPRESSIVE STRENGTH OF STAINLESS STEEL PLATES BASED ON STRESS-STRAIN DIAGRAM * ** Yasuhiro MIYAZAKI* Satoshi NARA** ABSTRACT This paper

More information

Microsoft PowerPoint - ryz_030708_pwo.ppt

Microsoft PowerPoint - ryz_030708_pwo.ppt Long Term Recovery of Seven PWO Crystals Ren-yuan Zhu California Institute of Technology CMS ECAL Week, CERN Introduction 20 endcap and 5 barrel PWO crystals went through (1) thermal annealing at 200 o

More information

Current Sensing Chip Resistor

Current Sensing Chip Resistor 承認書 APPROVAL SHEET 廠商 : 客戶 : 麗智電子 ( 昆山 ) 有限公司 核準審核制作核準審核簽收 公 司 章 公 司 章 Liz Electronics (Kunshan) Co., LTD No. 989, Hanpu Road Kunshan City Jiangsu Province China Tel:0086-0512-57780531 Fax:0086-0512-57789581

More information

中國傳統醫學及養生保健學說中,與經脈及穴道有密不可分的關係

中國傳統醫學及養生保健學說中,與經脈及穴道有密不可分的關係 1 The Analysis of Meridian Point Bioenergy of Shian Kung Practices in Different Seasons Chieng Chien-Min National Kaohsiung University of Applied Sciences Abstract The current paper aims at examining the

More information

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3 微 生 物 学 通 报 FEB 20, 2008, 35(2) 306~30 Microbiology 2008 by Institute of Microbiology, CAS tongbao@im.ac.cn 生 物 实 验 室 响 应 面 分 析 法 优 化 副 溶 血 性 弧 菌 生 长 条 件 刘 代 新 宁 喜 斌 * 张 继 伦 2 (. 200090) (2. 20202) 摘 要

More information

Microsoft Word 張嘉玲-_76-83_

Microsoft Word 張嘉玲-_76-83_ 64 4 Journal of Taiwan Agricultural Engineering 107 12 Vol. 64, No. 4, December 2018 DOI: 10.29974/JTAE.201812_64(4).0005 WASP - Applying the WASP Model to Evaluate the Effect of Wastewater Sewer Takeover

More information

United Nations ~ ~ % 2010

United Nations ~ ~ % 2010 42 3 2018 5 Vol. 42 No. 3 May 2018 38 Population Research 2014 60 3% ~ 4% 10% 60 +

More information

ANSYS WF 1 WF 2 2 SP 1 SP 2 1 NBF 1 1 Fig. 1 1 Connection details of specimens 1 Table 1 Specimen s

ANSYS WF 1 WF 2 2 SP 1 SP 2 1 NBF 1 1 Fig. 1 1 Connection details of specimens 1 Table 1 Specimen s 27 4 2011 12 WORLD EARTHQUAKE ENGINEERING Vol. 27 No. 4 Dec. 2011 1007 6069 2011 04 0102 07 1 2 2 1. 710055 2. 266033 4 1 2 ANSYS 2 U442. 5 + 5 A Study on seismic behavior of widened beam flange connections

More information

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流 第 20 卷 第 3 期 2014 年 6 月 ( 自 然 科 学 版 ) JOURNAL OF SHANGHAI UNIVERSITY (NATURAL SCIENCE) Vol. 20 No. 3 June 2014 DOI: 10.3969/j.issn.1007-2861.2013.07.031 基 于 FLUENT 测 轨 道 交 通 隧 道 中 电 波 折 射 率 结 构 常 数 张 永

More information

mm 5 1 Tab 1 Chemical composition of PSB830 finishing rolled rebars % C Si Mn P S V 0 38 ~ 1 50 ~ 0 80 ~ ~

mm 5 1 Tab 1 Chemical composition of PSB830 finishing rolled rebars % C Si Mn P S V 0 38 ~ 1 50 ~ 0 80 ~ ~ PSB830 365000 32 mm PSB830 PSB830 TG 335 64 A Productive Practition of PSB830 Finishing Rolled Rebars PAN Jianzhou Bar Steel Rolling Minguang Co Ltd of Fujian Sansteel Sanming 365000 China Abstract High

More information

热设计网

热设计网 例 例 Agenda Popular Simulation software in PC industry * CFD software -- Flotherm * Advantage of Flotherm Flotherm apply to Cooler design * How to build up the model * Optimal parameter in cooler design

More information

Microsoft Word - 刘 慧 板.doc

Microsoft Word - 刘  慧 板.doc 中 国 环 境 科 学 2012,32(5):933~941 China Environmental Science 系 统 动 力 学 在 空 港 区 域 规 划 环 境 影 响 评 价 中 的 应 用 刘 慧 1,2, 郭 怀 成 1*, 盛 虎 1, 都 小 尚 1,3, 李 娜 1 1, 杨 永 辉 (1. 北 京 大 学 环 境 科 学 与 工 程 学 院, 北 京 100871; 2.

More information

OVLFx3C7_Series_A3_bgry-KB.pub

OVLFx3C7_Series_A3_bgry-KB.pub (5 mm) x High brightness with well-defined spatial radiation patterns x U-resistant epoxy lens x Blue, green, red, yellow Product Photo Here Each device in the OLFx3C7 series is a high-intensity LED mounted

More information

Mechanical Science and Technology for Aerospace Engineering October Vol No. 10 Web SaaS B /S Web2. 0 Web2. 0 TP315 A

Mechanical Science and Technology for Aerospace Engineering October Vol No. 10 Web SaaS B /S Web2. 0 Web2. 0 TP315 A 2012 10 31 10 Mechanical Science and Technology for Aerospace Engineering October Vol. 31 2012 No. 10 Web2. 0 400030 SaaS B /S Web2. 0 Web2. 0 TP315 A 1003-8728 2012 10-1638-06 Design and Implementation

More information

Microsoft Word - 11--方刚_new_.doc

Microsoft Word - 11--方刚_new_.doc 第 44 卷 第 3 期 煤 田 地 质 与 勘 探 Vol. 44 No.3 2016 年 6 月 COAL GEOLOGY & EXPLORATION Jun. 2016 文 章 编 号 : 1001-1986(2016)03-0057-08 铜 川 玉 华 煤 矿 顶 板 离 层 水 突 水 机 理 与 防 治 方 刚 1,2,3, 靳 德 武 (1. 中 煤 科 工 集 团 西 安 研 究

More information

标题

标题 第 48 卷 第 6 期 2 1 6 年 6 月 哈 尔 滨 工 业 大 学 学 报 JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY Vol 48 No 6 Jun. 216 doi:1.11918 / j.issn.367 6234.216.6.1 大 跨 度 楼 盖 结 构 在 运 动 荷 载 下 的 振 动 性 能 杨 维 国 1, 马 伯 涛 2, 宋 毛

More information

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte 211 11 11 158 JOURNAL OF RAILWAY ENGINEERING SOCIETY Nov 211 NO. 11 Ser. 158 16-216 211 11-24 - 6 1 2 3 3 3 1. 126 2. 92181 74 3. 181 1 2 3 4 1. 27 1. 3 1. 56 1. 73 4 1 2 3 4. 96 1. 15 1. 48 1. 6 f s =

More information

HC70044_2008

HC70044_2008 Page: 1 of 9 Date: July 10, 2008 KORENIX TECHNOLOGY CO., LTD. 9 F, NO. 100-1, MING-CHUAN RD., SHIN TIEN CITY, TAIPEI, TAIWAN The following merchandise was submitted and identified by the vendor as: Product

More information

Mnq 1 1 m ANSYS BEAM44 E0 E18 E0' Y Z E18' X Y Z ANSYS C64K C70C70H C /t /t /t /mm /mm /mm C64K

Mnq 1 1 m ANSYS BEAM44 E0 E18 E0' Y Z E18' X Y Z ANSYS C64K C70C70H C /t /t /t /mm /mm /mm C64K 25 4 Vol. 25 No. 4 2012 12 JOURNAL OF SHIJIAZHUANG TIEDAO UNIVERSITY NATURAL SCIENCE Dec. 2012 1 2 1 2 3 4 1 2 1. 050043 2. 050043 3. 3300134. 450052 ANSYS C80 C80 125 ac70 0 U24 A 2095-0373201204-0017-06

More information

第 23 卷 第 1 期 田 素 贵, 等 : 热 处 理 制 度 对 GH4169G 合 金 微 观 组 织 与 蠕 变 性 能 的 影 响 109 响, 当 δ 相 析 出 量 较 大 时, 将 消 耗 大 量 的 元 素 Nb, 致 使 近 晶 界 区 域 γ 和 γ" 相 贫 化, 降 低

第 23 卷 第 1 期 田 素 贵, 等 : 热 处 理 制 度 对 GH4169G 合 金 微 观 组 织 与 蠕 变 性 能 的 影 响 109 响, 当 δ 相 析 出 量 较 大 时, 将 消 耗 大 量 的 元 素 Nb, 致 使 近 晶 界 区 域 γ 和 γ 相 贫 化, 降 低 第 23 卷 第 1 期 中 国 有 色 金 属 学 报 2013 年 1 月 Vol.23 No.1 The Chinese Journal of Nonferrous Metals Jan. 2013 文 章 编 号 :1004 0609(2013)01 0108 08 热 处 理 制 度 对 GH4169G 合 金 微 观 组 织 与 蠕 变 性 能 的 影 响 田 素 贵 1, 王 欣 1,

More information

220 Key words: assembled monolithic concrete shear walls; precast two-way hollow slab; inner joint; slit wall; shear behavior 3 ~ % 80% [1] [

220 Key words: assembled monolithic concrete shear walls; precast two-way hollow slab; inner joint; slit wall; shear behavior 3 ~ % 80% [1] [ 30 7 Vol.30 No.7 2013 7 July 2013 ENGINEERING MECHANICS 219 1000-4750(2013)07-0219-11 1 1 1 2 1 1 (1. 264005 2. 100084) 1 5 TU391; TU392.5 A doi: 10.6052/j.issn.1000-47513.01.0026 EXPERIMENTAL STUDY ON

More information

Linn Cove [1,2] 1(a)(b) Figg and Muller epoxy epoxy Linn Cove 183 [3] (a) (b) (c) (d) 1 43

Linn Cove [1,2] 1(a)(b) Figg and Muller epoxy epoxy Linn Cove 183 [3] (a) (b) (c) (d) 1 43 George C. Lee (1) (2) C393Z π 42 Linn Cove [1,2] 1(a)(b) Figg and Muller 6.1 1.5 epoxy epoxy Linn Cove 183 [3] (a) (b) (c) (d) 1 43 Dollas [4] [5] (P1) (P2 P3P4) 2Priestley et al. (2002) [6] ( 3 ) P1 P2

More information

successful and it testified the validity of the designing and construction of the excavation engineering in soft soil. Key words subway tunnel

successful and it testified the validity of the designing and construction of the excavation engineering in soft soil. Key words subway tunnel 2011 11 11 158 JOURNAL OF RAILWAY ENGINEERING SOCIETY Nov 2011 NO. 11 Ser. 158 1006-2106 2011 11-0104 - 08 1 2 1. 200048 2. 200002 < 20 mm 2 1 788 TU470 A Design and Construction of Deep Excavation Engineering

More information

<D2BDC1C6BDA1BFB5CDB6C8DAD7CAB8DFB7E5C2DBCCB3B2CEBBE1C3FBB5A52E786C7378>

<D2BDC1C6BDA1BFB5CDB6C8DAD7CAB8DFB7E5C2DBCCB3B2CEBBE1C3FBB5A52E786C7378> 参 会 人 员 名 单 Last Name 姓 名 公 司 Tel Fax Bai 柏 煜 康 复 之 家 8610 8761 4189 8610 8761 4189 Bai 白 威 久 禧 道 和 股 权 投 资 管 理 ( 天 津 ) 有 限 公 司 8610 6506 7108 8610 6506 7108 Bao 包 景 明 通 用 技 术 集 团 投 资 管 理 有 限 公 司 8610

More information

~ ~ Y 3 X / / mm 400 ~ 700 C40 ~ C ~ 400 C40 ~ C ~

~ ~ Y 3 X / / mm 400 ~ 700 C40 ~ C ~ 400 C40 ~ C ~ 43 7 2013 4 Building Structure Vol. 43 No. 7 Apr. 2013 518038 TU398 +. 2 A 1002-848X 2013 07-0059-06 Discussion on inclined column design of a super high-rise building Zhang Lin Zhang Delong Shenzhen CAPOL

More information

增 刊 谢 小 林, 等. 上 海 中 心 裙 房 深 大 基 坑 逆 作 开 挖 设 计 及 实 践 745 类 型, 水 位 埋 深 一 般 为 地 表 下.0~.7 m 场 地 地 表 以 下 27 m 处 分 布 7 层 砂 性 土, 为 第 一 承 压 含 水 层 ; 9 层 砂 性 土

增 刊 谢 小 林, 等. 上 海 中 心 裙 房 深 大 基 坑 逆 作 开 挖 设 计 及 实 践 745 类 型, 水 位 埋 深 一 般 为 地 表 下.0~.7 m 场 地 地 表 以 下 27 m 处 分 布 7 层 砂 性 土, 为 第 一 承 压 含 水 层 ; 9 层 砂 性 土 第 34 卷 增 刊 岩 土 工 程 学 报 Vol.34 Supp. 202 年. 月 Chinese Journal of Geotechnical Engineering Nov. 202 上 海 中 心 裙 房 深 大 基 坑 逆 作 开 挖 设 计 及 实 践 谢 小 林 2 2, 翟 杰 群, 张 羽, 杨 科, 郭 晓 航, 贾 坚 (. 同 济 大 学 建 筑 设 计 研 究 院 (

More information

原 子 层 沉 积 法 在 氧 化 亚 铜 薄 膜 上 沉 积 一 种 或 多 种 氧 化 物 ( 氧 化 钛 TiO 2 氧 化 铝 Al 2O 3 及 氧 化 锌 ZnO 等 ), 对 不 同 保 护 膜 改 性 的 氧 化 亚 铜 薄 膜 进 行 结 构 表 征 和 光 催 化 性 能 测 试

原 子 层 沉 积 法 在 氧 化 亚 铜 薄 膜 上 沉 积 一 种 或 多 种 氧 化 物 ( 氧 化 钛 TiO 2 氧 化 铝 Al 2O 3 及 氧 化 锌 ZnO 等 ), 对 不 同 保 护 膜 改 性 的 氧 化 亚 铜 薄 膜 进 行 结 构 表 征 和 光 催 化 性 能 测 试 P 型 氧 化 亚 铜 光 电 阴 极 的 原 子 层 沉 积 法 改 性 谢 静 文 ( 上 海 交 通 大 学 材 料 科 学 与 工 程 学 院, 上 海 上 海 市 200240) 摘 要 : 氧 化 亚 铜 是 一 种 来 源 广 成 本 低 效 率 高 的 光 驱 动 裂 解 水 制 氢 半 导 体 材 料, 然 而 氧 化 亚 铜 在 水 溶 液 不 稳 定 性 限 制 了 它 的 广

More information

01-0982.doc

01-0982.doc 第 32 卷 第 7 期 岩 土 工 程 学 报 Vol.32 No.7 2010 年 7 月 Chinese Journal of Geotechnical Engineering July 2010 沿 海 碎 石 回 填 地 基 上 高 能 级 强 夯 系 列 试 验 对 比 研 究 年 廷 凯 1,2, 水 伟 厚 3, 李 鸿 江 4, 杨 庆 1,2, 王 玉 立 (1. 大 连 理 工

More information

國立中山大學學位論文典藏.PDF

國立中山大學學位論文典藏.PDF 國 立 中 山 大 學 企 業 管 理 學 系 碩 士 論 文 以 系 統 動 力 學 建 構 美 食 餐 廳 異 國 麵 坊 之 管 理 飛 行 模 擬 器 研 究 生 : 簡 蓮 因 撰 指 導 教 授 : 楊 碩 英 博 士 中 華 民 國 九 十 七 年 七 月 致 謝 詞 寫 作 論 文 的 過 程 是 一 段 充 滿 艱 辛 與 淚 水 感 動 與 窩 心 的 歷 程, 感 謝 這 一

More information

Myers Majluf 1984 Lu Putnam R&D R&D R&D R&D

Myers Majluf 1984 Lu Putnam R&D R&D R&D R&D 2018 1 156 1 2 2 1. 233030 2. 233030 2005 ~ 2015 A F830. 2 A 1008-2506 2018 01-0015-12 1 2015 1 2017-07-18 71540004 BBSLDQDKT2017B02 1990-1993 - 1964-1 15 2018 1 2025 2015 1 2011 2 + Myers Majluf 1984

More information

B B Table 1 Chem ical composition of stainless steels 304 and 301B % C Si Mn P S Cr N i N Mo Cu Fe

B B Table 1 Chem ical composition of stainless steels 304 and 301B % C Si Mn P S Cr N i N Mo Cu Fe 16 304 301B,, (, 201900) : 304 301B,,,, 304, 304, : ; ; ; : TG142. 71 : B : 1008-0716 (2007) 04-0016 - 04 Study of On line Solution Trea tm en t of Austen itic Sta in less Steels 304 and 301B W ang Zh

More information

國 立 屏 東 教 育 大 學 應 用 物 理 系 光 電 暨 材 料 碩 士 班 碩 士 論 文 Study of resistive switching effect in C/ZnO/C structures with different growth temperatures 變 溫 環 境 C/ZnO/C 結 構 之 電 阻 轉 換 特 性 研 究 研 究 生 : 楊 承 鷹 指 導 教

More information

[1-4] (Low cycle fatigue, LCF) LCF (Theory of critical distance, TCD) LCF [5] TCD [6-10] TCD [11] WAN [12] DD3 YANG [13] (K t ) LCF LEIDERMA

[1-4] (Low cycle fatigue, LCF) LCF (Theory of critical distance, TCD) LCF [5] TCD [6-10] TCD [11] WAN [12] DD3 YANG [13] (K t ) LCF LEIDERMA 49 22 2013 11 JOURNAL OF MECHANICAL ENGINEERING Vol.49 No.22 Nov. 2013 DOI 10.3901/JME.2013.22.109 - DZ125 * 1 1 1 2 1 (1. 100191 2. 95899 100097) ( γ max )(Theory of critical distance TCD) DZ125 TCD 10

More information

第二十四屆全國學術研討會論文中文格式摘要

第二十四屆全國學術研討會論文中文格式摘要 以 田 口 動 態 法 設 計 物 理 治 療 用 牽 引 機 與 機 構 改 善 1, 2 簡 志 達 馮 榮 豐 1 國 立 高 雄 第 一 科 技 大 學 機 械 與 自 動 化 工 程 系 2 傑 邁 電 子 股 份 有 限 公 司 1 摘 要 物 理 治 療 用 牽 引 機 的 主 要 功 能 是 將 兩 脊 椎 骨 之 距 離 拉 開, 使 神 經 根 不 致 受 到 壓 迫 該 類 牽

More information

untitled

untitled 20 1 2010 10 Vol.20 Special 1 The Chinese Journal of Nonferrous Metals Oct. 2010 1004-0609(2010)S1-s0357-08 β-ti30nb13zr0.5fe ( 471039) Ti30Nb13Zr0.5Fe( %) 700 850 10 3 10 s 1 β n Q σ ε ε 1 10 s 1 ε 10

More information

Vol. 15 No. 1 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb O21 A

Vol. 15 No. 1 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb O21 A 5 200 2 Vol 5 No JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 200 2 2 50080 2 30024 O2 A 007-2683 200 0-0087- 05 A Goodness-of-fit Test Based on Empirical Likelihood and Application ZHOU

More information

Maup re,,,,,, ;,,,,,,,,,, PC 1985 Cognac,, 80, [ 526 ], 420m 160m [ 728 ], PC,,,,,,,,, , [ 3 ] 3008mm, 488mm, 222mm, ( ) 2880mm , 4914, 6

Maup re,,,,,, ;,,,,,,,,,, PC 1985 Cognac,, 80, [ 526 ], 420m 160m [ 728 ], PC,,,,,,,,, , [ 3 ] 3008mm, 488mm, 222mm, ( ) 2880mm , 4914, 6 29 1 Vol129, No11 2008 2 Journal of Building Structures Feb1 2008 : 100026869 (2008) 0120075208, (, 350002) :, 3,,, ;, ; : ; ; ; ; : TU39819 TU31711 : A Experimental studies on concrete filled steel tubular

More information

-i-

-i- -i- -ii- -iii- -iv- -v- -vi- -vii- -viii- -ix- -x- -xi- -xii- 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 1-13 1-14 1-15 1-16 1-17 1-18 1-19 1-20 1-21 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11

More information

Microsoft Word - 强迫性活动一览表.docx

Microsoft Word - 强迫性活动一览表.docx 1 1 - / 2 - / 3 - / 4 - / 5 - I. 1. / 2. / 3. 4. 5. 6. 7. 8. 9 10 11. 12. 2 13. 14. 15. 16. 17. 18. 19. 20 21. 22 23. 24. / / 25. 26. 27. 28. 29. 30. 31. II. 1. 2 3. 4 3 5. 6 7 8. 9 10 11 12 13 14. 15.

More information

,, , 1 (,2006) %, 1. 47,, %, 4. 5, 84 %(,2008a,2008b,2009),,,,, : %, %,?,,,,,,,,, (20

,, , 1 (,2006) %, 1. 47,, %, 4. 5, 84 %(,2008a,2008b,2009),,,,, : %, %,?,,,,,,,,, (20 34 1 2010 1 Vol1 34, No1 1 January 2010 19 Population Research 3,, 2005 1 %,,,,,,, ; ;, :100871 Imp a c t s of Fl o a t i n g P op ul a t i o n o n Cu r r e n t F e r t i l i t y i n Chi n a Gu o Zhi g

More information

接 地 ( 首 批 9 个 ) 湖 南 省 唯 一 的 国 家 级 出 口 加 工 区 然 后 我 们 走 访 了 位 于 长 沙 附 近 的 一 些 下 游 加 工 类 企 业 二 企 业 的 生 产 流 程 和 原 材 料 的 构 成 在 这 里, 我 们 走 访 了 数 家 郴 州 当 地 的

接 地 ( 首 批 9 个 ) 湖 南 省 唯 一 的 国 家 级 出 口 加 工 区 然 后 我 们 走 访 了 位 于 长 沙 附 近 的 一 些 下 游 加 工 类 企 业 二 企 业 的 生 产 流 程 和 原 材 料 的 构 成 在 这 里, 我 们 走 访 了 数 家 郴 州 当 地 的 报 告 周 期 : 报 告 类 别 : 4 月 17 日 专 题 / 调 研 分 析 师 信 息 : 刘 潇 闫 伟 021-65227130 期 货 走 基 层 之 湖 南 有 色 调 研 记 调 研 时 间 :2012 年 4 月 9 日 -4 月 13 日 一 前 言 2012 年 是 中 国 期 货 市 场 发 展 之 路 上 的 又 一 个 大 年, 新 品 种 推 出 与 创 新 业 务

More information

85% NCEP CFS 10 CFS CFS BP BP BP ~ 15 d CFS BP r - 1 r CFS 2. 1 CFS 10% 50% 3 d CFS Cli

85% NCEP CFS 10 CFS CFS BP BP BP ~ 15 d CFS BP r - 1 r CFS 2. 1 CFS 10% 50% 3 d CFS Cli 1 2 3 1. 310030 2. 100054 3. 116000 CFS BP doi 10. 13928 /j. cnki. wrahe. 2016. 04. 020 TV697. 1 A 1000-0860 2016 04-0088-05 Abandoned water risk ratio control-based reservoir pre-discharge control method

More information

untitled

untitled 1-1 1-2 1-3 1-4 1-5 1-6 3D 1-7 1-1 1-1 1-1 1. 2 01 2. (Alloy) 3. (Polymer) (Ceramic) (Composite Material) 3 1-2 (Materials Technology) 1863 (Optical Microscope) (Metallurgy) (Microscopy)(Max von Laue)

More information

Microsoft Word - 10-06-0186-D10-0627孙竹森.doc

Microsoft Word - 10-06-0186-D10-0627孙竹森.doc 第 34 卷 第 6 期 电 网 技 术 Vol. 34 No. 6 2010 年 6 月 Power System Technology Jun. 2010 文 章 编 号 :1000-3673(2010)06-0186-07 中 图 分 类 号 :TM 754 文 献 标 志 码 :A 学 科 代 码 :470 4051 输 电 线 路 钢 管 塔 的 推 广 与 应 用 孙 竹 森 1, 程

More information

Revit Revit Revit BIM BIM 7-9 3D 1 BIM BIM 6 Revit 0 4D 1 2 Revit Revit 2. 1 Revit Revit Revit Revit 2 2 Autodesk Revit Aut

Revit Revit Revit BIM BIM 7-9 3D 1 BIM BIM 6 Revit 0 4D 1 2 Revit Revit 2. 1 Revit Revit Revit Revit 2 2 Autodesk Revit Aut 60 2 2016 2 RAILWAY STANDARD DESIGN Vol. 60 No. 2 Feb. 2016 1004-2954201602-0071-06 BIM 1 1 2 2 1 1. 7140992. 710054 BIM BIM 3D 4D nd BIM 1 3D 4D Revit BIM BIM U442. 5TP391. 72 A DOI10. 13238 /j. issn.

More information

Microsoft Word - HC20138_2010.doc

Microsoft Word - HC20138_2010.doc Page: 1 of 7 Date: April 26, 2010 WINMATE COMMUNICATION INC. 9 F, NO. 111-6, SHING-DE RD., SAN-CHUNG CITY, TAIPEI, TAIWAN, R.O.C. The following merchandise was submitted and identified by the vendor as:

More information

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m +

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m + 2012 12 Chinese Journal of Applied Probability and Statistics Vol.28 No.6 Dec. 2012 ( 224002) Euclidean Lebesgue... :. : O212.2 O159. 1.. Zadeh [1 2]. Tanaa (1982) ; Diamond (1988) (FLS) FLS LS ; Savic

More information

( ) 001 ( CIP ) /. :,2005 ISBN CIP (2005) : : ( 147 : ) : : 850mm 1168mm : 333 :

( ) 001 ( CIP ) /. :,2005 ISBN CIP (2005) : : ( 147 : ) : : 850mm 1168mm : 333 : ( ) 001 ( CIP ) /. :,2005 ISBN 7-224 - 07274-5.......... 222 CIP (2005) 045547 : : ( 147 : 710003 ) : : 850mm 1168mm 32 15. 375 : 333 : 2005 7 1 2005 7 1 : 1-1000 : ISBN 7-224 - 07274-5/ I 1182 : 29. 00

More information

untitled

untitled 709 δ δ 20 30, IPN [1~5] / [6~9 ] [ 6~8] / / CPE ACM [6,8 ] NBR A-80 A-60 CPE NBR CN NBR 710 NBR/ / 1 1.1 N220S JSR 41%( ) A-80 Asahi Denka Industries Co. A-60 1010 1 A-80 A-60 122.5 126 A-80 A-60 40.9

More information

義 守 大 學 102 學 年 度 第 1 學 期 第 4 次 行 政 會 議 紀 錄 時 間 :103 年 1 月 8 日 ( 星 期 三 ) 下 午 2:00 地 點 : 行 政 大 樓 十 樓 國 際 會 議 廳 主 席 : 蕭 介 夫 校 長 紀 錄 : 楊 育 臻 壹 報 告 事 項 一

義 守 大 學 102 學 年 度 第 1 學 期 第 4 次 行 政 會 議 紀 錄 時 間 :103 年 1 月 8 日 ( 星 期 三 ) 下 午 2:00 地 點 : 行 政 大 樓 十 樓 國 際 會 議 廳 主 席 : 蕭 介 夫 校 長 紀 錄 : 楊 育 臻 壹 報 告 事 項 一 義 守 大 學 102 學 年 度 第 1 學 期 第 4 次 行 政 會 議 紀 錄 中 華 民 國 103 年 1 月 8 日 義 守 大 學 102 學 年 度 第 1 學 期 第 4 次 行 政 會 議 紀 錄 時 間 :103 年 1 月 8 日 ( 星 期 三 ) 下 午 2:00 地 點 : 行 政 大 樓 十 樓 國 際 會 議 廳 主 席 : 蕭 介 夫 校 長 紀 錄 : 楊 育

More information

* CUSUM EWMA PCA TS79 A DOI /j. issn X Incipient Fault Detection in Papermaking Wa

* CUSUM EWMA PCA TS79 A DOI /j. issn X Incipient Fault Detection in Papermaking Wa 2 *. 20037 2. 50640 CUSUM EWMA PCA TS79 A DOI 0. 980 /j. issn. 0254-508X. 207. 08. 004 Incipient Fault Detection in Papermaking Wastewater Treatment Processes WANG Ling-song MA Pu-fan YE Feng-ying XIONG

More information

168 健 等 木醋对几种小浆果扦插繁殖的影响 第1期 the view of the comprehensive rooting quality, spraying wood vinegar can change rooting situation, and the optimal concent

168 健 等 木醋对几种小浆果扦插繁殖的影响 第1期 the view of the comprehensive rooting quality, spraying wood vinegar can change rooting situation, and the optimal concent 第 31 卷 第 1 期 2013 年 3 月 经 济 林 研 究 Nonwood Forest Research Vol. 31 No.1 Mar. 2013 木醋对几种小浆果扦插繁殖的影响 健 1,2 杨国亭 1 刘德江 2 (1. 东北林业大学 生态研究中心 黑龙江 哈尔滨 150040 2. 佳木斯大学 生命科学学院 黑龙江 佳木斯 154007) 摘 要 为了解决小浆果扦插繁殖中生根率及成活率低等问题

More information