國立中山大學學位論文典藏.PDF

Similar documents
Microsoft Word 電子構裝結構分析1221.doc

P.1

國家圖書館典藏電子全文

1.0 % 0.25 % 85μm % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song

我國IC封裝設備技術現況及展 [唯讀]

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

鋼構造論文集第 20 巻第 79 号 (2013 年 9 月 ) AN EVALUATION METHOD FOR ULTIMATE COMPRESSIVE STRENGTH OF STAINLESS STEEL PLATES BASED ON STRESS-STRAIN DIAGRAM * **

T K mm mm Q345B 600 mm 200 mm 50 mm 600 mm 300 mm 50 mm 2 K ~ 0. 3 mm 13 ~ 15 mm Q345B 25

TestNian

untitled

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

untitled

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte

successful and it testified the validity of the designing and construction of the excavation engineering in soft soil. Key words subway tunnel

IC封装形式图片介绍

(creep) 500~ ~ 30 MPa 9Cr-1Mo 100 MPa ( ) 9Cr-1Mo Threshold Stress Larson-Miller Manson-Haferd Ω

NANO COMMUNICATION 23 No.3 90 CMOS 94/188 GHz CMOS 94/188 GHz A 94/188 GHz Dual-Band VCO with Gm- Boosted Push-Push Pair in 90nm CMOS 90 CMOS 94


ANSYS WF 1 WF 2 2 SP 1 SP 2 1 NBF 1 1 Fig. 1 1 Connection details of specimens 1 Table 1 Specimen s

Fig. 1 1 a-a b-b a-a σ ma = MPa σ a = MPa σ 0a = MPa 0. 9 σ t =135 MPa b-b σ mb = MPa τ b = MPa σ 0b =

. Land Patterns for Reflow Soldering.Recommended Reflow Soldering Conditions (For Lead Free) TYPE PID0703 PID0704 PID1204 PID1205 PID1207 PID1209 L(mm

一、

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec

LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

股份有限公司

D4

Linn Cove [1,2] 1(a)(b) Figg and Muller epoxy epoxy Linn Cove 183 [3] (a) (b) (c) (d) 1 43

f 2 f 2 f q 1 q 1 q 1 q 2 q 1 q n 2 f 2 f 2 f H = q 2 q 1 q 2 q 2 q 2 q n f 2 f 2 f q n q 1 q n q 2 q n q n H R n n n Hessian

mm ~

m K K K K m Fig. 2 The plan layout of K K segment p

全唐诗28

「香港中學文言文課程的設計與教學」單元設計範本

Tokyo Tech Template

m m m ~ mm

Microsoft Word - EKI doc

72 (2001) group waves. Key words: Correlation coefficient for consecutive wave heights, mean run length (1993) (1996) (1998) (1999) (1993) (

标题

(1) 集 成 电 路 市 场 发 展 前 景 良 好 集 成 电 路 行 业 作 为 信 息 产 业 的 基 础 和 核 心, 是 关 系 国 民 经 济 和 社 会 发 展 全 局 的 基 础 性 先 导 性 和 战 略 性 产 业, 对 于 调 整 产 业 政 策 转 变 发 展 方 式 拉

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm

11 : 1345,,. Feuillebois [6]. Richard Mochel [7]. Tabakova [8],.,..,. Hindmarsh [9],,,,,. Wang [10],, (80 µm),.,. Isao [11]. Ismail Salinas [12],. Kaw

Vol. 36 ( 2016 ) No. 6 J. of Math. (PRC) HS, (, ) :. HS,. HS. : ; HS ; ; Nesterov MR(2010) : 90C05; 65K05 : O221.1 : A : (2016)

Research of numerical simulation of high strength steel welding residual stress and fatigue life By Chen Song

cm /s c d 1 /40 1 /4 1 / / / /m /Hz /kn / kn m ~

Microsoft Word - EKI

Mnq 1 1 m ANSYS BEAM44 E0 E18 E0' Y Z E18' X Y Z ANSYS C64K C70C70H C /t /t /t /mm /mm /mm C64K

Ansys /4 Ansys % 9 60% MU10 M m 1 Fig. Actual situation of measured building 1 Fig. 1 First floor plan of typical r

Deformation mechanism of TWIP steels at high strain rates HUANG Mingxin LIANG Zhiyuan The University of Hong Kong Collaborators: HUANG Wen Shenzhen Un

行動電話面板產業

untitled

- 3 University of Bristol 1.1 FLAC 3D 1 FLAC 3D FLAC 3D 1

II II

第 1 部 分 目 錄 第 1 部 分 計 畫 執 行 成 果 摘 要 Ⅰ 頁 次

0 1 / m m 2 ~ 3. 9m 3. 2m 1 / m 23. 6m mm 3 300mm 32. 1% 38. 1% 250mm C60 ~ C50 ~ C40 C

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

Microsoft Word 張嘉玲-_76-83_

untitled

708 北 京 工 业 大 学 学 报 2011 年 以 往 的 试 验 结 果 进 行 对 比, 选 取 15D 20D 作 为 对 比 参 数, 试 件 参 数 见 表 1. Fig. 1 图 1 试 件 尺 寸 及 配 筋 图 ( mm) Geometry and reinforcement

-i-

Microsoft Word - 强迫性活动一览表.docx

bingdian001.com

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin

iml88-0v C / 8W T Tube EVM - pplication Notes. IC Description The iml88 is a Three Terminal Current Controller (TTCC) for regulating the current flowi

2

Microsoft Word - MP2018_Report_Chi _12Apr2012_.doc

南華大學數位論文

李天命的思考藝術

皮肤病防治.doc

性病防治

中国南北特色风味名菜 _一)

全唐诗24

509 (ii) (iii) (iv) (v) 200, , , , C 57

Thesis for the Master degree in Engineering Research on Negative Pressure Wave Simulation and Signal Processing of Fluid-Conveying Pipeline Leak Candi

iml v C / 0W EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the current flowin

Hewes Billington Palermo Pampanin mm 180 mm 1240 mm mm 240 mm 7. 5 C40 10 mm HRB3

1.招股意向书.doc

2. 我 沒 有 說 實 話, 因 為 我 的 鞋 子 其 實 是 [ 黑 色 / 藍 色 / 其 他 顏 色.]. 如 果 我 說 我 現 在 是 坐 著 的, 我 說 的 是 實 話 嗎? [ 我 說 的 對 還 是 不 對 ]? [ 等 對 方 回 答 ] 3. 這 是 [ 實 話 / 對 的

H 2 SO ml ml 1. 0 ml C 4. 0 ml - 30 min 490 nm 0 ~ 100 μg /ml Zhao = VρN 100% 1 m V ml ρ g

Powermyworkroom 1. PCB PCB PCB PCB EMC EMI 2. PCB PCB PCB 3. via Blind via Buried via Through via Component hole Stand off 4. / TS S TS SOE0

Public Projects A Thesis Submitted to Department of Construction Engineering National Kaohsiung First University of Science and Technology In Partial

Microsoft Word - LD5515_5V1.5A-DB-01 Demo Board Manual

g 100mv /g 0. 5 ~ 5kHz 1 YSV8116 DASP 1 N 2. 2 [ M] { x } + [ C] { x } + [ K]{ x } = { f t } 1 M C K 3 M C K f t x t 1 [ H( ω )] = - ω 2


iml v C / 4W Down-Light EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the cur

國立中山大學學位論文典藏.PDF

第二十四屆全國學術研討會論文中文格式摘要

<4D F736F F D203938BEC7A67EABD7B942B0CAC15AC075B3E6BF57A9DBA5CDC2B2B3B92DA5BFBD542E646F63>

/MPa / kg m - 3 /MPa /MPa 2. 1E ~ 56 ANSYS 6 Hz (a) 一阶垂向弯曲 (b) 一阶侧向弯曲 (c) 一阶扭转 (d) 二阶侧向弯曲 (e) 二阶垂向弯曲 (f) 弯扭组合 2 6 Hz

[1-4] (Low cycle fatigue, LCF) LCF (Theory of critical distance, TCD) LCF [5] TCD [6-10] TCD [11] WAN [12] DD3 YANG [13] (K t ) LCF LEIDERMA

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流

(Pattern Recognition) 1 1. CCD

Maup re,,,,,, ;,,,,,,,,,, PC 1985 Cognac,, 80, [ 526 ], 420m 160m [ 728 ], PC,,,,,,,,, , [ 3 ] 3008mm, 488mm, 222mm, ( ) 2880mm , 4914, 6

Microsoft Word - 22 栗志民.doc

5 9 T m /31 / T r 1 /1 s - 1 AC - C Johnson-Cook. 1 JC 1 mm mm 1 MTS 1 7 # NES % 1 Tab. 1 AC - C AC - C gradation /mm

Current Sensing Chip Resistor

Transcription:

Thermo-Mechanical Deformation and Stress Analysis of Flip-Chip Ball Grid Array

kent Kelly SarahEllenNina

XI 1 1-1 1 1-2 2 1-2-1 IC 4 1-2-2 5 1-3 7 1-4 8 1-5 10 16 2-1 (Shadow Moiré) 16 2-1-1 16 2-1-2 17 2-1-3 18 I

2-2 19 2-3 20 26 3-1 26 3-2 27 3-3 30 3-3- 1 31 3-3- 2 32 42 4-1 42 4-2 42 4-3 ANSYS 43 4-3-1 ANSYS 44 4-3-2 47 58 5-1 58 5-2 61 5-2-1 61 5-2-2 62 II

5-2-3 63 5-3 FCBGA 63 5-3-1 64 5-3-2 65 5-3-3 68 101 6-1 101 6-2 102 103 III

2-1 22 3-1 Anand model 37 4-1 48 4-2 E 49 4-3 BKIN 49 4-4 Creep. 50 4-5 Anand 50 5-1 E 69 5-2 CTE1 69 5-3 /.. 70 5-4 70 5-5 71 5-6 E.. 71 5-7 CTE1... 71 5-8 /.. 72 5-9.. 72 5-10 72 IV

1-1 11 1-2 11 1-3 IC. 12 1-4...... 12 1-5.... 13 1-6 C4 13 1-7 UBM 14 1-8 15 2-1 23 2-2 23 2-3 24 2-4... 24 2-5... 25 2-6.. 25 2-7 3D.... 25 3-1 i.38 3-2 i+1.38 V

3-3.39 3-4 - 39 3-5 Hardening rules 40 3-6 von Mises.40 3-7 Isotropic Hardening 41 3-8 Kinematic Hardening 41 4-1 (a) (b) (c) 51 4-2.52 4-3 (a) (b) 52 4-4 E 53 4-5 BKIN 53 4-6 54 4-7 ANSYS... 55 4-8 8.. 56 4-9 (a) (b) (c) 56 4-10...... 57 5-1 (a) 73 5-1 (b) 73 5-2 UA02 3D...... 74 VI

5-3 (a) 75 5-3 (b) 75 5-4 (a) UA02 76 5-4 (b) UA02 76 5-5 (a) UA03 77 5-5 (b) UA03 77 5-6 (a) UA04 78 5-6 (b) UA04 78 5-7 (a) UA02 79 5-7 (b) UA02 79 5-8 (a) UA03 80 5-8 (b) UA03 80 5-9 (a) UA04 81 5-9 (b) UA04 81 5-10 (a) (D/UF ) 82 5-10 (b) (D/UF ) 82 5-10 (c) (D/UF ) 83 5-11 FCBGA 83 5-12 (a) (D/UF ) 84 VII

5-12 (b) (D/UF ) 84 5-13 (a) FCBGA 85 5-13 (b) FCBGA 85 5-14 (a) E (D/UF ) 86 5-14 (b) E (D/UF ) 86 5-15 FCBGA 87 5-16 E FCBGA 87 5-17 FCBGA 88 5-18 E FCBGA 88 5-19 (a) CTE1 (D/UF ) 89 5-19 (b) CTE1 (D/UF ) 89 5-20 (a) CTE1 FCBGA.90 5-20 (b) CTE1 FCBGA.90 5-21 (a) / (D/UF ) 91 5-21 (b) / (D/UF ) 91 5-22 FCBGA 92 5-23 / FCBGA 92 5-24 FCBGA 93 VIII

5-25 / FCBGA 93 5-26 (a) (D/UF ) 94 5-26 (b) (D/UF ) 94 5-27 (a) FCBGA 95 5-27 (b) FCBGA 96 5-28 (a) (D/UF ) 97 5-28 (b) (D/UF ) 97 5-29 (a) FCBGA.98 5-29(b) FCBGA 98 5-30 / ( ) 99 5-31 ( ) 99 5-32 ( ) 100 IX

ANSYS E CTE X

Abstract The thesis investigates the thermo-mechanical deformation and stress of a flip-chip package (FCBGA) via both experiment and simulation. First, Shadow Moiré is used to evaluate the warpage of a package at elevated temperature. Then we adopt the finite element method incorporated with the software ANSYS to simulate the warpage of a package and compare the obtained results with experiment at data. Then, the material properties of underfill, the thickness of die and the substrate are considered as important parameters. Their effects on stress and strain fields of package are studied. In case of FCBGA with and without underfill, we find that FCBGA with underfill can reduce stress concentration and increase warpage of a package in comparion with FCBGA without underfill. As for FCBGA with and without heat slug, it is observed that the warpage of FCBGA with heat slug is smaller than that of FCBGA without heat slug. Both stress and strain in the packages of above two cases are similar. The parametric study about the underfill, we find that smaller modulus and CTEs of underfill can reduce the stress and strain of package. However in the consideration of thicknesses of both die and substrate, it is shown that thinner die can reduce stress and strain of package, but thinner substrate does not. So it is suggested that thicknesses of die are the thinner the better. XI

1 1-1 PDA 1958 Jack Kilby (IC)

(Flip-Chip Ball Grid Array, FCBGA) 1-2 ( Packaging ) (IC) (LSI) (Condenser) (Connector) ( ) 1-1 (Level 0) IC Flip Chip (solder Bump) (Level 1) (level 2) (Surface Mount TechnologySMT) (Solder Reflow) 2

(level 3) I/O (Connector) 1-2 (1) (2) (3) (4) IC IC 1-2-1 IC ( Integrated Circuit ) IC 1958 DIP(Dual In-Line Package) (I/O) QFP(Quad Flat Package)SO (Small 3

Outline) PGA(Pin Grid Array) BGA(Ball Grid Array)CSP(Chip Scale Package) 1-3 (Wire Bonding) (Tape-Automated Bonding, TAB) (Flip-Chip) 1-4 (On Side) (Double Side) (Multi-Layer) 1-5 1 (Wire Bonding) 2 (Tape Automated Bonding, TAB) 1960 (GE) IC 3 (Flip Chip) 4

2000 QFP BGA 61.2% 2001 65% BGA 2000 32.3% 2001 40.2%1 CPU GHz CPU Flip ChipIntel FCBGA FCBGA CSP 1-2-2 1960 IBM C4 (Controlled Collapse Chip Connection) 1-6 I/O (Copper pad) IC (Wire Bonding) (Solder) IO (Reflow) (Solder Ball) (Flip Chip Bonder) 5

(Underfill) 2 () () () (Flip Chip Bumping) UBM(Under Bump Metallurgy) 1-7 (Via) (Adhesion Layer) (Diffusion Barrier Layer) (Wetting Layer) TiCr SnPb Al (Intermetallic Compound) CuNi AuAgCuNi UBM 100m~125m () (Flip Chip Assembly) 1-8 6

1-3 FCBGA (Chip Scale Package,CSP) (FCBGA) (Warpage) (Coefficient of Thermal Expansion, CTE) ( CTE 2~3ppm/ CTE 17~20ppm/) 7

(Shadow Moiré) 1-4 1979 Chen Nelson3 (CTE) (Bonded Layer) 1989 Darveaux 4 Kuo5 (Bimetal) 1992 Lau Rice67 (Crack) 1995 Sven Ekkehard8 2000 PaiDing Chou 9 Stiteler Ume10 8

Dang 11 MCM-D Yeh12 Mercado13 PBGA Hwang 14 (Incompatible Mesh)FCBGA (Conventional Mesh) Okura 15 2D E CTE Chiang16 CTE (mismatch) 9

1-5 ANSYS 10

1-1 1-2 11

DIP SIP ZIP (Dual In-Line Package) (Single In-Line Package) (Zig-Zag In-Line Package) QFP PGA SOP (Quad-Flat Package) (Pin Grid Array) (Small Outline Package) 1-3 IC Substrate ( ) (Wire Bonding) Substrate ( ) (Tape Automated Bonding, TAB) Substrate ( ) (Flip Chip) 1-4 12

1-5 1-6C4 13

1-7 UBM 14

Wafer Mount Wafer Saw Flip Chip Bonding Plasma Clean Substrate Baking Flip Chip Reflow Underfill Curing Laser Marking Solder Ball Mount Packaging Flux Clean Solder Ball Reflow Flip Chip Package 1-8 15

16 (Shadow Moir) FCBGA (Warpage) (Underfill) (Shadow Moir) (Shadow Moir ) (Projection Moir) (MoirInterferometry)

2-1 (Grating) CCD 17 w = p tan α + tan β (2-1) w (Out-of plane displacement) p (pitch) (CCD ) 45 17

0 w = p CCD (Phase Shift) 100 lines-per-inch 10mils (1mils=0.001inch) 1~20mil 10mils I( x, y) = B( x, y) + Acos( φ( x, y)) (2-2) (x,y) I(x,y) B(x,y) A φ (x,y) I(x,y) B(x,y)A φ (x,y) 18

19 )), ( cos( ), ( ), ( y x A y x B y x I φ + = + = 2 ), ( cos ), ( ), ( π φ y x A y x B y x I ( ) φ π + = ), ( cos ), ( ), ( y x A y x B y x I + = 2 3 ), ( cos ), ( ), ( π φ y x A y x B y x I (2-3) ) ( ) ( tan ), ( 1 3 2 4 1 I I I I y x = φ (2-4) 100 10mils 0.1mils PS88 1mils~10mils PS88 2-2 CCD 400 300 lines-per-inch 2-3 0.05mils

20 2-4 (UA02UA03 UA04) 2-1 2-5 25 220 25 25100183220 2-6 (Thermal Couple) CCD

3D 2-7 3D y y 21

2-1 Measurement Die (mm) Substrate (mm) Warpage size thickness size thickness Bump (Sn/Pb) Underfill Type Heat Sink X 16x16 0.74 40x40 1.2 63/37 UA02 NA X 16x16 0.74 40x40 1.2 63/37 UA03 NA X 16x16 0.74 40x40 1.2 63/37 UA04 NA X 16x16 0.74 40x40 1.2 63/37 UA02 YES X 16x16 0.74 40x40 1.2 63/37 UA03 YES X 16x16 0.74 40x40 1.2 63/37 UA04 YES X 16x16 0.74 40x40 1.2 63/37 w/o underfill NA 22

a 2-1 CCD 2-2 23

2-3 2-4 24

2-5 2-6 3D 2-7 3D 25

ANSYS (Anand s model) ANSYS ANSYS (Linear Elastic) el { σ } = [ D]{ ε } (3-1) {σ } (stress matrix) [D] (stiffness matrix) { ε el (elastic strain matrix) th } = { ε} { ε } {ε } (total strain matrix) ε ε ε ε ε ε ] [ x y z xy yz zx { ε th } (thermal strain matrix) { th Τ ε } 2D Τ α ] [ y xα Τ = Τ Τ ref Τ Τref 26

α x x xy (Newton-Raphson Method) (1) (3-2) [ K ( u) ]{ u} = { F a } (3-2) [ K( u) ] (Coefficient Matrix) { u} (Vector of Unknown Values) { F a } (Vector of Applied Loads) (2) (3-2) (Residual vector) {R} a r a { R} [ K ]{ u} { F } = { F } { F } { 0} (3-3) { F r } (Vector of Internal Load) (Restoring Force) (3) { R} { u } { } { R} = { R } i + { R} { u} ({ u } { u }) 1 + 2! 2{ R} 2 { u} 2 ({ u } { u }) + L 0 = i i+ 1 i i+ 1 i i i (3-4) 27

i (3-4) T { } = { R } + [ K ]{ ( u }) + O( { u }) 2 (3-5) 0 i i i i T [ Ki ] (Tangent Matrix) { } { u } { } u i = +1 i u i { R} { u} i ({ u }) 2 2 1 { R} 2 i = ({ } { } ) + L { } u 2 i+ 1 u i 2! u O (3-5) i T { 0} = { R } + [ K ]{ ( u }) (3-6) i i (3-2) i ( ) T 1 T 1 a { u } = [ K ] { R } = [ K ] { F } [ K]{ u } i i (3-3) T a [ K ]{ u } = { F } { F r } i i i i i i (3-7) (3-8) { u } = { u +1} { u } (3-9) i T [ K ] i i i i { u } i i { u} i+ 1 i+1 { F a } { F r } i i (4) 28

1. 3-1 u i 2. K T F r K i 3.(3-8) { } i u i i T i { } u i+1 u i+1 u i i 5. i+2 u 2. ~ 4. i+2 3-2 3-3 (5) { } u i < ε u u ref i+1 (3-10) { } R < ε R R ref (3-11) (Vector Norm) { } (3-7) u i a { R} { F } { F r } = i εu ε R (Tolerance) uref R ref (Reference Value) (6) 29

1. { R} = max R 2. L1 { } R 1 3. L2 R = R 1 2 { } = ( R ) 2 2 L1 L2 L2 (ductile material) (brittle material) 3-4 σ = Eε (3-12) 20 (Bump) 30

(Bilinear Kinematic Hardening Plasticity) (Creep) (Anand Model) (Silicon Die) (Substrate) (Bump) (Underfill) (Heat Slug) (Thermal Grease) (Stiffener) (Adhesive) (Solder Mask) (Copper Pad) ANSYS (3-12) 3-4 E (Modulus of Elasticity) (Young's Modulus) E (Tg)Tg Tg E E 31

(Bilinear Kinematic Hardening PlasticityBKIN) (Creep) (Anand Model) Bilinear Kinematic Hardening Plasticity (BKIN) Isotropic hardening rule Kinematic hardening rule 3-5(a)(b) Isotropic hardening rule (a)bc=b CKinematic hardening rule (b) AA =BB 21 von Mises criteria (Distortion Energy Theory) Tresca yield criteria (Maximum Shear Theory) ANSYS Bilinear Kinematic Hardening Plasticity(BKIN) 32

von Mises σ von Mises σ σ = e f ({ σ }) σ e σ e 2 2 2 2 2 [( σ σ ) + ( σ σ ) + ( σ σ ) + 6( τ + τ τ )] 2 1 σ e x y y z z x xy yz + 2 = (3-13) ( σ σ ) x τ τ xy zx τ ( σ σ ) y τ xy yz τ τ ( σ σ ) z zx yz = 0 33 zx (3-14) (3-14) σ (Principal Normal Stress) σ 1 σ 2σ 3 σ e = 1 2 (3-13) (3-15) 2 2 [( σ σ ) + ( σ σ ) + ( σ σ ) ] 2 1 2 2 3 3 1 e (3-15) σ e σ o σ 0 3 = 3-6 Isotropic hardening Kinematic hardening Isotropic hardening 3-7 Kinematic hardening 3-8 Kinematic hardening rule (Bilinear Kinematic Hardening PlasticityBKIN) 22 e

(Creep) ( ) 23 298K63Sn37Pb 456K (Stead State Creep) ANSYS 13 Garofalo & Arrhenius s Law (3-16) ε = C1 2 exp dt d C 4 C T 3 [ sinh ( C σ )] (3-16) ANSYS C 1 C 2 C 3 C 4 Anand Anand s Model Anand241982 34

Anand ( ) Anand Garofalo & Arrhenius s Law (Deformation Resistance) (Constitutive Equation) Garofalo & Arrhenius s Law Anand Anand Garofalo & Arrhenius s Law (3-17) dεeq σ = A sinh ζ dt s 1/ m exp Q KT (3-17) Q activation energym strain-rate sensitivityk Boltzmann s constantmultiplier of stress s deformation resistance s s s s s s a = ho 1 sign 1 εeq (3-18) * * sign a strain rate sensitivityh o hardening constant s ^ * εeq = s exp A Q KT n (3-19) s coefficient of deformation resistance saturation valuen deformation resistance value 35

(3-17)~(3-19) Anand s model Anand s model ANSYS ANSYS 9 Anand 9 3-1 36

3-1 Anand model 37

3-1 i 3-2 i+1 38

3-3 3-4 - 39

s s A B A B A O B C e A O B C e (a) Isotropic Hardening (b) Kinematic Hardening 3-5 Hardening rules 3-6 von Mises 40

3-7 Isotropic Hardening 3-8 Kinematic Hardening 41

ANSYS 4-1 (1) (2) (3) (4) (5) (6) (Popcorn) (7) T(x, t)=t(t) 4-2 4-1 4-2 42

4-3(a)(b) 4-1 E 4-2 BKINCreepAnand 4-34-44-5 2526 27282930 4-4 (4-1)314-5 BKIN 25100183 220 E = 75842 152T (K) (Mpa) (4-1) 150 150 25 100183220 4-6 4-3 ANSYS (Element), ANSYS 43

ANSYSY 4-7 ANSYS ANSYS Newton Raphson Method 4-3-1 ANSYS (Pre-Processing) (Solution) (Post-Processing) 1. 2. 3. (Pre-Processing) 1. BKIN 8 PLANE82 Creep 8 PLANE183 Anand 8 VISCO108 4-8 2 XY 44

2. 3. (mesh) 4-9(a)(b)(c) 14015 17437 20866 (Solution) 1. 2. 2D Ux 0 3. (Step Ramp) (Substep) 45

t t t 4. (1) (Convergence Criteria) ANSYS 0.005 0.05 (2) (Solver) ANSYS PCG(Preconditioned Conjugate Gradient) (3) (Maximum Number of Equilibrium Iterations) ANSYS 15 26 30 (4) (Line Search Option) 1 1 46

ANSYS (5) (Solution Termination Option) (Post-Processing) 4-3-2 (D/UF ) 4-10 47

4-1 Material Properties Young's Modulus (Gpa) Possion's Ratio CTE (ppm/'c) Tg ('C) Die 131 0.28 2.6 n.a. Copper Pad 117 0.344 16.3 n.a. 63Sn37Pb Nonlinear 0.35 24.5 n.a. Substrate 4-2 0.3 15.7 n.a. Solder Mask 2.413 0.45 CTE1=60 CTE2=160 104.2 Heat Slug 117 0.344 16.3 n.a. Stiffener 117 0.344 16.3 n.a. Thermal Grease 40 0.4 232 n.a. Adhesive 1.5 0.35 60 n.a. UA02 4-2 0.35 UA03 4-2 0.35 UA04 4-2 0.35 CTE1=33 CTE2=106 142.3 CTE1=33 CTE2=133 83.5 CTE1=38 CTE2=113 148.3 48

4-2 E Temperature () Substrate (MPa) Underfill UA02 (MPa) Underfill UA03 (MPa) Underfill UA04 (MPa) -50 15865 8733 7168 8638 0 14278 8305 6870 8219 50 13504 7451 6313 7323 100 11895 6279 27.6 6084 150 10499 234.4 0.997 233.3 200 6639 158.6 25.8 109.8 250 3546 184.5 41.8 124.2 4-3 BKIN Temperature (K) Young's modulus (Mpa) Yiled Strength (Mpa) Tangent Modulus (Mpa) 298 29800 24 200 323 27600 20.7 194 348 25400 17.4 189 373 23200 14 184 398 21000 10.8 178 423 18800 7.5 173 448 13960 4.2 168 49

4-4 Creep Creep Constant C1 24800 C2 7.93e-8 C3 3.04 C4 6855.2 4-5 Anand Anand Constant So 12410000 Q/R 9400 A 4000000 Xi 1.5 m 0.303 h o 1378950000 s 13790000 n 0.07 a 1.3 50

(a) (b) (c) 4-1 (a) (b) (c) 51

4-2 11.3mm 0.74mm 8mm 0.5mm 1.2mm 28.3mm (a) 100m 25m 145m (b) 4-3 (a) (b) 52

Young's modulus (GPa) 34 32 30 28 26 24 22 20 18 16 14 12 10 0 20 40 60 80 100 120 140 160 180 Temperature ('C) 4-4 E 4-5 BKIN 53

250 200 Temperature ('C) 150 100 50 0 0 1000 2000 3000 4000 5000 6000 Time (second) 4-6 54

No No 4-7 ANSYS 55

4-8 8 (a) (b) (c) 4-9 (a) (b) (c) 56

4-10 57

58 FCBGA FCBGA (UA02UA03 UA04) 5-1 (a)(b)

25 100183 220 220 183100 25 220 220 UA02 5-2 UA02 3D 5-1 (a)(b) UA02 UA04 UA02 UA04 E Tg CTE UA03 100 100 UA03 Tg UA03 84 E CTE 25~100 UA02 UA03 150 UA04 100 220 UA03 UA02 UA04 32 59

UA02 5-3 (a)(b) UA02 2~3 mils CTE E CTE 5-4 (a)(b)5-5 (a) (b)5-6(a)(b) CTE 16~17ppm/ CTE CTE 60

(Gap) (Inelastic) ANSYS 150-55 5-7 (a)(b)5-8 (a)(b)5-9 (a)(b) measurement BKINCreep Anand UA03 UA02 UA03 150 61

2D 3D ANSYS UA03 150-55 -55 5-10 (a)(b)(c) D/UF 5-11 D/UF 62

63 5-12 (a)(b) 5-13(a)(b) 32 FCBGA IC ANSYS (UA03) CTE

(Die/Substrate) UA03 0.25 0.5 2 4 5-14 (a)(b) D/UF 5-16 5-18 5-15 5-17 E E 5-15~5-18 E 0.25 0.5 1 2 4 5-1 E D/UF E D/UF E E D/UF E D/UF 64

CTE UA03 CTE1 CTE1 33ppm/ 0.25 0.5 2 8ppm/16ppm/ 66ppm/ 5-19 (a)(b) CTE1 D/UF CTE1 5-20 (a)(b) 5-2 CTE1 Tg CTE1 CTE1 0.5 0.25 0.5 0.25 5-21 (a)(b) / D/UF 5-23 5-25 / 65

5-22 5-24 5-21 (a)(b) 5-3 1~2MPa 1/8 1/16 1/4 5-26 (a)(b) D/UF 5-27 (a)(b) 5-26 (a)(b) 5-4 1/4 1/4 5-28 (a)(b) 66

0.62(0185mm/0.3mm) 0.62(0.74mm/1.2mm) 5-29 (a)(b) 5-5 0.62(0185mm/0.3mm) 0.185mm 0.185mm/0.3mm 0.185mm/1.2mm 5-303132 300MPa 33-55 E CTE1 5-6 5-7 E CTE1 CTE1 E 5-85-9 5-10 67

1 E E E CTE CTE E CTE 68

5-1 E D/UF D/UF E (Mpa) (Mpa) (Mpa) 0.25xE -18.6 50.4 42.4 0.06 0.5xE -32.4 94.3 43.6 0.068 E (Ref.) -88.1 175 44.3 0.073 2xE -171 319 44.2 0.072 4xE -260 558 43.7 0.08 5-2 CTE1 D/UF D/UF CTE1 (Mpa) (Mpa) (Mpa) 0.25xCTE1-58.6 134 42.5 0.06 0.5CTE1-68 147 43.1 0.064 CTE1(Ref.) -88.1 175 44.3 0.073 2xCTE1-127 230 46.8 0.09 69

5-3 / / D/UF D/UF (mm/mm) (Mpa) (Mpa) (Mpa) 0.15 (0.185/1.2) -51.1 152 42.3 0.059 0.31 (0.37/1.2) 0.62 (Ref.) (0.74/1.2) 1.23 (0.74/0.6) 2.46 (0.74/0.3) -64.2 154 42.7 0.061-88.1 175 44.3 0.073-87 177 43.6 0.068-86.8 174 42.6 0.061 5-4 / D/UF D/UF (mm/mm) (Mpa) (Mpa) (Mpa) 0.04 (0.046/1.2) -17.8 139 42.5 0.06 0.08 (0.093/1.2) 0.15 (0.185/1.2) 0.31 (0.37/1.2) 0.62 (Ref.) (0.74/1.2) -45.5 147 42.4 0.059-51.1 152 42.3 0.059-64.2 154 42.7 0.061-88.1 175 44.3 0.073 70

5-5 / D/UF D/UF (mm/mm) (Mpa) (Mpa) (Mpa) 0.15 (0.185/1.2) -51.1 152 42.3 0.059 0.62 (0.185/0.3) 0.62 (Ref.) (0.74/1.2) 2.46 (0.74/0.3) -45.3 146 40.8 0.054-88.1 175 44.3 0.073-86.8 174 42.6 0.061 5-6 E 0.25xE 0.5xE E 2xE 4xE 5.93 5.99 6.06 6.18 6.35 18.79 18.77 18.59 18.41 18.43 5-7 CTE1 0.25xCTE1 0.5xCTE1 CTE1 2xCTE1 6.04 6.05 6.06 6.09 19.37 19.12 18.59 17.56 71

5-8 / 0.15 (0.185mm/1.2mm) 0.31 (0.37mm/1.2mm) 0.62 (0.74mm/1.2mm) 1.23 (0.74mm/0.6mm) 2.47 (0.74mm/0.3mm) 7.44 7.56 6.06 6.74 5.63 25.38 25.46 18.59 11.38-40.46 5-9 0.04 (0.046mm/1.2mm) 0.08 (0.093mm/1.2mm) 0.15 (0.185mm/1.2mm) 0.31 (0.37mm/1.2mm) 0.62 (0.74mm/1.2mm) 4.47 6.42 7.44 7.56 6.06 14.12 21.57 25.38 25.46 18.59 5-10 0.15 (0.185mm/1.2mm) 0.62 (0.74mm/1.2mm) 0.62 (0.185mm/0.3mm) 2.47 (0.74mm/0.3mm) 7.44 6.06 22.36 5.63 25.38 18.59 43.42-40.46 72

Warpage - Full Area (mils) 10 8 6 4 2 0-2 -4-6 0 50 100 150 200 250 Temperature ('C) UA02 UA03 UA04 5-1 (a) Warpage - Die Area (mils) 5 4 3 2 1 0-1 -2 UA02 UA03 UA04-3 0 50 100 150 200 250 Temperature ('C) 5-1 (b) 73

25 100 183 220 D183 D100 D25 5-2 UA02 3D 74

Warpage - Full Area (mils) 9 8 7 6 5 4 3 2 1 0-1 -2-3 -4-5 -6 w/o UF UA02 0 50 100 150 200 250 Temperature ('C) 5-3 (a) Warpage - Die Area (mils) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0-0.5-1.0-1.5-2.0-2.5-3.0 0 50 100 150 200 250 Temperature ('C) w/o UF UA02 5-3 (b) 75

Warpage - Full Area (mils) 8 6 4 2 0-2 -4-6 UA02 w/o HS UA02 with HS 0 50 100 150 200 250 Temperature ('C) 5-4 (a) UA02 5 Warpage - Die Area (mils) 4 3 2 1 0-1 -2 UA02 w/o HS UA02 with HS -3 0 50 100 150 200 250 Temperature ('C) 5-4 (b) UA02 76

6 Warpage -Full Area (mils) 4 2 0-2 -4 UA03 w/o HS UA03 with HS 0 50 100 150 200 250 Temperature ('C) 5-5 (a) UA03 3 Warpage -Die Area (mils) 2 1 0-1 -2 UA03 w/o HS UA03 with HS 0 50 100 150 200 250 Temperature ('C) 5-5 (b) UA03 77

10 Warpage -Full Area (mils) 8 6 4 2 0-2 -4 0 50 100 150 200 250 Temperature ('C) UA04 w/o HS UA04 with HS 5-6 (a) UA04 5 Warpage - Die Area (mils) 4 3 2 1 0-1 -2 UA04 w/o HS UA04 with HS -3 0 50 100 150 200 250 Temperature ('C) 5-6 (b) UA04 78

Warpage - Full Area (mils) 12 10 8 6 4 2 0-2 -4-6 0 50 100 150 200 250 Temperature ('C) Measurement BKIN Creep Anand 5-7 (a) UA02 Warpage - Die Area (mils) 4 3 2 1 0-1 -2 Measurement BKIN Creep Anand -3 0 50 100 150 200 250 Temperature ('C) 5-7 (b) UA02 79

Warpage - Full Area (mils) 10 8 6 4 2 0-2 -4-6 0 50 100 150 200 250 Temperature ('C) measurement BKIN Creep Anand 5-8 (a) UA03 4 Warpage - Die Area (mils) 3 2 1 0-1 -2 measurement BKIN Creep Anand 0 50 100 150 200 250 Temperature ('C) 5-8 (b) UA03 80

Warpage - Full Area (mils) 12 10 8 6 4 2 0-2 -4-6 0 50 100 150 200 250 Temperature ('C) measurement BKIN Creep Anand 5-9 (a) UA04 5 Warpage -Die Area (mils) 4 3 2 1 0-1 -2 measurement BKIN Creep Anand -3 0 50 100 150 200 250 Temperature ('C) 5-9 (b) UA04 81

Normal Stress (MPa) 50 40 30 20 10 0-10 -20-30 -40-50 -60-70 -80-90 -100 w/o UF with UF 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Dist from bump edge to die edge (mm) 5-10 (a) (D/UF 200 150 w/o UF with UF Shear Stress (MPa) 100 50 0-50 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Dist from bump edge to die edge (mm) 5-10 (b) (D/UF 82

105 100 w/o UF with UF Principal Stress (MPa) 95 90 85 80 75 70 0 2 4 6 8 10 12 Dist from die center to die edge (mm) 5-10 (c) ( with UF without UF 5-11 FCBGA 83

40 20 w/o HS with HS Normal Stress (MPa) 0-20 -40-60 -80-100 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Dist from bump edge to die edge (mm) 5-12 (a) (D/UF 200 150 w/o HS with HS Shear Stress (MPa) 100 50 0-50 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Dist from bump edge to die edge (mm) 5-12 (b) (D/UF 84

without HS with HS 5-13 (a) FCBGA without HS with HS 5-13 (b) FCBGA 85

Normal Stress (MPa) 300 200 100 0-100 -200 0.25xE 0.5xE E(Ref.) 2xE 4xE -300 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Dist from bump edge to die edge (mm) 5-14 (a) E (D/UF Shear Stress (MPa) 600 550 500 450 400 350 300 250 200 150 100 50 0-50 -100-150 -200-250 -300 0.25xE 0.5xE E(Ref.) 2xE 4xE 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Dist from bump edge to die edge (mm) 5-14 (b) E (D/UF 86

Reference (E, Tg, CTE1) 5-15 FCBGA 0.25xE 0.5xE 2xE 4xE 5-16 E FCBGA 87

Reference (E, Tg, CTE1) 5-17 FCBGA 0.25xE 0.5xE 2xE 4xE 5-18 E FCBGA 88

Normal stress (MPa) 40 20 0-20 -40-60 -80-100 0.25xCTE 0.5xCTE CTE(Ref.) 2xCTE -120-140 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Dist from bump edge to die edge (mm) 5-19 (a) CTE1 (D/UF Shear Stress (MPa) 260 240 220 200 180 160 140 120 100 80 60 40 20 0-20 -40-60 -80-100 0.25xCTE 0.5xCTE CTE(Ref.) 2xCTE 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Dist from bump edge to die edge (mm) 5-19 (b) CTE1 (D/UF 89

0.25xCTE1 0.5xCTE1 2xCTE1 5-20 (a) CTE1 FCBGA 0.25xCTE1 0.5xCTE1 2xCTE1 5-20 (b) CTE1 FCBGA 90

Normal Stress (MPa) 20 0-20 -40-60 -80 Ratio=2.47 (0.74mm/0.6mm) Ratio=1.23 (0.74mm/0.3mm) Ratio=0.62 (0.74mm/1.2mm) Ratio=0.31 (0.37mm/1.2mm) Ratio=0.15 (0.185mm/1.2mm) -100 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Dist from bump edge to die edge (mm) 5-21 (a) / (D/UF Shear Stress (MPa) 200 150 100 50 0 Ratio=2.47 (0.74mm/0.6mm) Ratio=1.23 (0.74mm/0.3mm) Ratio=0.62 (0.74mm/1.2mm) Ratio=0.31 (0.37mm/1.2mm) Ratio=0.15 (0.185mm/1.2mm) -50-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Dist from bump edge to die edge of (mm) 5-21 (b) / (D/UF 91

Reference (0.74mm/1.2mm) 5-22 FCBGA 0.185mm/1.2mm 0.37mm/1.2mm 0.74mm/0.6mm 0.74mm/0.3mm 5-23 FCBGA 92

Reference (0.74mm/1.2mm) 5-24 FCBGA 0.185mm/1.2mm 0.37mm/1.2mm 0.74mm/0.6mm 0.74mm/0.3mm 5-25 FCBGA 93

Normal Stress (MPa) 40 30 20 10 0-10 -20-30 -40-50 -60-70 -80-90 -100 Ratio=0.04 (0.046mm/1.2mm) Ratio=0.08 (0.093mm/1.2mm) Ratio=0.15 (0.185mm/1.2mm) Ratio=0.31 (0.37mm/1.2mm) Ratio=0.62 (0.74mm/1.2mm) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Dist from bump edge to die edge (mm) 5-26 (a) (D/UF Shear Stress (MPa) 200 180 160 140 120 100 80 60 40 20 0-20 -40-60 Ratio=0.04 (0.046mm/1.2mm) Ratio=0.08 (0.093mm/1.2mm) Ratio=0.15 (0.185mm/1.2mm) Ratio=0.31 (0.37mm/1.2mm) Ratio=0.62 (0.74mm/1.2mm) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Dist from bump edge to die edge (mm) 5-26 (b) (D/UF 94

0.046mm/1.2mm 0.093mm/1.2mm 0.185mm/1.2mm 0.37mm/1.2mm 0.74mm/1.2mm 5-27 (a) FCBGA 95

0.046mm/1.2mm 0.093mm/1.2mm 0.185mm/1.2mm 0.37mm/1.2mm 0.74mm/1.2mm 5-27 (b) FCBGA 96

40 20 Ratio=0.15 (0.185mm/1.2mm) Ratio=0.62 (0.74mm/1.2mm) Ratio=0.62 (0.185mm/0.3mm) Ratio=2.47 (0.74mm/0.3mm) Normal Stress (MPa) 0-20 -40-60 -80-100 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Dist from bump edge to die edge (mm) 5-28 (a) (D/UF Shear Stress (MPa) 200 150 100 50 0 Ratio=0.15 (0.185mm/1.2mm) Ratio=0.62 (0.74mm/1.2mm) Ratio=0.62 (0.185mm/0.3mm) Ratio=2.47 (0.74mm/0.3mm) -50 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Dist from bump edge to die edge (mm) 5-28 (b) (D/UF 97

5-29 (a) FCBGA 5-29 (b) FCBGA 98

Princinpal stress (MPa) 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 Ratio=0.62 (0.74mm/1.2mm) Ratio=1.23 (0.74mm/0.6mm) Ratio=2.47 (0.74mm/0.3mm) Ratio=0.31 (0.37mm/1.2mm) Ratio=0.15 (0.185mm/1.2mm) 0 2 4 6 8 10 12 Dist from die center to die edge (mm) 5-30 / ( Principal Stress (MPa) 160 140 120 100 80 60 40 Ratio=0.15 (0.185mm/1.2mm) Ratio=0.62 (0.74mm/1.2mm) Ratio=0.62 (0.185mm/0.3mm) Ratio=2.47 (0.74mm/0.3mm) 0 2 4 6 8 10 12 Dist from die center to die edge (mm) 5-31 ( 99

Principal Stress (MPa) 180 160 140 120 100 80 60 40 20 0-20 Ratio=0.04 (0.046mm/1.2mm) Ratio=0.08 (0.093mm/1.2mm) Ratio=0.15 (0.185mm/1.2mm) Ratio=0.31 (0.37mm/1.2mm) Ratio=0.62 (0.74mm/1.2mm) 0 2 4 6 8 10 12 Dist from die center to die edge (mm) 5-32 ( 100

ANSYS 6-1 1. 2. 3. E Tg CTE 4. 5. 101

6-2 1. CTE 2. 3. 5000 3D 3D 2D 4. 102

1. ITIS, 2001 IC, IT IS, 2002. 2.,,, 2002. 3. W.T. Chen and C.W. Nelson,Thermal Stress In Bonded Joints, IBM Journal of Research and Development, Vol.23, No.2, pp.179-188, 1979. 4. R. Darveaux, I. Turlik, Lih-Tyng Hwang and A. Reisman, Thermal Stress Analysis of a Multichip Package Design, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol.12, No.4, pp.663-672, 1989. 5. A. Kuo,Thermal Stress at the Edge of a Bimetallic Thermostat, Journal of Applied Mechanics, Vol.56, pp.585-589, 1989. 6. J.H. Lau and D.W. Rice,Thermal Fatigue Life Prediction of Flip Chip Solder Joints by Fracture Mechanics Method, Advances in Electronic Packaging ASME, pp.385-392, 1992. 7. J.H. Lau,Flip Chip Technologies, McGraw-Hill Companies, Inc. New York, 1997. 8. Sven Rzepka and Ekkehard Meusel,Flip Chip Directly Attached to FR4 Printed Circuit BoardsFEM Simulations and Experimental Tests, Semiconductor Techonology Center, Inc., pp.8-12, 1995. 9. Fransics Pai, C.H. Ding and J.H. Chou,The Effect on The Thermal Stress of Solder Joints, Department of Engineering Science, National Cheng Kung University, 2000. 103

10. M.R. Stiteler and C.Ume,System for Real Time Measurement of Thermal Induced PWB/PWA Warpage, American Society of Mechanical Engineers, Manufacturing Engineering Divison, MED Vol.3, Nov 12-17, pp.19-32, 1995. 11. A.X.H. Dang, I.C. Ume and S.K. Bhattacharya,A Study on Warpage of Flexible SS Substrate for Large Area MCM-D Packaging, American Society of Mechanical Engineers, EEP 26(2) Jun 13-19, pp.1841-1847, 1999. 12. Cho-Pin Yeh,Parametric Finite Element Analysis of Flip Chip Reliability, The International Journal of Microcircuits and Electronic Packaging, Vol.19, pp.120-127, 1996. 13. L.L. Mercado and V. Sarihan,Predictive Design of Flip-Chip PBGA for High Reliability and Low Cost, Electronic Components and Technology Conference, pp.342-348, 1999. 14. J.G. Hwang, D.P. Lai and J.J. Lee,The Application of Incompatible Mesh to Thermal Stress Analysis of Flip-Chip BGA, Advanced Semiconductor Engineering, Inc., 2000. 15. J.H. Okura, K. Darbha, S. Shetty, A. DasguptaGuidelines to Select Underfills for Flip Chip on Board Assemblies, IEEE, Electronic Components and Technology Conference, pp.589-594, 1999. 16. Kuo-Ning Chiang, Zheng-Nan Liu, J.D. Lin and Y.T. Lin,A New Approach for No-Underfill Flip Chip Package Design, Power Mechanical Engineering, National Tsing Hua University, 2000. 17. Operation Manual,TherMoirSystem, Model PS88, 1998. 18. J.Sullivan,Experimental Mechanics, pp.373, December, 1991. 19. M. Chang and C.S. Ho,Experimental Mechanics, pp.117, June, 1994. 104

20. R.C. Hibbeler,Mechanics of Materials, Prentice Hall International, Inc., pp.87-97,1997. 21. W.F. Chen and D.J. Han,Plasticity for Structural Engineers, Gau Lih Book Co., Ltd., pp.14-16, 1995. 22. J.H. Lau,Thermal Stress and Strain in Microelectronics Packaging, Van Nostrand Reinhold, New York, 1993. 23. S. Wiese, A. Schubert, H. Walter, R. Dudek, F. Feustel, E. Meusel, B. Michel, Constitutive Behavior of Lead-free Solders vs. Lead containing Solders-Experiments on Bulk Specimens and Flip Chip Joints, IEEE Electronic Components and Technology Conference, 2001. 24. L. Anand, Constitutive Equation for The Rate-Dependent Deformation of Metals at Elevated Temperature, Transactions of The ASME, Vol.104, pp.12-17, 1982. 25. I. Dutta, A. Gopinath and C. Marshall,Underfill Constraint Effects during Thermo-Mechanical Cycling of Flip Chip Solder Joints, Journal of Electronic Mater., 31, 2002. 26. Xingjia Huang, S.W. Ricky, Chien Chun Yan and Sam Hui, Characterization and Analysis on The Solder Shear Testing Conditions, Department of Mechanical Engineering, Hong Kong University of Science & Technology, 2002. 27. John H. Lau, S.W. Ricky Lee,Effects of Bulid-Up Circuit Board Thickness on The Solder Joint Reliability of a Wafer level Chip Scale Package (WLCSP), IEEE Transactions on Components and Packaging Technologies, Vo l.25, No.1, March 2002. 28. Zhengfang Qian, Minfu Lu, Wei Ren and Sheng Liu,Fatigue Life Prediction of Flip-Chips in Terms of Nonlinear Behaviors of Solder and Underfill, IEEE Electronic Components and Technology 105

Conderence, 1999. 29. Bret A. Zahn, Comprehensive Solder Fatigue and Thermal Characterization of a Silicon Based Multi-Chip Module Package Unilizing Finite Element Analysis Methodologies, ChipPAC, Inc., 2001. 30. Bret A. Zahn,Impact of Ball Via Configurations on Solder Joint Reliability in Tape Based Chip-Scale Packages, ChipPAC, Inc., 2002. 31. John H. Lau and S.W. Rickey Lee,Effects of Underfill Delamination and Chip Size on the Reliability of Solder Bumped Flip Chip on Board, The International Journal of Microcicuits and Electronic Packaging, Vol. 23, No. 1, First Quarter 2000. 32.,,, 2001 33. J.D. Wu, C.Y. Huang and C.C. Liao, Fracture Strength Chacterization and Failure Analysis of Silicon Dies, Mircoelectronics Reliability. 106