幻灯片 1

Size: px
Start display at page:

Download "幻灯片 1"

Transcription

1 第四章 动量定理

2 1 动量单位 : kg s -1 牛顿第二定律 : d( v) F dt 定义动量 : 4.1 冲量与动量定理 p v dp dt 于是有 : 作用在质点上的外力等于质点动量随时间的变化率 单质点的动量定理 牛顿第二定律 质点的动量定理 : 由 dp F dt t p F() t dt dp p p t p 1 1 t 1 Fdt dp 1 动量定理微分形式 定义 di Fdt 为力的元冲量, 则冲量 I 为力对时间的积分 t I F () t dt v v 动量定理 1 积分形式

3 t p 1 I F () t dt dp p p t1 p1 即力对质点的冲量等于质点动量的增加, 这就是质点动量定理 动量定理说明, 力在时间上的积累作用产生的效果是使质点的动量增加 动量定理常用于碰撞过程, 在碰撞过程中, 相互作用时间很短且量值变化很大, 碰撞 ( 或打击 ) 过程的平均冲击力定义为 F t Ft ( )d t t p p t t t t 结论 : 物体之间的相互作用力, 取决与动量变化和作用时间

4

5 回顾 : 转动非惯性系内, 质点运动的动力学 F a F F + f + f + f eff eff or f a O 平动惯性力 f ω ( ω r ) 惯性离心力 f ω v 科里奥利力 or 单质点动量定理 di F dt dp 微分形式 t p () I F t dt dp p p t1 p1 1 积分形式

6 1 质点系动量定理 4. 质点系动量定理 质点系 ( 质点组 ) 由相互作用的若干个质点组成的系统 内力 系统内各质点间的相互作用力 f j f 外力 系统以外的其它物体对系 j 统内任意一质点的作用力, F, Fj 例如 : F r f j f j 设质点组由 N 个质点组成, 则第 个质点的动力学方程为 : F + fj j dp dt o 惯性系 r j j F j

7 对所有质点的运动方程求和, 则有 dp d p N N N N 1 1 F + fj 1, j 1, dt dt j 系统内所有质点所受的外力总和 系统内所有质点所受的内力总和 F ex dp dt 或者 t N N F exdt v t v p p 1 1 微分形式 N N n F F, p p v ex 积分形式 质点系的动量定理 作用于系统的合外力在一段时间内的总冲量等于系统动量的增量

8 几点说明 : (1) 只有外力对体系的总动量变化有贡献 内力对体系的总动量变 化没有贡献, 但内力对动量在体系内部的分配是有作用的 ; () 动量定理是矢量式, 应用时可用沿坐标轴的分量式求解, 如 x 轴 分量式 d( p ) x Fx 或者 ( Fx ) dt px p x dt t 即冲量在某一方向上的分量等于该方向上动量的增量 (3) 动量定理与牛顿定律的关系 : 1 对一个质点, 牛顿定律表示的是力的瞬时效应, 而动量定理表示的是力对时间的积累效果 ; 牛顿第二定律只适于质点, 不能直接用于质点系 ; 动量定理既适于质点又适于质点系 ; 3 牛顿定律和动量定理都只适用于惯性系, 要在非惯性系中应用动量定理, 必须考虑惯性力的冲量 t

9 动量守恒定律 t 由体系动量定理 : p p F t exdt 若 F, 则 ex n p v p 1 恒矢量 质点系动量守恒 如果质点系所受合外力为零, 则质点系的总动量不随 时间改变 几点说明 : 1 只适用于惯性系 p p 常矢量 动量守恒是矢量式, 它有三个分量, 各分量可以分别守恒 : F x ex, x ex, y ex, z p p F y p F z onst onst onst

10 3 内力对体系的动量无贡献, 但内力对体系动量的具体分配有重要作用 当体系所受外力矢量和为零时, p p + p + p + p + onst 1 1 但由于内力作用, 可以有 p p, p p 在某些过程 ( 如爆炸 碰撞 ) 中, 体系虽受外力, 但外力有限 ( 外力 << 内力 ), 过程时间很短, 外力冲量很小 ; 而其间内力很大, 体系内每一部分的动量变化主要来自内力的冲量, 外力的冲量可忽略不计, 体系动量近似守恒, 故可以利用动量守恒定律研究体系内部各部分间的动量再分配问题 5 动量守恒定律虽可由牛顿定律导出, 但它比牛顿定律的适用范围更广 ; 尤其是微观领域的某些过程中, 牛顿定律也许不成立, 但动量守恒定律仍然成立 例 : 在 β 衰变中, 中微子的发现 X Y + e + ν A A Z Z+ 1 e 193 年泡利中微子假说 1956 年实验观测到中微子

11 例题 1: 如图表示一战车, 置于摩擦很小的铁轨上, 车 1 v 身质量为, 炮弹质量为, 炮筒与水平面夹角 角炮弹以相对于炮口的速度为射出, 求炮身后坐速率 v 1 y θ x

12 解 : 本题铅直方向动量不守恒 水平方向动量守恒 v v + v 炮弹相对于地面的速度 1 由图得 ( v osθ v1) 1v1 v 1 v + 1 osθ v θ α v v 1

13 例题 : 单位长度质量为 ρ 的柔软绳索放在水平台面上, 用手将绳索的一端以恒定速率 v 向上提起, 求当提起高度为 x 时手的拉力 解 : 这是一个质点系的动量问题, 可用体系动量定理求解 以整根绳子作为研究体系, 设其长度为 L, 它共受 3 个力 : 重力 ρlg, 台面的支撑力 N 和手的拉力 F 在这三个力的共同作用下, 体系的动量不断变化 选取地面上的一点为坐标原点建立竖直向上的 x 轴 在 t 时刻, 当绳索提起 x 时体系的动量为 : p() t ρxv 根据动量定理, 外力的矢量和等于体系动量的变化率 dp() t dx F + N ρlg ρv ρv dt dt dx 这里我们用到 v, 另外支撑力 N 只与剩在地面上的绳索质量有关, 即 N ρ L x g dt ( )

14 所以手的拉力 F 为 : F ρxg + ρv 长为 x 的绳索的重力 使体系动量增加所需的附加力

15 4.3 变质量物体的运动 变质量 : 是指体系在运动过程中不断与外界交换质量

16 1 变质量体系运动方程 对这样体系的运动过程分析思路如下 : 1 可分解为一系列元过程 ; 在元过程中, 其组成是确定的, 质量是不变的, 体系动量变化服从体系动量定理 ; 3 由此即可导出主体的运动方程 附体 u F F v F F + F + v+ v t 时刻 主体 t+ t 时刻

17 如图, 在 t 时刻, 主体 与附体 是分离的 经过 t 时间, 附体并入主体 于是, 由体系的动量定理, 可得 ( + )( v + v ) ( v + u) F t 令 t, 则 v, 上式取极限得 v + ( v u) + v F t v ( u v) + F v t t t dv dt d dt ( u v) + F 外力 : F F + F ( ) d u v dt 附体对主体的作用力 这就是变质量质点 ( 即主体 ) 运动方程 ( 密舍而斯基方程 )

18 几点说明 : 1 当 u v 时, 可得 dv dt F 方程形式上与牛顿第二定律一样, 但注意 是变量 当 u 时, 方程变为 dv d d dp + v ( v) F dt dt dt dt dp dt F 这与动量形式的牛顿第二定律一致, 因为此时 p v v + v 动量仅由主体决定 d d 3 变质量质点的运动方程是在 > 的情况下导出, 但当 时, dt dt < 结论仍然正确 4 当主体参与外界两种 ( 或两种以上 ) 质量交换过程时, 变质量质点运动方程为 : dv d d ( u ) 1 ( ) 1 v + u v + F dt dt dt

19 火箭飞行原理 设火箭喷出的气体相对速度沿火箭轨道切向, 且为一常量 v r, 并且忽略火箭的重力和空气阻力的影响 t v + t dv + dt 根据变质量质点运动方程, 有 dv dt d ( u v) dt 由于是一维运动, 且相对速度 u v 与 v 的方向相反, 得 dv dt v r d dt d dv vr 注意, 上式中 d<,dv>, 两边同时积分得 v + d v r d

20 d 1 vf v 火箭 + r 燃料 dv 增大单级火箭的末速度有两种方法 : v f v r ln 火箭自身质量 ( 1) 增大 v r ( ) 增大 考虑本身结构和必要的载荷, 质量比增大有限制, 通常 在 1 ~ 之间 ( 单级 ) 目前单级火箭从静止开始可获得的末速度 v 11 k/s( 最好情况 ) 由于引力和阻力等原因,v 只有 7 k/s 左右, 小于第一宇宙速度 7.9k/s, 所以单级火箭不能把人造地球卫星或其他航天器送入 轨道

21 增大未速度必须用多级火箭 由若干单级火箭串联形成 以二级为例, 第一次达到的速度为 v v ln( 1 r ) 1 第二次达到的速度为 ( 设 v r1 v r ) v v + v ln( 1 r ) vr ln( ) 1 + ln( ) v ln ( r ) 1( ) 即每一次 / 不能太大, 但其乘积却可以很大, 所以末速度很大 由于技术上的原因, 多级火箭一般是三级

22 例题 3: 雨滴自由下落时质量为, 在下落过程中, 单位时间凝聚的水汽质量为 λ 试求雨滴经过时间 t 下落的距离 ( 忽略空气阻力 ) 解 : 设水汽附着于雨滴前的速度 u, 利用变质量动量定理 d dt [( + λ t) v] ( + λ t) g 对此积分, 并利用初始条件 t 时,v, 得 v t + λt + λt 1 dx g 即 1 g g/λ gt + dt λ + λt 再次积分, 并利用初始条件 t 时,x, 得 1 1 λ + ( ) ln(1 + ) λ λ x g t t t 这就是雨滴经时间 t 下落的距离

23 例题 4: 试以变质量物体运动的观点重新求解例 解 : 取提起的绳索为主体, 落在地面的绳子为附体 建立竖直向上为 x 正方向, 则附体速度为, 主体的质量为 作用在体系上的外力为 : d dx ρx ρ ρv dt dt Fex F g F ρxg 于是可得主体运动方程 : d v + F ρv + F ρv + F ρxg dt ex ex F ρxg + ρv O x

24 1. 质心 4.4 质心与质心运动定律 由质点系动量定理 : 考虑到所以有 d F ex F ( v ) dt dr v dt r F r d d dr ex ( ) dt dt dt 为质点系的总质量 r r

25 回顾 : 质点组动量定理 dp Fex n n n dt 这里 p p v, F F t F t exdt p p 动量守恒 F p onst ex, x F p onst ex, y F p onst ex, z x y z ex 变质量物体运动方程 dv dt d dt ( u v) + F 质心 F ex dr dt r r r,

26 即质点系中存在一个特殊点 C, 满足 F a 该特殊点 C 称为质心. 质心的求法 (1) 分立质点组的质心 r r r 在直角坐标系下可以表示为 : ex 质心位矢是质点位矢的带权平均值, 这个 权 是质点的质量 x y z x, y, z o 质点系 r r 质心

27 两质点体系的质心 : r 11+ r r + ( r1 r) r1 r 1+ 1( r1 r) r r 1+ 1 质心必位于 1 与 的连线上, 且质心与各质点距离与质点质量成反比 () 连续质点组的质心 r r rd ρrdv l d ρdv

28 在直角坐标系下可以表示为 : xd yd zd x, y, z d d d (3) 若一个物体由 A B 两部分组成, 则质心表达式可改写为 x 方向 : x x x + x + A B j j A B j 同样 y z 方向质心位置分别为 A x A B jxj A + A B + B B x + x, A A, B B A + B y y + y z + z, z, A A, B B, A A, B B A + B A + B 推论 : 质量均匀分布的 物体, 其质心就在物体 的几何中心

29 (4) 质心特点 相对质点系本身的唯一性 ( ) r j r ( r j r ) rj rj r ( ) r j r ( r j r ) r j r j r r r r r j j r r j j 是由质点 指向质点 j 的有向线段 质心的位矢与坐标原点的选取有关, 但质心与体系各质点的相对位置和坐标原点的选取无关!

30 例题 5: 如图, 在半径为 R 的均质等厚大圆板的一侧挖掉半径为 R/ 的小圆板, 大小圆板相切, 求余下部分的质心 解 : 选择如图坐标系, 考虑对称性, 余下部分质心的 y 坐标为零, 仅需求 x 坐标 大圆板质量为 : M σπr, 质心坐标为 : 小圆板质量为 : 1 σπ R /4, 质心坐标为 : x1 R/ 余下的质量为 3 σπr 4 1 σπr 4 x R 3 + σπr 4 σπr, 质心坐标用 x 表示, 则 x O x y R 6 x

31 例题 6: 均匀半圆盘的质心 解 : 如图所示, 设质心坐标为 (X,Y ), 平板的质量为, 密度为 ρ 因为平板质量分布均匀, 且圆心在原点, 由对称性知 X 对于板边缘上的每一点有 x + y R 将半圆形板分割成无数个平行于轴的细条, 每细条的质心为 (,y y), 则系统的质心为 : 1 1 R Y yd y( xdy) ρ 1 R y ( ρ R y dy ) ( ) 3/ R 3 ρ ρr 4R R y 3 3 3π 即质心位置为 4R, 3 π

32 3. 体系动量定理与质心运动定理 引入质心概念, 质点系动量则可表示为 p v r r v r d dt 体系动量定理可写成 t F t exdt p p v v 上述结论亦称为质心运动定理, 其微分形式为 d d Fex p ( r ) r dt dt 质心的行为与一个质点相同!

33 几点说明 : (1) 质心运动定理和牛顿定律的适用范围相同 () 质心运动定理实际上是矢量方程, 可以写成三个分量方程, 运动的独立性同样成立 ; (3) 在动力学上, 质心是整个质点系的代表点, 质心的运动只决定于系统的外力, 内力不影响质心的运动 (4) 不论体系如何复杂, 体系质心的行为与一个质点相同 从这个意义上说, 牛顿定律所描绘的不是体系中任一质点的运动, 而是质心的运动 而质心的存在, 正是任意物体在一定条件下可以看成质点的物理基础 4. 质心坐标系 质心坐标系 : 把原点取在质心上, 坐标轴的方向始终与某固定参照系 ( 惯性系 ) 的坐标轴保持平行的平动坐标系

34 说明 : 1 对于孤立体系或所受外力的矢量和为零的体系 p v onst, v onst 其质心坐标系为惯性系 ; 对于受外力作用的体系, 则是非惯性系 物体相对固定参照系的运动可分解为它相对质心系的运动与质心系相对固定参照系的运动 3 质心系是 零动量系 在质心参考系中, 质点组的质心位矢为 : r r r r r r ( ) r r r r o r r r 质心

35 r 质心系中质心位置矢量是零矢量, 即质心在坐标原点 质点组相对质心坐标系的动量为 d p v ( ) r dt o r r r 质心 4 质心坐标系在讨论质点系的力学问题中十分有用

36 例题 7: 试质心的观点重新求解例 解 : 把绳子看作一质点系 建立竖直向上的 x 轴, 当绳索提起 x 时, 其质心高度和速度分别为 : x v 1 x x dx ρ ρx dx dx dx ρx v dt dx dt 由此可得质心加速度为 a dv d ρx ρv v dt dt 对整根绳子应用质心运动定理, 则有 F + N g a 这里支撑力 N 只与剩在地面上的绳索质量有关, 即 ( ) F ρxg + ρv N ρ L x g O x

37 例题 8: 质量为 M5kg 长为 4 的木船浮在静止水面上, 一质量为 5kg 的人站在船尾 此人以时快时慢的不规则速率从船尾走到船头, 问船相对岸移动了多少距离? 设船与水之间的摩擦忽略 分析 : 由于体系原来静止, 没有外力作用, 质心加速度为零, 质心在水平方向的位置保持不变, 故宜用质心概念求解 解 : 取 x 轴沿水平方向, 取原来船的中点为坐标原点, 以人的行走方向为 x 正方向 人在船尾时, 体系质心的坐标 x 为 L + M x + MxM x + M + M L 5 4 ( + M ) ( 5 + 5) 11 ( ) x L y x

38 当人走到船头后, 设船的中心坐标为 x, 则体系质心坐标为 L x + + Mx x + M L x + x + M + 11 ( ) x L x 质心水平位置不变, 即 x x, 故 x x 4 ( ) 11 x 故船相对岸移动了 4/11 米

39 dv d ( u v) + F dt dt d ( v ) t F F dt dp, F dt p p ex t ex dt p p onst 总结图 F dt dp d( v ) F a ex ex F ex

2.1. 动量与冲量

2.1. 动量与冲量 第 2 章运动定理 2.1. 动量与冲量 2.2 功和能 2.3 冲量矩和角冲量 2.1. 动量与冲量 1. 动量与冲量 牛顿第二定律 : dv d = F = a = F = F = d(v) d(v) 冲量 : 作用力与作用时间的乘积 I = F (t - t ) 恒力的冲量 : 2 1 I = 变力的冲量 : 2 t t 1 F(t) 单位 :N s 冲量是反映力对时间的累积效应的物理量 动量

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 6.6 积分在物理上的应用 一 质心二 转动惯量三 引力 一 质心 设 o 平面上有 n 个质点, 它们分别位于 (, ), (, ), (, ) 处, 质量分别为 n n m m 则该质点系的质心坐标为 n n m m, n n m m.,,, mn 设有一平面薄片, 占有 o面上的闭区域, 在点 (, ) 处的面密度为 (, ), 假定 (, ) 在 上连续, 平面薄片的质心 当薄片是均匀的,

More information

untitled

untitled 4 y l y y y l,, (, ) ' ( ) ' ( ) y, y f ) ( () f f ( ) (l ) t l t lt l f ( t) f ( ) t l f ( ) d (l ) C f ( ) C, f ( ) (l ) L y dy yd π y L y cosθ, π θ : siθ, π yd dy L [ cosθ cosθ siθ siθ ] dθ π π π si

More information

<4D F736F F D20B5DACAAED2BBD5C22020B6AFC1BFB6A8C0ED2E646F63>

<4D F736F F D20B5DACAAED2BBD5C22020B6AFC1BFB6A8C0ED2E646F63> 第十一章动量定理 对于质点系, 可以逐个质点列出其动力学基本方程, 但是很难联立求解 动量 动量矩和动能定理从不同的侧面揭示了质点和质点系总体的运动变化与其受力之间的关系, 可用以求解质点系动力学问题 动量 动量矩和动能定理统称为动力学普遍定理 本章将阐明及应用动量定理 - 动量与冲量. 动量 (Momnum) 物体运动的强弱, 不仅与它的速度有关, 而且还与它的质量有关, 例如一颗高速飞行的子弹,

More information

untitled

untitled 995 + t lim( ) = te dt =. α α = lim[( + ) ] = e, α α α α = t t t t te dt = tde = te α α e dt = αe e, =, e α = αe α e α, α =. y z = yf, f( u) z + yz y =. z y y y y y y z = yf + y f = yf f, y y y y z y =

More information

dn = kn ( 5 1) dt t = 2 303 1 k tg N 0. ( 5 2) N S m + M v = V (5 3) K S dx = µ X dt 5 4 S µ = µ m K + S ( 5 5) S ds 1 dx 1 = = µ X ( 5 6) dt Y dt Y x/ s x/ s ds 1 = + + ( ) dt Y X mx 1 dp

More information

08-01.indd

08-01.indd 1 02 04 08 14 20 27 31 35 40 43 51 57 60 07 26 30 39 50 56 65 65 67 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ω ρ ε 23 λ ω < 1 ω < 1 ω > 0 24 25 26 27 28 29 30 31 ρ 1 ρ σ b a x x i +3 x i

More information

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

高等数学A

高等数学A 高等数学 A March 3, 2019 () 高等数学 A March 3, 2019 1 / 55 目录 1 函数 三要素 图像 2 导数 导数的定义 基本导数表 求导公式 Taylor 展开 3 积分 Newton-Leibniz 公式 () 高等数学 A March 3, 2019 2 / 55 函数 y = f(x) 函数三要素 1 定义域 2 值域 3 对应关系 () 高等数学 A March

More information

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ .................................2.......................... 2.3.......................... 2.4 d' Alembet...................... 3.5......................... 4.6................................... 5 2 5

More information

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5, # # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( 0 2 3 ( & +. 4 / &1 5, !! & 6 7! 6! &1 + 51, (,1 ( 5& (5( (5 & &1 8. +5 &1 +,,( ! (! 6 9/: ;/:! % 7 3 &1 + ( & &, ( && ( )

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

95

95 95 96 http://www.ee.ncnu.edu.tw/announce/board.php?action=view&seqno=410 or QR 5K // 0 K 5K 5K // K 5K ------ 94 93 92 91 ( ) ( ) ( ) A e ( ) d st D L[ f ( t)] f ( t) e dt F( s) dx 0

More information

07-3.indd

07-3.indd 1 2 3 4 5 6 7 08 11 19 26 31 35 38 47 52 59 64 67 73 10 18 29 76 77 78 79 81 84 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

More information

ο HOH 104 31 O H 0.9568 A 1 1 109 28 1.01A ο Q C D t z = ρ z 1 1 z t D z z z t Qz = 1 2 z D z 2 2 Cl HCO SO CO 3 4 3 3 4 HCO SO 2 3 65 2 1 F0. 005H SiO0. 032M 0. 38 T4 9 ( K + Na) Ca 6 0 2 7 27 1-9

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

More information

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P. () * 3 6 6 3 9 4 3 5 8 6 : 3. () ; () ; (3) (); (4) ; ; (5) ; ; (6) ; (7) (); (8) (, ); (9) ; () ; * Email: huangzh@whu.edu.cn . () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) :

More information

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % #! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )

More information

untitled

untitled arctan lim ln +. 6 ( + ). arctan arctan + ln 6 lim lim lim y y ( ln ) lim 6 6 ( + ) y + y dy. d y yd + dy ln d + dy y ln d d dy, dy ln d, y + y y dy dy ln y+ + d d y y ln ( + ) + dy d dy ln d dy + d 7.

More information

WL100014ZW.PDF

WL100014ZW.PDF A Z 1 238 H U 1 92 1 2 3 1 1 1 H H H 235 238 92 U 92 U 1.1 2 1 H 3 1 H 3 2 He 4 2 He 6 3 Hi 7 3 Hi 9 4 Be 10 5 B 2 1.113MeV H 1 4 2 He B/ A =7.075MeV 4 He 238 94 Pu U + +5.6MeV 234 92 2 235 U + 200MeV

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

微积分 授课讲义

微积分 授课讲义 2018 10 aiwanjun@sjtu.edu.cn 1201 / 18:00-20:20 213 14:00-17:00 I II Taylor : , n R n : x = (x 1, x 2,..., x n ) R; x, x y ; δ( ) ; ; ; ; ; ( ) ; ( / ) ; ; Ů(P 1,δ) P 1 U(P 0,δ) P 0 Ω P 1: 1.1 ( ). Ω

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

第三章动量与角动量作业参考解答 [ B ] 4.( 自测提高 ) 质量为 g 的子弹, 以 4 /s 的速率沿图 3-6 所示的方向射入一原来静止的质量为 98 g 的摆球中, 摆线长度不可伸缩 子弹射入后开始与摆球一起运动的速率为 () /s. (B) 4 /s. (C) 7 /s. (D) 8

第三章动量与角动量作业参考解答 [ B ] 4.( 自测提高 ) 质量为 g 的子弹, 以 4 /s 的速率沿图 3-6 所示的方向射入一原来静止的质量为 98 g 的摆球中, 摆线长度不可伸缩 子弹射入后开始与摆球一起运动的速率为 () /s. (B) 4 /s. (C) 7 /s. (D) 8 第三章动量与角动量作业参考解答 第三次 ( 第三章动量与角动量 ) 作业重点提示 : 动量 p ; 冲量 Fd ; 力矩 M r F ; 角动量 r 都是矢量 质点的动量定理, 质点的角动量守恒, 质点组的动量定理及动量守恒, 质点组的角动 量守恒 作业分类 : 质点的冲量及动量定理, 应用中常用分量 F d dp : 题,3,4*,7*; 合 p p : 题 6,8,9, 合 质点的角动量守恒定律

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

( )

( ) ( ) * 22 2 29 2......................................... 2.2........................................ 3 3..................................... 3.2.............................. 3 2 4 2........................................

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

Π Ρ! #! % & #! (! )! + %!!. / 0% # 0 2 3 3 4 7 8 9 Δ5?? 5 9? Κ :5 5 7 < 7 Δ 7 9 :5? / + 0 5 6 6 7 : ; 7 < = >? : Α8 5 > :9 Β 5 Χ : = 8 + ΑΔ? 9 Β Ε 9 = 9? : ; : Α 5 9 7 3 5 > 5 Δ > Β Χ < :? 3 9? 5 Χ 9 Β

More information

第四章 102 图 4唱16 基于图像渲染的理论基础 三张拍摄图像以及它们投影到球面上生成的球面图像 拼图的圆心是相同的 而拼图是由球面图像上的弧线图像组成的 因此我 们称之为同心球拼图 如图 4唱18 所示 这些拼图中半径最大的是圆 Ck 最小的是圆 C0 设圆 Ck 的半径为 r 虚拟相机水平视域为 θ 有 r R sin θ 2 4畅11 由此可见 构造同心球拼图的过程实际上就是对投影图像中的弧线图像

More information

1 2 1.1............................ 2 1.2............................... 3 1.3.................... 3 1.4 Maxwell.................... 3 1.5.......................... 4 1.6............................ 4

More information

untitled

untitled f ( ) tan e, > = arcsin a = ae, a = tan e tan lim f ( ) = lim = lim =, arcsin + + + lim f = lim ae = a, y e ( ) =

More information

Microsoft PowerPoint - 概率统计Ch02.ppt [Compatibility Mode]

Microsoft PowerPoint - 概率统计Ch02.ppt [Compatibility Mode] 66 随机变量的函数.5 随机变量的函数的分布 设 是一随机变量, 是 的函数, g(, 则 也是一个随机变量. 本节的任务 : 当 取值 x 时, 取值 y g 67 ( 一 离散型随机变量的函数 设 是离散型随机变量, 其分布律为 或 P { x } p (,, x x, P p p, x p 已知随机变量 的分布, 并且已知 g 要求随机变量 的分布. (, 是 的函数 : g(, 则 也是离散型随机变

More information

幻灯片 1

幻灯片 1 回顾 : 正碰 + + + = + + + + = ) ( ) ( u m m m em u m m m e v u m m m e u m m em m v e= 完全非弹性碰撞 ;

More information

m0 m = v2 1 c 2 F G m m 1 2 = 2 r m L T = 2 π ( m g 4 ) m m = 1 F AC F BC r F r F l r = sin sinl l F = h d G + S 2 = t v h = t 2 l = v 2 t t h = v = at v = gt t 1 l 1 a t g = t sin α 1 1 a = gsinα

More information

第一章三角函数 1.3 三角函数的诱导公式 A 组 ( ) 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角, 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C 2 ( 中诱导公式 ) ( ) B. cos(

第一章三角函数 1.3 三角函数的诱导公式 A 组 ( ) 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角, 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C 2 ( 中诱导公式 ) ( ) B. cos( 第一章三角函数 1. 三角函数的诱导公式 A 组 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C ( 中诱导公式 ) B. cos( B C) cos A D. sin( B C) sin A sin60 cos( ) sin( 0 )cos( 70 ) 的值等于

More information

Microsoft Word - 武術-定稿.doc

Microsoft Word - 武術-定稿.doc 目 錄 第 一 章 緒 論 1 1-1 計 畫 緣 起 與 目 的 1 1-2 計 畫 團 隊 組 織 架 構 2 第 二 章 工 作 執 行 概 況 3 2-1 工 作 內 容 3 2-2 研 究 流 程 4 2-3 研 究 方 法 5 2-4 計 畫 執 行 時 程 表 6 第 三 章 文 獻 回 顧 7 3-1 文 獻 探 討 與 分 析 8 3-2 小 結 11 第 四 章 田 野 調 查

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 & ! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

W L Gates.Open Lecture The influences of the ocean on climate.scientific lecture at the 28th section of the ECWMO.WMO Bulletin. July1977168 169. WCP 1 WCRP2 WCAP 3 WCIP4 WCDP .. 1991 A Henderson-SellersP

More information

.., + +, +, +, +, +, +,! # # % ( % ( / 0!% ( %! %! % # (!) %!%! # (!!# % ) # (!! # )! % +,! ) ) &.. 1. # % 1 ) 2 % 2 1 #% %! ( & # +! %, %. #( # ( 1 (

.., + +, +, +, +, +, +,! # # % ( % ( / 0!% ( %! %! % # (!) %!%! # (!!# % ) # (!! # )! % +,! ) ) &.. 1. # % 1 ) 2 % 2 1 #% %! ( & # +! %, %. #( # ( 1 ( ! # %! % &! # %#!! #! %!% &! # (!! # )! %!! ) &!! +!( ), ( .., + +, +, +, +, +, +,! # # % ( % ( / 0!% ( %! %! % # (!) %!%! # (!!# % ) # (!! # )! % +,! ) ) &.. 1. # % 1 ) 2 % 2 1 #% %! ( & # +! %, %. #(

More information

# % & ) ) & + %,!# & + #. / / & ) 0 / 1! 2

# % & ) ) & + %,!# & + #. / / & ) 0 / 1! 2 !!! #! # % & ) ) & + %,!# & + #. / / & ) 0 / 1! 2 % ) 1 1 3 1 4 5 % #! 2! 1,!!! /+, +!& 2! 2! / # / 6 2 6 3 1 2 4 # / &!/ % ). 1!!! &! & 7 2 7! 7 6 7 3 & 1 2 % # ) / / 8 2 6,!!! /+, +! & 2 9! 3 1!! % %

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) ! # % & # % ( ) & + + !!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) 6 # / 0 1 + ) ( + 3 0 ( 1 1( ) ) ( 0 ) 4 ( ) 1 1 0 ( ( ) 1 / ) ( 1 ( 0 ) ) + ( ( 0 ) 0 0 ( / / ) ( ( ) ( 5 ( 0 + 0 +

More information

5 (Green) δ

5 (Green) δ 2.............................. 2.2............................. 3.3............................. 3.4........................... 3.5...................... 4.6............................. 4.7..............................

More information

(1) 平面汇交力系合成与平衡的几何法 (2) 平面汇交力系合成与平衡的解析法 (3) 平面力对点之矩的概念和计算 (4) 平面力偶理论 (1) 掌握平面汇交力系合成与平衡的方法 (2) 能熟练计算力在坐标轴上的投影 平面力对点之矩 (3) 掌握平面力偶系的合成与平衡 3 重难点平面汇交力系和平面力

(1) 平面汇交力系合成与平衡的几何法 (2) 平面汇交力系合成与平衡的解析法 (3) 平面力对点之矩的概念和计算 (4) 平面力偶理论 (1) 掌握平面汇交力系合成与平衡的方法 (2) 能熟练计算力在坐标轴上的投影 平面力对点之矩 (3) 掌握平面力偶系的合成与平衡 3 重难点平面汇交力系和平面力 工程力学 B(Ⅰ) Engineering mechanics B(Ⅰ) 课程编号 :24320620 学分 :4 学时 :60 ( 其中 : 讲课学时 :60 实验学时 :0 上机学时 :0) 先修课程 : 高等数学 大学物理 工程图学适用专业 : 热能与动力工程 建筑环境与设备工程 新能源科学与工程 工业工程等专业教材 : 理论力学 (I)(II), 哈尔滨工业大学理论力学教研室编, 高等教育出版社,2009

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

More information

认定编号

认定编号 7 附 3 合 格 职 业 资 格 培 训 机 构 名 单 ( 注 : 相 关 职 业 级 的 职 业 资 格 培 训 鉴 定 按 有 关 规 定 执 行 ) 一 省 直 属 合 格 职 业 资 格 培 训 机 构 名 单 认 定 编 职 业 资 格 培 训 机 构 全 称 培 训 职 业 等 级 联 系 人 及 电 话 办 公 地 址 备 注 保 健 刮 痧 师 1 PX00001 河 北 省 垂

More information

untitled

untitled 4 6 4 4 ( n ) f( ) = lim n n +, f ( ) = = f( ) = ( ) ( n ) f( ) = lim = lim n = = n n + n + n f ( ), = =,, lim f ( ) = lim = f() = f ( ) y ( ) = t + t+ y = t t +, y = y( ) dy dy dt t t = = = = d d t +

More information

untitled

untitled 3s + cos lm cos l ( + ) ( + ) 3. 997 = 3s + cos 3 s lm = lm + lm cos 3 3 = + =. = ( 4).. + 3 =. = + = = = 3 3 < ( 4) e θ + y = e.. ρ =. = ρ cos θ y = ρs θ ρ = e θ dy d θ = cosθ sθ θ = = e y = e θ θ cos

More information

1 3 5657 1960 91 106 Karl HassertDie St(dte Geographisch BetrachtetLeipzig. R.BlanchardGrenobleétudedeGeographieUrbainePrais1911. TaglorT.G.Urban Geography1946New YorkE.P.Dutton. 2 1 48 46 ä 111 486

More information

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

More information

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5 0 ( 1 0 % (! # % & ( ) + #,. / / % (! 3 4 5 5 5 3 4,( 7 8 9 /, 9 : 6, 9 5,9 8,9 7 5,9!,9 ; 6 / 9! # %#& 7 8 < 9 & 9 9 : < 5 ( ) 8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, 5 4

More information

( ) (! +)! #! () % + + %, +,!#! # # % + +!

( ) (! +)! #! () % + + %, +,!#! # # % + +! !! # % & & & &! # # % ( ) (! +)! #! () % + + %, +,!#! # # % + +! ! %!!.! /, ()!!# 0 12!# # 0 % 1 ( ) #3 % & & () (, 3)! #% % 4 % + +! (!, ), %, (!!) (! 3 )!, 1 4 ( ) % % + % %!%! # # !)! % &! % () (! %

More information

3.1 ( ) (Expectation) (Conditional Mean) (Median) Previous Next

3.1 ( ) (Expectation) (Conditional Mean) (Median) Previous Next 3-1: 3.1 ( )........... 2 3.1.1 (Expectation)........ 2 3.1.2............. 12 3.1.3 (Conditional Mean)..... 17 3.1.4 (Median)............ 22 Previous Next First Last Back Forward 1 1.. 2. ( ): ( ), 3.

More information

Remark:随机变量不只离散和连续两种类型

Remark:随机变量不只离散和连续两种类型 Remar: 随机变量不只离散和连续两种类型 当题目要求证明随机变量的某些共同性质时 很多同学只对连续和离散两种类型进行讨论 这是比较典型的错误 练习 4. () P( = ) = P( = ) = P( = ) = P( ) = = = = = = () 由 E < 且 lm a =+ 不妨设 a > 其中 j = f{ : a a j} ap ( a) = a p ap ap j j j a :

More information

幻灯片 1

幻灯片 1 第一类换元法 ( 凑微分法 ) 学习指导 复习 : 凑微分 部分常用的凑微分 : () n d d( (4) d d( ); (5) d d(ln ); n n (6) e d d( e ); () d d( b); ); () d d( ); (7) sin d d (cos ) 常见凑微分公式 ); ( ) ( ) ( b d b f d b f ); ( ) ( ) ( n n n n d f

More information

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

More information

x y z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.1. (X, Y ) 3.2 P (x 1 < X x 2, y 1 < Y y 2 ) = F (x 2, y 2 ) F (x 2, y 1 ) F (x 1, y 2

x y z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.1. (X, Y ) 3.2 P (x 1 < X x 2, y 1 < Y y 2 ) = F (x 2, y 2 ) F (x 2, y 1 ) F (x 1, y 2 3 3.... xy z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.. (X, Y ) 3.2 P (x < X x 2, y < Y y 2 ) = F (x 2, y 2 ) F (x 2, y ) F (x, y 2 ) + F (x, y ) 3. F (a, b) 3.2 (x 2, y 2) (x, y 2) (x 2, y ) (x,

More information

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

More information

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin 38 5 216 1 1),2) 163318) 163318). API. TE256 A doi 1.652/1-879-15-298 MODE OF CASING EXTERNA EXTRUSION BASED ON THE PRINCIPE OF VIRTUA WORK 1) ZHAO Wanchun,2) ZENG Jia WANG Tingting FENG Xiaohan School

More information

: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ >

: ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46 < Λ Ρ 0Σ < Λ 0 Σ % Θ : ;? : : ; < < <Δ Θ Ν Τ Μ Ν? Λ Λ< Θ Ν Τ Μ Ν : ; ; 6 < Λ 0Σ 0Σ > ! # %& ( +, &. / ( 0 # 1# % & # 2 % & 4 5 67! 8 9 : ; < 8 = > 9? 8 < 9? Α,6 ΒΧ : Δ 8Ε 9 %: ; < ; ; Δ Φ ΓΗ Ιϑ 4 Κ6 : ; < < > : ; : ;!! Β : ; 8 Β < : Β Δ Ο Λ Δ!! Μ Ν : ; < 8 Λ Δ Π Θ 9 : Θ = < : ; Δ < 46

More information

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α Ε! # % & ( )%! & & + %!, (./ 0 1 & & 2. 3 &. 4/. %! / (! %2 % ( 5 4 5 ) 2! 6 2! 2 2. / & 7 2! % &. 3.! & (. 2 & & / 8 2. ( % 2 & 2.! 9. %./ 5 : ; 5. % & %2 2 & % 2!! /. . %! & % &? & 5 6!% 2.

More information

untitled

untitled + lim = + + lim = + lim ( ) + + + () f = lim + = + = e cos( ) = e f + = e cos = e + e + + + sin + = = = = = + = + cos d= () ( sin ) 8 cos sin cos = ( ) ( sin ) cos + d= ( + ) = cos sin cos d sin d 4 =

More information

3978 30866 4 3 43 [] 3 30 4. [] . . 98 .3 ( ) 06 99 85 84 94 06 3 0 3 9 3 0 4 9 4 88 4 05 5 09 5 8 5 96 6 9 6 97 6 05 7 7 03 7 07 8 07 8 06 8 8 9 9 95 9 0 05 0 06 30 0 .5 80 90 3 90 00 7 00 0 3

More information

untitled

untitled Ω min VaRβ ( x) x X T T T rx = E( x y) = x u = rp, x I = 1 R i R i f Ri Rf i R c Rc Rf Rp Rf ρpc...(4) c p c Rc ρcp ( Rp Rf) + Rf...(5) p Rc R f c Rp p ρcp R f R c p p ρ cp r A = rd D ra r rd r > > A A

More information

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ; ! #! % & % ( ) ( +, & %. / & % 0 12 / 1 4 5 5! 6 7 8 7 # 8 7 9 6 8 7! 8 7! 8 7 8 7 8 7 8 7 : 8 728 7 8 7 8 7 8 7 8 7 & 8 7 4 8 7 9 # 8 7 9 ; 8 ; 69 7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β

More information

M ( ) K F ( ) A M ( ) 1815 (probable error) F W ( ) J ( ) n! M ( ) T ( ) L ( ) T (171

M ( ) K F ( ) A M ( ) 1815 (probable error) F W ( ) J ( ) n! M ( ) T ( ) L ( ) T (171 1 [ ]H L E B ( ) statistics state G (150l--1576) G (1564 1642) 16 17 ( ) C B (1623 1662) P (1601--16S5) O W (1646 1716) (1654 1705) (1667--1748) (1687--H59) (1700 1782) J (1620 1674) W (1623 1687) E (1656

More information

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ # % & ( ) +,& ( + &. / 0 1 2 3 ( 4 4 5 4 6 7 8 4 6 5 4 9 :.; 8 0/ ( 6 7 > 5?9 > 56 Α / Β Β 5 Χ 5.Δ5 9 Ε 8 Φ 64 4Γ Β / Α 3 Γ Β > 2 ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν 3 3 3 Α3 3

More information

辽石化大委发[2007]33号

辽石化大委发[2007]33号 中 共 辽 宁 石 油 化 工 大 学 委 员 会 组 织 部 文 件 辽 石 化 大 组 通 字 [2016]4 号 印 发 关 于 在 本 科 学 生 党 员 中 开 展 学 党 章 党 规 学 系 列 讲 话, 做 合 格 党 员 学 习 教 育 实 施 方 案 的 通 知 各 基 层 党 委 总 支 : 为 认 真 贯 彻 落 实 中 央 省 委 和 学 校 党 委 的 部 署 要 求, 现

More information

,..,.,,,,,.,,.,., ,.,,.,,.,, 1,,, ; 2,,,,.,,,,.,,.,,,.,.,.,,.,.,,,.,,,.,,,,.,.,,,, i

,..,.,,,,,.,,.,., ,.,,.,,.,, 1,,, ; 2,,,,.,,,,.,,.,,,.,.,.,,.,.,,,.,,,.,,,,.,.,,,, i ,..,.,,,,,.,,.,.,. 6 1,.,,.,,.,, 1,,, ;,,,,.,,,,.,,.,,,.,.,.,,.,.,,,.,,,.,,,,.,.,,,, i .,,,,.,,.,.,.,,.,,,., 1;,,,,,.,,,,.,,,.,.,,.,,.,,,.,,.,,.,.,.,,.,,.,..,.,,.,,,.,,,.,,,,,,.,,,,.,,????.,,,,,.,,,,.,

More information

器之 间 向一致时为正 相反时则为负 ③大量电荷的定向移动形成电 流 单个电荷的定向移动同样形成电流 3 电势与电势差 1 陈述概念 电场中某点处 电荷的电势能 E p 与电荷量 q Ep 的比值叫做该点处的电势 表达式为 V 电场中两点之间的 q 电势之差叫做电势差 表达式为 UAB V A VB 2 理解概念 电势差是电场中任意两点之间的电势之差 与参考点的选择无关 电势是反映电场能的性质的物理量

More information

! " # " " $ % " " # # " $ " # " #! " $ "!" # "# # #! &$! ( % "!!! )$ % " (!!!! *$ ( % " (!!!! +$ % " #! $!, $ $ $ $ $ $ $, $ $ "--. %/ % $ %% " $ "--/

!  #   $ %   # #  $  #  #!  $ ! # # # #! &$! ( % !!! )$ %  (!!!! *$ ( %  (!!!! +$ %  #! $!, $ $ $ $ $ $ $, $ $ --. %/ % $ %%  $ --/ "##$ "% "##& " "##( )$ "##%! ) "##$ * "##( "##$ "##(!!!!!!!!! ! " # " " $ % " " # # " $ " # " #! " $ "!" # "# # #! &$! ( % "!!! )$ % " (!!!! *$ ( % " (!!!! +$ % " #! $!, $ $ $ $ $ $ $, $ $ "--. %/ % $

More information

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α # % & ( ) # +,. / 0 1 2 /0 1 0 3 4 # 5 7 8 / 9 # & : 9 ; & < 9 = = ;.5 : < 9 98 & : 9 %& : < 9 2. = & : > 7; 9 & # 3 2

More information

第一章

第一章 第三节 流体流动中的守恒原理 流体流动规律的一个重要方面是流速 压强等运动参数在流动过程中的变化规律 流体流动应当服从一般的守恒原理 : 质量守恒 能量守恒和动量守恒 从这些守恒原理可以得到有关运动参数的变化规律 一 质量守恒 流量单位时间内流体流过管道任一截面的物质量体积流量单位时间内流经管道任意截面的流体体积 q V 单位 (m 3 /s 或 m 3 /h) 因次 [L 3 /T] 质量流量单位时间内流经管道任意截面的流体质量

More information

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ ! # % & ( ) % + ( ), & ). % & /. % 0 1!! 2 3 4 5# 6 7 8 3 5 5 9 # 8 3 3 2 4 # 3 # # 3 # 3 # 3 # 3 # # # ( 3 # # 3 5 # # 8 3 6 # # # # # 8 5# :;< 6#! 6 =! 6 > > 3 2?0 1 4 3 4! 6 Α 3 Α 2Η4 3 3 2 4 # # >

More information

电动力学习题课 - 第一章

电动力学习题课 - 第一章 电动力学习题课 第一章 Cheng-Zong Ruan Department of Astronomy, BNU September 26, 2018 ElectroDynamics, exercise class chzruan 1/25 第一章作业 从静电场麦克斯韦方程的积分形式 E = 0( 静电场无旋 ). L E dl = 0 推导微分形式 从毕奥 - 萨法尔定律 (2.8) 式推导磁场旋度和散度公式

More information

微软用户

微软用户 2013 山 西 公 务 员 考 试 行 政 职 业 能 力 测 验 模 拟 试 卷 ( 一 ) 第 一 部 分 常 识 判 断 ( 共 20 题, 参 考 时 限 15 分 钟 ) 根 据 题 目 要 求, 在 四 个 选 项 中 选 出 一 个 最 恰 当 的 答 案 请 开 始 答 题 : 1. 2012 年 9 月 8 日, 亚 太 经 济 合 作 组 织 第 二 十 次 领 导 人 非 正

More information

untitled

untitled 00, + lim l[ ] =. ( + lim[ ] = lim[ ] ( + i e ( = ( + lim l[ ] = l e = ( 4 (, (, (, 0 d f d D= D + D, d f d + d f d =. 0 D = (, 0,, 4 D = (,, 4 D ( D =, 0,. 4 0 0 4 ( + ( = ( d f, d d f, d d f, d. - =

More information

PowerPoint Presentation

PowerPoint Presentation 西华大学应用数学系朱雯 微分方程 习题课 解题方法流程图 求 Pd Qdy 通解 0 Yes 可分离变量 解出 No dy = f (, y ) d 可分离变量方程 齐次方程 dy y ( ) d 令 y u 一阶线性方程 dy P( ) y Q( ) d 其它一般方程 g ( y) dy f ( ) d g ( y) dy f ( ) d du ( u) u d 可分离变量 通解为 Pd Pd y

More information

: ; # 7 ( 8 7

: ; # 7 ( 8 7 (! # % & ( ) +,. / +. 0 0 ) 1. 2 3 +4 1/,5,6 )/ ) 7 7 8 9 : ; 7 8 7 # 7 ( 8 7 ; ;! #! % & % ( # ) % + # # #, # % + &! #!. #! # # / 0 ( / / 0! #,. # 0(! #,. # 0!. # 0 0 7 7 < = # ; & % ) (, ) ) ) ) ) )!

More information

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ ! # % & ( ) +,. / 0 1 + 2. 3 4. 56. / 7 89 8.,6 2 ; # ( ( ; ( ( ( # ? >? % > 64 5 5Α5. Α 8/ 56 5 9. > Β 8. / Χ 8 9 9 5 Δ Ε 5, 9 8 2 3 8 //5 5! Α 8/ 56/ 9. Φ ( < % < ( > < ( %! # ! Β Β? Β ( >?? >?

More information

Binder1.pdf

Binder1.pdf 2012 2,, 2011, 1., 3 16 ( ),,, 2. 6,, : " " ( 2009J 006- L ), " " ( 2 0 1 0X02 1 ) " GSM-R " (2010X020), " " ( 2010Z003-D) " " ( 2010F016 ), " " ( 2010F01 7) ,,, 3. " " ( 2010X004-D),,, 10,, 4., 41 ( 2

More information

<4D6963726F736F667420576F7264202D20AC4FBDBDA4FBB67DA96CAABA2DA743A67EAFC5AAA95FA7B9BD5A5F2E646F63>

<4D6963726F736F667420576F7264202D20AC4FBDBDA4FBB67DA96CAABA2DA743A67EAFC5AAA95FA7B9BD5A5F2E646F63> ( 閱 讀 前 ) 練 習 一 動 動 腦, 猜 一 猜 小 朋 友, 現 在 我 們 要 一 起 來 閱 讀 一 本 很 有 趣 的 書, 書 名 是 是 蝸 牛 開 始 的!, 請 動 動 你 的 腦 袋, 想 像 自 己 是 作 者, 猜 猜 這 本 書 在 說 什 麼 樣 的 故 事 呢? 我 覺 得 這 個 故 事 可 能 的 角 色 有 我 覺 得 這 個 故 事 可 能 發 生 的 地

More information

PowerPoint 簡報

PowerPoint 簡報 國 家 賠 償 法 概 述 主 講 人 : 宋 恭 良 104.10.12 2015.10.30 1 Q. 老 師 是 否 是 公 務 員? 是 否 適 用 國 賠? 法 務 部 95 年 9 月 14 日 法 律 字 第 0170449 號 函 : 國 家 賠 償 法 第 2 條 第 1 項 規 定 本 法 所 稱 公 務 員 者, 謂 依 法 令 從 事 於 公 務 之 員, 係 採 最 廣 義

More information

Homework7 答案 1. 均匀磁场中的中性自旋 1/2 粒子, 磁场方向 x, 强度 B, n 为任意方向 (θ, φ) 的单位矢量,σ n = n σ 为泡利算符在该方向的投影, 如果初态是 σ n = 1 的本征态, 请解出态的时间演化, 并分别计算 S x, S y, S z 的测量值与

Homework7 答案 1. 均匀磁场中的中性自旋 1/2 粒子, 磁场方向 x, 强度 B, n 为任意方向 (θ, φ) 的单位矢量,σ n = n σ 为泡利算符在该方向的投影, 如果初态是 σ n = 1 的本征态, 请解出态的时间演化, 并分别计算 S x, S y, S z 的测量值与 Homework7 答案. 均匀磁场中的中性自旋 / 粒子, 磁场方向 x, 强度 B, n 为任意方向, 的单位矢量,σ n n σ 为泡利算符在该方向的投影, 如果初态是 σ n 的本征态, 请解出态的时间演化, 并分别计算 S x, S y, S z 的测量值与相应几率 请问要经过多长时间才能回到初态? 解 : 设哈密顿量为 H µ s B e h m σ B ec e hb ψ m σ ec

More information