2015 8 23 8 Chinese Journal of Eco-Agriculture, Aug. 2015, 23(8): 931 937 DOI: 10.13930/j.cnki.cjea.150314 * 刘 1 艳 2 侯龙鱼 3** 赵广亮 1 李庆梅 1 江泽平 (1. / 100091; 2. 100193; 3. 102102) 锗是良好的半导体材料, 且具有清除自由基 抗衰老抗氧化等生物活性, 在电子工业和医学领域应用广泛 目前在植物上的研究主要集中在提高植物品质, 促进植物生长及对植物毒害等方面 本文综述了锗及其化合物的理化性质 起源与分布特征, 分析了锗在影响植物生长方面的生理生化机制 锗具有清除自由基的电子结构, 能改变土壤中酶活性和微生物, 改变植物对营养元素的吸收和利用 影响植物光合作用 改变植物的抗氧化系统等 适宜剂量的锗能促进种子萌发, 有效控制藻类生长, 提高作物的品质 锗积累过多, 影响生理代谢, 抑制植物生长, 产生毒害 锗在种子萌发 植物生长方面的研究与应用, 为探索锗在调节植物生长 生理生态等方面的作用提供理论基础, 为植物吸收利用锗, 减少锗污染方面提供理论参考 锗植物生长抗氧化系统微量元素 : Q945 : A : 1671-3990(2015)08-0931-07 Mechanism and application of germanium in plant growth LIU Yan 1, HOU Longyu 2, ZHAO Guangliang 3, LI Qingmei 1, JIANG Zeping 1 (1. State Key Laboratory of Tree Genetics and Breeding / Institute of Forestry Research, Chinese Academy of Forestry, Beijing 100091, China; 2. Department of Grassland Sciences, China Agricultural University, Beijing 100193, China; 3. Beijing Badaling Forest Farm, Beijing 102102, China) Abstract Germanium (Ge), a semiconductor element belonging to group IV of the periodic table which is a series of carbon (C), silicon (Si), getin (Sn) and lead (Pb), can scavenge reactive oxygen species (ROS) and is widely used in electrons and medicine. Although studies have shown that Ge exists in animals, plants and biomaterials, limited studies have analyzed the effect of Ge on plant physiology. Recent studies on plant Ge have mainly focused on improving plant growth and quality, and on plant damage toxicity. Thus in order to comprehensively understand Ge and its bioactivities, a detailed review of physiochemical properties, origin and distribution of Ge was conducted in this paper. The mechanisms of plant physiological and biochemical response to Ge as well as the application of Ge in plant growth were also comprehensively discussed. Ge could directly scavenge ROS due to its electron configuration 4S 2 4P 2. Ge played pivotal role in key enzyme activities and microbes related to nutrient transformation and cycling in soil. In plants, Ge changed nutrient absorption and utilization at a high efficiency. Ge also influenced plant photosynthesis by varying photosynthetic pigments. Ge enhanced the activities of endogenous antioxidant enzymes and non-enzymatic substances by chelating reaction in some vegetable and cereal plants. It increased the accumulation of polysaccharides, sugars, soluble proteins and amino acid in several plants. However, with excessive accumulation of Ge, normal metabolism of roots and shoots was interrupted in plants. Studies on the absorption, transport and distribution of Ge in plants as well as the corresponding mechanisms were very few. In future, there was need for further studies on the interactions of other elements with Ge. Until now, the application of Ge in agricultural production included seed germination, seedling growth and plant quality. Ge had also been applied to control algae growth. This paper provided the basis for Ge regulation of plant growth and the responding physiological and ecological mechanisms. It also provided a useful guide for Ge uptake by plants. Keywords Germanium; Plant growth; Antioxidant system; Trace element * (2014M550886) ** :, E-mail: glzhao2000@263.net, E-mail: holylyan@126.com : 2015 03 18 : 2015 06 05
932 2015 23 (Received Mar. 18, 2015; accepted Jun. 5, 2015) 19 80,, [1 2] 20,, [2 3], [2],, [1],, 1 锗及其化合物性质, 4, IVA ( ) Ge, 32, 72.59, 947.4, 2 830, 4s 2 4p 2, Ge C, [4],,, [1,5] [6] (GeO 2 ), (GeO) (GeS 2 ) (GeSe 2 ) [2,7] 6 : [7 9],, [8], [7] [10] 3 [8] 2 锗的起源与分布 1869, (Mendeleev),, (Ekasilicon, Es) 1985, (Weisbach) (4Ag 2 S GeS 2 ) 1886 (Winkler), (Germanium) [2,6], 7 mg kg 1, [2], 0.2 mg kg 1[8] H 2 GeO 3 HGeO 3 ( ) [7] 1913, (Comer), 1929 Duloit [7] [1] 3 锗在植物生长中的作用机制 3.1, 4s 2 4p 2, 4,, 1, [5,11 12] 3,, [1], [5] [13] (ESR), Ge-132, 3.2 [14] (2~8 mg kg 1 ), ; (10 mg kg 1 ) 28.3% 20.5%,, 20~50 mg kg 1 [14 15] (10 mg kg 1 ), (0~ 50 mg kg 1 ), (100 mg kg 1 ) (10 mg kg 1 ), [14 15] [15] (Oryza sativa), 4 mg kg 1 20 mg kg 1, 8 mg kg 1 100 mg kg 1 (Glycine max), 8 mg kg 1 100 mg kg 1,
8 : 933 50 mg kg 1 200 mg kg 1[15] ( 10 mg kg 1 ) ( 100 mg kg 1 ) 2 ( 20 mg kg 1 200 mg kg 1 ) [15], (2~4 mg kg 1 ) (>8 mg kg 1 ) T3 (Photobacterium phosphoreum) [15] 3.3 10 mg L 1 (Spirulina platensis) (Dunaliella salina) (Dicrateria zhanjiangensis) (Nannochloropsis sp.), [16] [17 19] / [20 21], (Triticum aestivum) [21], ; (Helianthus annuus), [22] [14], (<4 mg kg 1 ) a, (>15 mg kg 1 ) a [23] GeO 2 (5 mg L 1 ) (Dendrobium officinale) 400 mg L 1 GeO 2, (Ganoderma lucidumt) 54.34% [24] 150 mg L 1 (Ganoderma applanatum), 36.62% [25] [26] (GeO 2 ) (Dendrobium huoshanense) [23] GeO 2 (5 mg L 1 ) [27] GeO 2,, GeO 2,, [24,28],,, [24] 400 mg L 1 GeO 2, (SOD) 16.73%; [29] (Flammulina velutiper), [30] (GeO 2 ) (Panus giganteus) SOD (POD) (CAT) [26] 4.0 mg L 1 (GeO 2 ), SOD CAT, (GSH)/ (GSSG), (GSH) [31], POD CAT [14] SOD CAT POD (GSH-Px),, POD, SOD CAT [23] GeO 2 (5 mg L 1 ) SOD CAT, POD, [32] [33] ( Ⅳ) [(C 15 H 9 O 7 )Ge 2H 2 O] 2H 2 O, ; [12] DPPH Provasoli [34], 25~90,, [1 2,7],, [7,20,31,35 36] [20,36 37] Lewin [20] (Diatom spp.), Azam [35] Ge/Si, [31], [36,38 39],
934 2015 23, [40],,,,, [41 42],, [7,43] 3.4 [6], GeO 2 (40~240 mg L 1 ) (Hordeum vulgare),, 40 mg L 1, 52% 95%, ( ) (<500 mg kg 1 ), [8] [27] [44] GeO 2,,, Puerner [37] (Cucumis sativas) (Raphanus sativus cv Red Globe ) Cheong [9] Ge-132( 10 mg L 1 ) (Lactuca sativa), GeO 2 3.5 [26,31,42], [16,20,27,31],, [16,20] [9,14 15], IV,,,, [31] 4 锗在控制藻类生长中的应用 20 60,, [1,20] Lewin [20] 1~10 mg L 1 GeO 2,, Provasoli [34] Chapman [45] Markham [21],, [16,46 47] (Chlorella pyrenoidosa) [46] ; (Spirulina platensis) [48], 5 锗在农业生产中的应用 [9] [27], [37] [49] [6], (GeO 2 ) (Panax ginseng), [50] ; 60 mg L 1 [51] GeO 2 (5 mg L 1 ) [23] 0.50 mg L 1 3 ( 3 3 ), [49] Cheong [9] Ge-132 (2.5~10 mg L 1 ), GeO 2 ( 5 mg L 1 ) Puerner [37],, [50], Yu [51] [6], [50] [24] 400 mg L 1 (GeO 2 ), 54.34% [25] 150 mg L 1 [30] 18 mg kg 1 6 小结与展望,,,,
8 : 935,,,,,,,, [52 53],,,,,, 参考文献 [1] Goodman S. Therapeutic effects of organic germanium[j]. Medical Hypotheses, 1988, 26(3): 207 215 [2] Rosenberg E. Germanium: Environmental occurrence, importance and speciation[j]. Reviews in Environmental Science and Bio/technology, 2009, 8(1): 29 57 [3],,. [J]., 2007, 24(1): 59 60 Kong T, Qu Y S, Zhu L Q. Biological function of trace element germanium[j]. Studies of Trace Elements and Health, 2007, 24(1): 59 60 [4],,,. [J]., 2000, 19(4): 215 217 Hu R Z, Su W C, Qi H W, et al. Geochemistry, occurrence and mineralization of germanium[j]. Bulletin of Mineralogy, Petrology and Geochemisty, 2000, 19(4): 215 217 [5],,,. [J]., 2004, 26(2): 74 78 Huang J, Yang G Y, Li H J, et al. Progress in mechanism studies of antioxidants[j]. Chinese Journal of Nature, 2004, 26(2): 74 78 [6],,,. [J]., 2007, 28(10): 171 175 Wang X J, Ruan X, Sun K S, et al. Production of enriched germanium barley seedling[j]. Food Science, 2007, 28(10): 171 175 [7]. [D]. :, 2001 Wang H G. Enrichment and distribution of germanium in Ganoderma lucidum[d]. Baoding: Hebei Agricultural University, 2001 [8]. [D]. :, 2008 Chen Q H. Determination of copper, germanium and chronium contents in wheats and correlation research with their growth soil[d]. Zhengzhou: Henan Agricultural University, 2008 [9] Cheong Y H, Kim S U, Seo D C, et al. Effect of inorganic and organic germanium treatments on the growth of lettuce (Lactuca sativa)[j]. Journal of the Korean Society for Applied Biological Chemistry, 2009, 52(4): 389 396 [10] Nakamura K, Nomoto K, Kariya K, et al. Prevention and reversible solubilization of advanced glycation and products (AGE) by organic germanium compounds as derivatives of amino acids[j]. Amino Acids, 1991, 1(2): 263 278 [11],. [J]., 2001, 8(6): 15 16 Wei A Y, Zhou C L. Trace element Cu, Fe, Mn, Ge and free radical[j]. Guandong Trace Elements Science, 2001, 8(6): 15 16 [12],,,. [J]., 2005, 17(3): 263 266 Bao Z J, Ding Z T, Cao Q E, et al. Free radical scavenging activity of rutin-germanium complex[j]. Natural Product Research and Development, 2005, 17(3): 263 266 [13],,,. -132 [J]., 1997, 24(1): 28 30 Yang C F, Chen X M, Xie W, et al. Study on oxygen free radical-scavenging effect of carboxyethyl-germanium sesquioxide(ge-132)[j]. Modern Preventive Medicine, 1997, 24(1): 28 30 [14],,,. [J]., 2005, 25(1): 108 114 Lin K F, Xu X Q, Jin X, et al. Eco-toxicological effects of germanium stress on rice (Oryza sativa L.) and their critical value[j]. Acta Ecologica Sinica, 2005, 25(1): 108 114 [15]. [D]. :, 2003 Lin K F. Ecotoxicological effects of selenium and germanium in plant-soil system[d]. Wuhan: Institute of Hydrobiology, Chinese Academy of Sciences, 2003 [16],,,. [J]., 2000, 20(3): 482 484 Wang D Z, Wang H L, Li S J, et al. Effects of germanium on photosynthetic pigments of four species in microalgae[j]. Acta Ecologica Sinica, 2000, 20(3): 482 484 [17] Guillard R R L, Murphy L S, Foss P, et al. Synechococcus spp. as likely zeaxanthin-dominant ultraphytoplankton in the North Atlantic[J]. Limnology and Oceanography, 1985, 30(2): 412 414 [18] Bidigare R R, Ondrusek M E, Kennicutt Ⅱ M C, et al. Evidence a photoprotective for secondary carotenoids of snow algae[j]. Journal of Phycology, 1993, 29(4): 427 434 [19] Johnsen G, Sakshaug E. Bio-optical characteristics and
936 2015 23 photoadaptive responses in the toxic and bloom-forming dinoflagellates Gyrodinium aureolum, Gymnodinium galatheanum, and two strains of Prorocentrum minimum[j]. Journal of Phycology, 1993, 29(5): 627 642 [20] Lewin J. Silicon metabolism in diatoms. V. Germanium dioxide, a specific inhibitor of diatom growth[j]. Phycologia, 1966, 6(1): 1 12 [21] Markham J W, Hagmeier E. Observations on the effects of germanium dioxide on the growth of macro-algae and diatoms[j]. Phycologia, 1982, 21(2): 125 130 [22] Cakmak I, Kurz H, Marschner H. Short-term effects of boron, germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower[j]. Physiologia Plantarum, 1995, 95(1): 11 18 [23],,,. [J]. :, 2005, 28(4): 86 89 Tang F, Ding X Y, Ding G, et al. Effects of dioxide germanium on the protocorm of dendrobium officinale in vitro[j]. Journal of Nanjing Normal University: Natural Science, 2005, 28(4): 86 89 [24],,,. [J]., 2005, 16(12): 1221 1222 Dang J Z, Sun H Y, Xu B Q, et al. Determination of SOD and amino acids in Ge-enriched mycelia of Ganoderma lucidum[j]. Lishizhen Medicine and Materia Medica Research, 2005, 16(12): 1221 1222 [25],,,. [J]., 2013, 29(8): 1791 1795 Li Z P, Zhu C W, Wu P, et al. In vitro antioxidative activity of germanium-rich exopolysaccharides from ganoderm applanatum[j]. Modern Food Science and Technology, 2013, 29(8): 1791 1795 [26],,. [J]., 2010, 26(3): 371 377 Wei M, Yang C Y, Jiang S T. Effects of germanium on cell growth, polysaccharide production and cellular redox status in suspension cultures of protocorm-like bodies of Dendrobium huoshanense[j]. Chinese Journal of Biotechnology, 2010, 26(3): 371 377 [27],,. [J]., 1999, 16(4): 457 461 Lian Y W, Duan P C, Wang Y L. The physiological effects of germanium dioxide on the germinating rice seeds[j]. Chinese Bulletin of Botany, 1999, 16(4): 457 461 [28],,,. [J]., 1994, 9(3): 46 49 Chen T Q, Weng Q Y, Li K B, et al. A primary report on enrichment of germanlum in mycelia of lucid ganoderma (Ganoderma lucidun)[j]. Journal of Fujian Academy of Agricultural Sciences, 1994, 9(3): 46 49 [29],,,. [J]., 2013, 3(6): 91 94 Chen J, Song H Y, Zhang C, et al. Antioxidant activity of different solvent extracts in mycelium germanium-richened Flammulina velutipes[j]. Agricultural Engineering, 2013, 3(6): 91 94 [30]. [J]., 2014, 21(1): 32 34 Yan Z L. Soluble protein, superoxide dismutase, peroxide, polyphenol oxidase and catalase levels in Panus giganteus fruit bodies grown on substrates supplemented with different concentrations of germanium[j]. Acta Edulis Fungi, 2014, 21(1): 32 34 [31],,,. [J]. :, 1999, 38(1): 121 128 Xu J S, Duan P C, Wang Y L, et al. The effect of Ge and Si on the growth and development of rice[j]. Journal of Xiamen University: Natural Science, 1999, 38(1): 121 128 [32],. [J]., 2010, 30(1): 71 74 Wang J J, Hao C X. Study on synthesis and scavenging radical activity of complex of quercetin-germanium ( )[J]. Journal of Science of Teachers College and University, 2010, 30(1): 71 74 [33],,. ( ) [J]., 2010, 38(12): 1809 1812 Xie W L, Yang P H, Cai J Y. Synthesis, characterization and antioxidation activity of germanium ( Ⅳ)-quercetin complex[j]. Chinese Journal of Analytical Chemistry, 2010, 38(12): 1809 1812 [34] Provasoli L. Media and prospects for the cultivation of marine algae[m]//watanabe A, Hattori A. Cultures and Collections of Marine Algae. Tokyo: Japanese Society of Plant Physiologists, 1968: 63 75 [35] Azam F, Hemmimgsen B B, Volcani B E. Germanium incorporation into the silica of diatom cell walls[j]. Archiv für Mikrobiologie, 1973, 92(1): 11 20 [36] Blecker S W, King S L, Derry L A, et al. The ratio of germanium to silicon in plant phytoliths: Quantification of biological discrimination under controlled experimental conditions[j]. Biogeochemistry, 2007, 86(2): 189 199 [37] Puerner N J, Siegel S M, Siegel B Z. The experimental phytotoxicology of germanium in relation to silicon[j]. Water, Air, and Soil Pollution, 1990, 49(1/2): 187 195 [38] Takahashi E, Matsumoto H, Syo S, et al. Variation of Ge uptake in different species[j]. Japanese Society of Soil Science and Plant Nutrition, 1976, 74: 217 221 [39] Rains D W, Epstein E, Zasoski R J, et al. Active silicon uptake by wheat[j]. Plant and Soil, 2006, 280(1/2): 223 228 [40] Mcllrath W J, Skok J. Substitution of germanium for boron in plant growth[j]. Plant Physiology, 1966, 41(7): 1209 1212 [41] Tensho K, Yeh K L. Tracer study on preferential uptake of germanium by rice plant[j]. Soil Science and Plant Nutrition, 1972, 18(5): 173 178 [42] Ishii T, Matsunaga T, Iwai H, et al. Germanium does not
8 : 937 substitute for boron in cross-linking of rhamnogalacturonan Ⅱ in pumpkin cell walls[j]. Plant Physiology, 2002, 130(4): 1967 1973 [43],,,. [J]., 2001, 30(4): 208 210 Wu Z G, Chen X M, Yang K D, et al. Studies on the hydroxyl free radical-scavenging effect of combined selenium and germanium[j]. Journal of Hygiene Research, 2001, 30(4): 208 210 [44],,. [J]., 2006, 31(3): 17 19 Li G Z, Xu Y X, Zhang C L. Studies on the law of translocation and accumulation of germanium in rice plant[j]. Journal of Jilin Agricultural Sciences, 2006, 31(3): 17 19 [45] Chapman A R O. Methods for macroscopic algae[m]//stein L R. Handbook of Phycological Methods. Culture Methods and Growth Measurements. Cambridge: Cambridge University Press, 1973: 87 104 [46],. [J]., 1989, 13(1): 36 41 Ma J H, Liu Q. The effect of germanium dioxide (GeO 2 ) on the growth of free-living conchocelis of Porphyra haitanensis[j]. Journal of Fisheries of China, 1989, 13(1): 36 41 [47] Shea R, Chopin T. Effects of germanium dioxide, an inhibitor of diatom growth, on the microscopic laboratory cultivation stage of the kelp, Laminaria saccharina[j]. Journal of Applied Phycology, 2007, 19(1): 27 32 [48],,. [J]., 1997, 16(1): 63 66 Gao Y H, Wang D Z, Cheng Z D. Effect of germanium on the growth of some microalgae[j]. Journal of Oceanography in Taiwan Strait, 1997, 16(1): 63 66 [49],,,. [J]., 2002, 24(4): 83 86 Li M T, Li G, Wang Y J, et al. Effect of germanium on the development of different genetic rice seedlings[j]. Journal of Jilin Agricultural University, 2002, 24(4): 83 86 [50],,,. (Ge) [J]., 1994(4): 7 10 Zheng Y L, Liu Y Z, Du E X, et al. Effect of germanium (Ge) on growth and development of ginseng[j]. Ginseng Research, 1994(4): 7 10 [51] Yu K W, Murthy H N, Jeong C S, et al. Organic germanium stimulates the growth of ginseng adventitious roots and ginsenoside production[j]. Process Biochemistry, 2005, 40(9): 2959 2961 [52],,,. [J]., 2015, 31(2): 196 198 Zhao C X, Yuan X F, Sun L, et al. Protective effect of Ge-enriched Ganoderma lucidum on CCl4-induced hepatic injury in rat[j]. Chinese Journal of Public Health, 2015, 31(2): 196 198 [53],,,. [J]. :, 2015, 31(2): 149 152 Wang Y N, Zhang K, Jiang Q, et al. Study on synthesis and anti-inflammatory activity of coordination compound of puerarin-germanium[j]. Journal of Harbin University of Commerce: Natural Sciences Edition, 2015, 31(2): 149 152