1. PDE u(x, y, ) PDE F (x, y,, u, u x, u y,, u xx, u xy, ) = 0 (1) F x, y,,uu (solution) u (1) u(x, y, )(1)x, y, Ω (1) x, y, u (1) u Ω x, y, Ωx, y, (P

Similar documents
微积分 授课讲义

DS Ω(1.1)t 1 t 2 Q = t2 t 1 { S k(x, y, z) u } n ds dt, (1.2) u us n n (t 1, t 2 )u(t 1, x, y, z) u(t 2, x, y, z) Ω ν(x, y, z)ρ(x, y, z)[u(t 2, x, y,


Cauchy Duhamel Cauchy Cauchy Poisson Cauchy 1. Cauchy Cauchy ( Duhamel ) u 1 (t, x) u tt c 2 u xx = f 1 (t, x) u 2 u tt c 2 u xx = f 2 (



/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

&! +! # ## % & #( ) % % % () ) ( %

《分析化学辞典》_数据处理条目_1.DOC

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

koji-13.dvi

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ

WL100014ZW.PDF

5 (Green) δ

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02


lim f(x) lim g(x) 0, lim f(x) g(x),

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

2007 GRE Math-Sub Nov 3, 2007 Test time: 170 minutes

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

untitled

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

x y z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.1. (X, Y ) 3.2 P (x 1 < X x 2, y 1 < Y y 2 ) = F (x 2, y 2 ) F (x 2, y 1 ) F (x 1, y 2

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

08-01.indd

( ) Wuhan University

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

untitled

= 6 = 9 >> = Φ > =9 > Κ Λ ΘΠΗ Ρ Λ 9 = Ρ > Ν 6 Κ = 6 > Ρ Κ = > Ρ Σ Ρ = Δ5 Τ > Τ Η 6 9 > Υ Λ Β =? Η Λ 9 > Η ς? 6 = 9 > Ρ Κ Φ 9 Κ = > Φ Φ Ψ = 9 > Ψ = Φ?

untitled

; < 5 6 => 6 % = 5

ABP

( ) : ( ) (CIP) /.. :,003. () ISBN O4 44 CIP (00) : : 7 : 7007 : (09 ) : : :850 mm 68 mm / 3 :0.5 :60 :00 0

untitled

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ

3 = 4 8 = > 8? = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0 Ι Λ Χ ΦΔ Χ & Φ Μ Χ Ε ΝΓ 0 Γ Κ 6 Δ Χ 1 0


投影片 1


!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7

M ( ) K F ( ) A M ( ) 1815 (probable error) F W ( ) J ( ) n! M ( ) T ( ) L ( ) T (171


. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ!

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

untitled

( ) (! +)! #! () % + + %, +,!#! # # % + +!

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

! # Χ Η Ι 8 ϑ 8 5 Χ ΚΗ /8 Η/. 6 / Λ. /. Η /. Α Α + Α 0. Η 56 + Α : Α Μ / Η +9 Δ /. : Α : ϑ. Η. /5 % Χ

8 8 Β Β : ; Χ; ; ; 8 : && Δ Ε 3 4Φ 3 4Φ Ε Δ Ε > Β & Γ 3 Γ 3 Ε3Δ 3 3 3? Ε Δ Δ Δ Δ > Δ # Χ 3 Η Ι Ι ϑ 3 Γ 6! # # % % # ( % ( ) + ( # ( %, & ( #,.


1#

u -, θ = 0, k gu = 2 ln E v, v -, θ = π 2, k gv = dθ 2 E. 2. r(u, v) = {a cos u cos v, a cos u sin v, a sin u} k g = sin u dv, θ. E = a 2, F = 0, = a


7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

4. 计 算 积 分 : ż ż βi fdl = f(x(t), y(t), z(t)) a x 1 (t) 2 + y 1 (t) 2 + z 1 (t) 2 dt L i α i ż ż βi 或 者 在 二 维 情 形 中 fdl = f(x(t), y(t)) a x 1 (t) 2 +

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9

& & ) ( +( #, # &,! # +., ) # % # # % ( #

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉ Lecture on Stochastic Processes (by Lijun Bo) 2

( )

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

:::: : : : :::: :: :: :::::: :::: < ; 7 7 ; ; % < = = > = / =?? Α Β.. Β Χ (. 7 > 5 / Δ 6 Ε. Φ Δ 5 / 6 Ε. Φ 1 Γ 5 / 6 7 Η (. >5 Ι Δ 6 Φ ϑ

9 : : ; 7 % 8


9! >: Ε Φ Ε Ε Φ 6 Φ 8! & (, ( ) ( & & 4 %! # +! ; Γ / : ; : < =. ; > = >?.>? < Α. = =.> Β Α > Χ. = > / Δ = 9 5.

ΗΗ Β Η Η Η ϑ ΗΙ ( > ( > 8 Κ Κ 9 Λ! 0 Μ 4 Ν ΟΠ 4 Ν 0 Θ Π < Β < Φ Ρ Σ Ο ΟΦ Ρ Σ ) Ο Τ 4 Μ 4 Ν Π Υ Φ Μ ς 6 7 6Ω : 8? 9 : 8 ; 7 6Ω 1 8? ; 7 : ; 8 ; 9

Ε? Φ ) ( % &! # +. 2 ( (,


!? > 7 > 7 > 7 Ε ! Α Φ Φ Γ Η Ι Γ / 2 ; Γ / 4 Δ : 4 ϑ / 4 # Η Γ Κ 2 Η 4 Δ 4 Α 5 Α 8 Λ Ηϑ Μ Α Α 4!! Ο. /3 :/Π : Θ Γ 2 ; Γ / 4 Ρ Α

% % %/ + ) &,. ) ) (!

stexb08.dvi


Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 :

9 < 9 Α Α < < < Β= =9 Χ 9Β 78! = = 9 ΦΑ Γ Η8 :Ι < < ϑ<; Β Β! 9 Χ! Β Χ Δ Ε <Β Α Α = Α Α Ι Α Α %8 Β < 8 7 8! 8 =

Wl100036zw.PDF

3?! ΑΑΑΑ 7 ) 7 3

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9!

1 <9= <?/:Χ 9 /% Α 9 Δ Ε Α : 9 Δ 1 8: ; Δ : ; Α Δ : Β Α Α Α 9 : Β Α Δ Α Δ : / Ε /? Δ 1 Δ ; Δ Α Δ : /6Φ 6 Δ

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ <

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5

Transcription:

2008.9-2008.12 Laplace Li-Yau s Harnack inequality Cauchy Cauchy-Kowalevski H. Lewy Open problems F. John, Partial Differential Equations, Springer-Verlag, 1982. 2002 2008 1

1. PDE u(x, y, ) PDE F (x, y,, u, u x, u y,, u xx, u xy, ) = 0 (1) F x, y,,uu (solution) u (1) u(x, y, )(1)x, y, Ω (1) x, y, u (1) u Ω x, y, Ωx, y, (PDEs): n m PDE n > m(under-determined) n < m(over-determined) PDE PDEs PDE PDEs x, y, PDE u x, y, m PDE u m m x, y, u m 2

m PDE u m P DE (linear) (nonlinear) : : (quasilinear) (fully nonlinear) 2. PDEs t(x 1, x 2,, x n )n = 3 x, y, zn 2 + + 2 x 2 1 x 2 n = n i=1 2 x 2 i Laplace, 2 t 2 2 2 x 2 1 x 2 n 1. Laplace = 2 t 2 n i=1 2 x 2 i = 2 t 2 u 2 u + + 2 u x 2 1 x 2 n u (harmonic function) = n i=1 2 u x 2 i = 0. (2) n = 2 x 1 = x, x 2 = y v(x, y)u vcauchy-riemann u x = v y, u y = v x (3) (3)(u, v) z = x + iy f(z) = f(x + iy) = u(x, y) + iv(x, y). (4) 3

(u(x, y), v(x, y)) n = 3(2) 2. wave equation u tt = c 2 u (c > 0), (5) u = u(t, x 1,, x n ) n = 1 : c n = 2 : n = 3 : 3. Maxwell Maxwell equations E = E(E 1, E 2, E 3 ) H = (H 1, H 2, H 3 ) Maxwell.. εe t = curlh, µh t = curle, dive = divh = 0, (6) ε, µ εe t = curlh, µh t = curle t = 0 dive = divh = 0 te i, H k c 2 = 1/εµ (5) (6) curl(curle) = µ(curlh) t = εµe tt, 4

(6) curl(curle) = (dive) E, E tt = (εµ) 1 E. H 4.... ρ 2 u i t 2 = µ u i + (λ + µ) x i (divu) (i = 1, 2, 3) (7) u i (t, x 1, x 2, x 3 ) uρ λ, µlame u i ( 2 t λ + 2µ ) ( 2 2 ρ t µ ) 2 ρ u i = 0. (8).. u t = 0..... 2 u = 0. (9) 5...... k > 0 u t = k u, (10) 6. V (x, y, z)m Schrödinger h = 2π Planck i ψ t = 2 (ψ) + V ψ, (11) 2m 7. Tricomi u xx = xu yy. (12) u xx = yu yy. 5

8. 3 Euclid.... z = u(x, y) (1 + u 2 y)u xx 2u x u y u xy + (1 + u 2 x)u yy = 0. (13) 9. 1 + n Minkowski.. x = x(t, θ) R n x θ 2 x tt 2 x t, x θ x tθ + ( x t 2 1)x θθ = 0. (14) 10. ρ... φ(x, y) (φ x, φ y ) (1 c 2 φ 2 x)φ xx 2c 2 φ x φ y φ xy + (1 c 2 φ 2 y)φ yy = 0, (15) c q = φ 2 x + φ 2 y γ p = Aρ γ (16) c 2 = 1 γ 1 q 2. (17) 2 11. Navier-Stokes.. u k p u i t + 3 k=1 3 u i u k + 1 p = µ u i (i = 1, 2, 3), x k ρ x i k=1 u k x k = 0 ( divu = 0), ρ µ (18) 6

12. ρ t + 3 j=1 t (ρv i) + t (ρe) + x j (ρv j ) = 0, 3 j=1 3 j=1 x j (ρv i v j + δ ij p) = 0, x j (ρv j E + pv j ) = 0, (19) ρ(t, x) v = (v 1 (t, x), v 2 (t, x), v 3 (t, x))pe = E(t, x) ρ p T E p = p(ρ, E) ( p = p(ρ, T )) (20) (20) (20)(19) 13. u(t, x)korteweg-de Vries.. u t + cuu x + u xxx = 0, (21) 14. Monge-Apére S ττ = S2 τθ 1 S θθ + S. (22)... 7

1. u = u(t, x) u t + cu x = 0 (1.1) c > 0 (t, x)- (1.1)u dx dt = c. (1.2) x ct = const. ξ, (1.3) du dt = d dt u(t, ct + ξ) = u t + cu x = 0. (1.4) u ξ (1.1) u(t, x) = u(0, ξ) f(ξ) = f(x ct), (1.5) f(ξ) u... u u(0, x) = f(x) (1.6) fc 1 (R) (1.5) (1.1) fu(t, x) f 1

ξ = x ct ξ(x, t)x- u(t, x).... ξ ξ.. (1.3)u(t, x) 1.1 t (t, x) x ct = ξ 0 ξ x 1.1: t(x, u)-u t = T t = 0x-cT u(x, 0) = u(x + ct, T ) = f(x). (1.7) c. 1.2 u u(0, x) u(t, x) c x x + ct x 1.2: 2

...... x h t k (t, x)- x h t k(t, x) v(t + k, x) v(t, x) k v(t, x + h) v(t, x) + c h = 0 (1.8) (1.1)h, k 0 v t + cv x = 0. h, k (1.8) v (1.1) (1.6) (1.8) v(0, x) = f(x) (1.9) λ = k/h. v(t + k, x) = (1 + λc)v(t, x) λcv(t, x + h). (1.10) tvt + kv.... E (1.10) Ef(x) = f(x + h). (1.11) v(t + k, x) = ((1 + λc) λce)v(t, x), (1.12) t = nk (1.8) v(t, x) = v(nk, x) = ((1 + λc) λce) n v(0, x) n ( ) m( λce) = 1 + λc n m f(x) = m=0 n C m n Cn m m=0 ( 1 + λc ) m( λc) n m f(x + (n m)h). (1.13) 3

v(t, x) = v(nk, x) x- x, x + h, x + 2h,, x + nh = x + t λ, (1.14) x x + nh ξ = x ct = x cλnh [x, x + nh]h, k 0 vv(t, x) u(t, x)f(ξ) u(t, x) f [x, x + tλ 1 ] Courant-Friedrichs-Lewy.. (1.8).... f (1.13)f f ε v(t, x) = v(nk, x) ε n Cn m (1 + λc) m (λc) n m = (1 + 2λc) n ε (1.15) m=0 λvt n (1.17) v(t + k, x) v(t, x) k v(t, x) v(t, x h) + c h = 0, (1.16) v(t + k, x) = ((1 λc) + λce 1 )v(t, x). (1.17) v(t, x) = v(nk, x) = n Cn m m=0 ( 1 λc ) m(λc) n m f(x (n m)h). (1.18) v(t, x)f x, x h, x 2h,, x nh = x t λ (1.19) 4

x tλ 1 xh, k 0 λ (1.19)x [x t, x] ξ = x ct λ λ λc 1 (1.20) Courant-Friedrichs-Lewy (1.20) (1.18) f ε v(t, x) = v(nk, x) ε n Cn m (1 λc) m (λc) n m = ε((1 λc) + λc) n = ε. (1.21) m=0 (1.20)f h, k 0k/h = λ (1.18) v u(t, x) = f(x ct) u(t, x) u(t + k, x) (1 λc)u(t, x)) λcu(t, x h) = f(x ct ck) (1 λc)f(x ct) λcf(x ct h) (1.22) Kh 2, K = 1 2 (c2 λ 2 + λc) sup f. (1.23) fx cttaylorw = u v w(t + k, x) (1 λc)w(t, x)) λcw(t, x h) Kh 2. (1.24) λc 1, sup x w(t + k, x) (1 λc) sup x = sup w(x, t) + Kh 2. x w(t, x) + λc sup w(t, x h) + Kh 2 x (1.25) w(x, 0) = 0(1.25) t = nk u(t, x) v(t, x) sup x w(nk, x) sup w(0, x) + nkh 2 = Kth x λ. (1.26) 5

h 0w(t, x) 0(1.16)v u 1. fλ c 1 h 0(1.16) fv u. fεu v ε 2. (1.17)v v(t + k, x) (1 λc)v(t, x) λcv(t, x h) < δ. (1.20)v(0, x) = f(x)δ(1.23) K u(t, x) v(t, x) Kth λ + t λh δ. u(t, x)λ h. 3. f(x) = e αx αt, x λ = k/h n (1.13) (1.18) e α(x ct) Courant-Friedrichs-Lewyf ξ 6

2. Burgers Burgers u t + u u x = 0 (2.1) Burgers(2.1) u(0, x) = ϕ(x) (2.2) Cauchy ϕ(x) x R C 1 C 1 Cauchy(2.1)-(2.2) x = X(t) dx(t) dt X = X(t) = u(t, X(t)) (2.3) U(t) u(t, X(t)) (2.4) du dt = u t + u x dx dt = u t + uu x = 0, (2.5) (2.3) (2.1) (X(t), U(t)) (2.6)-(2.7) dx = U dt (2.6) du = 0 dt (2.7) (X, U) = (X(0) + tu(0), U(0)), (2.8) 1

X(t) = X(0) + tu(0) U(t) = U(0) (2.9) X(0) = α U(0) = u(0, X(0)) = ϕ(α) (2.10) (2.9) X(t) = α + tϕ(α), U(t) = ϕ(α) (2.11) (t, x) x = α + tϕ(α) (2.12) α α = α(t, x) (2.13) (2.13) U(t) = ϕ(α)cauchy(2.1)-(2.2) u(t, x) = ϕ(α(t, x)) (2.14) (2.11) Cauchy(2.1)-(2.2) ϕ(x) = sin x (2.15) t [0, 1) x = α + t sin α α α = α(t, x)cauchy(2.1)-(2.2) u(t, x) = sin α(t, x) (t, x) [0, 1) R (2.16) ϕ(x) = tanh x t R + x = α + t tanh α α = α(t, x) Cauchy (2.1)-(2.2) u(t, x) = tanh α(t, x) (t, x) R + R 2

x = X(t) ϕ (x) 0, x R (2.17) t R + (2.12) α = α(t, x) (2.17), Cauchy(2.1)- (2.2) (2.17)Cauchy(2.1)-(2.2) (2.17) t [ 0, ϕ (x) 1 C 0 ) x α = 1 + ϕ (α)t 1 ϕ (x) C 0t > 0 (2.18) t [ 0, ϕ (x) 1 C 0 ) (2.12) α = α(t, x)cauchy(2.1)-(2.2) [ 0, ϕ (x) 1 C 0 ) R (2.17)Cauchy(2.1)-(2.2) (2.17) α 1 α 2 (α 1 < α 2 ) (0, α 1 ) (0, α 2 ) ϕ(α 1 ) > ϕ(α 2 ) (2.19) X 1 (t) = α 1 + tϕ(α 1 ), X 2 (t) = α 2 + tϕ(α 2 ) (2.20) u ϕ(α 1 ) ϕ(α 2 ) (2.17)ϕ(x) = tanh x. (2.17) (2.17) (1.52) ϕ(α) α R x- 2.1(a) (2.17) 2.1(b) 3

t t 0 (a) x 0 (b) x 2.1: Cauchy { ut + a(u)u x = 0, (2.21) u t=0 = ϕ(x), (2.22) a(u) u C 1 ϕ(x) x R C 1 C 1 2.1 Cauchy(2.21)-(2.22) R + R C 1 da(ϕ(x)) dx (2.21) 0, x R (2.23) dx dt = a(u) (2.24) Cauchy(2.21)-(2.22) C 1 du(t, x(t)) dt = u t + u x dx dt = u t + a(u)u x = 0 (2.25) u = u(t, x) (2.24) t x- 4

(2.22) (0, α) x = α + a(ϕ(α))t, (2.26) u u = ϕ(α) (2.27) : Cauchy(2.21)-(2.22) R + R C 1 (2.23) (2.23) α 1 α 2 α 1 < α 2 a(ϕ(α 1 )) > a(ϕ(α 2 )). (2.28) (0, α 1 ) x = α 1 + a(ϕ(α 1 ))t (0, α 2 ) x = α 2 + a(ϕ(α 2 ))t u ϕ(α 1 ) ϕ(α 2 ) C 1 : (2.23), t R + (2.26) α (2.23) (2.26) x α = 1 + da(ϕ(α)) t 1 > 0, t > 0 (2.29) dα t R + x α a(ϕ(α)) a ϕ(x) C 0 α ± x ± (2.30) (2.29) (2.30) t R +, (2.26) R R C 1 (2.26) αα = α(t, x) (2.27) Cauchy(2.21)-(2.22)C 1 u = a(α(t, x)) 5

(2.23)(2.23) (0, α) a(ϕ(α)) α R x- 2.1: (2.23)(2.21) Cauchy(2.21)-(2.22) (2.23) Cauchy(2.21)-(2.22) (2.23) (t, x ), 2.2 t (t, x ) 0 α 1 α 2 x 2.2: x i = α i + a(ϕ(α i ))t (i = 1, 2) u(t, α 2 + a(ϕ(α 2 ))t) u(t, α 1 + a(ϕ(α 1 ))t) α 2 α 1 + [a(ϕ(α 2 )) a(ϕ(α 1 ))] t, t t (t, x) (t, x ) u x (t, x) 6

2.1 Cauchy(2.21)-(2.22) u = u(t, x) u x t b 0 breaking time gradient catastrophe Cauchy(2.21)-(2.22) C 1 (t, x), x = ξ(τ; t, x) a C 1 ϕ C 1 x- (0, α) u(t, x) = ϕ(α) (2.31) ξ(τ; t, x) = α + a(ϕ(α))τ (2.32) τ = t x = α + a(ϕ(α))t (2.33) (2.31) x (2.33) α (2.35) (2.34) u x (t, x) = ϕ (α) α (2.34) x x α = 1 + da(ϕ(α)) t (2.35) dα u x = ϕ (α) (2.36) 1 + da(ϕ(α)) t dα u x (2.36) da(ϕ(α)) dα 0, α R, (2.37) t R + (2.36)1 7

α R da(ϕ(α)) dα ] 1 α t 0 (2.36) [ da(ϕ(α)) dα 0 α 0 da(ϕ(α)) dα a(ϕ(α 0 )) = min α R t b = { da(ϕ(α)) da(ϕ(α)) dα dα } (2.38) 1, (2.39) α=α0 α 0 (2.38) α 0 2.1 Cauchy u t + uu x = 0, t = 0 : u = exp{ x 2 } (2.40) a(u) = u, ϕ(x) = exp{ x 2 } (0, α) a(ϕ(α)) = a(exp{ α 2 }) = exp{ α 2 } (2.39) f(α) d dα a(ϕ(α)) = d dα exp{ α2 } = 2α exp{ α 2 } f (α) = ( 2 + 4α 2 ) exp{ α 2 }, f(α) ± 1 2 α 0 = 1 2 f(α) Cauchy(2.40) 1 t b = 2α 0 exp{ α0} = 1 2 2 exp{ 1 } = 2 e 2 1.16 (2.33) x b = α 0 + a(ϕ(α 0 ))t b = 1 { e + 2 2 exp 1 } = 2 2 Cauchy(2.40) ( e 2, 2) u x 2.3 8

t 2 1.5 1 t b 0.5 0 3 2 1 0 1 2 3 x 2.3: x = α + exp{ α 2 }t (t b, x b ). 2.2 : 2.1 1. Cauchy u t + uu x = 0, u t=0 = sin x, u t + uu x = 0, u t=0 = tanh x u t + u 2 u x = 0, u t=0 = (1 + x 2 ) 1. 9

3. u = u(x 1,, x n ) F (x 1,, x n, u, u x1,, u xn ) = 0, (3.1) F (3.1) (ODEs) 3.1 x, y a(x, y, u)u x + b(x, y, u)u y = c(x, y, u), (3.2) a, b, c x, y, u C 1 (x, y, z) z = u(x, y) u(x, y) (3.2) a(x, y, z), b(x, y, z), c(x, y, z) (x, y, z) Ω(3.2) (3.2) (u x, u y, 1)z = u(x, y) (3.2) (a, b, c) (a, b, c) 1

3.1: dx a(x, y, z) = dy b(x, y, z) = dz c(x, y, z) (3.3) t (3.3) dt dx dt = a(x, y, z), dy dt = b(x, y, z), dz dt = c(x, y, z). (3.4) t 3.2 (3.4)t a, b, c(x, y, z) (3.2) 3.1 Σ : z = u(x, y)σ Σp pσl lp Σ plσ p Σ Σ Σ Σ 3.2 3.2 P = (x 0, y 0, z 0 )Σ : z = u(x, y)l P l Σ 2

(x(t), y(t), z(t)) l (3.4)t = t 0 (x, y, z) = (x 0, y 0, z 0 ) (x(t), y(t), z(t))p U(t) = z(t) u(x(t), y(t)). (3.5) P Σ U(t 0 ) = 0(3.4) (3.5) du dt = dz dt u x(x(t), y(t)) dx dt u y(x(t), y(t)) dy dt = c(x(t), y(t), z(t)) u x (x(t), y(t))a(x(t), y(t), z(t)) u y (x(t), y(t))b(x(t), y(t), z(t)). du dt = c(x(t), y(t), U(t) + u(x(t), y(t))) u x(x(t), y(t))a(x(t), y(t), U(t) + u(x(t), y(t))) u y (x(t), y(t))b(x(t), y(t), U(t) + u(x(t), y(t))). (3.6) u(x, y)(3.2) U(t) 0 (3.6) (3.6), U(t 0 ) = 0 U(t) 0. (3.5) U(t) l Σ 3.1 P P l 3.2 Σ 1 Σ 2 l l l P Σ 1 Σ 2 π 1 π 2 P (a, b, c) π 1 π 2 π 1 π 2 (a, b, c) l P T π 1 π 2 T (a, b, c) l 3

4. Cauchy (3.2) u z = u(x, y)... G.. G.. G u ug Cauchy (x, y, z) Γ x = f(s), y = g(s), z = h(s). (4.1) (3.2)u = u(x, y) h(s) = u(f(s), g(s)). (4.2) Cauchy(f, g, h) (3.2) (4.2) (3.2) Cauchy 4.1 Γ s = ϕ(σ) σ Cauchyu(x, y) 4.2 x 0 = f(s 0 ), y 0 = g(s 0 ) x, y Cauchy... yt x y = 0....... u(x, 0) = h(x) (4.3) u(x, y).... Cauchy Γ x = s, y = 0, z = h(s), (4.4) 1

(x, z) x h(x) u 4.3 Γ u (x, z) 1 s 0 Γ f(s), g(s), h(s) C 1 2 P 0 = (x 0, y 0, z 0 ) = (f(s 0 ), g(s 0 ), h(s 0 )). (4.5) P 0 (3.2) a, b, cc 1 P z = u(x, y) P s 0 s (3.4) t = 0f(s), g(s), h(s) x = X(s, t), y = Y (s, t), z = Z(s, t) (4.6) X, Y, Zs, t X t = a(x, Y, Z), Y t = b(x, Y, Z), Z t = c(x, Y, Z) (4.7) X(s, 0) = f(s), Y (s, 0) = g(s), Z(s, 0) = h(s). (4.8) X(s, t), Y (s, t), Z(s, t)(s 0, 0) C 1 (4.7) (4.8) (4.5) (4.8) x 0 = X(s 0, 0), y 0 = Y (s 0, 0). (4.9) 3 (s 0, 0) f (s 0 ) g (s 0 ) a(x 0, y 0, z 0 ) b(x 0, y 0, z 0 ) 2 0. (4.10)

(4.7) (4.8)(4.10) X s (s 0, 0) Y s (s 0, 0) X t (s 0, 0) Y t (s 0, 0) 0. (4.11) (x 0, y 0 ) x = X(s, t), y = Y (s, t) (4.12) s, t s = S(x, y), t = T (x, y). (4.13) (4.6)s, t Σ : z = u(x, y) z = u(x, y) = Z(S(x, y), T (x, y)) (4.14) u Σ (4.10) (4.6)Σ : z = u(x, y) (4.6) Σ Σp (X t, Y t, Z t ) Σs =Σ p(4.7) (a, b, c) Σ 4.4 (4.14) u(3.2) 4.1 1-3Cauchy 4.13.2p p (4.6) (4.10) Cauchy C 1 (4.10) (4.10) J f (s 0 ) g (s 0 ) a(x 0, y 0, z 0 ) b(x 0, y 0, z 0 ) = 0, 3

(4.2) (3.2)s = s 0, x = f(s 0 ), y = g(s 0 ) bf ag = 0, h = f u x + g u y, c = au x + bu y. (4.15) bh cg = 0, ah cf = 0. (4.16) (4.16) f, g, h a, b, c Γ s 0 J = 0 Γ Cauchy Γ p (4.10) Γ Γ Cauchy4.1 Γ Γ P Γ 4.1: a(x, y)u x + b(x, y)u y = c(x, y)u + d(x, y). (4.17) dx dt = a(x, y), dy dt = b(x, y), (4.18) dy dx = b(x, y) a(x, y). (4.19) 4

(4.18) (4.19)(x, y).... (x, y, z) (x, y) x(t), y(t) dz dt z(t) = c(x(t), y(t))z + d(x(t), y(t)) (4.20) n u = u(x 1, x 2,, x n ) ai (x 1,, x n, u)u xi = c(x 1,, x n, u), (4.21) a i cc 1 (4.21) dx i ds = a i(x 1,, x n, z) (i = 1,, n), dz ds = c(x 1,, x n, z). (4.21) Cauchy R n+1 (4.22) (n 1)- M z = u(x 1,, x n ) (n 1)- x i = f i (s 1,, s n 1 ) (i = 1,, n), z = h(s 1,, s n 1 ). M (s 1,, s n 1 ) t = 0 : x i = f i (s 1,, s n 1 ), z = h(s 1,, s n 1 ) (4.23) (4.22) x i = X i (s 1,, s n 1, t) (i = 1,, n) z = Z(s 1,, s n 1, t). (4.24) (4.24) ns 1,, s n 1 t(4.24) z = u(x 1,, x n ) Jacobi f 1 f n s 1 s 1.. J f 1 f 0 (4.25) n s n 1 s n 1 a 1 a n 5

(4.24)n s 1,, s n 1 t. Cauchy 1 Cauchy u y + cu x = 0, u(x, 0) = h(x), (4.26) ch(x)c 1 Γ x = s, y = 0, z = h(s). dx dt = c, dy dt = 1, dz dt = 0. x = X(s, t) = s + ct, y = Y (s, t) = t, z = Z(s, t) = h(s). s, t Cauchy(4.26) z = h(x ct), (1.5) 2.... u(x 1,, x n ) Euler n x k u xk = αu (4.27) k=1 α(4.25) J (4.27) u(x 1,, x n 1, 1) = h(x 1,, x n 1 ), (4.28) h C 1 Cauchy(4.27)-(4.28) 6

(4.28) Γ s i (i = 1,, n 1), x i = z = h(s 1,, s n 1 ). (4.29) 1 (i = n), dx i dt = x i (i = 1,, n) dz dt = αz, s i e t (i = 1,, n 1), x i = e t (i = n), z = e αt h(s 1,, s n 1 ). (4.30) (4.31) λ > 0u ( z = u(x 1,, x n ) = x α x1 nh,, x ) n 1. (4.32) x n x n u(λx 1,, λx n ) = λ α u(x 1,, x n ). (4.33) α α < 0(4.27) C 1 (4.27) u 0 t (4.27)u du dt = x i = c i t, (i = 1,, n), (4.34) n c k u xk (c 1 t,, c n t) = α u. (4.35) t k=1 ut α t 0 u u 4.5 7

1. u t + au x = f(t, x), t > t 0, < x < +, u(t 0, x) = ϕ(x), a f, f x C([t 0, ) R), ϕ C 1 (R). 2. u t + (x cos t)u x = 0, u(0, x) = 1 1 + x 2. t > 0, < x < +, 3. xu t tu x = u, t > 0, x > 0, u(0, x) = g(x), x > 0, g(x) C 1 ((0, )). 4. Cauchy u t + u x = u 2, t = 0 : u = sin x. 8