9025603.doc



Similar documents
第四章空氣污染

研究報告標準格式

???`???~

A20511C

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

PM PM PM PM PM PM i

II II

-i-

Microsoft Word - 强迫性活动一览表.docx

GC-APPI-MasCom

TSI 8384/8385/8386 Manual


緒 言 董 事 會 宣 佈, 為 能 更 具 效 率 調 配 本 集 團 內 的 資 金 有 效 降 低 集 團 的 對 外 貸 款, 並 促 進 本 集 團 內 公 司 間 的 結 算 服 務, 於 2016 年 9 月 30 日, 本 公 司 中 糧 財 務 與 管 理 公 司 訂 立 財 務

<4D F736F F D2033A1A25F484A D FBFD5C6F8BACDB7CFC6F820BFC5C1A3CEEFD6D0BDF0CAF4D4AACBD8B5C4B2E2B6A820B5E7B8D0F1EEBACFB5C8C0EBD7D3CCE5B7A2C9E4B9E2C6D7B7A82E646F63>

局 長 序 鋤 禾 日 當 午, 汗 滴 禾 下 土 誰 知 盤 中 飧, 粒 粒 皆 辛 苦 - 李 紳 憫 農 詩 學 童 是 國 家 未 來 的 棟 樑, 是 國 家 盛 衰 之 所 繫, 也 是 社 會 明 日 的 希 望 ; 每 個 孩 子 都 是 具 有 發 展 潛 力 的 個 體, 而

材 料 与 方 法 仪 器 ACQUITY UPLC Xevo TQ-S 三 重 四 级 杆 液 质 联 用 仪 ( 美 国 Waters 公 司 ); 电 喷 雾 离 子 源 (ESI), Masslynx 4.1 数 据 处 理 系 统 (Waters);Thermo 低 温 离 心 机 ;KQ

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe

Microsoft Word - 刘 慧 板.doc

分析物種A及B在管柱中的分離效 果由選擇因子決定 3. Selectivity factor (α)(relative retention)--選擇因子(相對滯留率) α =KB/KA KB KA α 1 KB大 為 樣品愈慢出來 KA小 為 樣品愈快出來 α大表示選擇性高 4.Number of

4

Microsoft Word - Final Chi-Report _PlanD-KlnEast_V7_ES_.doc

Microsoft Word - Entry-Level Occupational Competencies for TCM in Canada200910_ch _2_.doc

「香港中學文言文課程的設計與教學」單元設計範本

全唐诗28

<4D F736F F F696E74202D DB4BFAC4CBFC5B1D0B1C22DA5C3C4F2AED5B6E92DAED5B6E9B0B7B164AAC5AEF0C0F4B9D2BAFBC540BADEB27A2E707074>

Microsoft Word - 0 目录及封面1.doc

一次辽宁暴雨过程的诊断及风场反演分析

2015年廉政公署民意調查

智力测试故事

11 : 1345,,. Feuillebois [6]. Richard Mochel [7]. Tabakova [8],.,..,. Hindmarsh [9],,,,,. Wang [10],, (80 µm),.,. Isao [11]. Ismail Salinas [12],. Kaw

发 行 概 况 发 行 股 票 类 型 : 人 民 币 普 通 股 (A 股 ) 发 行 股 数 : 每 股 面 值 : 每 股 发 行 价 格 : 预 计 发 行 日 期 : 3,438 万 股 人 民 币 1.00 元 元 / 股 ( 通 过 向 询 价 对 象 询 价, 然 后 由 公 司 和

(b) 3 (a) (b) 7 (a) (i) (ii) (iii) (iv) (v) (vi) (vii) 57

Microsoft Word - 荆红卫 板.doc


H 2 SO ml ml 1. 0 ml C 4. 0 ml - 30 min 490 nm 0 ~ 100 μg /ml Zhao = VρN 100% 1 m V ml ρ g

建築污染綜合指標之研究

, GC/MS ph GC/MS I

<4D F736F F D20B0E5C7C5C8C8B5E7A3A8B9ABCABEB1BECDF8C9CFA3A92E646F63>

奇闻怪录

<4D F736F F D205B345DB5D8AE4CACD AECAAFC5C1C9C1DCBDD0AB48A4CEB3F8A657AAED>

高等学校固定资产分类及编码-分栏.doc

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (i) (ii)(iii) (iv) (v)

<4D F736F F F696E74202D20A774B4E2BAD2B242A4C6A658AAABA6C3AC56B3F5A77DBDD5AC64A4CEBEE3AA76AED7A8D2A4CEC0B3A5CE >

( ) 30% ( ) ( ) (CIC) 60% 70% [1]

目 录

30,000,000 75,000,000 75,000, (i) (ii) (iii) (iv)

一、


509 (ii) (iii) (iv) (v) 200, , , , C 57

Microsoft Word - MP2018_Report_Chi _12Apr2012_.doc

南華大學數位論文

李天命的思考藝術

皮肤病防治.doc

性病防治

中国南北特色风味名菜 _一)

全唐诗24

1

I. 1-2 II. 3 III. 4 IV. 5 V. 5 VI. 5 VII. 5 VIII. 6-9 IX. 9 X XI XII. 12 XIII. 13 XIV XV XVI. 16

兒 童 會 4 摩 爾 門 經 本 教 材 專 為 8-11 歲 的 兒 童 設 計 耶 穌 基 督 後 期 聖 徒 教 會 台 北 發 行 中 心 印 行

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

_Chi.ps, page Preflight ( _Chi.indd )

建 设 项 目 环 境 影 响 报 告 表 编 制 说 明 建 设 项 目 环 境 影 响 报 告 表 由 具 有 从 事 环 境 影 响 评 价 工 作 资 质 的 单 位 编 制 1. 项 目 名 称 指 项 目 立 项 批 复 时 的 名 称, 应 不 超 过 30 个 字 ( 两 个 英 文

我 非 常 希 望 该 小 组 的 建 议 尤 其 是 其 执 行 摘 要 能 受 到 将 于 2000 年 9 月 来 纽 约 参 加 千 年 首 脑 会 议 的 所 有 领 导 人 的 注 意 这 次 历 史 性 的 高 级 别 会 议 提 供 了 一 个 独 特 的 机 会 使 我 们 能 够

環境賀爾蒙或內分泌干擾物\(endocrine disrupting chemical\)系指環境中一些類似生物體內雌激素\(estrogenic\)或抗雄激素\(antiandrogenic\)


2. 我 沒 有 說 實 話, 因 為 我 的 鞋 子 其 實 是 [ 黑 色 / 藍 色 / 其 他 顏 色.]. 如 果 我 說 我 現 在 是 坐 著 的, 我 說 的 是 實 話 嗎? [ 我 說 的 對 還 是 不 對 ]? [ 等 對 方 回 答 ] 3. 這 是 [ 實 話 / 對 的

KM-康姆德单页

建築工程品質管理案例研討

南華大學數位論文

第十一章 颈部疾病病人的护理

<4D F736F F D20D6D8C7ECC0B3C3C0D2A9D2B5B9C9B7DDD3D0CFDEB9ABCBBEB1A8C5FAB0E6>

捕捉儿童敏感期

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

Microsoft Word 招股意向书

<4D F736F F D203938BEC7A67EABD7B942B0CAC15AC075B3E6BF57A9DBA5CDC2B2B3B92DA5BFBD542E646F63>

Thesis for the Master degree in Engineering Research on Negative Pressure Wave Simulation and Signal Processing of Fluid-Conveying Pipeline Leak Candi

國家圖書館典藏電子全文

Microsoft Word - 中三選科指南 2014 subject

Microsoft Word htm

Transcription:

Investigation of the Characteristics and the Sources of Polycyclic Aromatic Hydrocarbons in the Atmosphere

Department of Environmental Engineering and Management, Chaoyang University of Technology Thesis for the Degree of Master Investigation of the Characteristics and the Sources of Polycyclic Aromatic Hydrocarbons in the Atmosphere (Hsi-Hsien Yang) (Chia-Mei Chen) 17, July 2003

(Polyclic Aromatic Hydrocarons, PAHs) PS-1 PAHs 21 PAHs (GC/MS) 20 PAHs (ISCST3) (Cluster analysis) (Chi-square test) (CMB) CMB (1) PAHs (2) ISCST3 PAHs PAHs PAHs (3) PAHs PAHs PAHs (4) CMB PAHs (5) CMB 8.0 20 PAHs 36.5% 4.03% 47.9% 8.33% 3.21% (6) CMB 8.0 CMB PAHs CMB PAHs -I-

Abstract The characteristics and the sources of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere were investigated. Particulate and PAHs samples were collected by high volume samplers, micro-orifice uniform deposit impactor (MOUDI), dry deposition sampling devices and wet deposition sampling devices. Twenty-one PAHs were analyzed by a gas chromatography/mass spectrometer (GC/MS). ISCST3 model, cluster analysis, chi-square test and chemical mass balance (CMB) receptor model were used to identify and quantify the PAHs emission sources. The results of CMB modeling were validated by emission inventories and ground-based trajectories.the results of this study are as follows: (1) The concentration, dry deposition, wet deposition and the particle size distributions of the particulate matter and PAHs in the atmosphere of the central Taiwan were characterized in this study. (2) The results of ISCST3 model analysis showed that the contribution of PAHs from the municipal solid waste incinerator (MSWI) was insignificant for the seven sampling sites. However, the results of cluster analysis and chi-square test indicated the atmospheric PAHs profiles at these sampling sites were correlated to that of MSWI. (3) Seven low reactive PAHs did not provide good estimation for CMB model analysis. The reason could be that less species were chosen. (4) The validation of CMB model analysis for particulate phase PAHs was not well examined by ground-based trajectories. The results showed that total (gas + particulate) phase PAHs should be considered for CMB analysis. (5) CMB receptor model for PAHs showed that the apportionment of the sources are: mobile source 36.5%, heavy oil combustion 4.03%, natural gas combustion 47.9%, coal combustion 8.33% and diesel combustion 3.21% (6) The validation of CMB model analysis with emission inventories and ground-based trajectories showed that CMB could be used to apportion source emission of PAHs. -II-

-III-

...I... II... III...IV...IX... XII... 1 1-1... 1 1-2... 2... 3 2-1 PAHs... 3 2-1-1 PAHs... 3 2-1-2 PAHs... 3 2-1-3 PAHs... 8 2-1-4 PAHs... 13 2-1-5 PAHs... 17 2-1-6 PAHs... 19 2-1-7 PAHs... 23 2-1-8 PAHs... 24 -IV-

2-2... 26 2-2-1... 26 2-2-2... 27 2-2-3... 28 2-2-4... 31 2-3... 33 2-3-1... 34 2-3-2 PAHs... 36 2-3-3 PAHs... 39 2-4... 41 2-4-1... 41 2-4-2... 42 2-4-3... 43 2-5 ISC... 46 2-5-1 ISC... 48 2-5-2... 49 2-6... 51 2-6-1... 51 2-6-2... 53 2-6-3 CMB... 56 2-6-3-1 VOCs... 56 2-6-3-2 PAHs... 58 2-6-4 CMB... 63... 65 3-1... 65 -V-

3-1-1... 65 3-1-2... 66 3-2... 67 3-2-1... 67 3-2-1-1 PS-1... 67 3-2-1-2... 73 3-2-2... 77 3-2-3... 80 3-2-4... 81 3-3 PAHs... 84 PAHs... 88 4-1... 88 4-1-1... 88 4-1-2... 88 4-1-3... 88 4-1-4... 89 4-2... 89 4-2-1... 89 4-2-2... 89 4-3... 92 4-4... 94 4-4-1... 94 4-4-2... 94 4-5... 95 -VI-

4-6 PAHs...105 4-7... 111... 112 5-1... 112 5-1-1... 112 5-1-2 PAHs... 114 5-1-2-1 PAHs... 114 5-1-2-2 PAHs... 116 5-1-2-3 PAHs...120 5-2...122 5-2-1...122 5-2-2 PAHs...126 5-3...127 5-4...130 5-4-1...130 5-4-2 PAHs...131 5-4-3 PAHs...134 5-5 PAHs...140 5-5-1 ISCST3...140 5-5-1-1 ISCST...140 5-5-1-2 ISCST...144 5-5-2 PAHs...147 5-5-2-1 PAHs...147 5-5-2-2 PAHs...148 -VII-

5-5-2-3...152 5-5-2-4...153 5-5-3...155 5-5-3-1...155 5-5-3-2...163 5-5-3-3 PAHs...167 5-5-3-4 PAHs...173 5-5-4...174 5-5-4-1 CMB 8.0...174 5-5-4-2 PAHs...177 5-5-5 CMB...189...197 6-1...197 6-2...199...200...224 -VIII-

-IX- 2-1-1 21 PAHs... 5 2-1-2 PAHs 25 C (Eπ)... 7 2-1-3 21 PAHs... 12 2-1-4 PAHs... 13 2-6-1 PAHs... 62 3-1-1... 66 3-2-1 MOUDI... 74 4-2-1 PAHs... 91 4-3-1 GC/MS... 93 4-4-1 PAHs (Chem Service)...102 4-4-2 PAHs (Gravimetric Certificate)...102 4-4-3 PAHs 10 µg ml -1 GC/MS..103 4-4-4 PAHs 10 µg ml -1 GC/MS...104 4-5-1...106 4-5-2 PAHs...107 4-6-1 21 PAHs GC/MS...108 4-6-2 21 PAHs GC/MS...109 4-6-3 21 PAHs... 110 5-1-1... 112 5-1-2 PAHs... 115 5-1-3 PAHs... 116

5-1-4 PAHs... 118 5-2-1...124 5-2-2...125 5-3-1 21 PAHs...128 5-3-2 PAHs...129 5-4-1 PAHs MMD o g, o...138 5-4-2 PAHs MMD g...139 5-5-1...143 5-5-2...143 5-5-3 ISCST3 PAHs...145 5-5-4 PAHs...149 5-5-5 PAHs...150 5-5-6...154 5-5-7...158 5-5-8...161 5-5-9...162 5-5-10...162 5-5-11...162 5-5-12 PAHs...168 5-5-13 PAHs...168 5-5-14...168 5-5-15...169 5-5-16...170 5-5-17 PAHs...171 5-5-18 PAHs...172 -X-

5-5-19 PAHs (%)...172 5-5-20 PAHs (%)...176 5-5-21 CMB 8.0 20 PAHs...178 5-5-22 CMB 8.0 8 PAHs...181 5-5-23 CMB 8.0 20 PAHs...184 5-5-24 CMB 8.0 8 PAHs...185 5-5-25 CMB 8.0 20 PAHs -...188 -XI-

2-1-1 Bap DNA... 11 2-4-1... 42 3-1-1... 65 3-2-1 PS-1... 68 3-2-2... 70 3-2-3 PS-1... 72 3-2-4 PS-1... 72 3-2-5 MOUDI... 74 3-2-6 MOUDI... 76 3-2-7... 78 3-2-8... 79 4-2-1... 90 4-4-1 Nap, AcPy, Acp Flu... 96 4-4-2 PA, Ant, FL Pyr... 97 4-4-3 CYC, BaA, CHR BbF... 98 4-4-4 BkF, BeP, BaP PER... 99 4-4-5 IND, DBA, BbC BghiP...100 4-4-6 COR...101 5-1-1... 113 5-1-2 PAHs...121 5-2-1 (a) (b)...123 5-2-2 PAHs...126 5-3-1 PAHs PAHs...129 -XII-

5-4-1...132 5-4-2 PAHs...133 5-5-1...141 5-5-2 ISC...142 5-5-3 PAHs...151 5-5-4...153 5-5-5 PAHs...165 5-5-6 PAHs...166 5-5-7 PAHs PAHs...173 5-5-8 20 PAHs...179 5-5-9 8 PAHs...182 5-5-10 20 PAHs ( MSWI)...189 5-5-11...193 5-5-12...194 5-5-13 CMB 20 PAHs...195 5-5-14 CMB 8 PAHs...196 -XIII-

1-1 (Polycyclic Aromatic Hydrocarbons, PAHs) 30 PAHs PAHs PAHs PAHs PAHs PAHs PAHs PAHs PAHs PAHs PAHs PAHs PAHs (Receptor model) (CMB) PAHs CMB 21 PAHs PAHs 20 PAHs (ISCST3) (Cluster analysis) -1-

(Chi-square test) (CMB) CMB 1-2 PS-1 PAHs 1. PAHs PAHs PAHs 2. PAHs 3. 21 PAHs PAHs PAHs PAHs 4. PAHs PAHs (MMD) ( g ) 5. ISCST3 6. 20 PAHs (CMB) CMB -2-

2-1 PAHs 2-1-1 PAHs 1775 Pott Pott, 1775 (Polycyclic Aromatic Hydro-carbons PAHs) PAHs 1930 PAH Dibenz(a,h)anthracene (DBA) 1933 Benzo(a)pyrene (BaP) Cook, 1933 1976 30 PAHs PAHs Dipple, 1976 PAHs PAHs (Soot) BaP PAHs PAHs 82 Clean Air Act, Title 30 (Polycyclic Aromatic Hydrocarbons, PAHs) / 2-1-2 PAHs PAHs 21 PAHs 2-1-1 21 PAHs PAHs -3-

2-1-1 16 PAHs Benzo(a)anthracene Benzo(a)pyrene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Indeno(1,2,3,c-d)pyrene Dibenzo(a,h)anthracene Bezno(g,h,i)perylene 8 PAHs Menzie et al, 1992 PAHs PAHs PAHs 82 PAHs 333 PAHs 1896 Karcher, 1983; Zandere, 1985; USEPA, 1987 PAHs (gas phase vapor phase) (particle phase) 2-1-2 21 PAHs ( 25 ) (Electrophilic reaction, Eπ) PAHs 10-2 ~ 10-11 atm (Semi-Volatile Organic Compounds, SVOCs) 10-8 atm 230 PAHs SVOCs PAHs 2000 PAHs PAHs PAHs Eπ PAHs PAHs Bjørseth and Ramahl, 1985; Dias, 1987; Ebert, 1988; Li and Kamens, 1993-4-

2-1-1 21 PAHs ( o C) ( o C) Naphthalene Nap 128 81 218 Acenaphthylene AcPy 152 93 270 Acenaphthene Acp 154 96 279 Fluorene Flu 165 117 294 Phenanthrene PA 178 101 340 Anthracene Ant 178 216 340 Fluoranthene FL 202 111 383 Pyrene Pyr 202 156 404 Cyclopenta[c,d]pyrene CYC 228 N.A. N.A. Benz[a]anthracene BaA 228 162 400 Chrysene CHR 228 256 448 Benzo[b]fluoranthene BbF 252 168 481 Benzo[k]fluoranthene BkF 252 217 481-5-

2-1-1 21 PAHs ( ) ( o C) ( o C) Benz[e]pyrene BeP 252 179 493 Benzo[a]pyrene BaP 252 177 496 Perylene PER 252 278 NR Indeno[1,2,3-cd]pyrene IND 276 N.A. 534 Dibenz[a,h]anthracene DBA 278 270 535 Benzo[b]chrycene BbC 278 294 N.A. Benzo[ghi]perylene BghiP 276 278 542 Coronene COR 300 439 525 N.A. -6-

2-1-2 PAHs 25 C (Eπ) PAHs (mmhg) (µg L -1 ) Nap 7.8 10-2 31700 13.68 AcPy 6.7 10-3 N.A. N.A. Acp 2.15 10-3 3930 N.A. Flu 6.0 10-4 1980 N.A. PA 1.2 10-4 1290 19.45 Ant 6.0 10-6 73 19.31 FL 9.2 10-6 260 N.A. Pyr 4.5 10-6 135 22.51 CYC N.A. N.A. N.A. BaA 2.1 10-7 N.A. 25.10 CHR 6.4 10-9 2.0 25.19 BbF N.A. 2.0 N.A. BkF N.A. N.A. N.A. BeP 5.6 10-9 3.8 28.34 BaP N.A. 0.05 (20 C) 28.22 PER N.A. 0.4 28.25 IND N.A. N.A. N.A. DBA N.A. N.A. 30.88 BbC N.A. N.A. 30.84 BghiP N.A. 0.3 31.43 COR N.A. 0.1 34.57 N.A. Eπ -7-

PAHs PAHs 10-6 mmhg PAHs PAHs (Condensation) (Adsorption) Brostroem and Loevblad, 1991 PAHs ( ) 10-6 mmhg 10 µm 2000 PAHs PAHs PAHs PAHs 25 Nap 31.7 mg L -1 CHR 0.002 mg L -1 Babara and Kames, 1986 PAHs 2000 2-1-3 PAHs PAHs PAHs (Causative agent) (Automobile Exhaust Condensate, AEC) Katz (1980) 5 µm 70~90% Grimmer (1983) 4~7 PAHs PAHs PAHs (C + ) DNA (Complementary base pair) T-A G-C (Cross-linking) -8-

DNA Josephson, 1984 (Ames) (Salmonella/Microsome reversion assay) Hecht, 1988 PAHs PAHs BaA CHR BbF BkF Bep BaP IND DBA Bghip BaP 2-1-1 P-450 BaP BaP-7,8-Arene Oxide epoxide hydrolase BaP-7,8-Dihydrodiol P-450 BaP-7,8-Dihydrodiol 9,10-Epoxide DNA BaP-7,8-Dihydrodiol 9,10-Epoxide I-Deoxyguanosine adduct Rathore, 1991 BaP PAHs Promutagens PAHs (Direct acting mutagens) Perera and Ahmed (1979) 1 ng BaP 5% Levin et al. (1985) PAHs BaP Laskin (1970) SO 2 BaP SO 2 2-1-3 (International Agency for Research on Cancer, IARC) (USEPA) (National Academy of Sciences, NAS) PAHs NAS, 1983; IARC, 1987; -9-

USEPA, 1991 IARC PAHs 2 A B 3 2 B2 PAHs D (Not classifiable) 2-3 S (Sufficient evidence) L (Limited evidence) I (Inadequate evidence) No Bjørseth and Becher, 1986 PAHs PAHs Tuominen (1988) 2~3 PAHs (Nitro-PAHs) (Screening test) PAHs ( PMS) PAHs ( Nitro-PAHs Choloric-PAHs ) (Activation) 2-1-4 Longwell, 1982 CYC epoxide PAHs Davis et al., 1987-10-

2-1-1 Bap DNA -11-

2-1-3 21 PAHs PAHs IARC USEPA NAS Nap 0 AcPy 0 Acp Flu 3 D I PA 3 D 0 I Ant 3 D 0 L FL 3 D + No Pyr 3 D 0 No CYC + L BaA 2A B2 + S CHR 3 B2 0/+ L BbF 2B B2 S BkF 2B B2 S BeP 0/+ I BaP 2A B2 ++ S PER 3 0 I IND DBA 2A B2 S BbC BghiP D + I COR 3 0/+ I 1. IARC 2A 2B 3 2. B2 PAHs D 3. S L I No S -12-

2-1-4 PAHs (µg ml -1 ) PMS PMS PMS PMS Bap 1 20 0.25 20 PA 53 53 9 9 FL 1 10 0.4 10 CYC 1.4 9 1.6 20 CYC epoxde 1.5 0.17 4.8 0.097 Longewll (1982). 2-1-4 PAHs PAHs (Pyro1ysis) PAHs PAHs PAHs PAHs 2000 ( ) PAHs PAHs Tuominen, 1988 Wybranies and Jong (1996) Cracow, Poland PAHs Harrison Sisovic (Birmingham) Zagreb PAHs 88% BaP BaP PAHs Harrison -13-

et al., 1996; Sisovic and Fugas, 1997 Mi (1996) ( 40 km hr -1 80 km hr -1 110 km hr -1 ) ( ) PAHs PAHs (5210 µg L -1 ) PAHs (3720 µg L -1 ) (1997) PAHs PAHs (49200 µg L -1 ) PAHs (1810 µg L -1 ) (1999) PAHs 27.2 mg min -1 18.3 mg min -1 14.6 mg min -1 7.31 mg min -1 2.41 mg min -1 1.89 mg min -1 (1995) PAHs 31 µg km -1 PAHs 19.6 µg km -1 (1994) PAHs 10 Sheu et a1. (1996) 1.0 2.5 10 µm PAHs 50.9 74.2 90.8% (1998) PAHs 87.8% PAHs PAHs 91.8% Barfknecht (1983) PAHs 10 PAHs Maschet et al. (1986) PAHs FL Pyr COR ( ) PAHs PAHs -14-

(Smoky coal) Mumford et al., 1987 PAHs PAHs 3,000 µg m -3 PAHs BaP 60 µg m -3 Ramdahl et al., 1982 Greenberg (New Jersey) PAHs 98% BaP Greenberg et al., 1985; Harkov and Greenberg, 1985 Michael et al. (1998) 70% 20~30% Teschke et al. (1989) Berg et al., 1988; Lofroth et al., 1991 (1994) ( ) PAHs PAHs PAHs Bjørseth Bjørseth and Ramahl, 1983 PAHs 19 µg kg -1 10 µg kg -1-15-

1 µg kg -1 (1999) PAHs 4350 µg kg -1 6050 µg L -1 2670 µg Kw -1 h -1 (1998) PAHs (3.10 mg L -1 ) (27.0 mg L -1 ( ) PAHs PAHs Akio and Youki (1987) PAHs 1,700~3,000 Wey and Shi (1997) PAHs Bjørseth and Ramahl (1983) PAHs 17 mg kg -1 240 mg kg -1 Li et al. (1994) PAHs PAHs 1782 µg Nm -3 PAHs 6 µg g -1 PAHs 92% (1640 µg m -3 ) Li et al. (1995) PE PAHs PAHs PAHs PAHs ( ) PAHs (Coke) PAHs PAHs Trenholm and Beck, 1978 15 g ton -1 (Sintering) PAHs PAHs Bjorseth and Ramahl, 1983 (1999) PAHs 2140 µg -16-

Nm -3 2 Nap (86.5%) 7 COR (0.013%) (1998) PAHs PAHs 77.0~3970 µg kg -1 BaP 1.87~15.5 µg kg -1 ( ) PAHs PAHs PAHs Hoffman et al., 1984; Hoffman et al., 1985 2-1-5 PAHs PAHs PAHs (Pyrolysis) (Carbonization) Edwards, 1977 1. PAHs Badger PAHs Badger and Spotswood (1960) BaP BaP PAHs -17-

Frenklach (1985) PAHs A i + H A i +H 2 A i + C 2 H 2 A i C 2 H 2 A i C 2 H 2 +C 2 H 2 A i+1 +H A i i (I = 0~ ) Crittendern and Long (1976) (Styrene) PAHs PAHs PAHs PAHs PAHs Bjørseth and Ramahl, 1983 PAHs (Dehydrogenation) (Polymerization) 2000 2. (Carbonization process) PAHs (200 ) PAHs -18-

2000 Chen et al. (1997) PAHs 69.1% PAHs 1 µm 2.5 µm PAHs 73.9% PAHs ( 93%) 10 µm 2-1-6 PAHs PAHs (Sub-micron-sized soot particle) Baek et al., 1991 PAHs ( ) 10-6 mmhg 10 µm PAHs Langmuir Langmuir PAHs Yamasaki et al., 1982 Langmuir : log K y =log C g / (C p / TSP) =-a (1/ T+b) (2-1) K y = - C g / (C p / TSP) = C g = PAHs C p = PAHs TSP= T= A,B= C g -19-

PAHs 10-6 mmhg PAHs PAHs PAHs PAHs Beck et al., 1991; Brostroem and Loevblad, 1991; Rudolph and Neue, 1991 1. 2. 3. 4. PAHs (Primary pollutants) (NO 2 -AR/PAH) PAHs 290~400 nm PAHs PAHs 2000 Mcdow (1994) PAHs (Methoxyphenols) (Hexadecare) PAHs BaA BaP Jang Mcdow (1997) BaA 9, 10-anthraquinone 9-xanthone vaillin BaA benzo[a]anthracene-7 12-dione phthalic acid phthalic anhydride 1, 2-benzenedicar-boxaldehyde Sanders (1993) 11 PAHs Anthracene Benzo(a)pyrene Fluoranthene -20-

PAHs PAHs PAHs PAHs / (Blow-off) PAHs PAHs PAHs Bidleman et al., 1986 PAHs / Vaeck et al., 1984 1. PAHs 2. PAHs 3. PAHs 4. PAHs ; PAHs PAHs (Aging prosecc) PAHs Vaeck et al., 1984 Thrane Mikalsen (1981) CHR 1% 25% PAHs Coutant (1988) PAHs PA Ant 30~90% 5 PAHs PAHs Coleinar (1997) 1991~1995 PAHs -21-

PAHs 20~150 ng m -3 PAHs Sheu et al. (1996) PAHs PAHs 0.32 cm s -1 0.23 cm s -1 PAHs 0.22 0.188 cm s -1 Aceves Grimalt (1993) PAHs PAHs Lee et al. (1995) PAHs 46.1% 18.7% 20.6% PAHs ( ) 5.3 8.3 PAHs (1995) PAHs 19870 2187 798 775 ng m -3 PAHs 54% 31% 10% 8.0% (Respirable particulate) PAHs PAHs (Cascade impactor) Vaeck (1979) Sierra Anderson PAHs PAHs 2.5 µm 20% PAHs Aceves Grimalt (1993) PAHs 1.5 µm PAHs Venkatarainan Fried1ander (1994) mode mode I -22-

mode II PAHs PAHs 85% PAHs 0.12 µm PAHs 0.05~0.12 µm (mode I) 0.5~1.0 µm (mode II) Allen (1997) Oxygenated PAH (OPAH) OPAH PAHs OPAH 168~208 OPAH ( 2 µm) ( 2 µm) 248 OPAH 2-1-7 PAHs PAHs PAHs Davies et al., 1976; Eiceman et al., 1981; Colmsjo et al., 1986 PAHs PAHs PAHs PAHs PAHs Hangebrauck (1967) PAHs 95% 87% Davies (1976) PAHs FL Pyr BaA + CHR BeP + BaP IND COR 58 49 171 147 < 10 < 20 µg kg -1 PAHs 0.62 0.54 0.64 0.14 < 0.01 < 0.01 µg kg -1 Huynh -23-

(1984) 70% PAHs 25% Morselli (1989) PAHs AcPy Flu CHR BkF BaP 223 636 108 135 5490 µg kg -1 (1997) PAHs 0.03% ~ 8.96% 2.28% PAHs Rantanen (1993) ( 50 ppm 20% 49) 56% 74% Westerholm (1986) 70% PAHs 30% PAHs PAHs 2-1-8 PAHs PAHs PAHs PAHs PAHs -24-

1999 PAHs 1999 1. PAHs 2. PAHs PAHs ( ) PAHs 1999 1. (Dry Deposition) ( ) PAHs PAHs 2. (Wet Deposition) : (1) (rainout) (interception) (impaction) 1 µm (2) (washout) -25-

1 µm 2-2 (Nonprecipitation) Wu et al., 1992 (Eddy diffusion) Noll et al., 1988 2-2-1 (Aerodynamic transport) (Viscous sublayer) (Boundary layer transport) (Bounce-off) (Resuspension) 1/Vd = Ra + Rb + Rc (2-2) Ra = (Aerodynamic resistance) Rb = (Boundary layer resistance) Rc = (Surface resistance) -26-

1995 2-2-2 Hicks (1986) (Suface analysis) (Atmospheric Flux) (Surrogate suface) (Through-Fall) (Foliar Extraction) (Vertical gradient method) (Eddy correlation method) (Variance method) Davison (1985), 1995-27-

Holsen et al. (1992) Lin et al. (1993) 2-2-3 Sehmel (1980) 1. 0.1 µm (Brownian diffusion) (Eddy diffusion) 0.1 µm (Diffusion) -28-

2. 3. 24 Wu (1992) 4 8 12 17 Vandberg Knoerr (1985) ( ) Davidson (1985) Noll (1988) 65% 2.8-29-

(1994) Wu (1992) Holsen Noll (1992) Mylar 8 mg (Apiezon L Grease) 8 µm (1995) 20 mg (silicon grease) (1994) Ibrahim (1983) 7.5 µm 0.7 µm 15 Milford Dacidson (1987) (Mass Median Diameter, MMD) Nicholson (1988) Coe and Lindberg, 1987; Noll et al., 1988, 1990 Sehmel (1980) Davies Nicholson (1982) Sehmel Hodgson -30-

(1987) Gould Dacidson (1992) Wesely (1977) Ibrahim (1983) 40% Sehmel Hodgson (1987) Hillamo (1993) 0% 99% 8.5 2-2-4 Z : Vd = F C ( z) (2-3) Vd F C (z) Z (Downward flux) (Resistance) -31-

Ra Rb Rc Vd = 1 Ra + Rb + Rc (2-4) Ra Rb Rc (mg m -2 day -1 ) (µg m -3 ) 1~15 10~15 cm/s 0.001~180 Sehmel, 1980 1~20 µm 20 µm Sehmel (1980) 0.1 µm 0.1~1 µm 1 µm Noll et al., 1990; Holsen et al., 1992; Ottley et al., 1993 Mcveety Hites (1998) PAHs 0.5 0.13 cm s -1 PAHs 0.13~1.1 cm s -1 PAHs ( 2.5µm ) ( 0.1 µm 2.5 µm ) ( 0.1 µm) -32-

Holsen and Noll, 1992 Ligocki et al. (1985) PAHs (Washout) PAHs Mcveety Hites (1988) PAHs Siskiwit PAHs 9 Sheu et al. (1996) PAHs PAHs 0.31~3.2 µm PAHs (1998) PAHs 1.88% PAHs Nap AcPy 27.0% 36.5% PAHs 3.05% 95% 2-3 Lee et a1., 1993 ( ) -33-

1999 2-3-1 Van Noort (1985) (In-cloud) (Below-cloud) (Diffusion) (Interception) (Impaction) ( ) Franz, 1998 Lee et al. (1993) Slinn et al., 1978 1992-34-

1999 0.1 µm 1992 (1) (2) (3) -35-

1992 1999 Lovett and Kinsman, 1990 ( ) Horstmann and Mclachlan, 1998 1999 2-3-2 PAHs PAHs (Henry s low constant) Slinn et a1., 1978; Eisenreich et al., 1981 Butler (1981) PAHs -36-

PAHs PAHs Paul et al., 1985 PAHs PAHs PAHs Van Noort, 1985; Bidleman, 1988 - (Air-water coefficient) PAHs 2~4 PAHs Franz, 1998 (1998) PAHs PAHs PAHs 73% PAHs 27% Khemani (1985) Koelmans (1997) (Hydrophobic organic compounds) -37-

(Partition coefficient) PAHs ( ) 1996 PAHs PCBs 0.5 µm 0.5 µm 1999 Slinn (1978) ( ) / H(T) (atm m -3 mol) C v,atm (ng m -3 ) : C v,atm = 10 3 Cr H(T) / R T (2-5) (Washout) (2-6) (2-7) Slinn et al., 1978; Dickhut and Gustafson, 1995 W g = C d,rain / C v,atm (2-6) -38-

W p = C p,rain / C p,atm (2-7) C d,rain = (ng L -1 ) C p,rain = (ng L -1 ) W p = [(ng L -1 ) precipitation / (ng L -1 )air] Poster (1996) PAHs PAHs (< 0.05 µm) 0.05~1 µm S1inn et al., 1978; Wang, 1998 0.1~10 µm 0.5 µm (WD, F) [C p,r > 0.5 µm] / [ C p,air > 0.5 µm] (WD, nf) [C p,air < 0.5 µm] / [ C p,air < 0.5 µm] C p,air < 0.5 µm S1inn et al., 1978; 1999 2-3-3 PAHs 1992 - MaCkay and Paterson, 1998-39-

PAHs PAHs (Soot carbon) PAHs PAHs 1996 (1) (2) (3) PAHs Readman, 1984; Boulzubassi, 1991; Brornan, 1991 ( PAHs) Poster and Baker (1996) (W g ) [C d ] / [C g ] [C d ] [C g W p [C p ] / [C p, air ] [C p ] [C p, air ] [C p, air ] / [C g + C p, air ] W p 2000 106 Bidleman, 1988 W g 900 31000 Ligocki et al., 1985-40-

2-4 2-4-1 PAHs (Nucleation) (Coagulation) (Adsorption) (1) (2) (3) (4) (5) (1) (2) (3) (4) Perera, 1980 2000 : (1) 0.1 µm (2) 0.1~2 µm 1 (3) 2 µm 2-4-1 Frederica, 1980-41-

µ 2-4-1 Frederica, 1980 2-4-2 2000-42-

5 µm 5 µm 2 µm 2000 2-4-3 (TSP) ( PM 10 ) (Respirable suspended particulate PM 2.5 ) 2.5 µm 2.5 µm Watson et al., 1998a (Coarse mode) (Accumulation mode) (Nucleation mode) Watson et al., 1998a; Lundgren and Burton, 1995 0.08 µm 0.08 µm ~ 2 µm 2 ~ 3 µm -43-

Lundgren and Burton, 1995 PM 10 PM 2.5 1993 8 ~ 1994 3 5 2 Hi-vol PM 10 Dichotomous PM 10 PM 2.5 50.5% ~ 60.6% PM 10 PM 2.5 1994 3.2 ~ 5.6 µm 0.56 ~ 1.0 µm 1999 ( ) SO 2-4 NO - 3 NH + 4 1999 Li and Okada (1999) 100 km (0.2 ~ 4 µm) Pierce Katz (1975) Toronto PAHs -44-

5 µm 85~90% 70~85% Vaeck (1979) 85~90% 90~95% PAHs Aceves (1993) 0.5 µm PAHs 1.5 PAHs (MW 202) Venkataraman Friedlander (1994) PAHs PAHs 85% PAHs 0.12 µm 0.5~1.0 µm PAHs 0.05~4.0 µm 0.05~0.12 µm (model I) 0.5~1.0 µm (model ) Model I model Accumulative mode (1995) PAHs 1.0 µm 1.0 µm (1996) PAHs PAHs 5.6~10 µm 0.31~0.52 µm 0.31~3.2 µm 0.52~1.0 µm (Cumulative distribution) MMD (Mass median of diameter) g -45-

(Geometric standard deviation) 2.5 µm ( 2.5 µm) ( 2.5 µm) (Mass median diamneter, MMD) 50% Pierce Katz (1975) CHR BaA BaP BkF PER BghiP Ant COR PAHs MMD 2.0~2.8 µm 1.2~1.6 µm PAHs Katz Chen (1980) Hamilton PAHs BghiP BaP BeP BkF MMD 1.79 2.21 1.42 1.35 µm (1995) PAHs MMD 0.48 1.61 1.19 µm (1996) PAHs MMD 1.61 1.28 0.84 1.67 µm PAHs MMED (Mass mean equivalent diameter) TSP PAHs (Aging process) Vaeck et al., 1979; Vaeck, 1985 2-5 ISC (Industrial source complex, ISC) U.S. EPA 1970 (Steady-state) ( ) ISC ISCST3 (Industrial source complex -46-

short-term) (U.S. EPA, 1995) ISC ( ) ( ) ISCST3 ISCST3 1. (Control pathway) ( ) ( ) 2. (Source pathway) UTM (m) (g s -1 ) (m) (K) (m s -1 ) 3. (Receptor pathway) UTM (m) 4. (Meteorology pathway) -47-

5. (Output pathway) (1) (2) Overall (3) 2-5-1 ISC ISCST3 (Downwash) x y x z x y -48-

C ( x, y) = QKVD 2πu σ σ s y z y exp 0.5 σ y 2 (2-8) : C (x, y) (x (m), y (m)) Q ( / ) K ( Q g s -1 µg m -3 ) V ( ) D σ y σ z (m) u s (m s -1 ) (2-8) ( 0.1 µm) 2-5-2 ISC (1992) ISC -49-

(1994) ISC SO 2 Pasquill ISC (1999) 1997 ISC3 MESOPUFFII SO 2 (1999) ISC PM 10 PM 10 PM 10 (2000) ISC CMB (2000) PM 10 ISC PM 10 (2000) ISC (2000) ISC Hao et al. (2000) ISCST3-50-

Lorber et al. (2000) ISCST3 10 Basham and Whitwell (2000) ISCST3 Honaganahalli and Seiber (2000) Salinas Valley ISCST3 CAMET ISCST3 0.7 CALPUFF 0.55 0.82 Ma et al. (2002) ISCST3 8 km 8 km 2-6 2-6-1 (Source model) (Receptor model) (Dispersion model) (Emission strength) -51-

(Finger print) 2000 1970 1973 Friedlander (1973) Hopke, 1991 U.S. EPA, 1984; U.S. EPA, 1990 Eulerian Langrangian 1998-52-

(Tracer) 1998 20~30% (Chemical mass balance, CMB) Belsley et al., 1980 (Multivariate receptor model) (Principal component analysis) (Factor (Multiple linear regression) 2-6-2 CMB CMB 1972 Miller Friedlander Hidy (Chemical element balance CEB) Hopke, 1985 1996 1980 Cooper Waston (CMB) -53-

Cheng, 2001 C i = p j= 1 α F ij ij S j (2-9) C i i α ij i F ij j i S j j i j α 1 (2-9) C i (2-10) S j C i = p j= 1 F ij S j (2-10) CMB C = F S (2-11) C = n 1 n F = n p p S = p 1 p -54-

(Tracer property solution) (Linear least-square fitting) Watson, 1984 Waston Watson, 1984 1. (Composition) 2. 3. 4. 5. 6. CMB Glover (1991) CMB (Granite City) PM 10 CMB (Source profile) Sharma Patial (1994) Chow (1992) (San Joaquin Valley) PM 10 Bakerfield (54%) -55-

(15%) (10%) (8%) 4% Waston (1994) Chow (1995) (San Joaquin) PM 10 45% 15~20% 5% Vega (1997) CMB PM 2.5 PM 2.5 50% 38% Chen (1997) ( 2.5 µm) ( 2.5 µm ) 2-6-3 CMB 2-6-3-1 VOCs (Volatial organic compounds, VOCs) VOCs Carter, 1994 1971 VOCs Seinfeld (1991) VOCs ( ) VOCs 2~4-56-

VOCs VOCs NMHC 33% 31% 15% 1% 8% 1998 VOCs CMB CMB 8.0 Watson, 1998b Fujita, 1998 Fujita et al. (1997) CMB VOCs CMB 6.6~10 Fujita et al. (1998) CMB VOCs VOCs 60~70% 10~13.5 % 2~19% 3~10% 1% VOCs VOCs 3.9~7.9 2~4 Conner et al. (1995) Lin and Milford (1994) Lewis et al. (1998) 1990 Canister VOCs CMB ( ) Lin and Milford (1994) 2 61~65 % 4~8.2% Conner Lewis VOCs Conner 20~30% Conner CMB ( -57-

MOBILE ) NMOC 10% 30% NMOC 10% 20% CMB (1993) VOCs VOCs 54~72% 30~35% 7~10% (1999) TO-14 4 56 VOCs CMB CMB 8.0 VOCs ( ) 47~68% 8~22% 6~20% 0.1~3% 6~21% VOCs 2-6-3-2 PAHs 20 CMB 1972 1-2 µg m -3 Friedlander, 1973 1982 180 ng m -3 Dzubay et al., 1989 1990 Gordon, 1988; Daisey et al., 1986 30-100 -58-

PAHs Gordon and Bryan, 1973; Daisey et al., 1979; Daisey and Lioy, 1981 PAHs Daisey et al., 1979; Miguel and Pereria, 1989; Pistikopoulos et al., 1990; Li and Kamens, 1993 PAHs CMB Miguel and Pereria, 1989; Pistikopoulos et al., 1990; Li and Kamens, 1993 Daisey (1979) PAHs PAHs Gordon and Bryan, 1973 PAHs Rogge et al., 1991 Peters (1981) PAHs PAHs PAHs PAHs PAHs PAHs CMB PAHs Mastclet et al., 1986 Pitts et al. (1978) PAHs CMB CMB CMB PAHs -59-

Kamens et al., 1985, 1988 PAHs PAHs (Depletion) Masclet et al., 1986 1. (Gaseous oxidizing agents ) (Luminosity) 2. 3. PAHs 4. PAHs PAHs 5. PAHs 6. Nikolaou et al., 1984 PAHs Pistikopoulos (1990) PAHs (Relative decay index, RDI) Fluoranthene ( ) PAHs Fluoranthene (Decay factor) CMB PAHs ( ) PAHs PAHs Cheng Richard (1993) (Smog chamber) PAHs CMB PAHs -60-

CMB 66~85% 32~58% 22~69% PAHs PAHs CMB PAHs PAHs PAHs Masclet (1986) RDI RDI R PAH R Fla R Fla R Fla 1 RDI RDI ( 21~32 ) BaP DiBah Ant BghiPe InP COR BaA Ant BkF CHR BeP Pyr Fla RDI Bap Ant DiBahAnt BaA BeP Pyr BkF BbF Katz et al., 1979 Bap BghiPe BaA Pyr BeP CHR Fla COR Butler and Crossley, 1981 Venkatarman Friedlander (1994) CMB PAHs CMB PAHs PAHs BkF BkF BkF CMB PAHs PAHs PAHs PAHs BaA BaP BghiP DBA BbF CHR Pyr Flu InP BkF RDI COR PAHs PAH 2-6-1 PAHs (FL Pyr BaA CHR BbF BkF BeP COR) -61-

PAHs D 1 b 2-6-1 PAHs RDI a RDI f RDF e Masclet et al. (1986) D 2 c Pico Rivera Pistikopouls et al. (1990) Upland D 3 d Venkataraman et al. (1994) Winter Summer NaP - - - - - - - AcPy - - - - - - - AcP - - - - - - - Flu - - 0.93 0.90 - - - Phen - - - - - - - Ant 1,5 1,7 - - 3,0 - - FL 1 1 - - 1 - - Pyr 1,5 1,7 0.93 0.90 1,7 - - CYC - - - - - - - BaA 2,5 3 0.60 0.50 3 - - CHR 0,9 1,3 0.93 0.90 3,0 - - BbF 1,2 1,7 0.87 0.81 3,0 1 1 BkF 1 1 1 1 BeP 1,3 1,3 - - 2,7 - - BaP 3 3,5 0.73 0.72 7 2.22 1.89 PER - - - - - - - IND 1,4 1,7 0.94 0.92 3,0 1 1.33 DBA - - 0.80 0.72 - - - BbC - - - - - - - Bghip 1,8 1,7 0.80 0.72 4,3 1 1.33 COR 3 3 - - 3 1.62 1.1 a: RDI= Relative Decay RDI=R PAH /R Fla (Fla FL) R=C M /C m (C M C m ) b: 1 ~ 5 c: 8 ~ 11 d: 21 ~ 32 e: RDF=Relative decay factors = i / BkF = i=(1+k i ) -1 f: RDI=Relative decay index -62-

PAHs CMB ( ) PAHs 2-6-4 CMB CMB Winchester and Nifong (1971) Hidy and Friedlander (1972) Kneip et al. (1973) Friedlander (1973) CMB CMB (Oregon Graduate Center) FORTRAN IV PRIME 300 CMB Watson, 1979 PRIME 300 3 MB 64 KB CMB 1 6 CMB 7 C FORTRAN 10 MB 640 KB CMB 8.0 CMB 7 DOS MS Windows US EPA, 2001 CMB 8.0 PAHs PAHs CMB C = F S C F S ng/g -63-

C (ng m -3 ) = F (ng g -1 ) S (g m -3 ) CMB 1 7 CMB 8.0 VOCs VOCs CMB 8.0 CMB 8.0 VOCs (2002) CMB VOCs CMB 8.0 VOCs VOCs PAHs PAHs PAH PAH (%) F ij = [PAH i ] / [[PAH total ] Miguel et al., 1989; Pistikopouls et al., 1990; Cheng and Richard, 1993 Li and Kamens, 1993 CMB 8.0 j PAHs ( BkF) F ij = [PAH i ] / [BkF] PAHs Venkataraman and Friedlander, 1994-64-

Super highway 3-1 3-1-1 2001 7 ~2002 5 (A~G) PAHs A B D C E F G 900 tons 800 120 m de-nox 0.5 km (site B) ~8 km (site F) 3-1-1 (6~9 m) N B MSW A incinerator E C G F 0 1 2 3 4 Km 3-1-1-65-

3-1-2 PAHs 3-1-1 48 30 PAHs 2001 7 3 3 3-1-1 PAHs 2001/7/9~7/10 A C D E F G 7/2~7/4 A B C D G 7/3~7/4 E F 7/2~8/1 A B C D ( ) 8/2~9/3 E F G 7/9~7/11 D 7/3 PAHs 10/11~10/12 C E G 10/3~10/5 A B C D E F G ( ) 9/3~10/2 A B C D 10/2~11/2 E F G PAHs 12/24~12/25 E F G 12/10~12/12 A B C D E F G ( ) 12/10~1/21 A B C D E F G 12/24~12/25 D G PAHs 2002/3/11~3/12 A B C D 3/12~3/14 A B C D E F G ( ) 3/4~4/2 A B C D E F G -66-

3-2 PS-1 (High volume air sampler) (Mirco-orifice uniform deposit impactor, MOUDI) PS-1 PAHs PAHs MOUDI PAHs PAHs 3-2-1 PS-1 MOUDI PS-1 PAHs PAHs PAHs PAHs 3-2-1-1 PS-1 1. General Metal Work Co. GPS1 PUF Sampler 3-2 -1 PAHs PAHs ( ) XAD-16 PAHs (1) (Dual chamber sampling module) (2) (Flow venturi) (3) (Magnehelic gage) -67-

(4) (Voltage variator) (5) (Elapsed time indicator) (6) (Blower motor) (7) (Timer) (8) (Exhaust hose) (9) (Aluminum shelter) 3-2-1 PS-1-68-

2. Whatman International Ltd. 10.2 cm 0.8 µm PAHs 450 C PAHs 8 3. PAHs 20 mm 30 mm XAD-16 50 mm ( 3-2-2 ) PAHs XAD-16 XAD-16 (Soxhlet extractor) 1000 ml 4. PAHs PS-1 PAHs PAHs -69-

3-2-2 5. GMW High Volume Air Samplers (GMW Inc. ) GPS1 General Metal Works Inc. GMW-25 (GMW-25 calibration kit) (1) GPS1 (2) GMW-25 (3) (4) (5) 5 10 15 20 25 30 35 40 45 50-70-

(6) 5 5 50 5 (7) 5 6 ( 3-2-3) 3-2-2 General Metal Works Inc. ( 3-2-4) GPS1-71-

3-2-3 PS-1 3-2-4 PS-1-72-

3-2-1-2 1. MSP MOUDI Model No. 100 MOUDI 3-2-5 (Cascade impactor) (Rotator) 9 (Stages) (Cutsize) 3-2-1 9 ( 300 ) MOUDI 30 L min -1 (Impaction) MOUDI -73-

3-2-5 MOUDI 3-2-1 MOUDI (µm) ( ) Stage 1 18 ~ 10 Stage 2 10 ~ 5.6 Stage 3 5.6 ~ 3.2 Stage 4 3.2 ~ 1.8 Stage 5 1.8 ~ 1.0 Stage 6 1.0 ~ 0.556 Stage 7 0.556 ~ 0.33 Stage 8 0.33 ~ 0.167 Stage 9 0.167~0.1-74-

2. MOUDI MSP (Aluminum foil 37 mm) Gelman Sciences Zefluor ( 37 mm 2 µm) (Afterfilter) 1 1 24 40% 24 60 C 90 24 8 3. MOUDI SHINAGAWA SEIKI Model DC-5A (Dry gas meter) 10 L MOUDI 30 L/min 20 (1) MOUDI (2) (3) 1 2 3-75-

4 5 6 7 8 9 10 (4) 3 ( 3-2-6) 20 30 L min -1 30 25 (sec) 20 15 10 y = 1.95x + 10.43 R 2 = 0.9978 5 0 0 1 2 3 4 5 6 7 8 9 ( ) 3-2-6 MOUDI -76-

3-2-2 1. (PVC) 21.6 cm 8.0 cm 0.8 cm ( 10 ) 10 cm 8 3-2-7 150 cm 50 cm 8.0 5.5 cm ( 3-2-8) 2. 1 1 24 40% 24 60 C 90 0.03 cm 8 3. PAHs PAHs PAHs V d,tm = K (F t,tm ) / (C tsp ) (3-1) -77-

V d,tm = PAHs (cm s -1 ) K = F t,tm = PAHs (mg m -2 day -1 ) C tsp = PAHs (µg m -3 ) 50 cm 150 cm 3-2-7-78-

8 cm 0.65 cm 5.5 cm 10 cm 8.0 cm 3-2-8-79-

3-2-3 1. 30 cm 30 cm 2 8 cm 3 cm 3 cm PAHs 2. PAHs (MFS A045F047A 0.45 µm 47 mm) PAHs 1 1 24 40% 24 ( Sartorius BP 211D 0.01 mg) (25 ) 24-80-

3. 30 3-2-4 1. Graseby Anderson Auto5 TM (Auto5 TM Automatic Stack Sampler) Universal Analyzers Inc. (Sample cooler Model 1090) Auto5 TM PAHs Auto5 TM Universal Analyzers Inc. 4 C PAHs (Probe) PAHs (1) (Coaxial dust collection tube) 4 mm ~ 14 mm (Nozzle) T (Thermocouple) (Compensation wire) 1300 mm (2) (Model-1090, Universal Analyzers Inc.) (Stainless steel heat exchanger drainer) -81-

4~5 C PAHs (3) PAHs PAHs (Cartridge) 20 mm 30 mm XAD-16 50 mm PAHs (Breakthrough test) PAHs (4) (Total pressure) (Static pressure) (Main body) (Z80-CPU) (Coefficient of pilot tube) 30 L min -1-82-

(5) 0.6 (Teflon) 35 2. (1) (a) PAHs 20 mm 30 mm XAD-16 50 mm PAHs 8 ( XAD-16) Anderson 0.025 g cm -3 XAD-16 AMBERLITE 800 m 2 g -1 62~70% XAD-16 (Soxhlet extractor) 1000 ml (b) PAHs 50% -83-

(2) PAHs PAHs PAHs ( PUF XAD-16 ) PAHs (3) ( 1 1) PAHs QA/AC / ( 6 4) PAHs PAHs 2 ml 3-3 PAHs PAHs PAHs 1. PAHs ( 16 cm 4 cm) 300 ml 250 ml ( 1 1) 24 4-84-

PAHs PAHs ( ) ( 20 cm 7 cm) 800 ml ( 1 1) 24 4 ( 1 1) PAHs QA/AC / ( 6 4) PAHs PAHs 2 ml 0.5 1 150 ml l ( 1 1) 100 m 5 10 cm 20 30 ml 2. 1.5 ml 3. -85-

(Silica gel) 17 g 1 g 105 C 8 15 g 3% 400 C 24 2 ml 25 ml PAHs 10 ml 200 ml 4. 0.5 ml GC/MS PAHs 5. PAHs Agilent 6890/5973N (Gas Chromatograph / Mass Spectrometer, GC/MS) Agilent 7683 1 µl Agilent Ultra 2 0.32 mm 0.17 µm 50 m 3 4 50 C 20 C min -1-86-

100 C 3 C min -1 290 C 40 GC/MS 310 C (Ion source) 310 C -87-

PAHs 4-1 4-1-1 (Reagent Blank) 250 ml 0.5 ml GC/MS 21 PAHs (IDL) 4-1-2 (Field Blank) 4-1-3 (Trip Blank) -88-

4-1-4 ( ) 4-2 4-2-1 (1998) PAHs 25.3% PAHs 6% PAHs 4.5% 4-2-2 PAHs PAHs 3 cm XAD-16 PAHs (Breakthrough test) XAD-16 ( 4-2-1 ) XAD-16 PAHs 4-2-1-89-

6.3 cm PUF XAD-16 resin PUF XAD-16 resin PUF 3 cm 2 cm 1 cm 2 cm 2 cm 4-2-1-90-

PAHs 4-2-1 PAHs XAD-16 PAHs (ng Nm -3 (%) ) N.D. XAD-16 PAHs (ng Nm -3 (%) ) Nap 175 99.2 1.47 0.832 AcPy 28.3 99.9 0.0241 0.085 Acp 2.95 93.2 0.2162 6.82 Flu 4.37 98.9 0.0477 1.08 PA 9.77 99.3 0.0677 0.688 Ant 0.798 98.0 0.0161 1.98 FL 1.99 99.5 0.0096 0.481 Pyr 2.71 98.5 0.0410 1.49 CYC 0.084 99.8 0.0001 0.155 BaA 0.231 97.2 0.0066 2.76 CHR 0.309 98.8 0.0037 1.19 BbF 0.0649 99.0 0.0007 1.00 BkF 0.0336 99.1 0.0003 0.940 BeP 0.120 99.2 0.0010 0.794 BaP 0.124 99.5 0.0007 0.522 PER 0.235 99.5 0.0012 0.493 IND 0.0196 100 N.D. 0.00 DBA 0.0063 100 N.D. 0.00 BbC 0.180 99.6 0.0008 0.433 BghiP 0.152 99.9 0.0002 0.141 COR 0.936 99.7 0.0028 0.300 230 99.8 0.479 0.208-91-

(2 cm ) XAD-16 PAHs 99.8% XAD-16 PAHs 0.208% 3 cm XAD-16 PAHs 99.8% 4-3 (Method Detection Limit, MDL) 99% (Confidence) MDL MDL MDL PAHs PAHs MDL Long Winefordner Long and Winefordner, 1983 MDL = 3 (S b 2 + S i 2 +(i/m) 2 S m 2 ) 1/2 /m (4-1) S b S i S m i m PAHs GC/MS 4-3-1 MDL 0.024 ~ 0.740 ng GC/MS Nap BaA 0.042 ~ 1.28 ng m -3-92-

PAHs 4-3-1 GC/MS MDL (ng) Nap 0.740 1.28 AcPy 0.406 0.705 Acp 0.319 0.553 Flu 0.115 0.200 PA 0.061 0.107 Ant 0.097 0.168 FL 0.197 0.341 Pyr 0.575 0.998 CYC 0.045 0.079 BaA 0.024 0.042 CHR 0.097 0.168 BbF 0.143 0.249 BkF 0.040 0.070 BeP 0.041 0.072 BaP 0.027 0.047 PER 0.027 0.047 IND 0.073 0.126 DBA 0.153 0.266 BbC 0.172 0.299 BghiP 0.062 0.109 COR 0.110 0.191 (ng m -3 ) -93-

4-4 (Calibration curve) 4-4-1 1999 1. 2. ( ) 3. 4. 5. (Least square srror equation) r 6. r 0.995 4-4-2 1. 12 2. ± 20% 3. -94-

4. 21 PAHs GC/MS 4-4-1 ~ 4-4-6 ( 4-4-1 4-4-2) 10 µg ml -1 GC/MS 4-4-3 (RSD) 4-4-4 4-5 (Accuracy) (Precision) PAHs GC/MS GC/MS PAHs (X) X n= X + X +... X n 1 2 n (4-2) Χn Χ(%) = 100% (4-3) C X i n Xn C (RSD) n S 2 = [ ( X i Xn ) ] n 1 i= 1 S RSD(%) = X 100 n 1 2 (4-4) (4-5) -95-

2.5e+7 2.5e+7 Integrated Area 2.0e+7 1.5e+7 1.0e+7 5.0e+6 Nap R 2 =0.9974 2.0e+7 1.5e+7 1.0e+7 5.0e+6 AcPy R 2 =0.9917 0.0 0 2 4 6 8 10 12 0.0 0 2 4 6 8 10 12 The Mass Injected to the GC/MS(ng) 2.5e+7 3.0e+7 Integrated Area 2.0e+7 1.5e+7 1.0e+7 Acp R 2 =0.9940 2.5e+7 2.0e+7 1.5e+7 1.0e+7 Flu R 2 =0.9946 5.0e+6 5.0e+6 0.0 0 2 4 6 8 10 12 0.0 0 2 4 6 8 10 12 The Mass Injected to the GC/MS(ng) 4-4-1 Nap, AcPy, Acp Flu -96-

2.5e+7 2.5e+7 Integrated Area 2.0e+7 1.5e+7 1.0e+7 5.0e+6 PA R 2 =0.9943 2.0e+7 1.5e+7 1.0e+7 5.0e+6 Ant R 2 =0.9911 0.0 0 2 4 6 8 10 12 0.0 0 2 4 6 8 10 12 The Mass Injected to the GC/MS(ng) Integrated Area 2.5e+7 2.0e+7 1.5e+7 1.0e+7 5.0e+6 FL R 2 =0.9935 2.5e+7 2.0e+7 1.5e+7 1.0e+7 5.0e+6 Pyr R 2 =0.9930 0.0 0 2 4 6 8 10 12 0.0 0 2 4 6 8 10 12 The Mass Injected to the GC/MS(ng) 4-4-2 PA, Ant, FL Pyr -97-

Integrated Area 3.5e+6 3.0e+6 2.5e+6 2.0e+6 1.5e+6 1.0e+6 CYC R 2 =0.9974 2.5e+7 2.0e+7 1.5e+7 1.0e+7 BaA R 2 =0.9949 5.0e+5 5.0e+6 0.0 0 2 4 6 8 10 12 0.0 0 2 4 6 8 10 12 The Mass Injected to the GC/MS(ng) Integrated Area 2.5e+7 2.0e+7 1.5e+7 1.0e+7 5.0e+6 CHR R 2 =0.9901 2.5e+7 2.0e+7 1.5e+7 1.0e+7 5.0e+6 BbF R 2 =0.9924 0.0 0 2 4 6 8 10 12 0.0 0 2 4 6 8 10 12 The Mass Injected to the GC/MS(ng) 4-4-3 CYC, BaA, CHR BbF -98-

Integrated Area 3.0e+7 2.5e+7 2.0e+7 1.5e+7 1.0e+7 5.0e+6 BkF R 2 =0.9960 7.0e+6 6.0e+6 5.0e+6 4.0e+6 3.0e+6 2.0e+6 1.0e+6 BeF R 2 =0.9940 0.0 0 2 4 6 8 10 12 0.0 0 2 4 6 8 10 12 The Mass Injected to the GC/MS(ng) Integrated Area 2.5e+7 2.0e+7 1.5e+7 1.0e+7 5.0e+6 BaP R 2 =0.9931 7.0e+6 6.0e+6 5.0e+6 4.0e+6 3.0e+6 2.0e+6 1.0e+6 PER R 2 =0.9975 0.0 0 2 4 6 8 10 12 0.0 0 2 4 6 8 10 12 The Mass Injected to the GC/MS(ng) 4-4-4 BkF, BeP, BaP PER -99-

Integrated Area 2.0e+7 1.5e+7 1.0e+7 5.0e+6 IND R 2 =0.9918 6.0e+6 5.0e+6 4.0e+6 3.0e+6 2.0e+6 1.0e+6 DBA R 2 =0.9925 0.0 0 2 4 6 8 10 12 0.0 0 2 4 6 8 10 12 The Mass Injected to the GC/MS(ng) Integrated Area 1.6e+6 1.2e+6 8.0e+5 4.0e+5 BbC R 2 =0.9956 1.2e+7 8.0e+6 4.0e+6 BghiP R 2 =0.9988 0.0 0 2 4 6 8 10 12 0.0 0 2 4 6 8 10 12 The Mass Injected to the GC/MS(ng) 4-4-5 IND, DBA, BbC BghiP -100-

Integrated Area 6.0e+6 4.0e+6 2.0e+6 COR R 2 =0.9975 0.0 0 2 4 6 8 10 12 The Mass Injected to the GC/MS(ng) 4-4-6 COR -101-

4-4-1 PAHs (Chem Service) (µg ml -1 ) Acenaphthene Acp 2000 Fluoranthene FL 2000 Naphthalene Nap 2000 Benzo(a)anthracene BaA 2000 Benzo(a)pyrene BaP 2000 Benzo(b)fluoranthene BbF 2000 Benzo(k)fluoranthene BkF 2000 Chrysene (93%) CHR 2000 Acenaphthylene AcPy 2000 Anthracene Ant 2000 Benzo(ghi)perylene BghiP 2000 Fluorene Flu 2000 Phenanthrene PA 2000 Dibenzo(a,h)anthracene DBA 2000 Indeno(1,2,3-cd)pyrene IND 2000 Pyrene Pyr 2000 Perylene PER 100 Benzo(e)pyrene BeP 100 Coronene COR 100 4-4-2 PAHs (Gravimetric Certificate) (µg ml -1 ) Cyclopenta(c,d)pyrene CYC 10 Benzo(b)chrysene BbC 10-102-

PAHs 4-4-3 PAHs 10 µg ml -1 GC/MS Nap 18386324 17324411 17411858 16959302 16287576 15682434 15126506 AcPy 20377751 18320317 18861545 18237402 17408673 16756412 16148896 Acp 16950666 16602297 16938048 16575749 16048539 15445615 15012759 Flu 20114710 19086051 19201097 18810565 18034989 17341091 16852433 PA 18130142 17039812 17048679 16708082 15981088 15417212 14994321 Ant 17853358 16486131 16513454 16243653 15448988 14908622 14585342 FL 20420316 19382871 19297872 18971453 18031267 17418177 16993745 Pyr 20868638 19997547 19881512 19581730 18631665 18017158 17600534 CYC 846978 834158 818791 837683 848297 873831 903310 BaA 21339633 19971626 19998877 19656355 18762090 18074756 17698033 CHR 21172338 20454982 20417610 20035601 19093554 18446752 18077771 BbF 22806226 21541670 21556561 21208667 20238903 19509865 19122962 BkF 22694250 21816538 21810492 21458550 20520984 19799161 19377545 BeP 11517138 11529144 11700795 11680595 11859987 11990791 12064911 BaP 19575625 19059258 19306806 18611539 17782341 17156128 16910517 PER 11152850 10898262 10934499 11064445 11040010 11034780 11150820 IND 12611018 13532784 13214504 14183246 12021315 11971000 13214504 DBA 5232587 5035330 4987038 4924663 4701842 4539849 4510762 BbC 9516365 9511651 9611287 10238526 9902796 9789216 10282280 BghiP 6914884 7435952 8805780 8277586 8828118 8828118 8042579 COR 1520966 1347854 1403521 1391368 1317888 1332246 1312320-103-

4-4-4 PAHs 10 µg ml -1 GC/MS PAHs (%) Nap 16739773 1116386 6.67 AcPy 18015857 1406883 7.81 Acp 16224810 753714.6 4.65 Flu 18491562 1141053 6.17 PA 16474191 1079908 6.56 Ant 16005650 1117290 6.98 FL 18645100 1213632 6.51 Pyr 19225541 1176609 6.12 CYC 851864 28208.34 3.31 BaA 19357339 1262303 6.52 CHR 19671230 1149609 5.84 BbF 20854979 1296469 6.22 BkF 21068217 1202472 5.71 BeP 11763337 215345.3 1.83 BaP 18343173 1065241 5.81 PER 11039381 97346.84 0.88 IND 12964053 809823.1 6.25 DBA 4847439 270263.7 5.58 BbC 9836017 322931.4 3.28 BghiP 8161860 754093.8 9.24 COR 1375166 73192.23 5.32-104-

S X i Xn n 4-5-1 71.54 ± 4.55% ~ 97.64 ± 3.93% 0.27% ~ 9.15% ( 4-5-2) 4-6 PAHs 3 3 (SD) ± 3 SD GC/MS SCAN mode (Primary ion number) (Secondary ion number) SIM mode (Selectivity ion monitoring mode) 21 PAHs GC/MS 72 24 3 24 2 24 2 7 (SD) 3 SD 21 PAHs GC/MS 4-6-1 4-6-2 GC/MS SIM mode SIM mode (Primary ion) (Secondary ion) 4-6-3-105-

PAHs 4-5-1 (%) (%) (%) Nap 73.15 83.74 70.67 AcPy 70.46 74.16 70.01 Acp 95.60 90.45 87.02 Flu 94.74 85.29 80.21 PA 96.47 93.93 90.16 Ant 97.76 99.83 92.69 FL 94.87 94.22 88.94 Pyr 86.49 92.19 84.25 CYC 83.91 93.54 90.00 BaA 93.36 91.09 88.19 CHR 80.92 86.68 94.08 BbF 81.22 87.78 94.98 BkF 90.45 87.40 86.12 BeP 95.52 96.32 97.50 BaP 87.64 88.33 87.06 PER 84.16 94.90 86.50 IND 85.28 90.60 95.41 DBA 97.58 99.63 95.70 BbC 87.98 95.77 99.37 BghiP 96.94 96.43 96.81 COR 96.87 97.71 96.20-106-

4-5-2 PAHs PAHs (%) (%) (%) (%) Nap 75.9 6.94 9.15 75.9 ± 13.9 AcPy 71.5 2.27 3.18 71.5 ± 4.55 Acp 91.0 4.32 4.74 91.0 ± 8.63 Flu 86.7 7.37 8.50 86.7 ± 14.7 PA 93.5 3.18 3.40 93.5 ± 6.35 Ant 96.8 3.67 3.80 96.8 ± 7.35 FL 92.7 3.25 3.51 92.7 ± 6.50 Pyr 87.6 4.10 4.67 87.6 ± 8.19 CYC 89.2 4.87 5.46 89.2 ± 9.74 BaA 90.9 2.59 2.85 90.9 ± 5.18 CHR 87.3 6.60 7.57 87.3 ± 13.2 BbF 88.0 6.88 7.82 88.0 ± 13.8 BkF 88.0 2.22 2.53 88.0 ± 4.45 BeP 96.5 1.00 1.03 96.5 ± 1.99 BaP 87.7 0.63 0.72 87.7 ± 1.27 PER 88.5 5.65 6.38 88.5 ± 11.3 IND 90.4 5.06 5.60 90.4 ± 10.1 DBA 97.6 1.96 2.01 97.6 ± 3.93 BbC 94.4 5.82 6.17 94.4 ± 11.6 BghiP 96.7 0.27 0.27 96.7 ± 0.53 COR 96.9 0.75 0.78 96.9 ± 1.51-107-

4-6-1 21 PAHs GC/MS (min) PAHs Nap 10.812 10.850 10.860 10.826 10.850 10.821 10.850 AcPy 17.982 18.049 18.064 18.006 18.049 18.001 18.054 Acp 19.049 19.112 19.126 19.069 19.117 19.069 19.112 Flu 22.012 22.084 22.098 22.036 22.084 22.036 22.084 PA 27.845 27.927 27.946 27.874 27.927 27.874 27.927 Ant 28.133 28.023 28.258 28.172 28.234 28.167 28.234 FL 35.539 35.621 35.645 35.568 35.626 35.568 35.626 Pyr 36.866 36.963 36.991 36.905 36.962 36.900 36.963 CYC 44.671 44.662 44.667 44.667 44.676 44.667 44.662 BaA 44.926 45.018 45.051 44.960 45.017 44.955 45.022 CHR 45.186 45.306 45.359 45.239 45.306 45.215 45.311 BbF 51.596 51.702 51.745 51.639 51.707 51.630 51.702 BkF 51.774 51.914 51.976 51.832 51.913 51.812 51.918 BeP 52.981 52.981 52.986 52.991 53.053 52.967 53.005 BaP 53.318 53.348 53.491 53.371 53.447 53.361 53.443 PER 53.717 53.712 53.702 53.707 53.722 53.779 53.727 IND 59.146 59.286 59.262 59.024 59.281 59.199 59.261 DBA 59.415 59.555 59.622 59.478 59.564 59.444 59.550 BbC 59.762 59.762 59.742 59.742 59.762 59.762 59.742 BghiP 60.392 60.584 60.541 60.473 60.584 60.411 60.589 COR 70.034 70.043 70.048 70.077 70.250 70.370 70.096-108-

4-6-2 21 PAHs GC/MS PAHs 3SD (min) (SD) (min) Nap 10.838 0.018 10.838 0.054 AcPy 18.029 0.032 18.029 0.096 Acp 19.093 0.030 19.093 0.090 Flu 22.062 0.033 22.062 0.099 PA 27.903 0.038 27.903 0.114 Ant 28.174 0.080 28.174 0. 240 FL 35.599 0.040 35.599 0.120 Pyr 36.936 0.045 36.936 0.135 CYC 44.667 0.005 44.667 0.015 BaA 44.993 0.046 44.993 0.138 CHR 45.275 0.062 45.275 0.186 BbF 51.674 0.053 51.674 0.159 BkF 51.877 0.072 51.877 0.216 BeP 52.995 0.028 52.995 0.084 BaP 53.410 0.061 53.410 0.183 PER 53.724 0.026 53.724 0.078 IND 59.208 0.096 59.208 0.288 DBA 59.518 0.074 59.518 0.222 BbC 59.753 0.011 59.753 0.033 BghiP 60.511 0.085 60.511 0.255 COR 70.131 0.129 70.131 0.387-109-

4-6-3 21 PAHs (Primary ion) (Secondary ion) PAHs Primary ion Secondary ion Nap 128 127.10 AcPy 152 151.10 Acp 153.10 154.10 Flu 166.10 165.10 PA 178.10 176 Ant 178.10 176 FL 202.10 200.00 Pyr 202.10 200.00 CYC 226.10 224.00 BaA 228.10 226.10 CHR 228.10 226.10 BbF 252.10 250.10 BkF 252.10 250.10 BeP 252.10 250.00 BaP 252.10 250.10 PER 252.10 250.00 IND 276.10 277.10 DBA 278.10 279.10 BbC 278.10 276.10 BghiP 276.10 277.10 COR 300.00 150.00-110-

4-7 (1 2 3 6 ) -111-

5-1 90 7 9~10 ( ) 10 11~12 ( ) 12 24~25 ( ) 91 3 11~12 ( ) PAHs A C D E F G C E G E F G A B C D 5-1-1 5-1-1 (µg m -3 ) A B C D E F G 142 112 141 129 38.6 37.2 21.1 39.3 48.4 45.7 94.3 87.4 90.5 191 120 84.7 90.2 112 90.9 75.0 106 84.3 73.7 5-1-1 A 38.6~142 µg m -3 90.2 µg m -3 B 112 µg m -3 C 37.2~141 µg m -3 90.9 µg m -3 D 21.1~129 µg m -3 75.0 µg m -3 E 39.3~191 µg m -3 106 µg m -3 F 48.4~120 µg m -3 84.3 µg m -3 G 45.7~90.5 µg m -3 73.7 µg m -3 24 (250 µg m -3 ) (1994) (112, 122 µg m -3 ) (2000) -112-

(148, 237, 322 412 µg m -3 ) Concentration (µg m -3 ) 250 200 150 100 Spring Summer Fall Winter 50 0 A B C D E F G Sampling sites 5-1-1 5-1-1 131 38.4 91.7 132 µg m -3-113-

(Mixing height) (Boundary layer) 2000 (1992) 5-1-2 PAHs 5-1-2-1 PAHs 5-1-2 2001 7 ~2002 5 PAHs ( + ) F (666 ng m -3 ) D (235 ng m -3 ) 5-1-3 21 PAHs (1993) 1794 ng m -3 (1998) 1496 ng m -3 (1995) 1324 ng m -3 (1998) (1508 402 ng m -3 ) (1996) (468 231 ng m -3 ) (1998) (198 298 ng m -3 ) PAHs PAHs -114-

-115-5-1-2 PAHs (ng m -3 ) PAHs Site A (n=2) Site B (n=1) Site C (n=3) Site D (n=2) Site E (n=3) Site F (n=2) Site G (n=3) Nap 332 (223~441) 372 412 (70~680) 203 (24~382) 456 (15~836) 618 (49~1187) 398 (15~756) AcPy 4.03 (3.30~4.75) 1.77 2.45 (1.46~3.19) 1.52 (0.60~2.43) 4.51 (0.12~12.7) 6.32 (1.79~10.8) 3.78 (0.10~10.0) Acp 5.3 (5.25~5.34) 3.46 9.42 (8.23~10.1) 2.37 (0.72~4.0) 3.23 (0.29~6.57) 3.21 (0.10~6.31) 2.38 (0.28~4.83) Flu 10 (9.53~10.5) 7.67 12.9 (12.2~13.8) 5.68 (3.18~8.17) 8.33 (0.96~17.1) 4.71 (3.32~6.09) 6.86 (0.48~14.7) PA 23 (20.7~25.2) 15.6 27.3 (22.5~31.0) 10.9 (5.05~16.6) 15.8 (2.86~30.9) 16.8 (11.3~22.3) 14.6 (4.72~28.3) Ant 1.89 (1.07~2.71) 0.7 1.91 (1.52~2.29) 0.89 (0.73~1.05) 0.41 (0.29~0.61) 0.72 (0.26~1.17) 0.58 (0.29~0.70) FL 6.08 (5.61~6.53) 4.46 6.9 (5.51~8.33) 2.87 (1.31~4.43) 3.09 (0.55~5.21) 4.82 (0.92~8.72) 3.14 (0.69~6.25) Pyr 3.21 (0.73~5.68) 3.84 5.23 (3.86~6.10) 2.06 (0.40~3.70) 2.97 (0.44~5.64) 5.71 (5.44~5.97) 2.98 (0.50~6.34) CYC 0.1 (0.16~0.02) 0.02 0.09 (0.006~0.22) 0.09 (0.16~0.20) 0.15 (0.03~0.28) 0.04 (0.02~0.06) 0.37 (0.19~0.56) BaA 0.25 (0.11~0.39) 0.03 0.17 (0.05~0.35) 0.13 (0.059~0.20) 0.07 (0.003~0.10) 0.03 (0.01~0.05) 0.69 (0.08~1.05) CHR 0.73 (0.17~1.29) 1.36 0.71 (0.33~1.26) 0.98 (0.28~1.676) 0.63 (0.003~0.99) 0.36 (0.003~0.72) 1.39 (0.30~2.91) BbF 0.1 (0.04~0.14) 0.08 0.13 (0.02~0.29) 0.2 (0.09~0.29) 0.59 (0.46~0.74) 0.24 (0.07~0.41) 1.51 (1.05~2.05) BkF 0.16 (0.14~0.16) 0.18 0.28 (0.21~0.41) 0.23 (0.18~0.27) 0.68 (0.13~1.08) 0.44 (0.06~0.81) 1.63 (1.22~2.37) BeP 0.24 (0.16~0.31) 0.700 0.41 (0.16~0.83) 0.88 (0.66~1.10) 1 (0.56~1.42) 0.63 (0.16~1.09) 1.56 (0.61~2.21) BaP 0.12 (0.06~0.18) 0.06 0.19 (0.091~0.31) 0.08 (0.026~0.14) 0.5 (0.19~0.77) 0.78 (0.017~1.54) 0.85 (0.22~1.62) PER 0.13 (0.073~0.19) 0.52 0.26 (0.13~0.42) 0.8 (0.67~0.92) 0.49 (0.09~1.12) 0.35 (0.016~0.69) 0.33 (0.04~0.53) IND 0.2 (0.053~0.35) 0.06 0.09 (0.04~0.17) 0.44 (0.06~0.82) 0.79 (0.70~0.86) 0.33 (0.30~0.34) 1.35 (1.05~1.83) DBA 0.02 (0.008~0.03) 0.09 0.25 (0.07~0.52) 0.15 (0.12~0.16) 0.3 (0.04~0.58) 0.3 (0.04~0.54) 0.34 (0.08~0.55) BbC 0.2 (0.13~0.27) 0.12 0.18 (0.06~0.29) 0.17 (0.15~0.19) 0.41 (0.08~0.89) 0.88 (0.02~1.74) 0.21 (0.15~0.25) BghiP 0.08 (0.005~0.15) 0.01 0.18 (0.006~0.48) 0.38 (0.20~0.55) 0.52 (0.17~0.91) 0.08 (0.004~0.15) 1.29 (0.30~2.22) COR 0.78 (0.45~1.10) 0.23 0.62 (0.36~1.04) 0.77 (0.50~1.04) 1.13 (0.64~1.40) 0.98 (0.05~1.90) 1.74 (1.39~1.92) Total 389 413 481 235 502 666 446

5-1-3 PAHs (ng m -3 ) PAHs + 1 N.A. N.A. 508 (1998) 2 N.A. N.A. 442 (1998) 1650 144 1794 (1993) 1 418 50 468 (1996) 2 214 17 231 (1996) 1274 222 1496 (1998) 810 163 973 (1994) 1120 151 1271 (1994) N.A. N.A. 198 (1998) N.A. N.A. 298 (1998) 1 352 150 502 (1995) 2 1030 294 1324 (1995) N.A. 5-1-2-2 PAHs PAHs PAHs PAHs PAHs PAHs 5-1-4 PAHs A~G ( / + ) 1.76% 2.15% 1.77% 3.97% 2.84% 1.09% 4.14% 1993 1994 1994 1996 1998 PAHs (7.35~16.7%) PAHs PAHs PAHs -116-

(Blow-off) PAHs PAHs PAHs Bidleman, 1986 (1998) PAHs 1274 ng m -3 PAHs 222 ng m -3 PAHs 85% PAHs 15% 5-1-4 PAHs PAHs (Nap AcPy Acp Flu PA) (1998) PAHs 4 (MW 252) PAHs Grojean, 1983 PAHs PAHs PAHs ; PAHs Vaeck et al., 1984-117-

PAHs 5-1-4 (Cp) (Cg) PAHs A (n=2) B (n=1) C (n=3) D (n=2) Cg Cp Cp / Cg Cp Cp / Cg Cp Cp / Cg Cp (ng m -3 ) (ng m -3 ) PAHs (%) (ng m -3 ) (ng m -3 ) PAHs (%) (ng m -3 ) (ng m -3 ) PAHs (%) (ng m -3 ) (ng m -3 ) Cp / PAHs (%) Nap 329 2.85 0.857 368 4.12 1.11 407 4.63 1.13 200 2.82 1.39 AcPy 3.98 0.051 1.27 1.72 0.057 3.19 2.41 0.033 1.34 1.45 0.069 4.57 Acp 5.24 0.058 1.1 3.42 0.036 1.05 9.37 0.046 0.49 2.28 0.082 3.48 Flu 9.81 0.221 2.2 7.49 0.177 2.3 12.6 0.213 1.66 5.41 0.273 4.8 PA 22.1 0.854 3.72 14.8 0.802 5.14 26.5 0.778 2.85 9.73 1.126 10.4 Ant 1.85 0.039 2.08 0.698 0 0 1.88 0.037 1.94.831 0.06 6.77 FL 5.67 0.407 6.69 3.84 0.624 14 6.71 0.186 2.69 2.17 0.701 24.4 Pyr 2.74 0.468 14.6 3.11 0.737 19.2 4.93 0.3 5.73 1.44 0.619 30.1 CYC 0.029 0.067 69.6 0.009 0.013 57.9 0.009 0.082 90.5 0.012 0.078 86.4 BaA 0.229 0.024 9.49 0.004 0.024 86.3 0.144 0.026 15.2 0.081 0.051 39 CHR 0.649 0.086 11.7 0.893 0.463 34.1 0.627 0.086 12 0.408 0.574 58.5 BbF 0.009 0.088 90.9 0.015 0.068 81.7 0.012 0.121 91.3 0.056 0.141 71.6 BkF 0.047 0.109 69.7 0.046 0.132 74.2 0.061 0.221 78.5 0.046 0.186 80.1 BeP 0.002 0.234 99.1 0.016 0.684 97.7 0.023 0.386 94.4 0.117 0.764 86.7 BaP 0.057 0.065 53 0.057 0 0 0.036 0.152 81 0.013 0.071 84.2 PER 0.008 0.124 93.7 0.009 0.507 98.3 0.081 0.175 68.3 0.273 0.524 65.7 IND 0.058 0.144 71.3 0.001 0.057 98.9 0.49 0.041 45.8 0.276 0.168 37.7 DBA 0.004 0.016 81.1 0.003 0.084 96.9 0.019 0.226 92.3 0.054 0.092 62.8 BbC 0.017 0.186 91.7 0.006 0.119 95.3 0.29 0.151 84 0.051 0.124 71 BghiP 0.002 0.078 97.2 0 0.005 98.7 0.001 0.181 99.3 0.007 0.373 98.1 COR 0.105 0.671 86.4 0.071 0.163 69.7 0.171 0.448 72.3 0.360 0.412 53.4 Total 382 6.84 1.76 404 8.88 2.15 473 8.52 1.77 226 9.31 3.97-118-

PAHs 5-1-4 (Cp) (Cg) PAHs ( ) E (n=3) F (n=2) G (n=3) Cg Cp Cp / Cg Cp Cp / Cg Cp (ng m -3 ) (ng m -3 ) PAHs (%) (ng m -3 ) (ng m -3 ) PAHs (%) (ng m -3 ) (ng m -3 ) Cp / PAHs (%) Nap 451 5.57 1.22 617 1.02 0.16 394 3.79 0.953 AcPy 4.45 0.057 1.26 6.29 0.039 0.61 3.74 0.044 1.16 Acp 3.16 0.067 2.08 3.14 0.066 2.05 2.32 0.061 2.55 Flu 8.09 0.237 2.84 4.44 0.264 5.61 6.62 0.231 3.37 PA 14.7 1.061 6.71 15.4 1.411 8.37 13.4 1.21 8.32 Ant 0.360 0.052 12.6 0.664 0.056 7.84 0.520 0.060 10.3 FL 2.56 0.535 17.3 4.16 0.665 13.8 2.63 0.510 16.2 Pyr 2.32 0.647 21.8 4.76 0.948 16.6 2.18 0.799 26.8 CYC 0.021 0.126 85.9 0.024 0.017 41.9 0.032 0.334 91.3 BaA 0 0.068 99.4 0.001 0.032 95.8 0.004 0.684 99.4 CHR 0.033 0.595 94.7 0.317 0.045 12.4 0.072 1.32 94.8 BbF 0.065 0.522 88.9 0.081 0.163 66.9 0.391 1.12 74.0 BkF 0.042 0.639 93.8 0.099 0.340 77.5 0.352 1.28 78.3 BeP 0.105 0.897 89.5 0.208 0.422 66.9 0.016 1.55 98.9 BaP 0.083 0.415 83.3 0.366 0.416 53.3 0.009 0.844 98.9 PER 0.317 0.178 35.9 0.193 0.162 45.6 0.011 0.317 96.7 IND 0.031 0.754 96.1 0.157 0.170 51.9 0.189 1.16 86.0 DBA 0.016 0.285 94.8 0.040 0.256 86.4 0.016 0.328 95.4 BbC 0.128 0.283 68.9 0.328 0.553 62.8 0.014 0.194 93.1 BghiP 0.015 0.509 97.2 0.017 0.061 78.8 0.001 1.29 99.9 COR 0.359 0.769 68.2 0.811 0.165 16.9 0.417 1.33 76.0 Total 488 14.2 2.84 658 7.27 1.09 427 18.5 4.14-119-

5-1-2-3 PAHs 5-1-2 PAHs 21 PAHs Nap 2 3 PAHs Acpy Acp Flu PA Ant 4 PAHs FL Pyr BaA CHR 5 PAHs CYC BbF BkF BeP BaP PER DBA BbC 6 PAHs IND Bghip 7 PAHs COR 5-1-2 PAHs ( Nap) 3 PAHs C (75.7 ng m -3 ) A (75.6 ng m -3 ) ( 687 ng m -3 ) ( 115 ng m -3 ) PAHs (Aceves, 1993 2001) Müller (1998) PAHs 3~6 PAHs Dörr (1996) PAHs 1.9~14 Müller (1998) Dörr (1996) 5-1-2 PAHs ( Nap) 3 PAHs 79% 4 PAHs 5~7 PAHs 1992 2001-120-

80 60 40 3-rings A B C D E F G 20 15 10 4-rings A B C D E F G 20 5 PAHs concentration (ng m -3 ) 0 0 spring summer fall winter A 10 5-rings 6-rings 8 6 4 2 0 spring summer fall winter spring summer fall winter B C D E F G 5 4 3 2 1 0 spring summer fall winter A B C D E F G 3.0 2.5 2.0 1.5 7-rings A A B B C C D D E E F F G G 1000 800 600 Total PAHs A B C D E F G 1.0 400 0.5 200 0.0 spring summer fall winter 0 spring summer fall winter Season Season 5-1-2 PAHs -121-

5-2 5-2-1 5-2-1 A 119~215 mg m -2 day -1 207 mg m -2 day -1 B 148~205 mg m -2 day -1 167 mg m -2 day -1 C 91~183 mg m -2 day -1 123 mg m -2 day -1 D 121~209 mg m -2 day -1 173 mg m -2 day -1 E 102~207 mg m -2 day -1 159 mg m -2 day -1 F 70~181 mg m -2 day -1 118 mg m -2 day -1 G 69~259 mg m -2 day -1 127 mg m -2 day -1 5-2-2 Holsen et al., 1991; Lee, 1991; Fang, 1992; Lin et al., 1993 1996 (2000) -122-

(a) Dry depostion flux (mg m -2 day -1 ) 400 300 200 100 Spring Summer Fall Winter 0 A B C D E F G Sites (b) Dry depostion velocity (cm s -1 ) 12 10 8 6 4 2 Spring Summer Fall Winter 0 A B C D E F G Sites 5-2-1 (a) (b) -123-

5-2-1 (mg m -2 day -1 ) 142~209 175 Noll et al., 1990 94.2~299 172 Lee, 1991 111~258 193 Holsen and Noll, 1992 90~267 163 Lin et al., 1993 210~433 328 121~144 132 129~182 147 240~355 279 532~709 607 328~1009 698 573~832 761 94.1~215 155 69.8~208 135 85.0~206 137 133~259 189 1996 2000 V d,tm =K (F T,TM ) (C TSP ) (5-1) V d,tm = (cm s -1 ) K = F T,TM = (mg m -2 day -1 ) C TSP = (µg m -3 ) -124-

5-2-1 (b) A 1.68~6.44 cm s -1 4.06 cm s -1 B 1.53 cm s -1 C 1.50~2.91 cm s -1 1.98 cm s -1 D 1.87~9.81 cm s -1 5.84 cm s -1 E 0.61~6.10 cm s -1 3.10 cm s -1 F 0.81~3.33 cm s -1 2.07 cm s -1 G 0.89~2.38 cm s -1 1.49 cm s -1 5-2-3 1996 2000 Fang (1996) 5-2-2 (cm s -1 ) Tunghai University 6.93 Jongieng Elementary School 9.21 Fang, 1996 Shingang Elementary School 15.6 2.08 0.96 1.19 2.21 2.99 2.69 2.04 1.65 5.17 1.67 0.88 1996 2000-125-

5-2-2 PAHs PAHs PAHs PAHs PAHs 1996 5-2-2 PAHs A PAHs 88.0~190 µg m -2 day -1 136 µg m -2 day -1 B 108~202 µg m -2 day -1 143 µg m -2 day -1 C 63.4~260 µg m -2 day -1 133 µg m -2 day -1 D 94.9~181 µg m -2 day -1 140 µg m -2 day -1 E 99.7~419 µg m -2 day -1 230 µg m -2 day -1 F 88.0~355 µg m -2 day -1 220 µg m -2 day -1 G 83.7~210 µg m -2 day -1 147 µg m -2 day -1 (1996) PAHs (131~194 µg m -2 day -1 ) 400 Dry deposition flux (µg m -2 day -1 ) 300 200 100 0 A B C D E F G Sampling sites 5-2-2 PAHs -126-

5-3 ( ) PAHs 1999 McVeety Hites (1988) PAHs 9 1 PAHs 2001 7 ~2002 5 A~G 28 5-3-1 21 PAHs 5-3-1 21 PAHs Nap 331~909 ng L -1 Nap 20 PAHs ( 25 31700 µg L -1 ) Nap PAHs 5-3-2 PAHs 105 1731 ng L -1 435~619 ng L -1 PAHs 202~3296 ng L -1 959~1267 ng L -1 (1999) PAHs ( 104 468 ng L -1 259 983 ng L -1 ) PAHs PAHs PAHs PAHs - 5-3-1 PAHs ( 24 ) ( 30 ) -127-

PAHs 5-3-1 21 PAHs (ng L -1 ) A (n=4) B (n=4) C (n=4) D (n=4) E (n=4) F (n=4) G (n=4) Nap 883 406 785 410 832 435 775 462 859 331 909 689 633 474 AcPy 6.80 4.44 3.37 3.27 6.02 3.20 5.75 2.16 5.39 1.23 7.20 2.91 4.31 2.83 Acp 13.2 4.47 9.70 3.45 11.04 4.95 9.89 5.46 8.15 2.81 9.07 6.98 5.99 3.35 Flu 45.3 12.4 23.7 10.1 31.0 10.5 32.2 11.3 22.8 7.09 34.1 19.2 18.7 10.6 PA 78.4 35.2 50.7 24.9 69.3 29.0 69.7 26.6 60.4 24.3 91.6 48.3 53.1 36.5 Ant 38.3 13.6 24.2 13.5 33.5 13.1 31.2 14.3 31.7 13.3 46.7 22.6 27.0 11.1 FL 31.0 17.7 11.6 1.85 28.9 1.78 49.2 2.3 10.6 0.990 54.8 5.32 29.4 2.69 Pyr 34.5 4.33 14.6 1.53 36.9 1.23 40.2 1.71 17.2 1.90 55.2 20.0 28.4 2.12 CYC 0.757 3.20 1.89 0.267 0.592 0.753 8.61 0.289 0.426 0.521 0.396 0.260 0.315 0.519 BaA 0.228 3.45 0.303 0.035 0.529 1.05 3.96 0.010 0.123 0.029 0.408 0.045 0.382 0.034 CHR 1.08 1.86 0.398 0.11 0.66 0.253 1.97 0.008 1.17 0.129 8.16 0.670 2.22 0.157 BbF 1.42 4.16 2.22 2.47 2.92 3.75 6.50 2.10 3.73 2.53 4.05 3.48 3.86 3.20 BkF 1.53 3.66 1.78 1.42 1.36 1.25 3.23 1.12 1.80 1.38 2.50 1.62 2.79 3.16 BeP 3.04 21.31 5.36 8.11 3.59 2.74 13.5 4.08 3.64 3.66 3.93 10.2 5.37 14.2 BaP 1.60 12.17 4.02 3.97 3.35 1.74 15.6 6.47 4.20 2.64 4.61 7.17 8.25 7.23 PER 3.57 25.59 5.86 6.35 5.71 29.3 14.4 9.29 4.53 5.14 6.68 11.6 5.21 10.8 IND 0.71 10.74 1.64 2.94 0.98 3.72 7.30 1.61 1.30 13.8 1.66 11.8 2.94 3.29 DBA 0.57 3.27 1.18 1.31 0.86 2.01 1.98 2.07 3.97 3.02 2.82 41.7 2.10 4.61 BbC 2.32 28.21 2.02 3.45 2.37 3.75 7.60 2.45 3.28 2.65 3.32 4.86 2.97 4.24 BghiP 2.28 0.213 1.01 0.297 1.67 1.32 2.30 0.19 1.97 1.53 1.13 3.35 2.58 0.292 COR 9.48 3.24 8.76 11.59 8.04 9.98 9.25 15.47 8.40 15.0 20.0 36.0 9.05 9.09 Total 1159 619 959 511 1081 560 1110 571 1054 435 1267 936 848 604-128-

5-3-2 PAHs A B C D E F G PAHs 416~759 308~791 229~783 309~907 105~665 600~1731 317~868 ng L -1 619 511 560 571 435 947 604 PAHs 34.8 34.8 34.1 34.0 29.2 42.8 41.6 (%) 222~3296 271~2056 203~2999 479~2801 202~2508 208~3385 266~1494 ng L -1 1159 959 1081 1110 1054 1267 848 PAHs 65.2 65.2 65.9 66.0 70.8 57.2 58.4 (%) 3500 Wet deposition conc. (ng L -1 ) 3000 2500 2000 1500 1000 R 2 = 0.727 n = 16 500 0 0 200 400 600 800 1000 1200 1400 Concentration (ng m -3 ) 5-3-1 PAHs PAHs -129-

16 5-3-1 PAHs PAHs PAHs PAHs (57.2~70.8%) PAHs (67.8~71.3%) Franz (1998) PAHs PAHs 2~4 PAHs PAHs PAHs PAHs 5-4 D D G PAHs D G 2.5 µm (Coarse particles) (Fine particles) (Respirable particles PM 2.5 ) 2.5 µm 5-4-1 (Coarse mode) (Accumulation mode) (Nucleation mode) Watson, 1998a; Lundgren and Burton, 1995 5-4-1 D 0.31~0.52 µm 3.2~5.6 µm -130-

19.0 25.6 µg m -3 D 0.31~0.52 µm 1~1.8 µm 3.2~5.6 µm 98.7 74.6 101 µg m -3 G 0.166~0.31 µm 0.52~1 µm 3.2~5.6 µm 82.2 68.5 86.7 µg m -3 0.31~1.0 1.8~3.2 µm (Acumulative mode) Vaeck et al., 1979; Aceves et al., 1993 5-4-2 PAHs 5-4-2 PAHs D 0.31~0.52 µm 5.6~10 µm G 0.166~0.31 µm 10~18 µm PAHs PAHs PAHs PAHs PAHs 10 µm PAHs 1.0~3.2 µm 2.5 PAHs -131-

40 35 30 Total particle mass D-summer 25 20 15 10 5 0 0.166 0.31 0.52 1 1.8 3.2 5.6 10 18 140 120 D-winter dc/dlogdp (µg m -3 ) 100 80 60 40 20 0 0.166 0.31 0.52 1 1.8 3.2 5.6 10 18 120 100 80 G-winter 60 40 20 0 0.166 0.31 0.52 1 1.8 3.2 5.6 10 18 Particle diameter (µm) 5-4-1-132-

60 Total PAHs dc/dlogdp (ng m -3 ) 50 40 30 20 10 D-summer 0 0.166 0.31 0.52 1 1.8 3.2 5.6 10 18 Particle diameter (µm) dc/dlogdp (ng m -3 ) 60 50 40 30 20 10 G-winter 0 0.166 0.31 0.52 1 1.8 3.2 5.6 10 18 Particle diameter (µm) 5-4-2 PAHs -133-

5-4-3 PAHs (%) MMD (Mass median diameter 50% ) (Geometric standard deviation) PAHs 5-4-3 5-4-4 D 1.0 µm 3.2 µm 10 µm 33.0% 55.1% 76.6% D 1.0 µm 3.2 µm 10 µm 45.0% 68.2% 88.9% G 1.0 µm 3.2 µm 10 µm 46.9% 71.8% 89.9% PAHs D 1.0 µm 3.2 µm 51.2% 71.0% D 1.0 µm 3.2 µm 45.1% 68.8% G 1.0 µm 3.2 µm 48.7 % 69.1% 2.5 µm PAHs 2.5 µm Venkataraman (1994) Vaeck (1979) Katz Chan (1980) Vaeck Cauwenberghe (1985) (1996) PAHs ( 2.5 µm ) PAHs 69.8% 65.0% PAHs 60% 1.0 µm PAHs 48.4% 3 (Submicron) g -134-

120 100 Total particle mass Cumulation fraction (%) 80 60 40 20 D-summer D-winter G-winter 0 0.166 0.31 0.52 1 1.8 3.2 5.6 10 18 Particle diameter (µm) 5-4-3 120 100 Total PAHs Cumulation fraction (%) 80 60 40 20 D-summer D-winter G-winter 0 0.166 0.31 0.52 1 1.8 3.2 5.6 10 18 Particle diameter (µm) 5-4-4 PAHs -135-

5-4-4 PAHs MMD g (Mass median diameter, MMD) ( PAHs) 50% ( d 50 ) 5-4-1 MMD o MMD D D G PAHs MMD o 0.706 0.994 0.839 µm D D G MMD o 2.15 1.15 1.05 µm PAHs MMD o MMD o 21 PAHs MMD o MMD o PAHs PAHs 1.0 µm MMD o MMD o 5-4-2 MMD f MMD c (Find-particle mode 0.166~1.8 µm ) (Coarse-particle mode 1.8~18 µm ) PAHs MMD f D D G 0.361 0.483 0.358 µm MMD f D D G 0.396 0.420 0.428 µm 21 PAHs MMD f 0.312~0.703 µm 0.301~1.02 µm 0.202~0.608 µm MMD f 0.20~1.1 µm PAHs MMD c D D G 5.38 5.89 5.64 µm MMD c D D G 4.36 4.10 4.05 µm 21 PAHs MMD c 3.96~10.1 µm 3.24~10.2 µm 4.18~10.1 µm MMD c 3.0~11.0 µm (Geometric standard deviation, g ) -136-

( PAHs) g d d 84 g = = 50 d d 50 σ (5-2) 16 d 84 = ( PAHs) 84% d 50 = ( PAHs) 50% d 16 = ( PAHs) 16% 5-4-2 g,c g,f D 2.07 1.89 D 1.88 2.44 G 1.87 1.99 PAHs 21 PAHs g,c 1.30~2.68 1.30~2.94 1.26~2.66 g,f 1.30~2.26 1.19~2.67 1.12~2.69 PAHs 5-4-1 PAHs 21 PAH g,o D D G 1.15~23.5 1.14~11.5 1.46~11.1-137-

5-4-1 PAHs MMD o (µm) Site D- Summer D- Winter G- Winter PAHs MMD o g,o MMD o g,o MMD o g,o Nap 0.625 6.82 0.783 4.34 0.813 5.17 AcPy 0.804 4.73 0.518 7.68 0.844 1.99 Acp 1.13 3.85 0.575 5.83 0.981 4.37 Flu 1.15 3.80 0.648 5.86 0.843 5.02 PA 1.23 3.65 1.24 1.39 0.844 1.99 Ant 0.675 5.15 1.24 1.39 0.844 1.99 FL 1.08 4.21 0.478 4.55 1.06 1.98 Pyr 0.836 5.12 0.555 8.27 1.11 1.97 CYC 0.207 1.15 1.93 1.64 1.92 2.94 BaA 0.209 7.97 0.561 1.25 0.263 1.46 CHR 0.231 13.5 0.230 7.99 0.943 6.58 BbF 0.217 10.4 0.392 7.71 0.910 6.02 BkF 0.217 10.4 0.346 7.97 0.866 6.40 BeP 0.214 9.17 1.85 3.08 0.746 7.96 BaP 0.216 4.43 1.36 3.46 0.403 11.1 PER 0.216 6.35 0.315 11.5 0.400 10.2 IND 0.211 6.91 0.206 1.14 0.832 1.53 DBA 1.66 1.97 0.581 8.12 0.226 5.26 BbC 0.215 22.5 1.23 3.00 1.17 4.27 BghiP 0.205 1.15 1.52 3.56 1.49 3.74 COR 0.234 23.5 1.06 3.17 1.03 4.94 PAHs 0.706 5.88 0.994 5.42 0.839 5.36 2.15 4.53 1.15 4.67 1.05 4.24 g,o -138-

5-4-2 PAHs MMD (µm) Sites D- Summer D- Winter G- Winter PAHs MMD c σ g,c MMD f σ g,f MMD c σ g,c MMD f σ g,f MMD c σ g,c MMD f σ g,f Nap 5.32 1.96 0.430 2.16 3.73 2.46 0.489 2.07 5.32 1.97 0.382 2.57 AcPy 4.61 2.06 0.392 1.93 4.89 2.30 0.404 2.38 6.21 1.70 0.383 2.69 Acp 5.40 1.93 0.440 2.09 4.17 2.47 0.508 1.97 5.73 1.82 0.379 2.51 Flu 5.28 1.96 0.433 2.06 4.49 2.34 0.525 1.97 5.48 1.92 0.359 2.58 PA 5.32 1.97 0.395 1.90 10.2 1.26 0.520 1.98 6.21 1.70 0.383 2.69 Ant 4.73 1.98 0.703 1.68 10.2 1.26 0.520 1.98 6.21 1.70 0.383 2.69 FL 5.53 1.95 0.384 2.12 3.56 3.16 0.499 2.07 8.04 1.50 0.202 1.12 Pyr 5.40 1.97 0.386 2.26 3.99 2.94 0.592 1.78 10.1 1.26 0.210 1.33 CYC 5.36 1.92 0.327 1.20 3.84 1.65 0.639 1.80 5.71 2.01 0.207 1.13 BaA 8.08 1.50 0.321 1.22 9.71 1.30 1.020 1.25 8.30 1.47 0.437 1.50 CHR 5.51 1.94 0.337 1.55 3.24 1.68 0.337 1.55 9.33 1.34 0.225 2.30 BbF 4.37 2.28 0.321 1.23 5.86 1.33 0.379 2.81 5.07 2.31 0.358 1.80 BkF 4.37 2.28 0.321 1.23 5.69 1.32 0.390 2.67 6.30 1.88 0.358 1.80 BeP 4.37 2.39 0.320 1.23 6.35 1.83 0.301 2.05 8.75 1.41 0.282 2.24 BaP 4.02 2.39 0.331 1.44 5.31 2.09 0.416 2.44 7.57 1.59 0.412 2.30 PER 4.88 2.26 0.329 1.37 6.24 1.72 0.345 2.01 4.75 2.35 0.460 1.40 IND 4.35 2.68 0.327 1.22 6.04 1.24 0.328 1.19 4.39 1.68 0.314 1.25 DBA 9.64 1.31 0.460 1.54 8.75 1.41 0.360 2.71 4.39 1.68 0.310 1.25 BbC 10.1 1.30 0.325 1.20 3.78 2.23 0.502 2.03 5.73 1.90 0.608 1.92 BghiP 3.96 2.78 0.320 1.21 5.99 1.95 0.794 1.52 5.29 1.92 0.233 2.16 COR 8.14 1.50 0.312 1.30 3.88 2.30 0.315 2.61 4.18 2.66 0.471 2.39 PAHs 5.38 1.97 0.361 2.08 5.89 1.97 0.483 2.09 5.64 1.93 0.358 2.63 4.36 2.07 0.396 1.89 4.10 1.88 0.420 2.44 4.05 1.87 0.428 1.99-139- g

5-5 PAHs ISCST3 PAHs 20 PAHs CMB CMB 5-5-1 5-5-1 ISCST3 ISCST3 PAHs Trinity Breeze Air ISCST3 (Version 1.12) ISC 5-5-2 5-5-1-1 ISCST ISCST3 ISCST3 UTM (m) (g s -1 ) (m) (K) (m s -1 ) (m) 2001 7 3 PAHs 5-1-1-140-

5-5-1-141-

5-5-2 ISC -142-

5-5-1 (m) (g s -1 ) (m) (K) (m s -1 ) (m) x y z PAHs 0 0 0 108.8 0.00497 443 12.65 2 ISCST3 UTM 5-5-2 5-5-2 (m) x y z 0 0 0 A 1400 500 0 B -1500 1200 0 C -500-3500 0 D 2000 2000 0 E -2500-4000 0 F -3500-10000 0 G 0-8000 0 4 km 10 km 1 1 ISCST3 (K) (m s -1 ) -143-

(1992) ISCST3 ISCST3 (µg m -3 ) 5-5-1-2 ISCST 5-5-3 ISCST3 PAHs A~G 0.046 ~ 0.330% PAHs -144-

5-5-3 ISCST3 PAHs M/R (R) (M) µg m -3 µg m -3 µg m -3 % Deg (90/7/3~7/4) 0.375 0 0 47.41 A (90/11/11~10/12) (90/12/24~12/25) 142 0-337.97 0-351.88 (91/03/11~03/12) 0.498 0.0009 0.18 300.79 (90/7/3~7/4) 0.00018-47.41 B (90/11/11~10/12) (90/12/24~12/25) 142 0.00168-337.97 0.00011-351.88 (91/03/11~03/12) 0.412 0.00139 0.33 300.79 (90/7/3~7/4) 0.139 0 0 47.41 C (90/11/11~10/12) (90/12/24~12/25) 142 0.744 0 0 337.97 0-351.88 (91/03/11~03/12) 0.561 0.00064 0.11 300.79 (90/7/3~7/4) 0.041 0.00003 0.073 47.41 D (90/11/11~10/12) (90/12/24~12/25) 142 0.0002-337.97 0.0008-351.88 (91/03/11~03/12) 0.428 0.0002 0.046 300.79-145-

5-5-3 ISCST3 PAHs ( ) M/R (R) (M) µg m -3 µg m -3 µg m -3 % Deg E (90/7/3~7/4) (90/11/11~10/12) (90/12/24~12/25) (91/03/11~03/12) 142 0.026 0 0 47.41 0.558 0 0 337.97 0.686 0 0 351.88 0.00002-300.79 (90/7/3~7/4) 0.086 0 0 47.41 F (90/11/11~10/12) (90/12/24~12/25) 142 0-337.97 0.742 0 0 351.88 (91/03/11~03/12) 0.00006-300.79 (90/7/3~7/4) 0.031 0 0 47.41 G (90/11/11~10/12) (90/12/24~12/25) 142 0.459 0 0 337.97 0.653 0 0 351.88 (91/03/11~03/12) 0.00018-300.79-146-

5-5-2 PAHs (Profile) PAHs 1993 1995 1996 1998 1998 PAHs PAHs (Profile) PAHs Dörr et al., 1996; Daisey et al., 1986 PAHs PAHs Daisey et al., 1986; Khalili et al., 1995; Dörr et al., 1996 Dörr (1996) PAHs CMB (Augsburg) PAHs PAHs Müller (1998) (Brisbane) PAHs PAHs PAHs 5-5-2-1 PAHs (Bap/Bghip) PAHs PAHs Quraishi, 1985 PAHs PAHs Cretney et al., 1985; Cheng and Richard, 1993-147-

(Pb) PAHs Pb Daisey (1986) BeP PAHs BeP PAHs PAHs 5-5-4 PAHs PAHs PAHs ( 5-5-5 ) PAHs PAHs ( ) 5-5-4 PAHs 5-5-2-2 PAHs 5-5-3 PAHs PAHs 20 PAHs ( Nap) PAHs 5-5-3 PAHs 3 PAHs (Acpy, Acp, Flu, PA, Ant) PAHs 21 PAHs 20 PAHs ( Nap) (Cluster analysis) (Chi-square test) -148-

5-5-4 PAHs BghiP/COR Pyr/BaP Pyr/BeP BaA/BaP BaP/BghiP COR/BeP Bghip/BeP BaP/BeP CHR/BeP BkF/IND IND/BghiP 1.5 2~120 36.4~78 0.5 1.3 2.9~4.6 3.1~5.6 1.4 0.5~2.1 0.4 0.4 1.2 50~90 0.7 0.4 2 1.9 1 2.5 0.2 0.56 0.2~0.5 0.2 2.9 1.4 2.1 1.5 9.5 2.7 0.3 2.3 0.79 1.2 0.65 0.63~1.41 0.31 0.54~0.58 0.55 0.36 2.5 50~100 11.8~18.7 1 0.6~1.8 1~5.5 0.9~5.4 0.5 1 1.9 1~50 1.7 1.6 0.3 2 0.3~0.8 1.9~5.5 1 2.2~2.7 4.2~5.9 1.4~1.8 0.5~1.8 0.6 1.3 1.5 2.7 1.4 2.4 2.2 3 1.8 1.8 2 2.2~12.0 0.9~7.0 0.4~0.5 0.3~0.8 0.6~1.4 1.6~5.0 0.25~1.3 0.1 0.2~0.6 0.5 0.14~0.6 0.65~1.7 1.8 0.3 Bjørseth and Ramdahl, 1985; Daisey et al., 1986; Masclet et al., 1986; Pyysalo et al., 1987; Yang et al., 1991; Beak et al., 1991; Aceves and Grimalt, 1993; Li and Kamens, 1993, Smith and Harrison, 1996; Nielsen et al., 1996; Pandey et al., 1999; Caricchia et al., 1999; Panther et al., 1999; Kim Oanh et al., 2000; Park et al., 2002. -149-1.1

5-5-5 PAHs A1 A4 B4 C1 C2 C3 D1 D4 E1 E2 E3 F1 F3 G1 G2 G3 BghiP/COR 0.43 0 0.03 0.81 0.01 0.14 0.38 1.84 0.83 0.66 0.39 0.03 0.41 1.48 0.70 1.20 Pyr/BaP 2.71 17.5 0 1.01 8.18 3.23 2.87 0 2.79 2.12 0.79 15.5 2.00 2.05 1.14 0.71 Pyr/BeP 0.79 4.30 1.08 0.39 1.10 2.34 0.92 0.77 0.81 0.74 0.62 4.43 2.08 0.76 0.42 0.53 BaA/BaP 0.38 0.35 0 0.23 0.16 0 0.41 0 0.66 0.20 0.00 0.51 0.07 0.37 1.34 0.65 BaP/BghiP 0.58 15.10 0 0.65 5.68 2.18 0.71 0 0.34 0.52 4.50 18.0 6.71 0.74 0.51 0.73 COR/BeP 1.17 6.10 0.24 0.74 1.96 2.38 1.19 0.27 1.04 1.01 0.45 0.54 0.38 0.34 1.04 0.85 Bghip/BeP 0.50 0.02 0.01 0.59 0.02 0.33 0.45 0.50 0.86 0.67 0.18 0.02 0.16 0.50 0.73 1.02 BaP/BeP 0.29 0.25 0 0.39 0.14 0.73 0.32 0 0.29 0.35 0.79 0.28 1.04 0.37 0.37 0.74 CHR/BeP 0.51 0.09 0.68 0.27 0.20 0 0.61 0.81 1.61 0.65 0.00 1.46 0.00 0.49 0.49 1.27 BkF/IND 0.49 2.76 2.32 11.76 4.73 1.58 0.69 2.81 0.59 1.14 0.76 0 1.89 0.49 1.06 1.30 IND/BghiP 1.65 12.75 11.55 0.07 9.68 0.92 1.36 0.12 1.48 0.94 5.19 0 2.79 1.68 0.86 0.82 1 2 3 4-150-

-151-0 10 20 30 40 50 A-summer A-spring 0 10 20 30 40 50 C-summer C-spring C-fall PAHs/Total PAHs (%) 0 10 20 30 40 D-summer D-spring 0 10 20 30 40 E-summer E-winter 0 10 20 30 40 F-summer F-winter AcPy Acp Flu PA Ant FL Pyr CYC BaA CHR BbF BkF BeP BaP PER IND DBA BbC BghiP COR 0 5 10 15 20 25 30 35 G-summer G-fall G-winter PAHs 0 10 20 30 40 B-spring 5-5-3 PAHs

5-5-2-3 PAHs SAS (Statistical analysis system) 8.0 (Ward s minimum variance method) ( ) ( ) (Fusion) 5-5-4 A B C D E F G PAHs -152-

5-5-4 5-5-2-4 (Categorical data) ( ) ( ) (Two factor contingency table) ( -153-

) 16 PAHs ( Nap 20 PAHs PAHs ) PAHs 95% 5-5-6 16 13 PAHs PAHs G ( ) F ( ) G F G F PAHs 5-5-6 A1 A2 B1 C1 C2 C3 D1 D2 E2 E3 E4 F2 F4 G2 G3 G4 1 2 3 4-154-

5-5-3 CMB PAHs ( ) PAHs 5-5-3-1 5-5-7 PAHs (1) 4 5 6 1% 0.5% 6 PAHs (1998) PAHs ( 30 ton hr -1 ) ( 10 ~ 30 ton hr -1 ) ( 10 ton hr -1 ) PAHs 3.10 13.5 27.0 mg L -1 ( 3-10 ) (1999) PAHs PAHs 6.13 mg L -1 ( 3-10 ) PAHs (1999) (1998) PAHs -155-

( ) PAHs ( 5-5-7 ) (2) Li et al. (1999) PAHs 3.43 mg ton -1 2.68 mg m -3 ( 5-5-7 ) Li et al. (1999) PAHs ( 5-5-7 ) (3) 800~1000 (1999) PAHs 4350 mg ton -1 ( 5-5-7 ) PAHs ( 5-5-7 ) (4) Li et al. (1999) PAHs 2920 mg ton -1 2510 mg m -3 ( 5-5-7 ) (5) PAHs -156-

900 tons 800 120 m de-nox PAHs 125 µg m -3 ( 5-5-7 ) -157-

5-5-7-1 µg L -1 (ton hr -1 ) mg m -3 mg ton -1 mg ton -1 mg ton -1 mg m -3 µg m -3 µg L 30 10 ~30 10 Nap 5.63 1.630 11.7 25.0 2.18 1.71 3680 1260 1110 AcPy 0.052 0.051 0.031 0.067 0.012 0.009 125 21.4 18.7 Acp 0.058 0.026 0.032 0.069 0.027 0.021 54.4 47.3 41.4 Flu 0.033 0.085 0.117 0.036 0.086 0.067 61.7 68.3 59.8 Ant 0.223 0.267 0.236 0.146 0.733 0.573 236 78.8 69.0 PA 0.010 0.017 0.014 0.007 0.011 0.009 11.5 30.8 26.9 FL 0.052 0.254 0.139 0.118 0.152 0.119 76.3 1120 977 Pyr 0.038 0.702 0.162 0.229 0.103 0.081 39.9 108 94.8 CYC 0.001 0.065 0.018 0.022 0.008 0.007 6.22 4.25 3.72 BaA 0.006 0.030 0.014 0.039 0.004 0.003 18.5 8.10 7.10 CHR 0.006 0.054 0.017 0.022 0.014 0.011 6.54 5.23 4.58 BbF 0.006 0.083 0.020 0.072 0.003 0.003 9.82 19.0 16.5 BkF 0.001 0.070 0.029 0.026 0.006 0.005 1.54 48.3 42.3 BeP 0.004 0.115 0.030 0.050 0.006 0.005 5.68 21.1 18.5 BaP 0.003 0.239 0.061 0.110 0.020 0.016 2.19 26.0 22.8 PER 0.002 0.078 0.019 0.030 0.011 0.008 1.29 10.2 8.96 IND 0.003 0.540 0.270 0.337 ND ND 3.49 2.98 2.61 DBA 0.001 0.697 0.364 0.400 0.001 0.001 1.29 11.1 9.70 BbC 0.001 0.047 0.044 0.082 0.038 0.030 1.01 1.50 1.31 BghiP 0.003 0.196 0.169 0.104 ND ND 5.81 7.53 6.59 COR ND 0.043 0.020 0.028 0.006 0.005 0.767 20.3 17.8 Total PAHs 6.13 3.10 13.5 27.0 3.43 2.68 4350 2920 2560 Li et al. Li, et al. (1999) (1998) (1999) (1999) (1999) ND -158-

PAHs PAHs (1998) ( ) PAHs 5-5-8 PAHs (1) (1998) PAHs ECE-R49 5-5-9 5-5-8 PAHs 37200 mg kl -1 (2) (1998) (1000 rpm) 40 km hr -1 (1500 rpm) 80 km hr -1 (2200 rpm) 120 km hr -1 (3000 rpm) 25 Mazda-E5 1986 (OHC) Borghi & Saveri FE-150S PC 150 HP (Super-2170) (API=SH, 10W/40) -159-

30 5-5-10 5-5-8 (95-lead free gasoline, 95-LFG) PAHs 5680 mg kl -1-95 (3) (1998) Honda 125 c.c. Honda 50 c.c. 5-5-11 (92-lead free gasoline, 92-LFG) 5-5-8 PAHs 13200 mg kl -1 PAHs 49200 mg kl -1-160-

PAHs 5-5-8 (mg kl -1 ) Nap 31000 1730 11700 46100 AcPy 1410 92.2 309 322 Acp 1160 153 72.7 1470 Flu 1350 1720 87.3 134 Ant 922 911 360 138 PA 186 131 50.0 394 FL 149 192 88.1 16.3 Pyr 145 170 111 50.5 CYC 14.0 114 30.7 14.3 BaA 35.9 61.3 14.9 40.1 CHR 67.8 80.6 3.88 65.5 BbF 103 42.5 9.71 37.1 BkF 50.7 52.4 0.11 3.92 BeP 19.3 19.3 7.45 64.8 BaP 68.0 39.4 65.1 24.6 PER 36.6 3.66 20.9 90.2 IND 213 67.7 12.4 24.2 DBA 85.5 13.4 3.24 26.0 BbC 59.5 17.4 26.9 106 BghiP 103 66.1 27.4 14.8 COR 20.3 0.41 144 14.1 Total PAHs 37200 5680 13200 49200 1998-161-

(Speed) (Mode) (rpm) 5-5-9 (Load) (%) (Weighting Factor) (%) 1 Idle 10 0.25 2 1600 25 0.16 3 1600 75 0.16 4 1600 100 0.25 5 2800 100 0.18 1998 5-5-10 (rpm) (A) (kg-m) (kw) (hp) (PS) (%) 1000 0 1.1 0.79 0.85 1.08 1.08 1500 20 2.6 4.44 6.88 9.22 9.34 2200 30 2.6 4.39 N.A. N.A. N.A. 3000 40 2.3 4.32 N.A. N.A. N.A. N.A. 1998 5-5-11 (Honda 50 c.c.) 5000 km 92-LFG (Honda 125 c.c.) 15000 km 92-LFG 1998 40 km hr -1 (6500 rpm) (2% 5%) (Idling) 60 km hr -1 (8000 rpm) (Idling) 40 km hr -1 (2500 rpm) 60 km hr -1 (4000 rpm) -162-

5-5-3-2 PAHs 1. PAHs 2. 3. 4. 5. 6. 7. ( PAHs ) USEPA 5 6 7 USEPA, 1997 1. PAHs -163-

( ) ( ) 2. 3. 4. PAHs PAHs Q = F E (5-3) Q = PAHs F = E = PAHs 5-5-5 PAHs PAHs 5-5-6 ( ) PAHs -164-

5-5-5 PAHs -165-

5-5-6 PAHs -166-

5-5-3-3 PAHs PAHs PAHs 5-5-12 PAHs PAHs Nap PAHs AcPy Acp Flu Ant PA PAHs FL Pyr BaA CHR PAHs CYC BbF BkF BeP BaP PER DBA BbC PAHs IND Bghip PAHs COR PAHs PAHs (LMW) PAHs PAHs (MMW) PAHs PAHs (HMW) 5-5-12 PAHs 6266 168 102 PAHs 6535 5-5-13 PAHs (56.7%) (24.7%) PAHs 2001 505,895 ( 45.8%) 247,058 ( 22.4%) 281,801 ( 25.5 %) 12,346 ( 1.11%) 1,103,640 ( 3-27) 5-5-14 1999 1998 1999 ( ) -167-

5-5-12 PAHs kg yr -1 LMW MMW HMW Total 3512 146 39.7 7.39 2.33 0 3658 39.7 9.7 3708 465 185 58 19.8 0 1.28 650 58 21.1 729 1726 210 68.5 62.6 5.09 2.88 1937 68.5 70.5 2075 0.64 0.12 0.62 0.07 0.005 0.01 0.8 0.62 0.09 1 18 1.8 0.67 0.24 0.04 0.121 20 0.67 0.4 21 5722 543 167 90.1 7.47 4.29 6266 167 102 6534 5-5-13 PAHs % PAHs 53.7 2.23 0.608 0.113 0.036 0 56.7 7.12 2.83 0.888 0.303 0 0.020 11.2 26.4 3.22 1.05 0.958 0.078 0.044 31.8 0.010 0.002 0.009 0.001 0 0 0.015 0.275 0.028 0.010 0.004 0.001 0.002 0.321 87.6 8.32 2.56 1.38 0.114 0.066 100 5-5-14 1 55,652 888 281,801 505,895 247,058 (km L -1 9.0 2 ) 8.1 3 10.3 4 21.4 5 23.0 5 (km week -1-1 600.0 2 820.3 3 ) 107.5 4 52.8 5 46.9 5 (km week -1-1 31,200 43,474 ) 7,716 2,749 2,443 ( ) 192,927 4,766 211,105 64,991 26,233 1 2001 2 1998 3 1999 4 1998 5 1999-168-

5-5-15 2001 5-5-14 5-5-15 5-5-16 500,020 5-5-15 510,921 10,901 2% 716,589 kl 30.0% 57.0% 9.07% 3.66% 5-5-15 ( ) ( ) ( ) 1 143 44,537 17,550 62,087 14.01 2 140 38,515 17,781 56,296 14.36 3 141 43,375 19,663 63,038 14.42 4 140 41,049 16,260 57,309 13.65 5 144 44,657 18,619 63,276 14.17 6 143 42,096 18,384 60,480 14.1 7 143 44,134 19,002 63,136 14.24 8 143 44,755 18,161 62,916 14.19 9 144 40,833 15,784 56,617 13.11 10 146 42,937 18,265 61,202 13.52 11 147 40,729 18,006 58,735 13.32 12 147 43,304 18,593 61,897 13.58-510,921 216,068 726,989 13.89 2001-169-

5-5-16 ( ) 216,068 408,797 64,991 26,233 716,090 5-5-17 PAHs 5-5-8 5-5-16 PAHs PAHs 8,037 2,321 854 1,289 5-5-18 PAHs PAHs Nap PAHs AcPy Acp Flu Ant PA PAHs FL Pyr BaA CHR PAHs CYC BbF BkF BeP BaP PER DBA BbC PAHs IND Bghip PAHs COR PAHs PAHs (LMW) PAHs PAHs (MMW) PAHs PAHs (HMW) 5-5-18 PAHs 7,784 1,937 818 1,274 5-5-19 PAHs 64.3 % 18.6% 6.83% 10.3% PAHs 75% -170-

PAHs 5-5-17 PAHs (kg yr -1 ) Nap 6,698 707 760 1,209 AcPy 305 37.7 20.1 8.45 Acp 251 62.5 4.72 38.6 Flu 292 703 5.67 3.52 Ant 199 372 23.4 3.62 PA 40.2 53.6 3.25 10.3 FL 32.2 78.5 5.73 0.43 Pyr 31.3 69.5 7.21 1.32 BaA 7.76 25.1 0.97 1.05 CHR 14.6 32.9 0.25 1.72 CYC 3.02 46.6 2.00 0.38 BbF 22.3 17.4 0.63 0.97 BkF 11.0 21.4 0.01 0.10 BeP 4.17 7.89 0.48 1.70 BaP 14.7 16.1 4.23 0.65 PER 7.91 1.50 1.36 2.37 DBA 18.5 5.48 0.21 0.68 BbC 12.9 7.11 1.75 2.78 IND 46.0 27.7 0.81 0.63 BghiP 22.3 27.0 1.78 0.39 COR 4.39 0.17 9.36 0.37 Total PAHs 8,037 2,321 854 1,289-171-

5-5-18 PAHs (kg yr -1 ) PAHs 6,698 707 760 1,209 1,086 1,229 57.1 64.5 85.9 206 14.2 4.52 94.3 123 10.7 9.63 68.3 54.7 2.59 1.02 4.39 0.17 9.36 0.37 LMW 7,784 1,937 818 1,274 MMW 85.9 206 14.2 4.52 HMW 167 178 22.6 11.0 5-5-19 PAHs (%) PAHs 53.6 5.66 6.08 9.67 75.0 8.69 9.83 0.46 0.52 19.5 0.69 1.65 0.11 0.04 2.48 0.75 0.99 0.09 0.08 1.90 0.55 0.44 0.02 0.01 1.01 0.04 0.00 0.07 0.00 0.11 PAHs 64.3 18.6 6.83 10.3 100-172-

5-5-3-4 PAHs PAHs PAHs PAHs (n=16) 5-5-7 5-5-7 PAHs PAHs PAHs PAHs PAHs Average Inventory Emission (kg day -1 ) 1 0.1 0.01 Inventory Emission Measured PAHs concentration 1000 100 10 1 Average concentration (ng m -3 ) 0.1 0.001 AcPy Acp Flu PA Ant FL Pyr CYC BaA CHR BbF BkF BeP BaP PER IND DBA BbC BghiP COR PAHs 5-5-7 PAHs PAHs -173-

5-5-4 (CMB) CMB CMB (Source profile) (Fingerprint) CMB 8.0 PAHs PAHs PAHs CMB 8.0 CMB 8.0 PAHs PAHs CMB 8.0 PAHs PAHs 5-5-4-1 CMB 8.0 CMB CMB PAHs PAHs PAHs ( ) PAHs CMB 8.0 PAHs 5-5-20 PAHs 20 PAHs ( Nap) PAHs F ij = [PAH i ] / [PAH total ] 5-5-20 PAHs (%) 5-5-20 PAHs DBA IND 19.6% 15.4% Ant FL -174-

59.1% 12.2% Ant AcPy 35.3% 18.7% FL Pyr 67.5% 6.51% Ant Pyr 35.9% 8.67% Flu AcPy 27.1% 17.5% PAHs CMB 8.0 5-5-2-4 PAHs PAHs 95% PAHs CMB 8.0-175-

5-5-20 PAHs (%) PAHs AcPy 2.00 0.97 18.7 1.29 3.88 17.5 Acp 1.70 2.18 8.13 2.85 7.07 15.1 Flu 3.19 6.93 9.22 4.11 12.4 27.1 Ant 8.70 59.1 35.3 4.75 35.9 16.9 PA 0.51 0.89 1.72 1.86 4.02 3.15 FL 6.85 12.2 11.4 67.5 12.6 3.04 Pyr 14.7 8.30 5.96 6.51 8.67 2.86 CYC 1.41 0.64 0.93 0.26 0.51 0.836 BaA 1.11 0.32 2.77 0.49 0.12 1.33 CHR 1.25 1.13 0.98 0.32 1.50 0.917 BbF 2.35 0.24 1.47 1.14 2.30 1.51 BkF 1.68 0.48 0.23 2.91 0 0.940 BeP 2.61 0.48 0.85 1.27 0.72 0.370 BaP 5.50 1.61 0.33 1.57 1.22 1.09 PER 1.70 0.89 0.19 0.61 1.26 0.485 IND 15.4 0 0.52 0.18 1.03 1.10 DBA 19.6 0.08 0.19 0.67 0.12 0.852 BbC 2.32 3.06 0.15 0.09 2.28 2.96 BghiP 6.29 0 0.87 0.45 0.21 1.66 COR 1.22 0.48 0.11 1.22 4.16 0.300 Total 100 100 100 100 100 100 Li et al. (1998) (1999) (1999) (1999) (1998) -176-

5-5-4-2 PAHs CMB 8.0 CMB CMB 8.0 CMB 8.0 ( ) 20 ( + ) PAHs 20 PAHs ( + ) CMB 8.0 20 PAHs 5-5-21 CMB 8.0 (16 ) (93.4 %) R 2 0.8 R 2 0.923 8.12~339 ng m -3 39.7~135% ( 5-5-8) 22.5% (N.A.~50.2%) 1.27 % (N.A.~7.3%) 25.4% (N.A.~100%) 9.67% (N.A.~86.5%) 1.21% (N.A.~18.2%) 40.0% (N.A.~82.4%) 80~120% (2000 7 9 ) E G (2000 10 11 ) G 38~60% PAHs CMB 8.0-177-

(ng m -3 ) 5-5-21 CMB 8.0 20 PAHs (ng m -3 ) R 2 (%) A 2001/07/09 56.2 0.99 16.8 5.25 4.72 8.34 0.75 35.6 127 A 2002/03/11 57.0 0.95 15.4 N.A. N.A. N.A. N.A. 61.6 135 B 2002/03/11 40.9 0.97 8.65 N.A. N.A. N.A. N.A. 40.4 120 C 2001/07/09 69.0 0.98 25.9 N.A. N.A. N.A. N.A. 54.3 116 C 2001/10/11 64.6 0.99 38.9 N.A. 38.6 N.A. N.A. N.A. 120 C 2002/03/11 75.1 0.98 31.8 N.A. 22.1 N.A. N.A. 38.7 123 D 2001/07/09 16.9 0.87 2.95 N.A. N.A. N.A. N.A. 12.1 88.6 D 2002/03/11 46.2 0.97 16.2 1.11 11.0 N.A. 0.04 21.8 109 E 2001/07/09 11.0 0.82 0.15 N.A. 4.01 N.A. N.A. 0.19 39.7 E 2001/10/11 39.5 0.95 8.12 1.57 6.39 N.A. N.A. 23.24 100 E 2001/12/24 86.3 0.96 44.3 N.A. 24.7 28.0 N.A. N.A. 112 F 2001/07/09 36.8 0.91 N.A. N.A. N.A. N.A. 7.33 33.0 110 F 2001/12/24 58.8 0.90 N.A. 1.49 6.22 49.5 N.A. N.A. 97.4 G 2001/07/09 15.3 0.68 N.A. N.A. 6.72 N.A. N.A. N.A. 43.9 G 2001/10/11 36.7 0.92 6.87 N.A. 8.86 N.A. N.A. 10.8 72.2 G 2001/12/24 90.8 0.94 28.2 3.40 21.3 22.9 N.A. 7.01 91.1 (1)N.A. (2) T-Statistic 2-178-

Contribution percentage (%) 100 80 60 40 20 Mobile Oil Gas Coal Deisel MSWI 1 : 2001/07/09 2 : 2001/10/11 3 : 2001/12/24 4 : 2002/03/11 0 A1 A4 B4 C1 C2 C4 D1 D4 E1 E2 E3 F1 F3 G1 G2 G3 Sampling sites 5-5-8 20 PAHs 8 PAHs PAHs PAHs Mastclet et al., 1986 Pitts et al. (1978) PAHs CMB CMB CMB PAHs Kamens et al., 1985, 1988 PAHs PAH 2-6-1 PAHs (FL Pyr BaA CHR BbF BkF BeP -179-

COR) PAHs CMB 8.0 PAHs 20 PAHs 8 PAHs CMB 8.0 8 PAHs 5-5-22 (62.5%) R 2 0.8 R 2 0.790 N.A.~21.6 ng m -3 N.A.~140% ( 5-5-9) 17.6% (N.A.~92.%) 20.3% (N.A.~100%) 24.4% (N.A.~89.1%) 0.43% (N.A.~4.23%) 12.3% (N.A.~86.7%) 18.9% (N.A.~95.6%) 20 PAHs 8 PAHs R 2 PAHs 5-5-22 43.8% 80~120% PAHs 20 PAHs CMB 20 PAHs PAHs ( + ) PAHs -180-

(ng m -3 ) 5-5-22 CMB 8.0 8 PAHs (ng m -3 ) R 2 (%) A 2001/07/09 13.5 1.00 N.A. 5.46 7.47 0.71 0.66 2.43 123 A 2002/03/11 9.53 0.93 N.A. N.A. 0.00 N.A. 5.84 0.89 70.7 B 2002/03/11 10.9 0.96 4.58 1.24 6.49 N.A. N.A. N.A. 113 C 2001/07/09 17.1 1.00 N.A. 6.19 4.09 N.A. 3.84 4.55 109 C 2001/10/11 10.8 1.00 N.A. 0.33 9.96 N.A. N.A. 0.89 104 C 2002/03/11 15.5 0.99 10.3 2.01 9.38 N.A. N.A. N.A. 140 D 2001/07/09 4.34 0.55 N.A. N.A. N.A. N.A. 0.65 0.98 37.5 D 2002/03/11 11.9 0.93 5.88 N.A. 6.14 N.A. N.A. N.A. 101 E 2001/07/09 4.10 0.01 0.21 N.A. N.A. N.A. 0.02 N.A. 5.48 E 2001/10/11 12.1 0.90 N.A. 2.46 N.A. N.A. 1.12 3.38 57.7 E 2001/12/24 14.3 0.98 N.A. 8.72 N.A. N.A. 1.22 6.05 112 F 2001/07/09 15.8 1.00 1.80 0.17 16.3 0.49 N.A. N.A. 119 F 2001/12/24 10.7 0.78 N.A. 10.50 N.A. N.A. N.A. N.A. 98.6 G 2001/07/09 6.31 0 N.A. N.A. N.A. N.A. N.A. N.A. 0 G 2001/10/11 12.5 0.67 N.A. 0.14 N.A. N.A. N.A. 3.11 26.0 G 2001/12/24 25.1 0.94 7.56 6.95 N.A. N.A. 2.34 N.A. 67.1 (1)N.A. (2) T-Statistic 2-181-

Contribution percentage (%) 100 80 60 40 20 Mobile Oil Gas Coal Deisel MSWI 1 : 2001/07/09 2 : 2001/10/11 3 : 2001/12/24 4 : 2002/03/11 0 A1 A4 B4 C1 C2 C4 D1 D4 E1 E2 E3 F1 F3 G1 G2 G3 Sampling sites 5-5-9 8 PAHs CMB 8.0 20 PAHs 5-5-23 (25%) R 2 0.8 2.94~34.5 ng m -3 70.0~176% 79.5% (25.5~100%) 0.28% (N.A.~4.46%) 5.23% (N.A.~34.1%) N.A. 0.641% (N.A.~7.84%) 14.4 % (N.A.~61.9%) 20 PAHs 8 PAHs 20 PAHs R 2 ( 0.437) PAHs PAHs -182-

PAHs 8 PAHs PAHs 8 PAHs CMB 8.0 8 PAHs 5-5-24 R 2 0.8 R 2 20 PAHs 8 PAHs CMB -183-

(ng m -3 ) 5-5-23 CMB 8.0 20 PAHs (ng m -3 ) R 2 (%) A 2001/07/09 4.0 0.758 3.76 N.A. 0.630 N.A. N.A. 0.972 135 A 2002/03/11 7.20 0.100 8.06 N.A. N.A. N.A. N.A. N.A. 112 B 2002/03/11 4.0 0.451 4.79 N.A. N.A. N.A. N.A. 2.29 176 C 2001/07/09 6.0 0.379 6.43 N.A. N.A. N.A. N.A. 1.44 132 C 2001/10/11 2.3 0.153 2.26 N.A. 0.355 N.A. 0.231 0.094 128 C 2002/03/11 3.4 0.840 3.71 N.A. 1.99 N.A. N.A. 0.140 172 D 2001/07/09 5.78 0.867 5.26 N.A. 0.763 N.A. N.A. 2.30 144 D 2002/03/11 4.8 0.051 4.24 N.A. N.A. N.A. N.A. N.A. 89.3 E 2001/07/09 8.03 0.562 7.14 N.A. N.A. N.A. N.A. 2.48 120 E 2001/10/11 11.5 0.211 15.4 N.A. N.A. N.A. N.A. N.A. 133 E 2001/12/24 6.5 0.193 5.76 N.A. N.A. N.A. N.A. 1.10 105 F 2001/07/09 2.7 0.993 1.02 0.18 0.234 N.A. 0.097 2.48 149 F 2001/12/24 9.8 0.039 6.87 N.A. N.A. N.A. N.A. N.A. 70.0 G 2001/07/09 7.19 0.862 6.19 N.A. 1.02 N.A. N.A. 2.28 132 G 2001/10/11 14.9 0.228 19.0 N.A. N.A. N.A. N.A. N.A. 128 G 2001/12/24 21.9 0.303 34.5 N.A. N.A. N.A. N.A. N.A. 158 (1)N.A. (2) T-Statistic 2-184-

5-5-24 CMB 8.0 8 PAHs (ng m -3 ) (ng m -3 ) R 2 (%) A 2001/07/09 1.69 0.495 N.A. N.A. 0.648 N.A. N.A. 0.598 73.6 A 2002/03/11 4.21 0.309 N.A. 2.55 0.078 N.A. N.A. 0.298 69.5 B 2002/03/11 2.48 0.198 N.A. N.A. 1.09 N.A. N.A. 1.23 93.3 C 2001/07/09 3.09 0.542 N.A. N.A. 1.66 0.052 N.A. 0.618 75.6 C 2001/10/11 1.15 0.257 N.A. N.A. 0.603 N.A. N.A. 0.316 79.7 C 2002/03/11 1.08 0.105 N.A. N.A. 0.516 N.A. N.A. 0.214 67.7 D 2001/07/09 2.69 0.584 N.A. N.A. 0.828 N.A. 0.070 1.02 71.3 D 2002/03/11 2.90 0.500 N.A. 1.74 0.153 N.A. N.A. 0.605 86.4 E 2001/07/09 3.97 0.066 N.A. N.A. 0.247 N.A. N.A. 0.210 11.5 E 2001/10/11 7.53 0.468 N.A. N.A. 2.69 N.A. N.A. 1.61 57.0 E 2001/12/24 2.52 0.620 N.A. 1.45 2.04 N.A. N.A. N.A. 139 F 2001/07/09 0.945 0.976 N.A. N.A. 0.017 N.A. 0.010 0.849 92.8 F 2001/12/24 4.61 0.449 N.A. 1.40 1.45 0.487 N.A. 1.93 114 G 2001/07/09 2.84 0.662 0.521 0.703 0.834 0.293 N.A. 0.83 112 G 2001/10/11 9.50 0.643 N.A. N.A. 2.82 N.A. 0.015 N.A. 29.9 G 2001/12/24 13.4 0.252 N.A. N.A. 3.47 N.A. N.A. N.A. 25.9 (1)N.A. (2) T-Statistic 2-185-

ISCST3 CMB 8.0 ISCST3 PAHs CMB 8.0 20 PAHs PAHs 40% (n =16 N.A.~82.4% ) CMB 8.0 20 PAHs ( + ) 5-5-25 5-5-25 (93.4%) R 2 0.8 R 2 0.92 28.1~355 ng m -3 39.4~125% ( 5-5-10) 36.5% (N.A.~49.0%) 4.03% (N.A.~16.9%) 47.9% (13.6~100%) 8.33% (N.A.~73.4%) 3.21% (N.A.~21.8%) CMB 20 PAHs ( ) 22.4% 36.5% 1.26% 4.03% 25.3% 47.9% 9.67% 8.33% 1.20% -186-

3.21% 1.34% 2.01~22.6% ISCST3 CMB PAHs CMB 8.0-187-

5-5-25 CMB 8.0 20 PAHs - (ng m -3 ) (ng m -3 ) R 2 (%) A 2001/07/09 56.2 0.98 30.0 5.37 25.6 3.05 3.75 120 A 2002/03/11 57.0 0.97 31.6 N.A. 34.6 N.A. 1.16 118 B 2002/03/11 40.9 0.97 20.6 2.41 21.3 N.A. 2.19 113 C 2001/07/09 69.0 0.97 43.3 3.38 26.9 N.A. 6.31 116 C 2001/10/11 64.6 0.99 39.4 2.32 38.2 N.A. 0.506 125 C 2002/03/11 75.1 0.97 43.6 3.42 42.1 N.A. 1.71 121 D 2001/07/09 16.9 0.86 6.31 N.A. 6.53 N.A. 0.162 76.8 D 2002/03/11 46.2 0.97 22.7 1.27 22.3 N.A. 1.68 104 E 2001/07/09 11.0 0.82 0.202 N.A. 4.12 N.A. N.A. 39.4 E 2001/10/11 39.5 0.93 14.9 1.85 18.6 N.A. 0.881 91.8 E 2001/12/24 86.3 0.96 45.1 5.04 23.9 28.3 N.A. 119 F 2001/07/09 36.8 0.89 11.7 7.55 15.8 N.A. 9.75 122 F 2001/12/24 58.8 0.90 5.67 2.14 8.12 43.9 N.A. 102 G 2001/07/09 15.3 0.68 N.A. N.A. 6.72 N.A. N.A. 43.9 G 2001/10/11 36.7 0.91 10.0 0.781 14.6 N.A. N.A. 69.2 G 2001/12/24 90.8 0.94 30.3 3.52 25.2 22.6 N.A. 89.9 (1)N.A. (2) T-Statistic 2-188-

Contribution percentage (%) 100 80 60 40 20 Mobile Oil Gas Coal Deisel 1 : 2001/07/09 2 : 2001/10/11 3 : 2001/12/24 4 : 2002/03/11 0 A1 A4 B4 C1 C2 C4 D1 D4 E1 E2 E3 F1 F3 G1 G2 G3 Sampling sites 5-5-10 20 PAHs ( MSWI) 5-5-5 CMB CMB Peter and Richard (1993) Ground-based trajectories ( ) CMB Wadden et al., 1986; O Shea and Scheff, 1988; Peter and Richard, 1993 Peter and Richard (1993) Ground-based trajectories CMB (Graphic arts) VOCs (Gaussian plume model) -189-

C = 2 Q 1 y exp πuσ σ 2 σ y 1 z H exp 2 σ 2 y z z 2 (5-4) C = Q = u = z y = (z) (y) H = ( 10~70 km ) 10 km (Plume center line) y=0 z =Ax y =Gx x A G (5-1) 1.0 u ( 1.39 0.48 m s -1 ) (5-5) α +γ C Q j / X (5-5) 1 + 2 + =1 ( ) -190-

Trajectory scores Q/X Q/X ± 22.5 Peter and Richard, 1993 Ground-based trajectores 70 km ( A~G) ± 22.5 ( 5-5-11 ) (Q/X) CMB 8.0 PAHs ( ) 5-5-12 Ground-based trajectores 5-5-12 (0.855 kg km -1 day -1 ) ( 0.053 kg km -1 day -1 ) ( 0.0003 kg km -1 day -1 ) (47.4 ) ( 300.8 338.0 351.9 ) CMB 20 PAHs 5-5-13 R 2 0.869 0.814 0.709 CMB -191-

CMB CMB Trajectory score emission (Q/X) CMB 5-5-14 CMB 8 PAHs 5-5-14 CMB R 2 0.59 20 PAHs CMB CMB CMB CMB CMB PAHs PAHs PAHs PAHs PAHs PAHs PAHs -192-

5-5-11-193-

Spring Summer Fall Winter 3 0.3 Mobile Oil 2 0.2 1 0.1 Trajectory score, emission (kg km -1 day -1 ) 0 0.3 0.2 0.1 0.0 1.2e-3 A B C D E F G Gas A B C D E F G 0.0 A B C D E F G 0.3 Coal 0.2 0.1 0.0 A B C D E F G 0.5 Diesel 0.4 MSWI 8.0e-4 0.3 4.0e-4 0.2 0.1 0.0 A B C D E F G 0.0 A B C D E F G Sampling sites Sampling sites 5-5-12-194-

0.5 0.4 MSWI 0.3 Oil 0.3 0.2 R 2 =0.814 0.2 0.1 R 2 =0.709 0.1 Trajectory score, Emission (kg km -1 yr -1 ) 0.0 0 20 40 60 3 2 R 2 =0.869 0.3 0.2 Mobile Gas 1 0 0 10 20 30 40 50 Coal 0.0 0 1 2 3 4 5 6 0.3 0.2 0.1 0.0 0 10 20 30 40 50 1e-3 8e-4 6e-4 Deisel 0.1 4e-4 2e-4 0.0 0 10 20 30 40 50 60 CMB coefficient (ng m -3 ) 0 0 2 4 6 8 CMB coefficient (ng m -3 ) 5-5-13 CMB 20 PAHs -195-

Trajectory score, Emission (kg km -1 yr -1 ) 0.5 0.4 MSWI 0.3 0.2 0.1 0.0 0 2 4 6 3 Mobile 2 R 2 =0.591 1 0 0 2 4 6 8 10 12 0.3 Coal 0.30 0.25 Oil 0.20 0.15 0.10 0.05 0.00 0 2 4 6 8 10 12 0.30 0.25 0.2 6e-4 Gas 0.20 0.15 0.10 0.05 0.00 0 4 8 12 16 20 1e-3 8e-4 Deisel 0.1 0.0 0.0 0.2 0.4 0.6 0.8 CMB coefficient (ng m -3 ) 4e-4 2e-4 0 0 1 2 3 4 5 6 7 CMB coefficient (ng m -3 ) 5-5-14 CMB 8 PAHs -196-

6-1 1. 21.1~191 µg m -3 131 38.4 91.7 132 µg m -3 2. PAHs 235~666 ng m -3 PAHs ( / + ) 1.09~4.14% 2.53% PAHs PAHs (Nap AcPy Acp Flu PA) PAHs 3. 118~207 mg m -2 day -1 153 mg m -2 day -1 1.49 ~5.84 cm s -1 2.86 cm s -1 PAHs 133 ~230 µg m -2 day -1 164 µg m -2 day -1 4. 21 PAHs Nap 331~909 ng L -1 Nap 20 PAHs Nap 5. PAHs 105~1731 ng L -1 PAHs 202~3296 ng L -1 PAHs PAHs PAHs PAHs -197-

6. PAHs PAHs 2.5 µm 7. PAHs D D G 1.0 µm 3.2 µm 48.3% 69.8% 2.5 µm PAHs 69.8% 60% PAHs 1.0 µm PAHs 48.4% 3 PAHs 21 PAHs MMD MMD PAHs 8. ISCST3 PAHs PAHs PAHs 20 PAHs PAHs 9. CMB 8.0 20 PAHs ( + ) 8 PAHs 20 PAHs 8 PAHs PAHs PAHs PAHs CMB PAHs -198-

10. CMB 8.0 CMB PAHs CMB PAHs 6-2 1. PAHs PAHs PAHs 2. PAHs PAHs -199-

Aceves, M. and Grimalt, J.O., Seasonally Dependent Size Distributions of Aliphatic and Polycyclic Aromatic Hydrocarbons in Urban Aerosols from Densely Populated Areas, Environmental Science & Technology, Vol. 27, pp. 2896-2908 (1993). Akio, K. and Youki, O., Mutagenic Activity and PAH Analysis in Municipal Incinerator, the Science of Total Environment, Vol. 61, pp. 37-49 (1987). Allen, J.O., Dookeran, N.M., Taghizadeh, K., Lafleur, A.L., Smith, K.A. and Sarofim, A.F., Measurement of Oxygenated Polycyclic Aromatic Hydrocarbons Associated with a Size-segregated Urban Aerosol, Environmental Science & Technology, Vol. 31, pp. 2064-2070 (1997). Atlas, E., Foster, E. and Griam, C.S., Air-sea Exchange of High Molecular Weight Organic Pollutions: Laboratory Studies, Environmental Science & Technology, Vol. 16, No. 1, pp. 283-286 (1992). Badgger, G.M. and Spotswood, T.M., Journal Chemical Society, pp. 4420 (1960). Baek, S.O., Field, R.A., Goldstone, M.A., Kirk, P.W., Lester, J.N. and Perry, R., A Review of Polycyclic Aromatic Hydrocarbons: Sources, Fate and Behavior, Water, Air and Soil Pollution, Vol 60, pp. 279-300 (1991). Baker, J., Foster, E. and Eisenreich, S. J., PCBs and PAHs as Trace of Particle Dynamics in Large Lakes, Journal of Great Lake Research, Vol. 15, pp. 84-103 (1989). Barbara, J. and Pitts, J.N., Atmospheric Chemistry: Fundamentals and Experimental Techniques, John Wiley & Sons, Inc. (1986). Barfknecht, T.R., Progress Energy Combustion Science, Vol. 9, pp. 199-237(1983). Beak, S.O., Field, R.A., Goldstone, M.A., Kirk, P.W., Lester, J.N. and Perry, R., A Review of Polycyclic Aromatic Hydrocarbons: Sources, Fate and -200-

Behavior, Water, Air and Soil Pollution, Vol. 60, pp. 279-300 (1991). Belsley, D.A., Kuh, E.R. and Welsch, E., Regression Dignostics: Identifying Iinfluential Data and Source of Collinearity, MIT Center for Computational Research in Economics and Management Science (1998). Berg, I., Overvick, E., Nord, C.E. and Gustafsson, J.A., Mutagenic Activity in Smoke Formed during Broiling of Lean Part at 200, 250 and 300, Mutation Research, Vol. 207, pp. 199-204 (1988). Bidleman, T.F., Atmospheric Process: Wet and Dry Deposition of Organic Compounds are Controlled by Their Vapor-particle Partitioning, Environmental Science & Technology, Vol. 22, No. 4, pp. 361-367(1988). Bidlemen, T.F., Billings, W.N. and Foreman, W.T., Vapor-particle Partitioning of Semi-Volatile Organic compounds Estimates from Fuels Collections, Environmental Science & Technology, Vol. 20, pp. 1038-1043 (1986). Bjørseth A. and Becher G., PAH in Work Atmospheres: Occurrence and Determination, CRC Press, Inc. Boca Raton, Florida, ISBN 0-8493-6064-1 (1986). Bjørseth, A. and Ramahl, T., Source and Emission of PAH, Handbook of Polycyclic Aromatic Hydrocarbons, Vol. 1, Marcel Dekker, Inc., New York and Basel (1983). Bjørseth, A. and Ramdahl, T., Handbook of Polycyclic Aromatic Hydrocarbons. Volume 2 Emission Sources and Recent Progress in Analytical Chemistry, Marcel Dekker, New York (1985). Brostroem, L.E. and Loevblad, G., Deposition of Soot Related Hydrocarbons During Long-range Transport of Pollution to Sweden, Atmospheric Environment, Vol. 25A, pp. 2251-2257 (1991). Butler, J.D. and Crossley, P., Reactivity of PAH Adsorbed on Soot Particles, Atmospheric Environment, Vol. 15, pp. 91-94 (1981). -201-

Caricchia, A.M., Chiavarini, S. and Pessa, M., Polycyclic Aromatic Hydrocarbons in the Urban Atmospheric Particulate Matter in the City of Naples (Italy), Atmospheric Environment, Vol. 33, pp. 3731-3738 (1999). Carter, W.P.L., Development of Ozone Reactivity Scales for Volatile Organic Compounds, Journal Air Waste Management Association, Vol. 44, pp. 881-899 (1994). Chen, W.C., Wang, C.S. and Wei, C.C., An Assessment of Source Contributions to Ambient Aerosols in Central Taiwan, Journal Air Waste Management Association, Vol. 47, pp. 501-509 (1997). Cheng, K.I. and Richard, M.K., The Use of Polycyclic Aromatic Hydrocarbons as Source Signatures in Receptor Modeling, Atmospheric Environment, Vol. 27A, pp. 523-532 (1993). Cheng, M.T., Chio, C.P. and Liao, C.H., Source Apportionment of PM 10 in Central and Southern Taiwan, The proceeding of 2001 Conference on Aerosol Science and Technology, Touliu, pp. 153-158 (2001). Chow, J.C., Fairley, D., Watson, J.G., DeMandel, R., Fujita, E.M., Lowenthal, D.H., Ku, Z., Frazier, C.A., Long, G. and Cordova, J., Source Apportionment of Wintertime PM 10 at San Jose, California, Journal Environmental Engineering, Vol. 121, No. 5, pp. 378-387 (1995). Chow, J.C., Watson, J.G., Lowenthal, D.H., Solomon, P.A., Magliano, K.L., Ziman, S.D. and Richard, L.W., PM 10 Source Apportionment in California s San Joaquin Valley, Atmospheric Environment, Vol. 26A, pp. 3335-3354 (1992). Coe, J.M. and Lindberg, S.E., The Morphology and Size Distribution of Atmospheric Particles Deposition on Foliage and Inert Surfaces, Journal of Air Pollution Control Association, Vol. 37, pp. 237-243 (1987). Coleman, P.J., Lee, R.G.M., Alcock, R.E. and Jones, K.C., Observations on PAH, PCB, and PCDD/F Trends in U.K. Urban Air, 1991-1995, -202-

Environmental Science & Technology, Vol. 31, pp. 2120-2124 (1997). Colmsjo, A.L., Zebühr, Y.U. and Östman, C.E., Polynuclear Aromatic Compounds in Flue Gases and Ambient Air in the Vicinity of a Municipal Incineration Plant, Atmospheric Environment, Vol. 20, pp. 2279-2282 (1986). Conner, T.L., Lonneman, W.A. and Seila, R.L., Transportation-related Volatile Hydrocarbon Source Profiles Measured in Atlanta, Journal Air Waste Management Association, Vol. 45, pp. 383-394 (1995). Cook, J.W., Hewett, C.L. and Hieger, I., The Isolation of Cancer-Producing Hydrocarbon from Coal Tar, Part I, II and III, Journal of Chemical Society, pp. 395-421 (1933). Coutant, R.W., Brown, L., Chuang, J.C., Riggin, R.M. and Lewis, R.G., Phase Distribution and Artifact Formation in Ambient Air Sampling for Polynuclear Aromatic Hydrocarbons, Atmospheric Environment, Vol. 22, pp. 403-409 (1988). Cretney, J.R., Lee, H.K., Wright, G.J., Swallow, W.H. and Taylor, M.C., Analysis of Polycyclic Aromatic Hydrocarbons in Air Particulate Matter from a Lightly Industrialized Urban Area, Environmental Science & Technology, Vol. 19, pp. 397-404 (1985). Crittenden, B. D., and Long, R., Freudenthal, R. I. and Jones, P. W., In carcinogenesis - A comprehensive survey, Raven Press, New York, Vol. 1, pp. 209 (1976). Daisey, J. M., Leyko, M. A. and Kneip, T. J., Polynuclear Aromatic Hydrocarbon, Ann Arbor Science, Ann Arbor MI, pp. 201 (1979). Daisey, J.M. and Lioy, P.J., Transport of PAH into New York City, Journal Air Waste Management Association, Vol. 31, pp. 567 (1981). Daisey, J.M., Cheney, J.L. and Lioy, P.J., Profiles of Organic Particulate Emissions from Air Pollution Sources: Status and Needs for Receptor -203-

Source Apportionment Modeling, Journal of the Air Pollution Control Association, Vol. 36, pp. 17-33 (1986). Daniel, G., PAHs in Los Angeles Air from Samples Collected on Teflon, Glasses and Quartz Filters, Environmental Science & Technology (1983). Davies, I.W., Harrison, R.M., Perry, R., Ratnayaka D. and Wellings, R.A., Municipal Incinerator as Source of Polynuclear Aromatic Hydrocarbons in Environment, Environmental Science & Technology, Vol. 10, pp. 451-453 (1976). Davies, T.D. and Nicholson, K.W., Dry Deposition Velocities of Aerosol Sulfate in Rural Eastern England. Deposition of Atmospheric Pollutants, (Georgii H. W.and Pankrath J., eds.) (1982). Davison, C.I., Lindberg, S.E., Schmidt, J.A., Cartwright, L.G. and Landis, L.R., Dry Deposition of Sulfate onto Surrogate Surface, Journal of Geophysical Research, Vol. 90, Vol. 2123-2130 (1985). Dias, J.R., Handbook of Polycyclic Hydrocarbons: Part A: Benzenoid Hydrocarbons, Elsevier, Amsterdam (1987). Dipple, A., In Chemical Carcinogens, ACS Monograph 173, C. E. Searle (Ed.), American Chemical Society, Washington, D.C. (1976). Dörr, G., H. Martin, K. Heike and H. Otto, Baseline Contamination Assessment for A New Resource Recovery Facility in Germany: Part : Levels and Profiles of Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Air, Chemosphere, Vol. 33, No. 8, pp. 1569-1578 (1996). Dzubay, T. G. and Mamane, Y., Use of Electron Microscopy Data in Receptor Models for PM 10, Atmospheric Environment, Vol. 23, No. 2, pp. 467-476 (1989). Ebert, L.B., Polynclear Aromatic Compounds, American Chemical Society, Washington, D.C. (1988). Edwards, J.B., Combustion and Formation and Emission of Trace Species, 2nd -204-

Printing, Ann Arbor Science Publishers, Inc. (1977). Eiceman, G.A., Clement, R.E. and Karasek, F.W., Variations in Concentrations of Organic Compounds Including Polychlorinated Dibenzo-p-dioxins and Polynuclear Aromatic Hydrocarbons in Fly Ash from a Municipal Incinerator, Analytical Chemistry, Vol. 53, pp. 955-959 (1981). Eisenreich, S.J., Looney, B.B. and Thornton, J.D., Airborne Organic Contaminants in the Great Lakes Ecosystem, Environmental Science & Technology, Vol. 15, pp. 30-38 (1981). Franz, T.P., Eisenreich, S.J. and Holsen, T.M., Dry Deposition of Particulate Polychlorinated Biphenyls and polycyclic Aromatic Hydrocarbons to Lake Michigan, Environmental Science & Technology, Vol. 32, No. 23, pp. 3681-3688 (1998). Frederica, P.P., Respirable Particles, Ballinger Publishing Company, New York (1980). Frenklach, M., Clary, D.W., Yuan, T., Gardine, C.W. and Stein, S.E., Detailed Kinetic Modeling of Soot Symposium(International) on Combustion, The Combustion Institute, Pittsburgh, pp. 887 (1985). Friedlander, S.K., Chemical Element Balance and Identification of Air Pollution Source, Environmental Science & Technology, Vol. 7, pp. 235-240 (1973). Fujita, E.M., Lu, Z., Sheetz, L., Harshfield, G., Hayes, T. and Zielinska, B., Hydrocarbon Source Apportionment in Western Washington. Prepared for State of Washington Dept. of Ecology, Lacy, WA, Desert Research Institute, Reno, NV (1997). Fujita, E.M., Watson, J.G., Chow, J.C., Robinson, N.F., Richards, L.W. and Kumar, N., Northern front Range Air Quality Study. Volume C: Source Apportionment and Simulation Methods and Evaluation. Prepared for -205-

Colorado State University, Cooperative Institute for Research in the Atmosphere, Ft. Collins, CO, Desert Research Institute, Reno, N.V. (1998). Glover, D.M., Hopke, P.K., Vermette, S.J., Landsberge, R. S. and Auben, D.R., Source Apportionment with Site Specific Source Profiles, Journal Air Waste Management Association, Vol. 41, pp. 294-305 (1991). Gordon, C.E. and Bryan, R.J., Patterns in Airborne Polynuclear Hydrocarbon Concentration at Four Los Angeles Sites, Environmental Science & Technology, Vol. 7, pp. 895-902 (1973). Gordon, G. E., Receptor models, Environmental Science & Technology, Vol. 22, No. 10, pp. 1132 (1988). Gould, T.R. and Davidson, C.I., Variability and Uncertainty in Particle Dry Deposition Modeling, In the 5th international Conference on Precipitation Scavenging and Atmosphere-Surface Exchange Processes, Richard, WA, pp. 1115-1124 (1992). Greenberg, A., Darack, F., Harkow, R., Lioy, P. and Disey, J., Polycyclic Aromatic Hydrocarbons in New Jersey: A Comparison of Winter and Summer Concentrations over a Two-year Period, Atmospheric Environment, Vol. 19, pp. 1325-1339 (1985). Grimmer, G., Naujack, K.W. and Schreider, D., Changes in PAH Profiles in Different Areas of a City during the Year. In Polynuclear Aromatic Hydrocarbons; Chemistry and Biological Effects, Battelle Press, Columbus, pp. 107-125 (1983). Hangebrauk, R.P., Von, L.D.J. and Meeker J.E., Sources of Polynuclear Hydrocarbons in the Atmosphere, U.S. Department of Health, Education and Welfare, Public Health Service, Washington, D.C., AP-33, pp.174-706 (1967). Harkov, R. and Greenberg, A., Benzo(a)pyrene in New Jersey-Results from a twenty-seven-sites study, Journal Air Waste Management Association, Vol. -206-

35, pp.238-243 (1985). Harrison, R.M., Smith, D.J.T. and Luhana, L., Apportionment of Atmospheric Polynuclear Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, U.K., Environmental Science & Technology, Vol. 30, pp. 825-832 (1996). Hecht, S.S., Potential Carcinogenic effects of Polynulclear Aromatic Hydrocarbon and Nitroaromatics in Mobile and Public Health, pp. 555-567 (1988). Hicks, B.B., Wesley M.L., Lindberg, S.E. and Bromberg, S.M., Proceedings of the Dry Deposition Workshop of the National Aacid Precipitation Assessment Program, NOAA/ATDD, Oak Ridge, TN (1986). Hidy, G.M. and Friedlander, S.K., The Nature of the Los Angeles Aerosol in Second International Clean Air Congress, Washington, D.C. (1972). Hillamo, R.E., Kerminen, V.M., Maenhaut, W., Jafferezo J.L., Balachandran, S. and Davidson, C.I., Size Distributions of Atmospheric Trace Elements at Dye 3, Greenland- I. Distribution Characteristics and Dry Deposition Velocities, Atmospheric Environment, Vol. 27A, pp. 2787-2802 (1993). Hoffman, E. J., Latimer, J. S., Hunt, C. D. and Ouinn, J. G., Stormwater Runoff from Highway, Journal G. Water, Air, Soil pollution, Vol. 25, pp. 349-364 (1985). Hoffman, E.J., Mills, G.L., Latimer, J.S. and Quinn, J.G., Urban Runoff as a Source of Polycyclic Aromatic Hydrocarbons to Coastal Waters, Environmental Science & Technology, Vol. 18, No. 8, pp. 580-587 (1984). Holsen, T.M. and Noll, K.E., Dry Deposition of Atmospheric Particle: Application of Current Models to Ambient Data, Environmental Science & Technology, Vol. 26, pp. 1807-1815 (1992). Hopke, P.K., Receptor Modeling for Air Quality Management, Department of Chemistry, Clarkson University, Potsdam, NY, USA (1991). -207-

Hopke, P.K., Receptor Modeling in Environmental Chemistry, John Wiley & Sons, Inc. (1985). Horstmann, M. and Mclachlan, M.S., Atmospheric Deposition of Semi-volatile Organic Compound to Two Forest Canopies, Atmospheric Environment, Vol. 32, No. 10, pp. 1799-1809 (1998). Huynh, C.K. and Duc, T.V., In-Stack Dilution Technique for the Sampling of Polycyclic Compounds Application to Effluents of a Domestic Waste Incineration Plant, Atmospheric Environment, Vol. 18, pp. 255-259 (1984). Ibrahim, M., Barrie, L.A. and Fanaki, F., An Experiment and Theoretical Investigation of the Dry Deposition of Particles to Snow, Pine Trees and Artificial Collectors, Atmospheric Environment, Vol. 17, pp. 781-788 (1983). Jand, M. and Mcdow, S.R., Products of Benz[a]anthracene Photo Degradation in the Presence of Known Organic Constituents of Atmospheric Aerosols, Environmental Science & Technology, Vol. 31, pp. 1046-1053 (1997). Josephson, J., Polynuclear Aromatic Hydrocarbon, Environmental Science & Technology, Vol. 18, No. 3, pp. 93A-95A (1984). Kamens, R. M., Guo, Z., Fulcher, J.N., and Bell, D.A., Influence of Humidity, Sunlight and Temperature on the Daytime Decay of Polyaromatic Hydrocarbons on Atmospheric Soot Particles, Environmental Science & Technology, Vol. 22, pp. 103-108 (1988). Kamens, R.M., Perry, J.M., Saucy, D.A., Bell, D.A., Newton, D.L. and Brand, B., Factors which Influence Polycyclic Aromatice Hydrocarbon Decomposition on Wood Smoke Particles, Environment Int., Vol. 12, pp.131-136 (1985). Karcher, W., Reference Materials for the Analysis of Polycyclic Aromatic Compounds Handbook of Polycyclic Aromatic Hydrocarbons, Marcel -208-

Dekker, Inc (1983). Katz, M. and Chen, C., Comparative Distribution of Eight Polycyclic Aromatic Hydrocarbons in Airborne Particulates Collected by Conventional High-volume Sampling and by Size Fractionation, Environmental Science & Technology, Vol. 14, pp. 838-843 (1980). Katz, M., Chan, C., Tosine, H. and Sakuma, T., Relative Rates of Photochemical and Biological Oxidation of PAH, Ann Arbor Science Public, U.K., pp. 171-189 (1979). Khalili, N.R., P.A. Scheff and T.M. Holsen, PAH Source Fingerprints for Coke Ovens, Diesel and Gasoline Engines, Highway Tunnels, and Wood Combustion Emissions, Atmosphere Environment, Vol. 29, pp. 533-542 (1995). Khemani, L., Momin, G.A., Naik, M., Prakasa, R.P.S. Kumar, R. and Ramana, M. V., Impact of Alkaline Particulate on PH of RainWater in India, Water, Air and Soil Pollution, Vol. 25, pp. 365-376 (1985). Kneip, T.J., Kleinman, M.T. and Eisenbud, M., Relative Contribution of Emission Sources to the Total Airborne Particulates in New York City, In Third International Clean Air Congress, Dusseldorf, FRG (1973). Laskin, S., Kuschner, M. and Drew, R.T., Studies in Pulmonary Carcinogenesis, in Inhalation Carcinogenesis, US Atomic Energy Commission, pp. 321 (1970). Lee, W. J., Yeh, W. J., Lo, C., Holsen, T. M., Noll, K. E. and Fang, G. C., Wet Deposition of Polychlorinated Biphenyls in Urban Area, Journal of the Chinese Institute of Environmental Engineering, Vol. 3, No. 4, pp. 217-226 (1993). Lee, W.J., Wang, Y.F., Lin, T.C., Chen, Y.Y., Lin, W.C., Ku, C.C. and Cheng, J.T., PAH Characteristics in the Ambient Air of Traffic- Source, Science of the Total Environment, Vol. 1559, pp. 185-200 (1995). -209-

Lewis, C.W., Stevens, R.K., Rasmussen, R.A., Cardelino, C.A. and Pierce, T.E., Biogenic Fraction of Ambient VOC: Comparison of Radiocarbon, Chromatographic, and Emissions Inventory Estimates for Atlanta, GA, Journal Air Waste Management Association (1998). Li, C.K. and Kamens, R.M., The Use of Polycyclic Aromatic Hydrocarbons as Source Signatures in Receptors Modeling, Atmospheric Environment, Vol. 27A, pp. 523-532 (1993). Li, C.T., Lee, W.J., Wu, C.H. and Wang, Y.T., PAH Emission from Waste Ion-exchange Resin Incineration, Science of the Total Environment, Vol. 155, pp. 253-266 (1995). Li, F. and Okada, K., Diffusion and Modification of Marine Aerosol Particles over the Coastal Areas in China: A Case Study Using a Single Particle Analysis, Journal of Atmospheric. Science, Vol. 56, pp. 241-248 (1999). Ligocki, M.P., Leuenberger, C. and Pankow, J.F., Trace Organic Compounds in Rain.Gas Scavenging of Neutral Organic Compounds, Atmospheric Environment, Vol. 19, pp. 1609-1617 (1985). Lin, C. and Milford, J. B., Decay-adjusted Chemical Mass Balance Receptor Modeling for VOCs, Atmospheric Environment, Vol. 28, pp. 3261-3276 (1994). Lin, J.M., Fang, G.C, Holsen, T.M. and Noll, K.E., A Comparison of Dry Deposition Modeled from Size Distribution Data and Measured with a Smooth Surface for Total Particle Mass, Lead, and Calcium in Chicago, Atmospheric Environment, Vol. 27A, pp. 712-724 (1993). Lofroth, G., Stensman, C., Brandhorst, S.M., Indoor Source of Mutagenic Aerosol Part: Culate Matter : Cooking and Incense Burning, Mutation Research, Vol. 264, pp. 21-28 (1991). Lundgren, D.A. and Burton, R.M.M., Effect of Particle Size Distribution on the Cut Point between Fine and Coarse Ambient Mass Fractions, -210-

Inhalation Toxicology, Vol. 7, No. 1, pp. 131-148 (1995). Ma, H.W., Lai, Y.L. and Chan, C.C., Transfer of Dioxin Risk between Nine Major Municipal Waste Incinerator in Taiwan, Environment International, Vol. 28, No. 1-2, pp. 103-110 (2002). Masclet, P., Mouvier, G. and Nikolaou, K., Relative Decay Index and Source of Polycyclic Aromatic Hydrocarbons, Atmospheric Environment, Vol. 20, No. 3, pp. 439-446 (1986). Mcdow, S.R., Sun, Q., Vartiainen, M., Hong, Y.S., Yao, Y. L., Fister, T., Yao, R.Q. and Kamens, R.M., Effect of Composition and State of Organic Compounds on Polycyclic Aromatic Hydrocarbon Decay in Atmospheric Aerosols, Environmental Science & Technology, Vol. 28, pp. 2147-2153 (1994). McVeety, B.D. and Hites R.A., Atmospheric Deposition of Polycyclic Aromatic Hydrocarbons to Water Surface: A Mass Balance Approach, Atmospheric Environment, Vol. 22, pp. 511-536 (1988). Menzie, C.A., Potocki, B.B. and Santodonato, J., Exposure to Carcinogenic PAHs in the Environment, Environmental Science & Technology, Vol. 26, No. 7, pp. 1278-1284 (1983). Mi, H.H., Lee, W.J., Wu, T.L., Lin, T.C. Wang, L.C. and Chao, H.R. PAH Emission from a Gasoline-Powered Engine, Journal Environment Science Health, Vol. 31A, pp. 1981-2003 (1996). Michael, B.S. and Andrea, M.M., Restaurant Smoking Restrictions and Environmental Tobacco Smoke Exposure, American Journal of Public Health, Vol. 88, pp. 1834-1836 (1998). Miguel, A.H. and Pereira, P.A., Benzo(k)fluoranthene, Benzo(ahi)perylene, andindeno(1,2,3-cd)pyrene: New Tracers of Automotive Emission in Receptor Modeling, Aerosol Science Technology, Vol. 10, pp. 292-295 (1989). -211-

Milford, J.B. and Davidson, C.I., The Sizes of Particulate Sulfate and Nitrate in the Atmosphere - A Review, Journal of Air Pollution Control Association, Vol. 37, pp. 125-134 (1987). Morselli, L., Zappoli, S., Liberti, A., Rotatori, M. and Brancaleoni, E., Evaluation and Comparison of Organic and Inorganic Compounds between Emission and Immission from Municipal Solid Waste Incinerator, Chemosphere, Vol. 18, pp. 2263-2273 (1989). Müller, J.F., Darryl, W.H. and Connell, D.W., Polycyclic Aromatic Hydrocarbons in the Atmospheric Environment of Brisbane, Australia, Chemosphere, Vol. 37, No. 7, pp. 1369-1383 (1998). Mumford, J.L., Lung Cancer and Indoor Air Pollution in Xuanwei, China, Science, Vol. 235, pp. 217-220 (1987). Nicholson, K.W., A Review of Particles Resuspension, Atmospheric Environment, Vol. 37, pp. 2639-2651 (1988). Nikolaou, K., Masclet, P. and Mouvier, G., PAH Stability Scale Established in Situ in an Urban Region, Science Total Environment, Vol. 36, pp. 383-388 (1984). Noll, K.E., Fang, K.Y.P. and Wakins, L.A., Characterization of the Deposition of Particles from the Atmospheric to a Flat Plate, Atmospheric Environment, Vol. 22, pp. 1461-1468 (1988). Noll, K.E., Yuen, P.E. and Fang, K.Y.P., Atmospheric Coarse Particulate Concentrations and Dry Deposition Fluxes for Ten Metals in Two Urban Environments, Atmospheric Environment, Vol. 24A, pp. 903-908 (1990). Oanh, N.T.K., Reutergardh, L.B., Dung, N.Tr., Yu, M.H., Yao, W.X. and Co, H.X., Polycyclic aromatic hydrocarbonsin the airborne particulate matter at a location 40km north of Bangkok, Thailand, Atmospheric Environment, Vol. 34, pp. 4557-4563 (2000). Pandey, P.K., Patel, K.S. and Lenicek, J., Polycyclic Aromatic Hydrocarbons: -212-

Need for Assessment of Health Risks in India-Study of an Urban Industrial Location in India, Environmental Monitoring and Assessment, Vol. 59, pp. 287-319 (1999). Panther, B.C., Hooper, M.A. and Tapper, N.J., A Comparison of Air Particulate Matter and Associated Polycyclic AromaticHydrocarbons in Some Tropical and Temperate Urban Environments, Atmospheric Environment, Vol. 33, pp. 4087-4099 (1999). Park, S.S., Kim, Y.J. and Kang, C.H., Atmospheric Polycyclic Aromatic Hydrocarbons in Seoul, Korea, Atmospheric Environment, Vol. 36, pp. 2917-2924 (2002). Paul, C.M., Van, N. and Womdergem, E., Scavenging of Airborne Polycyclic Aromatic Hydrocarbons by Rin, Environmental Science & Technology, Vol. 19, No 11, pp. 1044-1048 (1985). Peter, A.S. and Richard, A.W., Receptor Modeling of Volatile Organic Compounds. 1. Emission Inventory and Validation, Environmental Science Technology, Vol. 27, No. 4, pp. 617-625 (1993). Peters, J.A., Deangelis, D.G. and Hughes, T.W., An Environmental Assessment of POM Emissions from Residential-fired Stove and Fireplaces. In Polynuclear Aromatic Hydrocarbons: Chemical Analysis and Biological Fate, Battelle Press, Columbus, Ohio, pp. 571-581(1981). Pierce, R.C. and Katz, M., Dependency of Polynuclear Aromatic Hydrocarbon Content on Size Distribution of Atmospheric Aerosols, Environmental Science & Technology, Vol. 9, pp. 347-353 (1975). Pistikopoulos, P., Masclet, P. and Mouvier, G., A Receptor Model Adapted to Reactive Species: Polycyclic Aromatic Hydrocarbons; Evalution of Sources Contributions in an Open Urban Site-1 Particle Compounds, Atmospheric Environment, Vol. 24, pp. 1189-1197 (1990). Pitts, J. N. Jr., Van, C. K. A., Grosean, D., Schmid, J. P., Fitz, D. R., Belser, W. -213-

L., Knudson, G. B. and Hynds, P. M., Atmospheric Reactions of PAH: Facile Formation of Mutagenic Nitro-derivatives, Science, Vol. 202, pp. 515-519 (1978). Poster, D. L. and Baker, J. E., Influence of Submicron Particle on Hydrophobic Organic Contaminant in Precipitation 1 Concentrations and Distributions of PAHs and PCBs in Rainwater, Environmental Science & Technology, Vol. 30, No. 1, pp. 341-348 (1996). Pott, P., Chirurgical Observations Relative to the Cataract, the Polypus of the Nose, the Cancer of the Scrotum, the Different Kinds of Ruptures, and the Mortification of the Toes and Feet, L. Hawes, W. Clarke, and R. Collins, London (1775). Pyysalo, H., Tiominen, J., Wickstrom, K., Skytta, E., Tikkanen, L., Salomaa, S., Sorsa, M., Nurmela, T., Mattila, T. and Pohkola V., Polycyclic Organic Matter (POM) in Urban Air: Fractionation, Chemical Analysis and Genotoxicity of Particulate and Vapor Phase in an Industrial Town in Finland, Atmospheric Environment, Vol. 21, pp. 1167-1180 (1987). Quraishi, T.A., Residential Wood Burning and Air Pollution, International Journal of Environmental Studies, Vol. 24, pp. 19-33 (1985). Ramdahll, R., Alfheim, I., Rustad, S. and Olsen, T., Chemosphere, Vol. 11, pp. 601-611 (1982). Rantanen, L., Mikkonen, S., Nylund, L., Kociba, P., Lappi, M. and Nylund, N.O., Effect of Fuel on the Regulated, Unregulated and Mutagenic Emissions of DI Diesel Engines, SAE Technical Paper Series, 932686 (1993). Rathore, H.S., Handbook of Chromatography- Liquid Chromatography of Polycyclic Aromatic Hydrocarbons, CRC Press, Section 1, pp. 1-19 (1991). Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R. and Simoneit, B.R.T., Source of Fine Organic Aerosol-Ι Char broilers and Meat-cooking -214-

Operations, Environmental Science & Technology, Vol. 25, No. 6, pp. 1112 (1991). Sanders, G., Jones, K.C. and Taylor, J.H., A Sample Method to Access the Susceptibility of Polynuclear Aromatic Hydrocarbons to Photolytic Decomposition, Atmospheric Environment, Vol. 27A, pp. 139-144 (1993). Sehmel, G.A., Particle and Gas Dry Deposition: A Review, Atmospheric Environment, Vol. 14, pp.983-1011 (1980). Sehmel, G.A. and Hodgson, W.H., A Model for Predicting Dry Deposition of Particles and Gases to Environmental Surfaces, DOE report PNL-SA-6721, Pacific Northwest Laboratory, Richland, W.A. (1978). Seinfeld, J.H, Rethinking Ozone Problem in Urban and Regional Air Pollution, National Academy Press, Washington, D.C. (1991). Sharma, V.K. and Patil, R.S., Chemical Mass Balance Model for Source Apportionment of Aerosols in Bombay, Environmental Monitoring and Assessment, Vol. 29, no. 1, pp. 75-88 (1994). Sheu, H.L., Lee, W.J., Su, C.C., Chao, H.R. and Fan, Y.C., Dry Deposition of Polycyclic Aromatic Hydrocarbons in Ambient Air, Journal Environmental Energy, Vol. 122, pp. 12-22 (1996). Sisovic, A. and Fugas, M., Smoke Concentration a an Indicator of Polycyclic Aromatic Hydrocarbon Levels in the Air, Environmental Monitoring and Assessment, Vol. 45, No. 2, pp. 201-27 (1997). Slinn, W. G.N., Hasse, L., Hicks, B. B., Hogan, A. W., Lal, D., Liss, P. S., Munnich, K.O., Seemel, G. A. and Vittori, O., Some Aspects of the Transfer of Atmospheric Trace Constituents Past the Air-sera interface, Atmospheric Environment, Vol. 12, pp. 2055-2087 (1978). Smith, D.J.T. and Harrison, R.M., Concentrations, Trends and Vehicle Source Profile of Polycyclic Aromatic Hydrocarbons in the UK Atmosphere, Atmospheric Environment, Vol. 30, pp. 2513-2525 (1996). -215-

Teschke, K., Hertzman, C. and Netten, C. V., Potenial Exposure of Cooks to Airborne Mutagens and Carcinogens, Environmental Research, Vol. 50, pp. 261-308 (1989). Thrane, K.E. and Mikalsen, A., High-Volume Sampling of Airborne Polycyclic Aromatic Hydrocarbons Using Glass Fiber Filters and Polyurethane Foam, Atmospheric Environment, Vol. 15, pp. 909-918 (1981). Trenholm, A.R. and Beck, L.L., Assessment of Hazardous Organic Emission from Slot-type Coke Oven Batteries, Internal EPA Report, Durham, N.C. (1978). Tuominen, J., Salomss, S., Pyysalo, H., Skytta, E., Tikkanen, L., Nurmela, T., Sorsa, M., Pohjola, V., Sauri, M. and Himberg, K., Polynuclear Aromatic Hydrocarbons and Genotoxicity in Particulate and Vapor Phases of Ambient Air: Effect of Traffic Season, and Meteorological Conditions, Environmental Science & Technology, Vol. 22, pp. 1228-1234 (1988). U.S. EPA, Air Emission Species Manual, EPA-450/2-90-001b (1990). U.S. EPA, CMB 7 User s Manual, Receptor Model Technical Series Volume (1998). U.S. EPA, CMB8 User s Manual, Office of Air Quality Planning and Standards Research Triangle Park, NC 27711 (2001). U.S. EPA, Locating and Estimating Air Emission from Sources of Polycyclic Organic Matter (POM), EPA-45014-84-007 (1987). U.S. EPA, Receptor Model Source Composition Library, Environmental Protection Agency Research Triangle Park, NC, U.S. Department of Commerce National Technical Information Service (NTIS), EPA-450/4-85- 002 (1984). U.S. EPA, User s Guide for the Industrial Source (ISC3) Dispersion Model. Vol. I, User instructions, EPA-454/B/B-95-003a, U.S. Environmental -216-

Protection Agency, pp. 320 (1995). Vaeck, L.V., Broddin, G. and Cauwenberghe, K.V., Differences in Particle Size Distribution of Major Organ Pollutants in Ambient Aerosols in Urban, Rural and Seashore Areas, Environmental Science & Technology, Vol. 13, pp. 1494-1502 (1979). Vaeck, V.L., Cauwenberghe, V.K. and Janssens, J., The Phase-Particle Distribution of Organic Aerosol Constitutes: Measurement of the Volatilization artifact in Hi-Vol Cascade Impactor Sampling, Atmospheric Environment, Vol. 18, pp. 417-430 (1984). Van, Norrt, P.C., M. and Wondergem, E., Scavenging of Airborne Polycyclic Aromatic Hydrocarbons by Rain, Environmental Science & Technology, Vol. 19, No. 11, pp. 1044-1049 (1985). Vandenberg, J.J. and Knoerr, K.R., Comparison of Surrogate Surface Techniques for Estimation of Sulfate Dry Deposition, Atmospheric Environment, Vol. 19, pp. 627-635 (1985). Vega, E., Garcia, I., Apam, D., Ruiz, M.E. and Barbiaux, M., Application of a Chemical Mass Balance Receptor Model to Reparable Matter in Mexico City, Journal Air Waste Management Association, Vol. 47, pp. 524-529 (1997). Venkataraman, C. and Friedlander, S.K., Size Distribution of Polycyclic Aromatic Hydrocarbons and Elemental Carbon Ambient Measurement and Effects of Atmospheric Process, Environmental Science & Technology, Vol. 28, pp. 563-572 (1994). Venkataramman, C. and Friedlander, S. K., Source Resolution of Fine Particle Polycyclic Aromatic Hydrocarbons Using a Receptor Model Modified for Reactivity, Journal Air Waste Management Association, Vol. 44, pp. 113-1108 (1994). Wang, R. and Cadman, P., Soot and PAH Production from Spray Combustion -217-

of Different Hydrocarbons Behind Reflected Shock Waves, Combustion and flame, Vol. 112, pp. 359-370 (1998). Watson, J.G., Overview of Receptor Model Principles, Journal Air Waste Management Association, Vol. 34, pp. 619-623 (1984). Watson, J.G., The Science of Fine Particulate Matter, Workshop on Sampling, Regulation, and Light Scattering Effects of PM 2.5, pp. 1-14 (1998a). Watson, J.G., Chemical Element Balance Receptor Model Methodology for Assessing the Sources of Fine and Total Particulate Matter in Portland, Oregon, Ph.D. Oregon Graduate Center, Beaverton, OR. (1979). Watson, J.G., Chow, J.C. and Fujita, E.M., Review of Volatile Organic Compound Source Apportionment by Chemical Mass Balance, Atmospheric Environment, Vol. 32, pp. 1166-1178 (1998b). Watson, J.G., Chow, J.C., Lu, Z., Fujita, E.M., Lowenthal, D.H. and Lawson, D.R., Chemical Mass Balance Source Apportionment of PM 10 during the Southern California Air Quality Study, Aerosol Science and Technology, Vol. 21, pp. 1-36 (1994). Watson, J.G., Robinson, N.F., Chow, J.C., Henry, R.C., Kim B.M., Pace, T.G., Meyer, E.L. and Nguyen, Q., The USEPA/DRI Chemical Mass Balance Receptor Model, CMB 7.0, Environmental Software, Vol. 5, No. 1, pp. 38-49 (1990). Wesely, M.L., Hicks, B.B., Dannevik, W.P., Frisella, S. and Husar, R.B., An Eddy-correlation Measurement of Particulate Deposition from the Atmosphere, Atmospheric Environment, Vol. 11, pp. 561-563 (1977). Westerholm, R., Alsberg, T., Strandell, M., Frommelin, Å., Grigoriadis, V., Hantzaridou, A., Maitra, G., Winguist, L., Rannug, U., Egebäck, K. E. and Bertilsson, T., Chemical Analysis and Biological Testing of Emissions from a Heavy Duty Diesel Truck with and without Two Different Particulate Traps, SAE paper, 860014 (1986). -218-

Wey, M. Y. and Shi, J. L., Effect of Pressure Fluctuations on PAHs Emission and Combustion Efficiency during Incineration, Toxicological and Environmental Chemistry, Vol. 61, No. 1-4, pp. 83-98 (1997). Winchester, J.W. and Nifong, G.D., Water Pollution in Lake Michigan by Trace Elements from Aerosol Fallout, Water Air and Soil Pollution, Vol. 1, pp. 50-64 (1971). Wu, Y.L., Davidson, C.L., Dolske, D.A., and Sherwood, S.L., Dry Deposition of Atmospheric Contaminants: The Relative Importance of Aerodynamic, Boundary Layer, and Surface Resistances, Aerosol Science and Technology, Vol. 16, pp. 65-85 (1992). Wybraniec, S. and Jong, D.A.P., Modified Sampling and Analysis Method for Large Volatility Range Airborne Polycyclic Aromatic Hydrocarbons Using Gas Chromatography- Mass Spectrometry, Journal of Analytical Chemistry, Vol. 356, No. 6, pp. 396-402 (1996). Yamasaki, H., Kuwata, K. and Miyamoto, H., Effects of Ambient Temperature on Aspects of Airborne Polycyclic Aromatic Hydrocarbons, Environmental Science & Technology, Vol. 16, pp. 189-194 (1982). Yang, S., Connel, D., Hawker, D. and Kayal, S., Polycyclic Aromatic Hydrocarbons in Air, Soil and Vegetation in Vicinity of an Urban Roadway, Science of the Total Environment, Vol. 102, pp. 229-240 (1991). Zandere, M., Physical and Chemical Properties of Polycyclic Aromatic Hydrocarbons, Marcel Dekker, Inc. (1985). -219- (1994) The Character of Air Particles, Heavy Metals, and Anions for Dry Deposition, Concentration, and Size Distribution Study 434-440 (1995)

-220- (1992) (1997) (1994) (1998) (1998) (1993) (1999) (1994) ABS (2001) (1992) (2000) (1998) (1995)

-221-226-231 (1994) (1996) 45-54 (1992) CMB 91 (2002) (1995) (1998) (1996) (1999) 3-34 (2000) (1992) (2000) (1999)

(1995) (1996) (1998) NSC83-0412-B037-049 (1994) (1994) (1993) - E2 EPA-87-FA42-03.F5 (1998) 19-25 (1999) (1999) (2000) (1996) -222-

(2000) PAHs (2001) -223-

-224-

CMB R-square / SCE µg/m 3 SCE STDERR (uncertainty) [ STDERR<<SCE] t- T-STAT STDERR SCE/STDERR[ 2] R 2 R-SQUARE 0 1 [ 0.8 1] X 2 CHI-SQUARE Chi-square [ 0 4] % Mass DF / (uncertainty/similarity U/S clusters) SUM (residual) R/U SCE [ 5] [ ] U/S clusters 2-225-