超长钻孔灌注桩桩侧摩阻力发挥特征分析

Similar documents
护国运动时期云南都督府的“拥护共和”奖功制度

大直径超长冲孔灌注桩竖向抗压承载特性原位测试研究

标题

Analysis of Pile Foundations and Load Tests 桩型选择与试桩设计 Jiangbin Wu, Weidong Wang, Yuting Huang, Xiangjun Wang & Shubo Nie, East China Architectural Des

第 46 卷第 3 期 2019 年 3 月 探矿工程 ( 岩土钻掘工程 ) ExplorationEngineering (Rock & SoilDrilingandTunneling) Vol.46No.3 Mar.2019:68-74 基于桩土界面摩擦特性和桩周土体应力状态的 基桩极限侧阻力分

Untitiled

标题

第 期 陈新军 高 敬 旋转触探确定钻孔灌注桩极限承载力研究 转速速和贯入速率旋转贯入土中 同时测记锥头在旋转贯入过程中所受的贯入阻力 土在破坏过程中的抵抗扭矩 排土水压力等参数 通过这些参数来研究地层工程性质的一种测试方法 旋转触探试验适用于第四系一般黏性土 砂类土等细粒土松散堆积层 具有快速 经

54 岩土力学 211 年 验, 研究发现同体积混凝土楔形桩较等截面桩竖向 承载力提高 2%~3% 左右 ;Kodikara & Moore [3] 基于等截面桩计算理论, 建立了一个楔形桩承载力 理论计算公式并对实际工程进行预测, 计算结果与 实测结果吻合良好, 不过该公式仅适用于楔形角较 [4]


Microsoft Word - 24-p doc

一次辽宁暴雨过程的诊断及风场反演分析

输电线路智能监测系统通信技术应用研究

2016院报5期-合版-(五校)

doc

标题

刘振华, 等 : 管桩单桩竖向极限承载力的沉降预估研究 91 淤泥质粉质黏土 (mq 3 4): 灰黑色, 可塑, 湿 - 饱和, 干强度与韧性中等, 具有明显臭味 全场分布, 厚度较深, 达 20m 左右 砂质黏土 (alq 3 ): 红褐色, 可塑 主要由黏性土混和砂石等组成, 砂石含量占 10

标题

国学思想与大学数学

心理学译名:原则与方法

中華民國 第51屆中小學科學展覽會

696 岩土力学 27 年 建筑物名称 高度层数 层数 表 两幢大楼的桩筏基础的基本资料 Table Basic data of iled raft foundations for two buildings 筏厚 埋置深度 桩的总数 桩的长度 桩的平均荷载 / kn 桩的容许承载力 / kn 总荷

<4D F736F F D E30392E3134B9D8D3DAD7E9D6AFBFAAD5B C4EAB9ABC2B7CBAED4CBB9A4B3CCCAD4D1E9BCECB2E2BBFAB9B9BBF9D7AEBCE

我国高速公路建设管理现状和主要问题

第 38 卷 2018 年 9 月 第 9 期 中国港湾建设 China Harbour Engineering Vol. 38 Sep No.9 水平循环荷载作用下单桩基础承载性状数值分析 杨东岩 1,2, 史旦达 1, 邵伟 1 (1. 上海海事大学海洋科学与工程学院, 上海 201

第 5 期费康等 : 现浇混凝土薄壁管桩的传递机理 765 其中 式中 R F R q p tan c 0 () (, ) sin π cos π tan () cos 为 Mohr-Coulomb 屈服面在 p-r q 平面 上的斜角, 通常指材料的内摩擦角 ; c 为材料的凝 聚力 ; 为剪应力

m K K K K m Fig. 2 The plan layout of K K segment p

第 期刘润等 : 大直径超长桩打桩过程中桩周土体的疲劳与强度恢复 453 利进行 安排施工进度和节约工程造价具有重要意 义 打桩就是用足够大的冲击能来克服土体对桩的 阻力, 破坏其原有的静力平衡状态, 使桩体下沉, 直至达到新的平衡状态 桩与桩周土的相互作用是 沉桩过程的关键所在, 桩周土体的性状及

标题

第 5 期 章定文, 等 : 路堤荷载下 DJM PVD 复合地基固结特性数值分析 829 DJM PVD 联合法加固淮盐高速公路试验段软土地基的工程实例. 文献 [2] 报道了采用长排水板和短搅拌桩联合加固软土地基的工程实例. 为了深入分析路堤荷载下 DJM PVD 复合地基的整体性状, 特别是其

增刊 2 王斌等 : 注浆成型螺纹桩抗拔承载特性的数值分析 573 施工工艺为基础, 并借鉴后注浆技术, 解决了螺纹 桩在软土地区的成桩施工难题, 具体的施工步骤参 见文献 [4] 注浆成型螺纹桩通过施工技术创新, 在等截面 圆桩外侧增加沿桩身缠绕的连续空间螺旋结构, 以 此改变了桩 - 土之间的相

第 31 卷第 3 期 2018 年 6 月 文章编号 : (2018) 四川理工学院学报 ( 自然科学版 ) JournalofSichuanUniversityofScience&Engineering(NaturalScienceEdition) Vol 3

左下肢多发软组织肿瘤二次术后复发伴梗阻性黄疸一例诊治

路 基 工 程 94 2 0 1 8年第 6期 总第 2 0 1期 Subg r a deen g i ne e r i n g DOI 10 13 37 9 j i s s n 1 00 3 8 8 25 2 018 06 20 高速铁路岩溶地区桩基后压浆仿真分析 张 伟1 张 凯2 马建林2 白


美磊科技股份有限公司及其子公司

cm /s c d 1 /40 1 /4 1 / / / /m /Hz /kn / kn m ~

~ ~ Y 3 X / / mm 400 ~ 700 C40 ~ C ~ 400 C40 ~ C ~

104 山东建筑大学学报 2016 年 0 引言 目前, 有序 合理 综合 高效地开发利用既有建筑物地下空间资源, 成为扩充基础设施容量, 提高城市综合防灾能力, 提高土地利用效率与节约土地资 [1] 源的最为有效的途径之一既有建筑物地下空间开发的核心技术是桩基础托换和土方开挖 在既有建筑物下方兴建

梁 倩, 等 : 扭转荷载下群桩基础的承载机理及特性研究 135 由于转角很小, 因此认为各桩基的水平位移近似等于桩基的路径长, 其中 d i 为转心到 i 桩轴心的距离,G Hi,G Ti 分别为桩基 i 的水平刚度和扭转刚度, 因此桩基 i 的转角 ψ i, 水平位移 S i, 承受的水平力 H

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte

云南省建筑基坑工程监测技术规程

Microsoft Word - 黑白13-17-FK036-定-已转入.doc

第 6 期李飒, 等. 打桩过程中考虑溜桩影响的土阻力研究 1151 Zandwijk 等 [9] [10] [11] Alm 等和 Colliat 等进行了相似的 [12-13] 研究, 并提出了改进的模型 李飒等研究分析了 大直径长管桩的成桩机理, 提出了打桩过程中土阻力 变化特点并通过对土层打

水 利 水 运 工 程 学 报 2 2018 年8月 计算时当加翼桩最大应力达到材料允许强度 250 MPa 或泥面处桩身倾斜率达到 4 时 认为加翼桩达 到极限水平承载力状态 1 2 单桩和加翼桩水平承载性能对比 分别选取翼板面积 形状 埋深和刚度等 4 种翼板参数下加翼桩水平承载能力最优的工况

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm

%

48 土木建筑与环境工程第 38 卷 Angle,contactsurfacecoeficientofpileandsoilhassignificantimpactontheloaddisplacementcurveof rigidpile,andtheresistancecoeficientofp

增 刊 谢 小 林, 等. 上 海 中 心 裙 房 深 大 基 坑 逆 作 开 挖 设 计 及 实 践 745 类 型, 水 位 埋 深 一 般 为 地 表 下.0~.7 m 场 地 地 表 以 下 27 m 处 分 布 7 层 砂 性 土, 为 第 一 承 压 含 水 层 ; 9 层 砂 性 土

j.sd

<4D F736F F D20B9ABC2B7C7C5C1BAB9E0D7A2D7AEBAF3D1B9BDACBCBCCAF5B9E6B3CC2D E3033>

国有大型能源企业财务风险内部控制研究

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe

第 期 黄功华等高速铁路桩网结构路基沉降变形数值模拟分析 度的土柱进行计算即 将 脉 冲 应 力 简 单 地 换 算 成 均 数值模型的建立 布荷载这种方法在静力计算中不失为一种简单方 便的方法但在考虑路基动力效应时这种荷载模式 模型结构 以武 广 客 运 专 线 直 线 路 基 地 段 为 研 究

第 10 期谢新宇, 等 : 跨越地铁隧道超高层建筑桩筏基础数值模拟及优化设计 3183 随着城市的发展与扩张, 地上的城市交通已经不 再满足实际需求, 地铁等交通设施得到了快速发展 而地铁在建设过程中, 不可避免地要穿过既有建筑物 的基础, 对于 ( 超 ) 高层建筑, 下部基础一般为桩基础 或者


岩土力学 年 力 沉降和动力荷载下工作机制的理论与试验研 究 [-], 以及其他桩基形式的复合地基的计算分 析 [-] 对于刚性桩复合地基, 在考虑与上部结构 相互作用后其抗震性能的研究还为之甚少, 而且由 于影响因素繁杂, 目前还没有文献对刚性桩在受到 上部结构惯性相互作用后抗震性能的各影响因素进

Microsoft Word - ED-774.docx

Ansys /4 Ansys % 9 60% MU10 M m 1 Fig. Actual situation of measured building 1 Fig. 1 First floor plan of typical r

#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5


538 山东建筑大学学报 2015 年 Keywords:qualityproblem;reinforcementdesign;cast in situpilebysinkingtube;pilecapacity; compositefoundationwithsetlement reducingp

UDC

<4D F736F F D20D6D0BBAFD1D2CDC1A3BA C4EAB0EBC4EAB6C8B1A8B8E6>

Microsoft Word - GJPHV3N2-4.doc

果葡糖浆中5-HMF生成影响因素及其去除方法

高层建筑岩土工程勘察规程 JGJ72

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec

UDC

标题

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

通 过 厂 变 带 电, 这 种 设 计 减 少 了 机 组 自 带 厂 用 电 负 荷 能 力, 降 低 了 锅 炉 满 足 FCB 时 最 低 稳 燃 工 况, 同 时 造 成 燃 烧 调 整 量 加 大 本 电 厂 在 FCB 试 验 时, 电 泵 不 联 启, 始 终 保 持 汽 泵 运 行

标题

Microsoft Word tb 赵宏宇s-高校教改纵横.doc

96 路基工程 SubgradeEngineering 2018 年第 4 期 ( 总第 199 期 ) 层厚大于 3m 典型地质剖面, 见图 2 图 1 钻孔平面布置示意 1 2 工程地质和水文地质 地理位置及地形地貌场地定于广元市利州区宝轮镇红星村七组, 宝轮镇南侧清江河右岸山体斜坡

1. 前 言 由 於 石 油 價 格 浮 動, 汽 油 價 格 節 節 高 升 及 二 氧 化 碳 等 廢 棄 大 量 排 放 造 成 全 球 環 境 的 改 變, 因 此 世 界 各 國 都 極 力 提 倡 節 能 減 碳 進 而 掀 起 腳 踏 車 城 市 的 風 潮 因 應 目 前 自 行 車

2、住在基督裏的奧秘(雅各.馬康基).doc

2014 年 5 月第 5 期叶永巧, 等 : 微型桩在某住宅楼基础加固中的应用 No 5 May2014 图 2 住宅楼平面示意 ( 单位 :mm) 2 工程地质及地下水情况 2 1 地层岩性根据岩土工程勘察报告知 : 从地表起, 据野外钻探资料, 场区主要出露第四系人工填土层 (Q ml 4 )

Settlement Equation " H = CrH 1+ e o log p' o + ( p' p' c o! p' o ) CcH + 1+ e o log p' c + p' f! ( p' p' c c! p' o ) where ΔH = consolidation settlem


标题

Dan Buettner / /


第 6 期 任连伟, 等 : 五星形桩与圆桩水平承载性能对比模型试验研究 25 ofthefivestarshapedpile 1,themaximumofthecircumferenceofthefivestarshapedpile 2,roundpile 犆 1 withthesamesecti

74 缺 乏 过 程 性 思 维 其 实 是 一 个 过 程, 试 题 的 题 眼 在 哪 里 隐 含 条 件 在 何 处 如 何 迁 移 类 比 利 用 什 么 政 治 知 识 逻 辑 和 方 法 等 等, 这 才 是 政 治 思 维 的 精 华 为 订 正 答 案 而 讲 答 案, 不 讲 答

第 1 期 张琦, 等 : 大直径嵌岩桩桩端极限承载力计算方法 119 随着我国公路 铁路事业的快速发展, 以及 ( 超 ) 高层的涌现, 建 ( 构 ) 筑物的基础承担的荷载越来越大. 大直径 (d=0.8m) 嵌岩桩因其具有单桩承载力高 沉降变形小 沉降收敛快 抗震性能好等诸多优点, 在工程界的

目 錄 1. 蒸 豬 肉 丸 2. 蜜 汁 腰 果 3. 鳳 梨 蝦 球 4. 金 菇 扒 芥 菜 5. 松 鼠 黃 魚 6. 椒 鹽 魷 魚 7. 時 蔬 燴 蝦 丸 8. 粉 蒸 小 排 骨 9. 酥 炸 黃 魚 條 10. 彩 椒 炒 魷 魚

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

) 50 o C o C -20 o C Temperature ( o C) 27,ARP, ,OCT, ,MAR,2017 Elapsed time (day) Corn

j.si

第一章 绪 论

74 2 0 1 4年 8月 量的研究 提出了很多研究方法 当前主要的研究 方法有二阶段分析法 4 5 整体分析法 6 7 和模型 试验法 8 9 虽然二阶段分析法概念明确 易于求 解 但是其与模型试验法都不能考虑施工过程的影 响 而整体分析法不仅能够考虑开挖过程的影响 还能考虑土的非线性 桩土间的

第 9 卷第 3 期杨文强 : 液化地基土抗液化措施的分析计算 表 1 场地描述及承载力特征值表 T 层号岩土名称地层描述 层底 标高 / m 承载力特 征值 f ak / kpa 压缩模量 / MPa 1 粉土 Q 4 al, 褐黄色 黄褐色, 稍湿, 稍密, 干强度低, 摇振反应中等, 无光泽反

m m m ~ mm

09L094-杨德健.doc

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin

1

建筑施工现场环境与卫生标准 JGJ

Transcription:

Hans Journal of Civil Engineering 土木工程, 2015, 4, 56-66 Published Online January 2015 in Hans. http://www.hanspub.org/journal/hjce http://dx.doi.org/10.12677/hjce.2015.41007 Analysis on Pile Shaft Friction Resistance of Ultra-Long Bored Piles Jianguang Li AVIC Geotechnical Engineering Institute Co., Ltd., Beijing Email: lijianguang10@126.com Received: Dec. 25 th, 2014; accepted: Jan. 15 th, 2015; published: Jan. 22 nd, 2015 Copyright 2015 by author and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Based on the analysis on the results of test piles of typical projects, characteristics of pile shaft friction resistance are summarized for ultra-long bored piles. Pile shaft friction resistance mainly depends on shear strength index (c, φ), effective overlying pressure, and pile-soil relative movement. Effective overlying pressure and pile-soil relative movement are should not be neglected to pile shaft friction resistance. Keywords Ultra-Long Bored Pile, Static Load Test, Pile Shaft Friction Resistance 超长钻孔灌注桩桩侧摩阻力发挥特征分析 李建光 中航勘察设计研究院有限公司, 北京 Email: lijianguang10@126.com 收稿日期 :2014 年 12 月 25 日 ; 录用日期 :2015 年 1 月 15 日 ; 发布日期 :2015 年 1 月 22 日 摘要 本文在分析典型工程超长钻孔灌注桩试桩成果基础上, 总结超长钻孔灌注桩桩侧摩阻力的发挥特征, 并 56

提出桩侧摩阻力的发挥取决于桩侧土体的抗剪强度指标 (c, φ) 有效上覆压力及桩土间相对位移四个主要因素, 其中桩侧土体的有效上覆压力及桩土间相对位移是影响超长桩桩侧摩阻力发挥不可忽视的因素 关键词 超长钻孔灌注桩, 静载试验, 桩侧摩阻力 1. 引言 近些年来, 国内超高层建筑迅速崛起, 在北京 上海 天津 温州等地超高层建筑中超长钻孔灌注桩被广泛应用, 大量的超长钻孔灌注桩试桩成果被发表 [1]-[3], 这些成果较一致的认为 : (1) 一定荷载作用下超长桩的桩顶变形主要由桩身的压缩组成, 超长桩基础的沉降变形必须考虑桩身的压缩变形 (2) 桩端阻力对桩的总承载力贡献较小, 超长桩的承载力以侧阻力为主 (3) 桩端沉渣对桩端承载力的发挥影响明显 上述这些珍贵的试桩成果, 为今后超长钻孔灌注桩的设计提供了很多值得借鉴的经验 国内外对桩侧摩阻力和桩端阻力这一课题已有多年的研究, 解决的方法基本上有两类 : 一类是通过原位测试手段探查土层的物理参数, 与试桩资料对比, 建立经验公式或修正曲线, 来确定桩侧摩阻力和桩端阻力 ; 另一类方法是通过桩静载试验实测桩侧摩阻力和桩端阻力 但有关理论研究的文献很少 本文就是在分析典型工程超长钻孔灌注桩试桩成果基础上, 总结超长钻孔灌注桩桩侧摩阻力的发挥特征, 进而为桩侧摩阻力的选取提供依据 2. 桩侧摩阻力的发挥特征 本文选取具有代表性的上海中心大厦试验桩的试验成果 [1] 进行深入分析, 对其桩侧摩阻力的发挥特征进行总结 由于篇幅限制, 其他文献提供的试验桩试验成果 [2] [3] 只做简单介绍 2.1. 上海中心大厦 [1] 上海中心大厦位于上海浦东陆家嘴金融中心区, 大厦塔楼采用巨型空间框架 核心筒 外伸臂结构体系, 塔楼地上 121 层, 结构顶面高度 575 m, 建筑塔顶高度 632 m, 地下 5 层, 基础埋深约 31 米, 底板厚 6 m 场地地貌属滨海平面地貌类型, 场地 274.8 m 深度范围内为第四纪覆盖层, 主要有饱和黏性土 粉性土 砂土组成, 一般具有成层分布特点 (1) 试桩参数本文选取采用国内常用的桩侧桩端联合后注浆工艺的 SYZA01 SYZA02 试验桩成果进行分析, 图表 1 所示 其他试验桩成果详见原文 [1] SYZA01 SYZA02 试验桩布置及后注浆位置详见图 1 (2) Q-s 曲线 SYZA01 SYZA02 试验桩 Q-s 曲线详见图 2 图 3 SYZA01 SYZA02 试验桩桩身轴力分布曲线详见图 4 图 5 (3) 桩身轴力测试 SYZA01 SYZA02 试验桩桩身轴力分布曲线详见图 4 图 5 (4) 桩侧摩阻力 57

Table 1. General situation of test piles 表 1. 试桩概况表 试桩编号桩径 (mm) 桩长 (m) 有效桩长 (m) 试桩类型 SYZA01 1000 88 63 桩侧桩端联合后注浆 SYZA02 1000 88 63 桩侧桩端联合后注浆 SYZB01 1000 88 63 桩端后注浆 SYZC01 1000 88 63 常规灌注桩 Figure 1. Profile of soil layers and test pile (including post-grouting location) 图 1. 土层及试桩剖面图 ( 含后注浆位置 ) SYZA01 SYZA02 试验桩不同桩顶荷载下桩侧摩阻力随深度变化曲线详见图 6 图 7 SYZA01 SYZA02 试验桩不同埋深处桩侧摩阻力与桩土相对位移关系曲线详见图 8 图 9 王卫东等人对上海中心大厦试验桩试验结果进行了详细的分析研究, 得出关于桩侧摩阻力问题的如下 3 点结论 : 58

Figure 2. Q-s curves of No. SYZA01 test pile 图 2. SYZA01 试验桩 Q-s 曲线 Figure 3. Q-s curves of No. SYZA02 test pile 图 3. SYZA02 试验桩 Q-s 曲线 Figure 4. Distribution curves of axial force of No. SYZA01 test pile 图 4. SYZA01 试验桩桩身轴力分布曲线 59

Figure 5. Distribution curves of axial force of No. SYZA02 test pile 图 5. SYZA02 试验桩桩身轴力分布曲线 Figure 6. The change curves of pile shaft friction with depth of No. SYZA01 test pile 图 6. SYZA01 试验桩桩侧摩阻力随深度变化曲线 Figure 7. The change curves of pile shaft friction with depth of No. SYZA02 test pile 图 7. SYZA02 试验桩桩侧摩阻力随深度变化曲线 60

Figure 8. Curves of pile shaft friction versus pile-soil relative movement at different depths of No. SYZA01 test pile 图 8. SYZA01 试验桩桩侧摩阻力 桩土相对位移关系曲线 Figure 9. Curves of pile shaft friction versus pile-soil relative movement at different depths of No. SYZA02 test pile 图 9. SYZA02 试验桩桩侧摩阻力 桩土相对位移关系曲线 (1) 桩侧摩阻力沿桩长的发挥具有异步性, 荷载水平较小时, 桩侧摩阻力分布曲线呈单峰状, 随荷载水平增加, 桩侧摩阻力分布曲线经历峰值不断增大下移 桩端附近逐渐展开的变化过程 ; 桩体上部分侧摩阻力发挥至极限后, 出现不同程度软化现象 (2) 桩侧摩阻力充分发挥所需桩土相对位移受后注浆工艺影响, 实测结果显示在有效桩长范围内埋深较浅的黏性土层中桩侧摩阻力充分发挥所需桩土相对位移小于 5 mm, 较深的砂性土中小于 10 mm; 桩侧摩阻力软化出现在桩土相对位移超过极限位移之后, 埋深较浅的黏性土中由于桩土相对位移大软化较为显著 (3) 与规范取值相比, 第 6 层土实测桩侧摩阻力极限值不足规范取值下限的 50%, 残余值仅为规范取值下限的 20%, 第 7 1 层土实测桩侧摩阻力接近规范取值下限, 但软化严重, 该土层以下实测桩侧摩阻力均大于规范取值上限, 其中 9 1 9 2-1 土层中, 实测值达到规范取值上限的 2 倍以上 因此在大直径超长后注浆灌注桩承载力计算时, 应充分考虑有效桩长范围内浅部土层的侧摩阻力软化和注浆后深部土层侧摩阻力增强效应 61

2.2. 其他典型工程 [2] [3] 邹东升等人对北京 CBD 地区超高层建筑的试验桩试验成果进行了深入的分析总结 [2] 北京 CBD 地 区 CCTV 新址 TP-A1 试验桩桩侧卵石 5 层 ( 后注浆 ) 粉质黏土 6 层及细砂 9 层桩 ( 后注浆 ) 摩阻力与桩土 相对位移关系曲线详见图 10 图 11 CCTV 新址 TP-A1 试验桩粉质黏土 6 层桩侧摩阻力表现出加工软化特性 卵石 5 层及细砂 9 层桩侧 摩阻力表现出加工强化特性 埋深较大的砂土 9 层的桩侧阻力在同等桩土相对变形情况下较 5 层增长快, 显示出桩侧阻力发挥存在深度效应, 围压大有利于桩侧阻力的发挥 孙宏伟等人对天津 117 大厦超长试验桩的试桩成果进行了分析, 发现桩侧上部土层表现为软化特征, 桩侧下部土层表现出强化特征, 桩端处桩侧阻力非常小 张忠苗等人对温州世贸中心 323 m 超高层超长试验桩的试桩成果 [3] 进行了分析, 发现桩侧上部土层 在达到极限侧阻时, 随着荷载的增加, 其值反而会有所降低, 分析其原因是在达到极限摩阻力后上部土体结构产生了滑移破坏, 导致侧阻软化 桩端附近桩土相对位移较小, 其土层摩阻力并没有得到充分发挥 3. 模型建立与分析 3.1. 模型概化 依据上述典型工程超长单桩静载试验的分析成果, 桩与桩间土之间相对位移 δ 与桩侧摩阻力 q sik 之间的关系可概化为图 12 在图 12 中 :A 1 A 2 A n 为不同深度土层桩侧极限摩阻力,S 1 S 2 S n 为桩侧极限摩阻力发挥时的桩 土之间的相对位移极限值 δ u,b 1 B 2 B n 为桩侧残余摩阻力 在桩与土之间无泥皮或泥皮很薄的情况下, 桩侧摩阻力取决于桩周土层的抗剪强度, 符合摩尔 - 库伦屈服准则 [4], 详见图 13 有关摩尔- 库伦屈服准则描述详见文献 4 在图 13 中,c φ 为桩侧土层抗剪强度指标,c φ 为桩侧土层残余抗剪强度指标,σ 为垂直剪切面应力 依据超长单桩静载试验的分析成果, 桩与桩间土之间相对位移 δ 总体变化可概化为图 14 图 14 中忽略了由于桩侧个别土层压缩模量较小, 引起局部变形较大的现象 桩顶以下 C 1 ~C 2 段 : 桩土相对位移 δ 大于桩 土相对位移极限值 δ u, 桩侧残余摩阻力发挥, 表现出软化特征 桩顶以下 C 2 ~C 4 段 : 桩土相对位移 δ 大于 0 mm 小于桩土相对位移极限值 δ u, 桩侧摩阻力数值位于 0~ 极限摩阻力之间, 其大小与土层的抗剪强度指标 有效上覆压力及桩土相对位移有关 如果部分土层经后注浆处理, 该土层的抗剪强度指标提高的非常大, 一般荷载状况下, 很难达到桩侧极限摩阻力, 更难以进入桩侧残余摩阻力, 因此表现出一种强化特征 其中 C3~C4 段桩土相对位移 δ 随着桩顶荷载加载的增加逐渐增加, 桩侧摩阻力也相应增大 如果桩端附近桩土相对位移非常小, 桩侧摩阻力就不能得到充分发挥 由以上分析可以得出桩侧摩阻力 q sik 主要与桩侧土体抗剪强度 (c φ) 有效上覆压力(σ) 及桩土相对位移 (δ) 有关 可用如下函数表达 : = f c, ϕσδ,, (1) 3.2. 桩土间相对位移 qsik ( ) 上海中心 SYZA01 黏性土侧阻充分发挥所需的桩土极限相对位移约为 2~6 mm, 进入残余强度约为 62

Figure 10. Curves of pile shaft friction versus pile-soil relative movement (silty clay 6) 图 10. 桩侧摩阻力 桩土相对位移关系曲线 ( 粉质黏土 6 层 ) Figure 11. Curves of pile shaft friction versus pile-soil relative movement (pebble 5, fine sand 9) 图 11. 桩侧摩阻力 桩土相对位移关系曲线 ( 卵石 5 层 细砂 9 层 ) qsik An Bn A2 B2 A1 B1 Figure 12. Curves of pile shaft friction versus pile-soil relative movement at different depths 图 12. 桩侧摩阻力 q sik 桩土相对位移 δ 关系曲线 6~8 mm 上海中心 SYZA02 黏性土侧阻充分发挥所需的桩土极限相对位移约为 2~5 mm, 进入残余强度 约为 3~15 mm [1] o s1 s2 sn CCTV 新址中 TP-A1 黏性土侧阻充分发挥所需的桩土极限相对位移约为 4 mm, 进入残余强度约为 9 mm 经后注浆的砂类土 圆砾及卵石土未观测到侧阻充分发挥所需的桩土极限相对位移 [2] 温州世贸中心 323 m 超高层黏性土侧阻充分发挥所需的桩土极限相对位移约为 17~20 mm, 淤泥质土 侧阻充分发挥所需的桩土极限相对位移约为 13~15 mm [3] δ 63

τ An τ=c+σtanφ τ'=c'+σtanφ' Bn Figure 13. Mohr-Coulomb yield criterion of pile shaft friction 图 13. 桩侧摩阻力摩尔 - 库伦屈服准则 (q sik = τ) P σ C2 C1 桩 δ 曲线 C4 C3 Figure 14. Curves of pile-soil relative movement 图 14. 桩土相对位移 δ 曲线 陈希哲指出桩侧极限摩阻力与所在的深度 土的类别和性质 成桩方法等许多因素有关 但是, 桩 侧摩阻力 q sik 达到极限值所需的桩土相对滑移极限值 δ u 则基本上与土的类别和性质有关, 而与桩径大小 无关, 根据试验资料约为 4~6 mm ( 黏性土 ) 或 6~10 mm( 砂类土 ) [5] 史佩栋指出桩侧摩阻力只要桩土间有不太大的相对位移就能得到充分的发挥, 具体数量目前认识尚 不能有一致的意见, 但一般认为粘性土为 4~6 mm, 砂性土为 6~10 mm 对大直径的钻孔灌注桩, 如果孔 壁呈凹凸形, 发挥侧摩阻力需要的极限位移较大, 可达 20 mm 以上, 甚至 40 mm, 约为桩径的 2.2%, 如 果孔壁平直光滑, 发挥侧摩阻力需要的极限位移较小, 小至只有 3~4 mm [6] 由以上收集的数据分析, 桩侧黏性土 粉土 砂类土发挥极限侧摩阻力需要的极限位移在 20 mm 以 内 孔壁呈凹凸形, 发挥侧摩阻力需要较大的极限位移 经过后注浆处理的土层, 发挥极限侧摩阻力需 要的桩土间极限位移会非常大 3.3. 土层埋置深度对桩侧摩阻力影响 很多国际规范一般认为桩侧摩阻力不仅与桩 土之间的黏聚力和摩擦角有关, 而且与考虑深度的有 效上覆压力有密切关系 BRAJA 提出的经验公式 [7] 如下 : (1) 砂层桩侧摩阻力 f = kσ tanδ (2) 0 当桩入土深度达某一临界深度 ( L ) 后, 砂层桩侧摩阻力就不随深度增加了 L ( 15 ~ 20) D (3) 64

(2) 黏性土层桩侧摩阻力 正常固结土 ( 1 sin ) tan 0 f = ϕ ϕσ (4) R R 超固结土 f ( 1 sinϕ ) tanϕ OCRσ 0 = (5) R R 上述公式参 RO 数意义详见原文 [7] 当桩侧土层埋深较大时, 有效上覆压力对桩侧摩阻力的影响可 能大于土层自身抗剪强度指标的影响 而建筑桩基规范 [8] 提供的桩的极限侧阻力标准值没有考虑土层埋 深的影响 3.4. 桩侧摩阻力实测值与规范取值的对比 上海中心大厦 SYZA02 SYZB01 试验桩桩侧摩阻力实测值与规范取值的对比 [1] 详见表 2 北京 CBD 地区 CCTV 新址桩长 33 m 试验桩桩侧摩阻力实测值与规范取值的对比 [2] 详见表 3 通过实测数据和上述分析, 在桩顶附近 ( 图 14,C 1 ~C 2 段 ) 桩侧摩阻力比建筑桩基规范经验参数小, 出 现了所谓 软化现象, 桩的中下部 ( 图 14,C 2 ~C 4 段 ) 出现比建筑桩基规范经验参数大, 出现了所谓 强 化现象 3.5. 单桩静载试验与工程实际工况的区别 以上模型的建立与分析都是基于单桩静载试验成果基础上的, 由于实际工程中涉及到桩 桩间土及 筏板等相互协调变形问题, 桩与桩间土之间相对位移变得比单桩静载试验工况更加复杂, 因此, 实际工程桩的承载力发挥与单桩静载试验结果会有差异, 桩基设计是应慎重选取单桩静载试验提供的参数 Table 2. Measured pile shaft frictions and friction ranges in specifications of Shanghai Center Tower 表 2. 上海中心大厦桩侧阻力实测值与规范取值 土层序号 实测摩阻力极限值 (kpa) 实测摩阻力残余值 (kpa) SYZA02 SYZB01 SYZA02 SYZB01 规范取值范围 (kpa) 6 20.2 24.9 4.3 8.8 50~60 7 1 49.4 45.8 9.4 32.7 50~75 7 2 96.1 135.3 87.2 135.3 55~80 9 1 224.8 201.8 224.8 192.0 70~90 9 2-1 267.4 212.1 267.4 167.8 70~90 注 : 表中土层描述详见图 1 Table 3. Measured pile shaft frictions and friction ranges in specifications of Beijing CCTV Tower 表 3. 北京 CCTV 新址桩侧阻力实测值与规范取值 土层岩性 状态 实测值 极限桩侧阻力 q sik (kpa) 规范参考值 卵石 5 密实 >300( 国贸 ) 140~170 细砂 5 1 层 中密 密实 >200 64~86 粉质黏土 6 层 可塑 硬塑 26~60 68~84 细砂 9 层 中密 密实 >200 64~86 65

4. 结论及建议 通过本文的分析, 得出以下结论及建议 : (1) 桩侧摩阻力 q sik 主要与桩侧土体抗剪强度指标 (c, φ) 有效上覆压力 (σ) 及桩土相对位移 (δ) 有关 (2) 桩侧土体的有效上覆压力及桩土间相对位移对超长桩桩侧摩阻力的发挥是不可忽视的因素 (3) 实际工程桩的承载力发挥与单桩静载试验桩工况有差异, 建议桩基设计时应慎重选取单桩静载试 验提供的参数 (4) 建筑桩基技术规范 (JGJ94-2008) 提供的桩的极限侧阻力标准值没有主要考虑土层埋深的影响, 建 议在勘察报告中提供桩侧摩阻力时应适当考虑土层埋深的影响 (5) 桩侧摩阻力的发挥还涉及桩侧土层的固结程度 剪胀 剪缩等复杂的力学问题, 本文研究的内容 还有进一步探讨的必要 参考文献 (References) [1] 王卫东, 李永辉, 吴江斌 (2011) 上海中心大厦大直径超长灌注桩现场试验研究. 岩土工程学报, 12, 1817-1826. [2] 邹东峰 (2013) 北京超长灌注桩单桩承载特性研究. 岩土工程学报, 增 1, 388-392. [3] 张忠苗, 贺静漪, 张乾青, 等 (2010) 温州 323 m 超高层超长单桩与群桩基础实测沉降分析. 岩土工程学报, 3, 330-337. [4] 屈智炯 (1987) 土的塑形力学. 成都科技大学出版社, 成都, 124-128. [5] 陈希哲 (2011) 土力学地基基础. 清华大学出版社, 北京, 312-313. [6] 史佩栋 (2008) 实用桩基工程手册. 中国建筑工业出版社, 北京. [7] Das, B.M. (2011) Principles of foundation engineering. GENGAGE Learning, USA, 568-579. [8] JGJ94-2008 建筑桩基技术规范. 中国建筑工业出版社, 北京, 2008. 66