<4D F736F F D20C9D0BDA8C0F62DB8C4CDBCD6D0C7FACFDFB4D6CFB8BAF3A1AAA1AACAAFB8E0BBF95FBDA8B4F3D1A7B1A8A3A D313235>

Similar documents
ph ph ph Langmuir mg /g Al 2 O 3 ph 7. 0 ~ 9. 0 ph HCO - 3 CO 2-3 PO mg /L 5 p

1.0 % 0.25 % 85μm % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song

untitled

cm /s c d 1 /40 1 /4 1 / / / /m /Hz /kn / kn m ~

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

助 剂 改 善 其 止 血 效 果 1 实 验 1.1 原 料 和 试 剂 家 蚕 蛹 经 过 提 取 蛹 油 蛋 白 质 后 剩 余 的 残 渣 ( 主 要 成 分 为 蛹 皮 ), 烘 干 除 杂 粉 碎 后 待 用 ; 壳 聚 糖 ( 成 都 市 科 龙 化 工 试 剂 厂 ), 脱 乙 酰

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

第二部分

增 刊 谢 小 林, 等. 上 海 中 心 裙 房 深 大 基 坑 逆 作 开 挖 设 计 及 实 践 745 类 型, 水 位 埋 深 一 般 为 地 表 下.0~.7 m 场 地 地 表 以 下 27 m 处 分 布 7 层 砂 性 土, 为 第 一 承 压 含 水 层 ; 9 层 砂 性 土

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

SWAN min TITAN Thunder Identification Tracking Analysis SWAN TITAN and Nowcasting 19 TREC Tracking Radar Echo by Correlaction T

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe

% 8. 48% 3 80 Alcalase Novozymes Alcalase 2. 4 L Bacillus licheniformis 2. 4 AU /g 1. 2 Hitachi S-4700 JEOL JEM-1200EX Olympus Bu

PCA+LDA 14 1 PEN mL mL mL 16 DJX-AB DJ X AB DJ2 -YS % PEN

mm 5 1 Tab 1 Chemical composition of PSB830 finishing rolled rebars % C Si Mn P S V 0 38 ~ 1 50 ~ 0 80 ~ ~

LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva

Mnq 1 1 m ANSYS BEAM44 E0 E18 E0' Y Z E18' X Y Z ANSYS C64K C70C70H C /t /t /t /mm /mm /mm C64K

3 : 323 (5cm 200 / m 2 ), ;, 2, [1 ] 1 7 Table 1 The seven typical building thermal walls and their thermal performances [ 1 ]

s 15 contact s W Si 3 N μm N / m 4 AFM 95% AFM WPOJ UPOJ WPOJ UPOJ 260 ~ 280 nm WPOJ-DS UPOJ-DS 1 cm 1 cm DEAE-ce

Microsoft Word 李海波_new_.doc

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

<4D F736F F D20C8EDCDC1B5D8BBF9CDB2BBF9CAD4B2C9C6BDCCA8B5C4CACAD3C3D0D4B7D6CEF6>

Technical Acoustics Vol.27, No.4 Aug., 2008,,, (, ) :,,,,,, : ; ; : TB535;U : A : (2008) Noise and vibr

4 1 5 Vol. 41 No Journal of Shanghai Normal University Natural Sciences Oct 对导电塑料沙丁镍镀层的耐腐蚀性进行分析, 通过电化学试验, 分析了不同工艺的沙丁镍镀层

标题

doc

/MPa / kg m - 3 /MPa /MPa 2. 1E ~ 56 ANSYS 6 Hz (a) 一阶垂向弯曲 (b) 一阶侧向弯曲 (c) 一阶扭转 (d) 二阶侧向弯曲 (e) 二阶垂向弯曲 (f) 弯扭组合 2 6 Hz

标题

H 2 SO ml ml 1. 0 ml C 4. 0 ml - 30 min 490 nm 0 ~ 100 μg /ml Zhao = VρN 100% 1 m V ml ρ g

标题

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

* CUSUM EWMA PCA TS79 A DOI /j. issn X Incipient Fault Detection in Papermaking Wa

T K mm mm Q345B 600 mm 200 mm 50 mm 600 mm 300 mm 50 mm 2 K ~ 0. 3 mm 13 ~ 15 mm Q345B 25

708 北 京 工 业 大 学 学 报 2011 年 以 往 的 试 验 结 果 进 行 对 比, 选 取 15D 20D 作 为 对 比 参 数, 试 件 参 数 见 表 1. Fig. 1 图 1 试 件 尺 寸 及 配 筋 图 ( mm) Geometry and reinforcement

mm ~

资源 环境 生态 土壤 气象

标题

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流

g 100mv /g 0. 5 ~ 5kHz 1 YSV8116 DASP 1 N 2. 2 [ M] { x } + [ C] { x } + [ K]{ x } = { f t } 1 M C K 3 M C K f t x t 1 [ H( ω )] = - ω 2

Microsoft Word - A _ doc

f 2 f 2 f q 1 q 1 q 1 q 2 q 1 q n 2 f 2 f 2 f H = q 2 q 1 q 2 q 2 q 2 q n f 2 f 2 f q n q 1 q n q 2 q n q n H R n n n Hessian

(1) ( 1965 ),, 1952 [9] 2.1 (2) 1 53 (E i ), 2 (P i ) (G E (G P, 31 (Q i ) 3, : G E (x,y)= (E i Q(x i, y i )) E i G P (x,y)=

km km mm km m /s hpa 500 hpa E N 41 N 37 N 121

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec

~ a 3 h NCEP ~ 24 3 ~ ~ 8 9 ~ km m ~ 500 m 500 ~ 800 m 800 ~ m a 200

31 17 www. watergasheat. com km 2 17 km 15 km hm % mm Fig. 1 Technical route of p

30期

<30302DB7E2C3E6CDC6BDE9A3A D32A3A92E4D4449>

Ansys /4 Ansys % 9 60% MU10 M m 1 Fig. Actual situation of measured building 1 Fig. 1 First floor plan of typical r

SVM OA 1 SVM MLP Tab 1 1 Drug feature data quantization table

SEAM沥青混合料路用性能评价与改善技术研究

residents demand for residential space. Then, in order to improve the comfort of living environment for the elderly, a new technical system is propose

( ) [11 13 ] 2 211,,, : (1),, 1990 ( ) ( ),, ; OD, ( ) ( ) ; , ( ), (2) 50 %,, 1999 ( ) ( ) ; (3),,

第 33 卷 第 2 期 2010 年 4 月 脱 蛋 白 较 好 的 方 法 是 Sevag 法, 它 是 根 据 蛋 白 质 在 氯 仿 等 有 机 溶 剂 中 变 性 的 特 点, 使 蛋 白 质 变 性 成 胶 状, 此 法 条 件 温 和, 可 避 免 多 糖 的 降 解

240 生 异 性 相 吸 的 异 性 效 应 [6] 虽 然, 心 理 学 基 础 研 [7-8] 究 已 经 证 实 存 在 异 性 相 吸 异 性 相 吸 是 否 存 在 于 名 字 认 知 识 别 尚 无 报 道 本 实 验 选 取 不 同 性 别 的 名 字 作 为 刺 激 材 料, 通

1

successful and it testified the validity of the designing and construction of the excavation engineering in soft soil. Key words subway tunnel

by industrial structure evolution from 1952 to 2007 and its influence effect was first acceleration and then deceleration second the effects of indust

Microsoft Word - 刘 慧 板.doc

170 中 南 大 学 学 报 ( 社 会 科 学 版 ) 2012 年 第 18 卷 第 4 期 周 末 九 鼎 沦, 必 以 亡. 者 为 神, 三 山 九 鼎 有 知 也? 或 时 吏 知 怨 家 之 谋, 窃 举 持 亡, 惧 怨 家 怨 己, 云 自 去 凡 人 能 亡., 足 能 步 行

2001,30(1):1-4

11 : 1345,,. Feuillebois [6]. Richard Mochel [7]. Tabakova [8],.,..,. Hindmarsh [9],,,,,. Wang [10],, (80 µm),.,. Isao [11]. Ismail Salinas [12],. Kaw

85% NCEP CFS 10 CFS CFS BP BP BP ~ 15 d CFS BP r - 1 r CFS 2. 1 CFS 10% 50% 3 d CFS Cli

标题

~ ~ ~ ~

Oates U

Microsoft Word - 11-秦华伟.doc

(ICL),, 5 ( ), 40,, , [2,15-19], 3, (THI) (WCI) ( 1) 1 Tab.1 THI WCI and ICL grade standard,, ( ); 3, ;, 1 1, Fig.1 Structur

Microsoft Word tb 赵宏宇s-高校教改纵横.doc

1 GIS 95 Y = F y + (1 F) (1) 0 0 Y0 kg/hm 2 /day F y 0 y c kg/hm 2 /day [12] y m 20 kg/hm 2 /hour Y = cl cn ch G [ F( y ) T m yo + (2) (1 F)(

闲 旅 游 现 已 成 为 城 市 居 民 日 常 生 活 的 重 要 部 分 袁 它 的 出 现 标 志 着 现 代 社 会 文 明 的 进 步 遥 据 国 外 学 者 预 测 袁 2015 年 左 右 袁 发 达 国 家 将 陆 续 进 入 野 休 闲 时 代 冶 袁 发 展 中 国 家 也 将

115 的 大 量 废 弃 物 被 丢 弃 或 直 接 燃 烧 [3] 此 外, 海 南 省 文 昌 鸡 年 产 量 约 8 0 只, 鸡 粪 年 产 量 超 过 100 万 t 这 些 富 含 养 分 的 固 体 有 机 废 弃 物 不 进 行 处 理, 不 仅 会 极 大 浪 费 大 量 养 分

基于因子分析法对沪深农业类上市公司财务绩效实证分析

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm

第 猿 猿 卷 第 愿 期 20 员 猿 年 愿 月 张 媛 媛 等 院 肥 胖 与 雌 激 素 的 相 互 关 系 及 其 对 子 宫 的 作 用 研 究 原 员 远 员 原 素 等 多 种 原 因 有 关 袁 对 于 女 性 而 言 绝 经 后 雌 激 素 水 平 下 降 是 更 年 期 肥 胖

5期xin

a b

Microsoft Word - 22 栗志民.doc

Microsoft Word - 贺小凤,王国胜.doc

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3

140 质 粉 质 特 性 和 糊 化 特 性 是 衡 量 面 粉 品 质 的 重 要 指 标 [3] 可 以 通 过 对 加 入 不 同 量 的 杂 粮 粉 的 面 团 吸 水 率 形 成 时 间 稳 定 时 间 粉 质 质 量 指 数 [4], 糊 化 过 程 中 糊 化 温 度 峰 值 粘 度

具有多个输入 特别是多个输出的 部门 或 单位 ( 称为 决策单元 Decision Making Unit 简称 DMU) 间的相对有效 8 性 C2R 模型是 DEA 的个模型 也是 DEA 的基础 和重要模型 假设有 n 个决策单元 DMUj( j = n) 每个 DMU 有 m

畜牧 动物医学 蚕 蜂

N

2011 GUANGDONG WEILIANG YUANSU KEXUE

3 : 121,, [1 ] (Stage Theory),,,,,,, 1 :, ;,,,,, 1 :11, 6,116 ; , 2003 ; 31 = Π ; 2, 1996 ;1996,,2000, Walt Rostow (1960, 1971), A. F. K. Organ

10 中 草 药 Chinese Traditional and Herbal Drugs 第 43 卷 第 1 期 2012 年 1 月 生 药 打 粉 入 药 的 基 本 特 点, 借 鉴 材 料 学 粉 体 学 等 学 科 的 研 究 成 果, 在 中 药 传 统 制 药 理 念 的 启 发

Microsoft Word 方刚_new_.doc

标题

168 健 等 木醋对几种小浆果扦插繁殖的影响 第1期 the view of the comprehensive rooting quality, spraying wood vinegar can change rooting situation, and the optimal concent

材料导报 研究篇 年 月 下 第 卷第 期 种球的制备 单步溶胀法制备分子印迹聚合物微球 洗脱处理 种子溶胀聚合机理 种球用量的影响

, Vol. 32, No. 18 食 品 科 学 工 艺 技 术 对 象, 立 足 改 善 产 品 耐 煮 性 和 食 用 品 质, 在 已 有 单 螺 杆 挤 压 的 工 艺 参 数 方 面 的 基 础 上, 适 当 添 加 对 人 体 有 利 又 能 改 善 产 品 食 用 品

g ml 10% ph 色谱条件 kinetex C μm 100 A 4. 6 mm 150 mm 25 5 μl A B 10 mmol /L ml /min

Maup re,,,,,, ;,,,,,,,,,, PC 1985 Cognac,, 80, [ 526 ], 420m 160m [ 728 ], PC,,,,,,,,, , [ 3 ] 3008mm, 488mm, 222mm, ( ) 2880mm , 4914, 6

untitled

Torre Mayor Y A09 A m m m g γ

B B Table 1 Chem ical composition of stainless steels 304 and 301B % C Si Mn P S Cr N i N Mo Cu Fe

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

Journal of Arid Meteorology Vol. 28 No. 4 Dec a

Transcription:

第 48 卷第 4 期 西安建筑科技大学学报 ( 自然科学版 ) Vol.48 No.4 2016 年 8 月 J.Xi'an Univ. of Arch.& Tech. (Natural Science Edition) Aug. 2016 DOI:10.15986/j.6-7930.2016.04. 023 建筑石膏复合材料的调温调湿性能研究 尚建丽, 宋冬毅, 麻向龙, 张磊, 张浩, 熊磊 ( 西安建筑科技大学材料与矿资学院陕西西安 755) 摘要 : 为了制备兼具热湿功能的建筑石膏材料, 将自制的温湿调节剂按照不同比例掺入石膏中配制多元复合材料. 通过采用 时间 - 温度 坐标系方法, 测试复合材料调温性能的变化规律, 采用饱和盐溶液法测试复合材料的调湿性能, 分析了调节剂对热湿综合性能的影响并进行评价. 利用傅里叶红外光谱仪 压汞仪 差示扫描量热仪 扫描电镜等手段对复合材料组成 孔结构 相变温度和相变潜热及形貌进行表征. 结果表明 : 当温湿调节剂掺量为 40% 时, 建筑石膏复合材料相变温度 20.86~ 34.52, 相变潜热 10.72~12.61 J/g, 表明该复合材料具有满足建筑室内对热性能要求, 建筑石膏复合材料最大平衡含湿量为 46 44~47 34 g/g, 表明该复合材料具有良好的调湿效果. 关键词 : 石膏 ; 复合材料 ; 热湿性中图分类号 :TU322 文献标志码 :A 文章编号 :6-7930(2016)04-0601-05 Study on properties of temperature controlling and humidity controlling of SHANG Jianli, SONG Dongyi, MA Xianglong, ZHANG Lei, ZHANG Hao, XIONG Lei (College of Materials & Mineral Resources, Xi an Univ. of Arch. & Techn., Xi an 755, China) Abstract: In order to make the building gypsum material with heat and humidity function, the self-made temperature and humidity regulator is mixed into the gypsum in different proportion to prepare the composite material. By using the method of time - temperature coordinate system, the variation of the temperature properties of composites was tested. the saturated salt solution method, composite humidity performance is tested, so the analysis of modifiers on heat and moisture effects of comprehensive performance and evaluation was also carried out. The composition, pore structure, phase change temperature, latent heat and morphology of the composites were characterized by Fourier transform infrared spectrometer, mercury intrusion detector, differential scanning calorimetry and scanning electron microscope. Results show that when the temperature and humidity regulator dosage was 40%, the building gypsum composite phase may change the temperature from 20.86 to 34.52, latent heat 10.72 ~ 12.61J/g, showed that the composite material has to meet the requirements of the interior architecture of thermal properties and building gypsum composite maximum equilibrium moisture content for 4644~4734g/g that the composite material has good humidifying effect. Key words: gypsum; composite materials; properties of temperature and humidity 室内环境舒适度与室内环境的温度 湿度密切相关 [1]. 因此, 长期以来人们为了满足室内环境舒适度的需求, 采取了很多主动式的改善方法, 如采取采暖 制冷和调湿设备进行温度或湿度控制, 这种极大的依赖主动调节方式必然会消耗大量能源, 因此, 为了降低主动调节方式对建筑能耗的影响, 许多学者研究在建筑围护结构材料中掺入相变材 [2] 料或多孔材料 [3], 使建筑围护材料具有相变储能的作用, 从而降低人们对于采暖 制冷及调湿设备的消耗, 同时降低能耗, 达到建筑节能的目的 [4]. 如 [5] 施韬等用膨胀石墨做载体, 硬脂酸丁酯作为相变材料, 制得硬脂酸丁酯 / 膨胀石墨复合相变材料, 将这种复合材料掺入石膏中制备潜热储能石膏建 材.Ana M.B [6] 等将相变微胶囊掺入到石膏中制备具有良好热稳定性的潜热储能石膏建材. 虽然, 通过使用相变材料改善室内环境温度的研究已有几十年的研究历史, 但存在储能材料研究较成熟, 调湿材料研究相对薄弱, 无法同时有效调节室内环境温湿度 [7-10]. 鉴于上述分析, 本文基于课题组前期的研究成果 [11-14], 即具有制备调温调湿性能的调节剂. 旨在寻求价格低廉且适合建筑领域实际应用的调温调湿建筑材料. 以建筑石膏作为基体材料, 将温湿调节剂掺入石膏基体材料中, 制备建筑石膏复合材料. 并对建筑石膏复合材料进行调温调湿性能测试与分析, 为调温调湿建筑材料在建筑节能中研究与 收稿日期 : 2015-05-04 修改稿日期 :2016-08-15 基金项目 : 国家自然科学基金项目 (51172176); 陕西省科技统筹创新工程计划项目 (2013KTCL03-17); 陕西省重点科技创新团队项目 (2012KCT-11) 作者简介 : 尚建丽 (1957 ), 女, 博士, 教授, 博士生导师, 从事环保型建筑节能材料研究.E-mail: shangjianli@xauat.edu.cn

602 西安建筑科技大学学报 ( 自然科学版 ) 第 48 卷 应用提供依据. 1 试验 1.1 试验材料及仪器建筑石膏 : 又称二水石膏, 是一种具有广泛用途的建筑材料和工业材料. 以建筑石膏作为基体材料, 具有一定的工程应用意义, 本试验选用西安市西京新型建材有限公司所生产的石膏. 自制温湿调节剂 : 本文以多孔硅藻土吸附相变材料 CA-LA 作为温湿调节剂材料, 其相变温度在 17.92~22.20, 相变潜热在 30.88~32.97 J/g, 平衡含湿量为 60 3~60 8 g/g, 该温湿调节剂具有良好的热性能和湿效应. 试验主要仪器 :AUW120D 型精密电子天平 ( 精度为 00 01g),JY92-Ⅱ 型超声波细胞破碎仪, DF-101S 集热式恒温加热磁力搅拌器,DZ-2BCⅡ 型真空恒温干燥箱 101-2AB 型电热鼓风干燥箱 CENTER304/309 型热电偶. 1.2 建筑石膏复合材料的制备选用建筑石膏作为基体材料, 称取了不同质量分数 (10% 20% 30% 40%) 的温湿调节剂, 将其掺入到石膏基体材料中, 经试验对比, 为了满足 表 1 饱和盐溶液的相对湿度 (25 ) Tab. 1 Relative humidity of saturated salt in water (25 ) 合适的流动性以及孔结构的可比性, 水膏比为 0.66:1, 搅拌均匀. (1) 根据标准 抹灰石膏 (GBT 28627-2012) 将配好的 25g 料浆制作成 50 mm 50 mm 2 mm 的试样, 并在 45±2 下养护 24 h, 作为调湿性测试试件. (2) 配好的 50 g 料浆制作成高 mm 直径 20 mm 中心含有孔洞的圆柱状试样. 并在 45±2 下养护 24 h, 作为调温性测试试件. 1.3 调湿调湿性能测试 1.3.1 调湿性能测试具体测试步骤如下 :1 将试样放入经干燥处理并称量的称量杯中 ( 不盖杯盖 ), 置于真空干燥箱中, 若间隔至少 24 h 的连续三次称量, 当质量的变化小于总质量的 0.1%, 即认为达到了恒重.2 将干燥后装有试样的称量杯一同分别放入不同相对湿度的干燥器内. 定期称量试样, 直至试样达到湿平衡. 按照平衡含湿量计算公式进行计算. 上述测试的相对湿度区间为 32.78%~97.30%, 具体见表 1. 放湿试验步骤同上, 按照相对湿度递减进行放湿试验. 分子式 MgCl 2 K 2 CO 3 Mg(NO 3 ) 2 CoCl 2 NaCl KCl K 2 SO 3 相对湿度 /% 32.78 43.16 52.89 64.92 75.29 84.34 97.30 1.3.2 调温性能测试测试步骤如下 : 首先将中心含有孔洞的圆柱状试样放入试管中, 热电偶的温度探头放入试样的孔洞中, 将试管放入 30 恒温水浴中, 待试样温度恒定时开始降温, 温度降至 15 时停止降温. 降温过程中, 热电偶每 5 s 记录一次试样的温度, 用 30~15 降温过程的时间表示试样的调温性能. 1.4 表征采用德国 BRUKER UECIOR 22 型傅里叶变换红外光谱仪分析复合材料组成 ; 采用美国 FEI 公司生产的 Quanta 200 型扫描电镜观测复合材料形貌 ; 采用美国 TA 2910 型差示扫描量热仪及美国麦克公司生产的 Auto Pore Ⅳ9500 型压汞仪分别测试复合材料的相变温度 相变潜热及孔结构 孔隙. 2 结果与讨论 2.1 建筑石膏复合材料调温性能结果与分析从图 1 可知, 温湿调节剂掺量的增加可以有效增加建筑石膏复合材料的调温时长, 则由此可表明 石膏基复合材料的调温性能取决于温湿调节剂的用量. 当温湿调节剂的掺量为 10% 时, 调温时常为 575 s, 尽管具有一定的调温性, 但效果有限 ; 当温湿调节剂的掺量为 40% 时, 调温时常为 685 s, 其调温性能明显提升. 同时建筑石膏复合材料在温度降至 24~25 附近出现明显的相变平台, 说明建筑石膏复合材料的相变温度满足人体舒适温度区间要求, 适合在建筑领域应用. 32 30 28 26 24 22 20 18 16 14 0 200 300 400 500 600 0 0 900 时间 /s 图 1 不同掺量建筑石膏复合材料的步冷曲线图 Fig.1 Cooling curves of different amount of 为了进一步验证 时间 - 温度 坐标系法对建筑石膏复合材料调温性能的测试, 本文采用 DSC

第 4 期尚建丽, 等 : 建筑石膏复合材料的调温调湿性能研究 603 对其相变温度和相变潜热进行测试, 通过储热能力来反映材料的热性能. 图 2(a) 为纯石膏的 DSC 曲线. 可以看出, 石膏的 DSC 曲线近似平直, 没有相变吸收峰, 说明石膏不是相变材料, 不具有相变潜热, 进一步分析图 2(a) 可知, 石膏的 DSC 曲线只是近似平直, 还是存在一定的波动, 这是由于石膏材料是无机多孔材料, 其孔隙中吸附有水分子, 当测试温度升高时, 由于水分蒸发吸收热量导致出现波动. 图 2(b) 为建筑石膏复合材料的 DSC 曲线. 可以看出, 在升温过程中, 建筑石膏复合材料的相变温度范围为 21.36~34.52, 相变潜热为 10.72 J/g; 在降温过程中, 建筑石膏复合材料相变温度范围为 20.86~32.52, 相变潜热为 12.61 J/g. 综上所述, 将温湿调节剂与石膏复合获得建筑石膏复合材料, 具有比石膏单纯应用功能要优越的性能, 可将其作为建筑内墙面深层材料, 达到调湿控温效果. 0.10 热流 /(mw*mg -1 ) -0.5-1.0-1.5-2.0 热流 /(mw*mg -1 ) 5 0-5 -0.10 20.86 4.401J/g 32.52 8.209J/g 21.36 1.306J/g 34.52 9.414J/g -2.5 0 5 10 15 20 25 30 35 40 45 50 55 60-0.15 0 5 10 15 20 25 30 35 40 45 50 55 60 (a) 纯石膏 (b) 建筑石膏复合材料图 2 DSC 测试结果 Fig.2 DSC measurement results 2.2 建筑石膏复合材料调湿性能结果与分析膏复合材料的平衡放湿量也不断增强, 由此可知, 从图 3(a) 中看出, 在吸湿性能方面的表现为 : 随着温湿调节剂掺量的增加, 建筑石膏复合材料的随着温湿调节剂掺量增加, 建筑石膏复合材料的平平衡吸放湿量都较优. 当温湿调节剂的掺量为 40% 衡吸湿量不断增强, 从图 3(b) 中看出, 在放湿性能时, 其平衡含湿量为 46 4~47 3 g/g, 建筑石膏方面的表现为 : 随着温湿调节剂掺量增加, 建筑石复合材料具有较优的吸放湿性能. 50 50 平衡含湿量 /(g*g -1 ) 45 40 35 30 25 20 平衡含湿量 /(g*g -1 ) 45 40 35 30 25 20 15 15 30 40 50 60 90 相对湿度 /% 30 40 50 60 90 相对湿度 /% (a) 吸湿过程 (b) 放湿过程图 3 不同掺量建筑石膏复合材料的等温吸放湿平衡曲线 Fig.3 Equilibrium moisture content of different amount of cm -1 综上所述, 随着温湿调节剂掺量增加, 建筑石膏复合材料的热湿综合性能也得到明显提高, 当温调节剂掺量为 40% 时, 建筑石膏复合材料具有较优的温湿综合性能. 2.3 建筑石膏复合材料组成分析图 4(a) 为温湿调节剂的 FT-IR 测试结果, 可以看出温湿调节剂在 2 919.40 cm -1 1 698.91 cm -1 1 433.25 cm -1 处出现 CA-LA 的吸收峰, 即反对称伸缩振动引起的伸缩振动峰 伸缩振动吸收峰 面内弯曲振动引起的吸收峰 ; 温湿调节剂在 1 066.47 和 797.30 cm -1 出现硅藻土的吸收峰. 图 4(b) 为水花石膏的 FT-IR 测试结果, 可以看出在 3 543.84 cm -1 3 401 cm -1 出现 H 2 O 的伸缩振动引起的吸收峰 ; 在 1 435.93 cm -1 出现 H 2 O 的弯曲振动引起的 吸收峰 ; 在 1 111.68 cm -1 2- 出现 SO 4 的不对称伸缩振动引起的吸收峰, 在 669.50 cm -1 出现吸收峰, 归属 2- 为 SO 4 的弯曲振动吸收带. 图 4(c) 为建筑石膏复合材料的 FT-IR 测试结果, 可以看出建筑石膏复合材料在 2 918.89 cm -1 2 851.05 cm -1 1 9.42 cm -1 1 485.91 cm -1 1 042.07 cm -1 797.96 cm -1 均出现了温

604 西安建筑科技大学学报 ( 自然科学版 ) 第 48 卷 湿调节剂和水化石膏的吸收峰, 建筑石膏复合材料中出现的水化石膏和温湿调节剂的吸收峰只是位置发生了转移或强弱发生了变化, 并没有新特征峰的产生和消失. 综上所述, 温湿调节剂通过物理嵌 90 60 50 40 30 20 2851.23cm -1 2919.40cm -1 1433.25cm -1 797.30cm -1 1698.91cm -1 939.16cm -1 1066.47cm -1 4000 3500 3000 2500 2000 1500 0 500 95 3543.84cm -1 1621.09cm -1 90 3401cm -1 1435.93cm -1 85 75 1111.68cm -1 65 4000 3500 3000 2500 2000 1500 0 500 合的方式包裹于水化石膏内, 并未与温湿调节剂发生明显的化学反应, 具有较好的相容性, 说明温湿调节剂保持原有的较好的温湿性, 从而实现了建筑石膏复合材料具有良好的温湿综合性能. 878.78cm -1 669.50cm -1 90 60 50 40 2918.89cm -1 1485.91-1 2851.05cm -1 19.42cm -1 797.96cm -1 1042.07cm -1 4000 3500 3000 2500 2000 1500 0 500 (a) 温湿调节剂 (b) 水花石膏 (c) 建筑石膏复合材料 图 4 FT-IR 测试结果 Fig.4 FT-IR measurement results 1.0 2.4 建筑石膏复合材料孔结构分析 采用压汞法测量的建筑石膏复合材料的孔径 0.8 分布情况如图 5 所示, 图 5(a) 是建筑石膏复合材料 0.6 正常的 ( 归一化 ) 孔体积, 图 5(b) 是建筑石膏复合 0.4 材料根据对数微分入侵体积确定的孔径分布曲 0.2 线. 从图 5(a) 中可知, 建筑石膏复合材料的孔体积 主要分布在 6~ μm 之间 ; 从图 5(b) 中可知, 建筑石膏复合材料的孔径近似呈现正态分布, 在孔径 Pore size diameter/ m (a) 正常的 ( 归一化 ) 孔体积 2.5 为 7.8 μm 处出现最可几峰 ; 从表 2 可看出, 建筑 2.0 石膏复合材料的孔隙率为 61.86%, 总孔容积为 0.813 5 ml/g, 总孔比表面积为 1.356 m 2 /g, 表观密度 1.5 为 1.994 0 g/ml, 平均孔径 2.399 7 μm. 因此从孔 1.0 结构分析, 建筑石膏复合材料中依然存在较多大孔 0.5 径孔隙, 从而为水分子在建筑石膏复合材料表面吸 附提供了大量空间, 使建筑石膏复合材料具有了较 Pore size diameter/ m 好的吸放湿性能. (b) 对数微分入侵体积 2.5 建筑石膏复合材料形貌分析图 6(a) 和图 6(b) 分别为温湿调节剂和建筑石膏复合材料的 SEM 测试结果, 从图 6(a) 中看出, 以硅藻土作为载体的温湿调节剂呈现圆盘状, 说明硅藻土较好的保持了原有的形态, 相变材料通过表面张力和毛细管的作用吸附进硅藻土表面孔隙中, 从而形成温湿调节剂. 从图 6(b) 中看出, 温湿调节剂与石膏复合时, 硅藻土吸附 CA-LA 形成的定型材料嵌填到了石膏基体孔内, 并且较为均匀的填充于石膏晶体之间, 使建筑石膏复合材料同时具有热湿综合性能. 3 结论 Cumulative intrusion/(ml*g -1 ) Log differential intrusion/(ml*g -1 ) 10 1 0.1 1 10 1 0.1 1 图 5 MIP 测试结果 Fig.5 MIP measurement results 表 2 建筑石膏复合材料的孔结构参数 Tab. 2 Pore structural parameters of 孔隙率 总孔容积 总孔比表面积 表观密度 平均孔 /% /(ml g -1 ) /(m 2 g -1 ) /(g ml -1 ) 径 /μm 61.86 0.813 5 1.356 1.994 0 2.399 7 (1) 当温湿调节剂掺量为 40% 时, 所制备的建筑石膏复合材料具有适宜的相变温度 (20.86~34.52 (a) 温湿调节剂

第 4 期尚建丽, 等 : 建筑石膏复合材料的调温调湿性能研究 605 (b) 建筑石膏复合材料图 6 SEM 测试结果 Fig.6 SEM measurement results ) 和相变潜热 (10.72~12.61 J/g), 满足建筑室内人体对环境舒适度的要求. (2) 建筑石膏中掺入温湿调节剂为 40% 时, 所制备的建筑石膏复合材料具有较大的孔隙率 (61.86%), 且平均孔径为 2.399 7 μm, 说明建筑石膏复合材料中依然存在较大孔径及孔隙, 从而为建筑石膏复合材料表面吸附水分提供了大量空间, 使建筑石膏复合材料具有了更好的吸放湿性能. (3) 从 FT-IR 和 SEM 的测试结果表明, 温湿调节剂能够较好的与建筑石膏复合, 并且较为均匀的填充于石膏晶体之间, 使建筑石膏复合材料同时具有热湿综合性能. 参考文献 References [1] HUYNH C K. Building energy saving techniques and indoor air quality: a dilemma [J]. International Journal of Ventilation, 2010,9(1):93-98. [2] TOMMASO T, LIVIO M. Gypsum based composite materials with micro-encapsulated PCM: Experimental correlations for thermal properties estimation on the basis of the composition[j]. Energy and Buildings.2013, 57: 227 236. [3] 郑佳宜, 陈振乾. 硅藻土基调湿建筑材料的应用仿真模拟 [J]. 东南大学学报 ( 自然科学版 ),2013.43 (4): 840-844. ZHENG Jiayi, CHEN Zhenqian. Application analogue simulation of diatomite-based humidity control building material. Journal of southeast university ( Natural Science Edition), 2013.43 (4): 840-844. [4] DENG A Z, LI S B, ZHUANG C L, et al.research on lightweight PCM thermal-storing wall-material [J]. Journal of Building Materials,2008, 11(5):541-544. [5] 施韬, 孙伟, 王倩楠. 潜热储能石膏基建筑材料的制备及其储 ( 放 ) 热行为研究 [J]. 功能材料,2009, 40(6):9-973 SHI Tao, Sun Wei, Wang Qiannan. Study on preparation and thermal performance tests of latent heat storage gypsums. functional materials. 2009,40(6):9-973. [6] Ana M B, Ignacio G, José L V, et al. Development of smart gypsum composites by incorporating thermo regulating microcapsules[j]. Energy and Buildings 2014, 76 :631 639. [7] Ahmet S. Composites of polyethylene glycol (PEG600) with gypsum and natural clay as new kinds of building PCMs for low temperature-thermal energy storage[j]. Energy and Buildings. 2014,69 :184 192. [8] Alper B, Ahmet S. New kinds of energy-storing building composite PCMs for thermal energy storage [J]. Energy Conversion and Management.2013, 69: 148 156. [9] 冉茂宇. 日本对调湿材料的研究及应用 [J]. 材料导报,2002,16(11):42-44. RAN Maoyu. Review of Research and Application of Air Humidity Controlling Materials in JaPan. Materials Review. 2002, 16(11):42-44. [10] 郑希, 居胜, 冯华峰, 等. 羧甲基纤维素钠 / 甲壳素基复合调湿材料的制备与表征 [J].2014, 45(21):21149-21153. ZHANG Xi, JU Sheng, FENG Huafeng, et al. Preparation and characterization of humidity-controlling materials of sodium carboxymethyl cellulose and chintin. functional materials. 2014,45(21):21149-21153. [11] 尚建丽, 王思, 董莉. PAR/POL/SOD 复合微胶囊的制备及热湿性能研究 [J]. 功能材料,2013,44(8):1141-1144. SHANG Jianli,WANG Si,DONG Li. Prepared of PAR/POL/SOD-composite-wall microencapsulated and research of energy storage and humidity-control performance. functional materials. 2013,44(8):1141-1144. [12] 尚建丽, 张浩, 董莉, 等. 双壳微纳米相变胶囊 / 石膏复合材料等温吸放湿特性及机理研究 [J].2015, 46(2):2084-2088. SHANG Jianli, ZHANG Hao, DONG Li, et al. Study on isothermal sorption property and mechanism of gypsum-based composite with double-shell phase change micro-nano capsules. functional materials, 2015, 46(2): 2084-2088. [13] 尚建丽, 李乔明, 王争军. 微胶囊相变储能石膏基建筑材料制备及性能研究 [J]. 太阳能学报,2012,33(12): 2140-2144. SHANG Jianli, LI Qiaoming, WANG Zhengjun. Preparation and thermal performance tests of microencapsulated gypsum-based phase change building material. Acta Energiae Solaris Sinica. 2012,33(12):2140-2144. [14] SHANG Jianli, LI Qiaoming, WANG Zhengjun, et al. Preparing and studying of phase change energy storage materials[j]. Shanghai Jiaotong Univ. (Sci.), 2010, 15(6): 668-6. ( 编辑沈波 )