슬라이드 1

Size: px
Start display at page:

Download "슬라이드 1"

Transcription

1 7-8 年度第一学期 5 5 计算方法 (B) 童伟华管理科研楼 5 室 E-mil: togwh@ustc.edu.c 中国科学技术大学数学科学学院

2 第三章数值微分和数值积分

3 数值微分 函数 f( x) 未知或非常复杂的情形下, 如何求导数? 导数的逼近 : 差商 f '( x) lim h lim h lim h 截断误差 步长的选取 f( x+ h) f( x) h f( x) f( x h) h f( x+ h) f( x h) h

4 数值微分 向前差商 截断误差 f ( x + h) f ( x) f '( x) h Rx ( ) f'( x) f( x + h) f( x) h h f! Oh ( ) ''( ξ ) y o x x + h x 4

5 数值微分 向后差商 截断误差 f '( x ) Rx ( ) f'( x) f( x) f( x h) h f( x) f( x h) h h f ''( ξ )! Oh ( ) y o x h x x 5

6 数值微分 中心差商 截断误差 f f( x + h) f( x h) '( x) h Rx ( ) f( x) ' h f! Oh ( ) () f( x + h) f( x h) h ( ξ ) y o x h x x + h x 6

7 数值微分 如何设定步长? 理论估计 () 截断误差 : h mx f ( x) /6 hm/ 6 舍入误差 : e/ h 事后估计 设 Dhx (, ), Dh ( /, x ) 分别是取步长 hh, /的差商计算公式 f ' ( x), 对于给定的误差界 ε, 则当 Dhx (, ) Dh ( /, x) < ε 时, 步长 h就是合适的步长 h h e M 7

8 数值微分 插值型数值微分 对于给定 f( x ) 的函数表, 建立插值函数 Lx ( ), 用插值函数 Lx ( ) 的导数近似函数 f( x) 的导数 f( x) L ( x) f( x ) l ( x), i i i ' ' ' i i i f ( x) L ( x) f( x ) l ( x), ' ' ' j, ( j) ( j) ( i) i( j). i x x f x L x f x l x 误差估计公式 ( + ) d f ( ξ ) Rx ( ) ( x xi ), dx ( )! + i ( + ) f ( ξ ) Rx ( ) ( x x). j j i ( + )! i j 8

9 数值微分 数值微分的三点公式 { } i i i 给定 (, ( )), 并有 x x x x h, 则 x f x ( x x)( x x) ( x x)( x x) ( x x)( x x) L( x) f( x ) + f( x ) + f( x ), h h h ( x x+ x x) ( x x + x x) ( x x + x x) L' ( x) f( x ) + f( x ) + f( x ), h h h h f '( x) L' ( x) ( f( x) + 4 f( x) f( x) ) + f '''( ξ ), h h f '( x) L' ( x) ( f( x) + f( x) ) f '''( ξ ), h 6 h f '( x) L' ( x) ( f( x) 4 f( x) + f( x) ) + f '''( ξ ) h 类似可得数值微分的五点公式 用其它插值函数方法类似, 如三次样条函数插值 9

10 数值积分 Newto-Leiiz 公式,Gree 公式,Guss 公式, Stokes 公式 很多积分无解析解, 必须使用数值方式求解 从积分的定义出发 I( f) f( x) d x lim f( xi) x α f( x ) I ( f) i 求积节点 求积系数 i i { x i } { α i } i x i i

11 数值积分 代数精度 : 衡量数值积分公式优劣的重要指标之一 设 [, ] 上以 x, i,,, 为积分节点的数值积分公式为 若 I ( ) f 满足 则称具有阶代数精度 性质 : 当次的多项式 I ( f) α f( x ), i i i k ( + k ) ( + ), i i i I ( x ) I( x ), i,, k; I x I x I ( ) f k 具有阶代数精度时, 对任意不高于 ( ), 有 I ( ) f k k px I ( p) I( p)

12 数值积分 插值型数值积分 思想 : 用插值函数, 譬如 Lgrge 插值函数, 代替被积函数, 进行积分 其中 α l ( x ) dx 误差估计公式 代数精度 ( ) I( f ) I ( f ) L ( x) dx l ( x) f ( x ) dx l ( x) dx f ( x ) i i i i i i i i i α f( x ) i i ( + f ) ( ξx ) E( f ) I( f ) I( f ) R( x) dx ω ( x) dx ( + )! 次插值多项式形式的数值积分公式至少有 阶代数精度

13 数值积分 Newto-Cotes 积分 : 取等距节点 设节点步长 其中 性质 : h, xi + ih, i,,, 有 x + th t( t ) ( t i+ )( t i ) ( t ) i li( x) dx hdt i i!( i)!( ) i i ( ) h t( t ) ( t i + )( t i ) ( t ) dt i!( i)! ( ) C ( ) Ci C ( ) i ( ) i 为仅依赖于 的常量, 可事先计算

14 数值积分 梯形积分 : 取 性质 : 具有一阶代数精度 误差估计公式 () () C ( t ) dt, C tdt I( f) ( ) f( ) + f( ) f ''( ξ ) ''( ) x f η E( f ) ( x )( x ) dx ( )( )!! x x dx ( ) f''( ξ), ξ [, ] 4

15 数值积分 Simpso 积分 : 取 () () 4 () C ( )( ), ( ), ( ) 4 t t dt C t t dt C t t dt I( f) ( ) f( ) f( + + ) + f( ) 性质 : 具有三阶代数精度 误差估计公式 E ( f) I( f) I ( f) I( f) I( P) + I ( P) I ( f) (4) f ( ξx ) + ( x ) x ( x ) dx 4! (4) 5 ( ξ ) + ( ) (4) ( x ) x ( x ) dx f ( ξ ) f 4! 88 5

16 数值积分 Newto-Cotes 积分的误差估计公式 + 当为奇数时, f C [, ] ( + ) f ( ξ ) E( f) I( f) I( f) ( x x)( x x) ( x x) d ( + )! + 当为偶数时, f C [, ] ( + ) f ( ξ ) E( f) I( f) I( f) x( x x)( x x) ( x x) d ( + )! 对于 Newto-Cotes 积分, 奇数有 阶代数精度, 偶数有 +阶精度 6

17 数值积分 Newto-Cotes 积分系数表 其中 h 7

18 复化数值积分 高阶 Newto-Cotes 积分 : 数值不稳定 解决方法 : 将积分区间分割为若干小区间, 在每个小区间上进行数值积分 ( 类似于分段插值的思想 ) 复化梯形积分 : 取等距节点 x x i+ i h h f( x) d x ( f( xi) + f( xi+ )) f ''( ξi) 收敛性 : h, xi + ih, i,, h h h I( f) ( f( xi) + f( xi+ )) f ''( ξi) h f( ) f( xi) f( ) f ''( ξi) i + + i i i i '' ξ ξ T( f) h f( ) + f( x ) + f( ) ( ) E( f) f ( ), Oh ( ) 或 O( ) 8

19 复化数值积分 复化 Simpso 积分 : 把积分区间分成偶数 m等分, 取等距节点 h, xi + ih, i,, 5 xi+ h ( h) (4) f( x) d x ( f( xi) + 4 f( xi+ ) + f( xi+ )) f ( ξi) xi h ( h) (4) I( f) ( f( xi) + f( xi+ ) + f( xi+ )) f ( ξi) i 6 88 h ( h) f f x f x f f m m h S( f) f( ) 4 f( xi ) f( xi) f( ) i i 5 ( ) (4) E( f) f ( ξ), ξ Oh ( ) 或 O( ) 4 收敛性 : m m m 5 (4) ( ) 4 ( i+ ) ( i) ( ) ( ξi) i i i 9

20 复化数值积分 定义 : 若一个数值积分公式满足 则称该公式是 p阶收敛的 性质 : 例 : 计算 R[ f] lim C <, C, h p h T Oh S Oh C Oh 4 6 ( ), ( ), ( ) 4 π + x 7 T8 f() f( xk ) f() k dx S4 f() 4 f( xk) f( xk) f() odd eve 运算量基本相同

21 复化数值积分 误差估计和控制 先验估计 : 截断误差公式 事后估计 : 递推关系 自动误差控制 : 依据事后误差估计, 采取自适应的方式加密积分区间, 使得在变化剧烈的地方取稠密的格点, 而变化缓慢的地方取稀疏的格点

22 复化数值积分 递推关系 :( 复化梯形公式 ) 对区间 [, ] 进行等分, 对每个区间 [ xi, x i + ] 进行细分, 中点为 x i + /, 则有 其中 + i + i T ( f) h f( ) f( x ) f( ) 递推关系 :( 复化 Simpso 公式 ) h h h T ( f) ( ) ( ) ( ) ( / ) f + f xi + f i i + f x + i [ T ( f ) + H ( f )] H( f) h f( xi+ / ) i S( f) [ S( f) + 4 H( f) H( f)] 6

23 复化数值积分 后验误差估计 : ( 复化梯形公式 ) ( ) I f T f h f ξ ( ) ( ) ''( ) ( ) h I( f) T ( f) f ''( η) 因此任给 ε >, 要使得 I( f) T ( f) < ε, 只需要 T ( f) T ( f) < ε 后验误差估计 :( 复化 Simpso 公式 ) I( f ) S ( f ) 5 ( S ( f ) S ( )) f I( f) T( f) T( f) T( f) f ''( η) f ''( ξ) ( )

24 复化数值积分 自适应复化 Simpso 积分算法 4

25 复化数值积分 外推算法 : 在不显著增加计算量的前提下提高数值计算结果精度的技巧, 是数值计算方法典型的技巧 Romerg 积分公式 I( f) T( f) ( T( f) T( f) ) I( f) T ( ) ( ( ) ( )) 4 f + T f T f T( f) T( f) S( f) 效果 : 利用外推技巧, 将梯形积分求积公式组合成 4 Simpso 求积公式, 截断误差由 Oh ( ) 降低到 Oh ( ) 类似地有 I( f) S ( ) ( ( ) ( )) 6 f + S f S f S( f) S( f) C( f) I( f) C ( ) ( ( ) ( )) 64 f + C f C f C( f) C( f) R( f)

26 复化数值积分 (Richrdso Extrpoltio) 若有数值逼近格式具有 ( m) m m+ ( m) m 形式 I( f) I ( h) + Cmh + Cm+ h + I ( h) + O( h ), 即为 m 阶公式, 则 ( m) h ( m) ( ) ( ) ( m ) h ( m) h I I h + m+ I ( ) I ( ) + + Oh ( ) m Romerg 积分计算公式 R R R R + j k k 4 k, j k, j k, j k, j,,,,,, j ( 收敛性 ) 若 f( x) C [, ] 及, 则对任意固定的 lim R(, m) f ( x) dx lim R(, ) f ( x) dx m 6

27 复化数值积分 Romerg 积分算法 7

28 重积分的计算 重积分 : 化为累次积分进行计算 积分区域逼近 : 非矩形区域可用一系列矩形区域进行逼近 矩形区域上的二重积分 : 若 c d f ( x, y) dydx c d f ( x, y) dy dx f( x) C([, ] [ cd, ]) d c f ( x, y) dx dy, 则 8

29 重积分的计算 二重积分的复化梯形公式 cd m h, k d c m f( x, yj) d x f( x, yj) d x h f( x, yj) f( xi, yj) f( xm, yj) + + 将区间 [, ] 和 [, ] 分别进行和等分, 记 m j j j i c d m h f( x, yj) + f( xm, yj) + h f( xi, yj) j j i f( x, y) d yd x h { k f( x, y) + f( x, y) + f( xm, y) + f( xm, y) 4 j i i, j i j 误差估计公式 : ( ) m m m + f( xi, y) + f( xi, y) + f( x, yj) + f( xm, yj) + f( xi, yj)} i i j j j i m hk c f ( x, y ) E ( d c)( ) f ) h f ( η, µ ) + k f ( η, µ ) x y ( 角点 : /4, 内部边界点 : /, 内部点 : 9

30 重积分的计算 二重积分的复化 Simpso 公式 其中 c ω 误差估计公式 E d m f ( x, y) dydx hk ω f ( x, y ) i j i, j i j m i, j i j u v, U { u, u,, u },,,,,,,, T {,,, },,,,,,, V v v v 4 4 ( d c)( ) 4 4 f ) h f ( η, µ ) + k f ( η, µ ) 4 8 x y ( 4 T

31 Guss 型积分 对于 Newto-Cotes 积分, 奇数有阶代数精度, 偶数有阶精度 如果放弃等距节点的要求, 是否能建立更有高精度的公式? 例 : 取区间, 考虑两点数值积分格式, 将积分点视为未知量, 则有不难验证数值积分公式具有三阶代数精度 + [,] dx x x x dx x x x xdx x x dx x x ) ( ) ( f f fdx +

32 Guss 型积分 定理 : 设 I( f ) f ( x) dx关于积分节点 x 的数值积, x,, x 分公式为 I( f) f( x), 则 I( f) 的代数精度不超过 阶 证明 : 取多项式 易知 i i i 及 I( px ( )) > I( px ( )) 故数值积分公式 p( x) ( x x ) ( x x ) ( x x ) ω ( x) 的代数精度不可能达到阶 I ( ) f 如何构造最高阶 ( ) 精度的公式? Guss 型积分 : 取一组特殊的积分节点 ( 正交函数的零点 )

33 Guss 型积分 定义 : 给定一般形式的积分和内积 I( f) W( x) f( x) d, xw( x), < f, g > W ( x) f ( x) g( x) dx 其中 W( x ) 为权函数. 若 < f, g >, 则称函数 f 与 g正交 如何将线性函数空间的一组基变为一组正交基? 利用 Schmidt 正交化过程 : g( x) f( x) ( f( x), gi( x)) g( x) f( x) gi( x) i ( gi( x), gi( x))

34 Guss 型积分 定理 : 以 次正交多项式的 个零点为积分的数值积分公式有 阶代数精度 证明 : 设 次正交多项式 p ( x ) 的 个零点为 x, x,, x, 记 ( ) G( f ) L( x) W ( x) dx li( x) W ( x) dx f ( xi) αi f ( xi), i i 则有 对于任意的 故 E( f ) I( f ) G ( f ) f [ x, x,, x, x] ω ( x) W ( x) dx 因此 收敛性 : 若 px ( ) P ( x), 利用多项式带余除法得 px ( ) sxp ( ) ( x) + rx ( ), sx ( ), rx ( ) P ( x), p( x) W ( x) dx [ s( x) p ( x) + r( x)] W ( x) dx r( x) W ( x) dx., 则 E( p) I( p) G ( p) I() r G () r E() r lim G ( f) I( f) f( x) C [, ] 仅理论上可行, 因为求 次正交多项式的所有零点是非常困难的! 4

35 Guss 型积分 Guss 型求积公式的构造方法 求出区间 [, ] 上权函数为 W( x ) 的正交多项式 p( x) ; 求出 p ( x ) 的 个零点 x, x,, x 即为 Guss 积分点 ; 计算积分系数 ; 例 : 求积分 α i x f ( x) dx p ( x ) ( x, p ( x)) p( x) x p ( x) ( p ( x), p ( x)) 的两点 Guss 积分公式 ( x, p ( x)) ( x, p ( x)) p ( x) x p ( x) p ( x) ( p( x), p( x)) ( p( x), p( x)) 4 5 x dx x dx x x x 4 x dx x dx 5 5

36 Guss 型积分 的两个零点为 p ( x) 积分系数为 故两点 Guss 积分公式为 x, x, 5 5 x x A x l ( ) x dx x dx x x x x A x l ( x) dx x dx x x x f ( x) dx [ ( f 5) + f ( 5)] 6

37 Guss 型积分 几种 Guss 型求积公式 Guss-Legedre 求积公式 : 区间 Guss-Lguerre 求积公式 : 区间 Guss-Hermite 求积公式 : 区间 一般区间上的积分 误差估计公式 : 若 [, ] [,], W( x) [, ] [, + ), W( x) e x [, ] (, + ), W( x) e x + ( + ) + ( ) t f ( x) dx f ( + t) dt ( x ) f ( x) dx A i + f ( + i x i ) f x C ( ) [, ], 则 ( ) f ( ξ ) E( f ) I( f ) G( f ) ω ( x) W ( x) dx, ξ ( )! < < 7

38 Guss 型积分 Guss-Legedre 积分节点与系数表 x k A k x k A k ± ± ± ± ± ±.8666 ± ± ± ± ± ± ± ± ± ±

39 Guss 型积分 Guss-Lguerre 积分节点与系数表 x k A k x k A k

40 Guss 型积分 Guss-Hermite 积分节点与系数表 x k A k x k A k ± ± ± ± ± ± ± ± ± ± ± ±

第四章 数值积分与数值微分

第四章   数值积分与数值微分 Newto Cotes Romerg Guss 5 -- . Newto-Leieize d F F, -- I I. d d A A R[ ] I I R[ R[],,, L,,, L A A ] -- . d A m m m m -- -- 5 m m,,,, L m m m m A d L L m m d d d L m m A A A L d d M m d A A A -- 6 m m A

More information

Microsoft PowerPoint - chap pptx

Microsoft PowerPoint - chap pptx 数值微分和数值积分 徐祖华 浙江大学控制学院 6/6/3 数值计算方法 微分和积分 y i i dy i i lim d 6/6/3 数值计算方法 微分和积分 I b d Newto-Leibiz 公式 b d F b F 6/6/3 数值计算方法 3 微分和积分 数值微分和数值积分的必要性 的结构复杂, 求导和积分非常困难 ; 的精确表达式不知道, 只有一张由实验提 供的函数表 ; 对于这些情况,

More information

幻灯片 1

幻灯片 1 数值微分和数值积分 浙江大学控制系 05/6/3 数值计算方法 微分和积分 (Differetiate ad Itegrate y x dy dx I f ( x x f ( x lim x 0 b a i f ( x dx x f ( x x f ( x i x i i 05/6/3 数值计算方法 微分和积分 Newto-Leibiz 公式 b a f ( x dx F( b F( a 05/6/3

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 对于函数 f ( x) 在区间 [, b] 上的定积分 b I( f ) f ( x) dx (4-) 若能求得 f ( x) 的原函数 F( x), 即 F( x) f ( x) 则由 Newto - Leibitz 公式 b I( f ) F( x) F( b) F( ) 但由于实际情况中, f( x) 的原函数很难求出, 因此, 只能计算定积分的近似值. 数值积分 考虑用函数 f( x) 在一些数据点处的值的适当组合,

More information

8.7 MATLAB 中的常用积分命令 MATLAB 中的常用积分命令 8 参考文献

8.7 MATLAB 中的常用积分命令 MATLAB 中的常用积分命令 8 参考文献 高等工程数学 ( 第三版 ) 姚仰新, 王福昌, 罗家洪, 庄楚强华南理工大学出版社出版 2016 年 6 月 20 日 8.7 MATLAB 中的常用积分命令 8.7 MATLAB 中的常用积分命令 1 2 3 4 5 6 7 8.7 MATLAB 中的常用积分命令 8 参考文献 对于积分 I = b 然有 Newton-Leibniz 公式 a f(x)dx, 若 f(x) C[a, b], 原函数为

More information

f()d p()d, 其中多项式函数的积分很容易通过牛顿 - 莱布尼兹公式求出. 假设使用拉格朗日插值法构造 p(), 区间 [, ] 内的插值节点为,,,, 则 p() = L () = f( k )l k (), l k () 为拉格朗日插值基函数. 由此得到求积公式为 : I (f) = f(

f()d p()d, 其中多项式函数的积分很容易通过牛顿 - 莱布尼兹公式求出. 假设使用拉格朗日插值法构造 p(), 区间 [, ] 内的插值节点为,,,, 则 p() = L () = f( k )l k (), l k () 为拉格朗日插值基函数. 由此得到求积公式为 : I (f) = f( 第七章数值积分与数值微分 积分问题最早来自于几何形体的面积 体积计算, 也是经典力学中的重要问题 ( 例如计算物体的重心位置 ). 在现实应用中, 很多积分的结果并不能写成解析表达式, 因此需要通过数值方法来计算. 数值微分是利用一些离散点上的函数值近似计算某一点处的函数导数, 它针对表达式未知的函数. 本章介绍一元函数积分 ( 一重积分 ) 和微分的各种数值算法, 它们也是数值求解积分方程 微分方程的基础.

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 . ttp://www.reej.com 4-9-9 4-9-9 . a b { } a b { }. Φ ϕ ϕ ϕ { } Φ a b { }. ttp://www.reej.com 4-9-9 . ~ ma{ } ~ m m{ } ~ m~ ~ a b but m ~ 4-9-9 4 . P : ; Φ { } { ϕ ϕ a a a a a R } P pa ttp://www.reej.com

More information

数值分析ch3.ppt

数值分析ch3.ppt 数 值 积 分 和 数 值 微 分 I = f(x)dx 由 微 积 分 学 基 本 定 理, 当 f(x) 在 [,] 上 连 续 时, 存 在 原 函 数 F(x), 由 Newto-Leiits 公 式 I= f(x)dx = F() F() 有 时, 用 上 面 的 方 法 计 算 定 积 分 有 困 难.. 不 易 求 f(x) 的 原 函 数 F(x).f(x) 的 原 函 数 表 达

More information

河北工程大学教师授课教案 (1) 授课内容第一章绪论授课学时 2 学时 教学目的和要求 1. 掌握误差的来源及基本概念 ;2. 掌握有效数字的概念 ; 3. 掌握分析误差传播的方法 ; 4. 了解数值计算的原则 1. 误差的来源与分类 ;2. 误差的概念 ;3. 有效数字的概念 舍入误差和有效数字的

河北工程大学教师授课教案 (1) 授课内容第一章绪论授课学时 2 学时 教学目的和要求 1. 掌握误差的来源及基本概念 ;2. 掌握有效数字的概念 ; 3. 掌握分析误差传播的方法 ; 4. 了解数值计算的原则 1. 误差的来源与分类 ;2. 误差的概念 ;3. 有效数字的概念 舍入误差和有效数字的 数值分析 教案 数理科学与工程学院 应用数学系 1 河北工程大学教师授课教案 (1) 授课内容第一章绪论授课学时 2 学时 教学目的和要求 1. 掌握误差的来源及基本概念 ;2. 掌握有效数字的概念 ; 3. 掌握分析误差传播的方法 ; 4. 了解数值计算的原则 1. 误差的来源与分类 ;2. 误差的概念 ;3. 有效数字的概念 舍入误差和有效数字的概念 讲授法 讨论法 练习法 1 导入部分(10

More information

untitled

untitled arctan lim ln +. 6 ( + ). arctan arctan + ln 6 lim lim lim y y ( ln ) lim 6 6 ( + ) y + y dy. d y yd + dy ln d + dy y ln d d dy, dy ln d, y + y y dy dy ln y+ + d d y y ln ( + ) + dy d dy ln d dy + d 7.

More information

定积分的基本概念问题的提出 Yunming Xio ( 南京大学数学系 ) 微积分 I( 高等数学 ) Autumn / 23

定积分的基本概念问题的提出 Yunming Xio ( 南京大学数学系 ) 微积分 I( 高等数学 ) Autumn / 23 定积分的基本概念内容提要 1 定积分的基本概念 2 定积分的几何意义 3 定积分的基本性质 4 定积分中值定理 5 变限积分及其性质 6 微积分基本公式 Yunming Xio ( 南京大学数学系 ) 微积分 I( 高等数学 ) Autumn 2016 1 / 23 定积分的基本概念问题的提出 Yunming Xio ( 南京大学数学系 ) 微积分 I( 高等数学 ) Autumn 2016 2 /

More information

常微分方程的数值解法 - Numerical solution of ordinary differential equation

常微分方程的数值解法 - Numerical solution of ordinary differential equation 常微分方程的数值解法 Numerical solution of ordinary differential equation 张晓平 2018 年 12 月 17 日 武汉大学数学与统计学院 Table of contents 1. 一般概念 2. 欧拉方法 3. 龙格 - 库塔方法 (Runge-Kutta method) 1 一般概念 一般概念 1. 常微分方程的求解问题在实践中经常遇到, 但我们只知道一些特殊类型的常微分方程的解析解

More information

untitled

untitled 4 y l y y y l,, (, ) ' ( ) ' ( ) y, y f ) ( () f f ( ) (l ) t l t lt l f ( t) f ( ) t l f ( ) d (l ) C f ( ) C, f ( ) (l ) L y dy yd π y L y cosθ, π θ : siθ, π yd dy L [ cosθ cosθ siθ siθ ] dθ π π π si

More information

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

幻灯片 1

幻灯片 1 第一类换元法 ( 凑微分法 ) 学习指导 复习 : 凑微分 部分常用的凑微分 : () n d d( (4) d d( ); (5) d d(ln ); n n (6) e d d( e ); () d d( b); ); () d d( ); (7) sin d d (cos ) 常见凑微分公式 ); ( ) ( ) ( b d b f d b f ); ( ) ( ) ( n n n n d f

More information

dn = kn ( 5 1) dt t = 2 303 1 k tg N 0. ( 5 2) N S m + M v = V (5 3) K S dx = µ X dt 5 4 S µ = µ m K + S ( 5 5) S ds 1 dx 1 = = µ X ( 5 6) dt Y dt Y x/ s x/ s ds 1 = + + ( ) dt Y X mx 1 dp

More information

lim f(x) lim g(x) 0, lim f(x) g(x),

lim f(x) lim g(x) 0, lim f(x) g(x), 2016 11 14 1 15 lim f(x) lim g(x) 0, lim f(x) g(x), 0 0. 2 15 1 f(x) g(x) (1). lim x a f(x) = lim x a g(x) = 0; (2). a g (x) f (x) (3). lim ( ). x a g (x) f(x) lim x a g(x) = lim f (x) x a g (x). 3 15

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

koji-13.dvi

koji-13.dvi 26 13 1, 2, 3, 4, 5, 6, 7 1 18 1. xy D D = {(x, y) y 2 x 4 y 2,y } x + y2 dxdy D 2 y O 4 x 2. xyz D D = {(x, y, z) x 1, y x 2, z 1, y+ z x} D 3. [, 1] [, 1] (, ) 2 f (1)

More information

untitled

untitled 995 + t lim( ) = te dt =. α α = lim[( + ) ] = e, α α α α = t t t t te dt = tde = te α α e dt = αe e, =, e α = αe α e α, α =. y z = yf, f( u) z + yz y =. z y y y y y y z = yf + y f = yf f, y y y y z y =

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

슬라이드 1

슬라이드 1 08-09 年度第一学期 0050 00503 计算方法 (B) 童伟华管理科研楼 05 室 E-mal: tongw@ustc.edu.cn 中国科学技术大学数学科学学院 ttp://mat.ustc.edu.cn/ 第八章常微分方程数值解 微分方程数值解 在科学研究或工程领域中, 有许多数学模型都是通过微分方程来描述的, 求解微分方程是非常重要的 关键的问题 微分方程按自变量的个数可分为 : 常微分方程

More information

WL100014ZW.PDF

WL100014ZW.PDF A Z 1 238 H U 1 92 1 2 3 1 1 1 H H H 235 238 92 U 92 U 1.1 2 1 H 3 1 H 3 2 He 4 2 He 6 3 Hi 7 3 Hi 9 4 Be 10 5 B 2 1.113MeV H 1 4 2 He B/ A =7.075MeV 4 He 238 94 Pu U + +5.6MeV 234 92 2 235 U + 200MeV

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

untitled

untitled v = 2 gr 2 ( p h p a 9η ) v 2 gr 2 ( p h p a 9η = ) α = R 2 ω g 6-11 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 1-2- 3-4- 5-6- 7-8- 6-12 1. 2. 3. 1 4. 5. 2 6. 7. 8. 9. 310. 11. 4 12. 1 1 2 2 1. 2. 3. 6-16

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

一 无界区域上的二重积分 定义 1 设 f ( x, y ) 为定义在无界区域 上的二元函 数. 若对于平面上任一包围原点的光滑封闭曲线 g, f ( x, y) 在曲线 g 所围的有界区域 E g 与 的交集 E = ( 图 1-4) g g 上二重可积. 令 { } g d = min x +

一 无界区域上的二重积分 定义 1 设 f ( x, y ) 为定义在无界区域 上的二元函 数. 若对于平面上任一包围原点的光滑封闭曲线 g, f ( x, y) 在曲线 g 所围的有界区域 E g 与 的交集 E = ( 图 1-4) g g 上二重可积. 令 { } g d = min x + * 8 反常二重积分 与反常定积分相同, 二重积分亦有推广到积分区域是无界的和被积函数是无界的两种情形, 统称为反常二重积分. 一 无界区域上的二重积分二 无界函数的二重积分 返回 一 无界区域上的二重积分 定义 1 设 f ( x, y ) 为定义在无界区域 上的二元函 数. 若对于平面上任一包围原点的光滑封闭曲线 g, f ( x, y) 在曲线 g 所围的有界区域 E g 与 的交集 E =

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

Π Ρ! #! % & #! (! )! + %!!. / 0% # 0 2 3 3 4 7 8 9 Δ5?? 5 9? Κ :5 5 7 < 7 Δ 7 9 :5? / + 0 5 6 6 7 : ; 7 < = >? : Α8 5 > :9 Β 5 Χ : = 8 + ΑΔ? 9 Β Ε 9 = 9? : ; : Α 5 9 7 3 5 > 5 Δ > Β Χ < :? 3 9? 5 Χ 9 Β

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 & ! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information

untitled

untitled 梦飞翔考研工作室友情提供 QQ:83659 000 () d. 0. 000 d d t tdt si cos 0 0 0 + y + 3z (,, ). y + z. 6 F, y, z + y + 3z F F F y z (,,),,, y (,,),, 8, z (,,),, 6. y + z 6 3 y + 3y 0. C y C +. 梦飞翔考研工作室 QQ:83 p y p C 3.

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 004-0-5 zhwag@wpu.du.c 00 00 00 3 003 004-0-5 zhwag@wpu.du.c 3 004-0-5 zhwag@wpu.du.c 3 004-0-5 zhwag@wpu.du.c 4 dy + d y 0 y 0 y [ 0, ] 004-0-5 zhwag@wpu.du.c 5 004-0-5 zhwag@wpu.du.c 6 004-0-5 zhwag@wpu.du.c

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

More information

第9章 排队论

第9章  排队论 9, 9. 9.. Nt () [, t] t Nt () { Nt ( ) t [, T]} t< t< t< t + N ( ( t+ ) i+ N( t) i, N( t) i,, N( t) i N + + N ( ( t ) i ( t ) i ) (9-) { Nt ( ) t [, T)} 9- t t + t, t,, t t t { Nt ( ) t [, T] } t< t,,

More information

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % #! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )

More information

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

More information

untitled

untitled 6 + a lim = 8, a =. a l. a a + a a a a lim = lim + = e, a a a e = 8 a= l ( 6,, ), 4 y+ z = 8. + y z = ( 6,, ) 4 y z 8 a ( 6,, ) + = = { } i j k 4,,, s = 6 = i+ j k. 4 ( ) ( y ) ( z ) + y z =. + =, () y

More information

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

More information

矩阵函数

矩阵函数 矩阵函数 矩阵分析 - 研究生课程 矩阵的多项式表示与矩阵的极小多项式 定义 1: 已知 和关于变量 的多项 式 那么我们称 为 的矩阵多项式 n x n 1 n 1 1 0 f( x) a x + a x + L + a x+ a n n n 1 n 1 1 0 f( ) a + a + L + a + a I n n n C 设为一个阶矩阵, 为其 Jordan 标准形, 则 n J 于是有 1

More information

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; <

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; < ! # %& ( )! & +, &. / 0 # # 1 1 2 # 3 4!. &5 (& ) 6 0 0 2! +! +( &) 6 0 7 & 6 8. 9 6 &((. ) 6 4. 6 + ( & ) 6 0 &6,: & )6 0 3 7 ; ; < 7 ; = = ;# > 7 # 0 7#? Α

More information

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5, # # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( 0 2 3 ( & +. 4 / &1 5, !! & 6 7! 6! &1 + 51, (,1 ( 5& (5( (5 & &1 8. +5 &1 +,,( ! (! 6 9/: ;/:! % 7 3 &1 + ( & &, ( && ( )

More information

( ) (! +)! #! () % + + %, +,!#! # # % + +!

( ) (! +)! #! () % + + %, +,!#! # # % + +! !! # % & & & &! # # % ( ) (! +)! #! () % + + %, +,!#! # # % + +! ! %!!.! /, ()!!# 0 12!# # 0 % 1 ( ) #3 % & & () (, 3)! #% % 4 % + +! (!, ), %, (!!) (! 3 )!, 1 4 ( ) % % + % %!%! # # !)! % &! % () (! %

More information

1605 1682 1671 1769 1674 1762 1745 1862 341 270 1670 1775 1857 1769 1832 1842 11 16 19 1772 1801 C.I. 16 1775 1783 1730 1805 1637 1680 17 15 16 18 1613

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

2 621 1991 2 1.41.5 1982 47 43 50 1989 1991 1 [] 220 1979 10 110 83 53 34 29 29 25 19 18 14 1989 1981 5 1981 2 1981 4 130 1989 100 12 10 2030 15 1978 4 19 1972 13 1985 [] 1978 [] 1989 [] 4 1987

More information

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ Ⅰ Ⅱ 1 2 Ⅲ Ⅳ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

WL100079ZW.PDF

WL100079ZW.PDF ε I x = r + R + R + R g o x = R ε + v v 2 v1 a = = t t t 2 1 R x { ( 1) ( 2)" " ( 3) ( 4), ( 5)" " ( 6) ( 7) ( 8)" " ( 9) ( 10) ( 11) ( 12) ( 13) ( 14) ( 15) ( 17) {

More information

标题

标题 第 35 卷第 期西南大学学报 ( 自然科学版 ) 3 年 月 Vol.35 No. JouralofSouthwestUiversity (NaturalScieceEditio) Feb. 3 文章编号 :673 9868(3) 69 4 一类积分型 Meyer-KiḡZeler-Bzier 算子的点态逼近 赵晓娣, 孙渭滨 宁夏大学数学计算机学院, 银川 75 摘要 : 应用一阶 DitziaṉTotik

More information

3?! ΑΑΑΑ 7 ) 7 3

3?! ΑΑΑΑ 7 ) 7 3 ! # % & ( ) +, #. / 0 # 1 2 3 / 2 4 5 3! 6 ) 7 ) 7 ) 7 ) 7 )7 8 9 9 :5 ; 6< 3?! ΑΑΑΑ 7 ) 7 3 8! Β Χ! Δ!7 7 7 )!> ; =! > 6 > 7 ) 7 ) 7 )

More information

(A) (B) (C) (D) (E) x P x y x y P 42 2' 40 17' O x y z P y z O P O 42 2' 14

(A) (B) (C) (D) (E) x P x y x y P 42 2' 40 17' O x y z P y z O P O 42 2' 14 1. 780 380 2. 780 380 3. 1 380 780 2 555 1 555 1 4. 0.1 20 1. 2. 3. 4. 13 1. 2. 140 138 40 42 3. 51 54 (A) (B) (C) (D) (E) x P x y x y P 42 2' 40 17' O x y z P y z O P O 42 2' 14 (A) (B) (C) 91 (A) (B)

More information

数值代数 夏银华 中国科学技术大学

数值代数 夏银华 中国科学技术大学 数值代数 夏银华 中国科学技术大学 课程介绍 时间, 地点周二 :6,7 节, 周四 :1,2 节,(1-15 周 ) 地点 :3A211 教材 D. Kincaid and W. Cheney, Numerical Analysis:Mathematics of Scientific Computing, American Mathematical Soc., 2002 参考教材 L.N. Trefethen

More information

第一章三角函数 1.3 三角函数的诱导公式 A 组 ( ) 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角, 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C 2 ( 中诱导公式 ) ( ) B. cos(

第一章三角函数 1.3 三角函数的诱导公式 A 组 ( ) 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角, 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C 2 ( 中诱导公式 ) ( ) B. cos( 第一章三角函数 1. 三角函数的诱导公式 A 组 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C ( 中诱导公式 ) B. cos( B C) cos A D. sin( B C) sin A sin60 cos( ) sin( 0 )cos( 70 ) 的值等于

More information

<4D F736F F D20B5DACAAED5C220CBABCFDFD0D4BAAFCAFDA3A8BDB2D2E5A3A92E646F63>

<4D F736F F D20B5DACAAED5C220CBABCFDFD0D4BAAFCAFDA3A8BDB2D2E5A3A92E646F63> 高等代数第十章双线性函数 第十章双线性函数 10.1 线性函数 1. 设 V 是数域 F 上的一个线性空间, f 是 V 到 F 的一个映射, 若 f 满足 : (1) f( α + β) = f( α) + f( β); (2) f( kα) = kf( α), 式中 α, β 是 V 中任意元素, k 是 F 中任意数, 则称 f 为 V 上的一个线性函数. 2. 简单性质 : 设 f 是 V

More information

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α # % & ( ) # +,. / 0 1 2 /0 1 0 3 4 # 5 7 8 / 9 # & : 9 ; & < 9 = = ;.5 : < 9 98 & : 9 %& : < 9 2. = & : > 7; 9 & # 3 2

More information

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α Ε! # % & ( )%! & & + %!, (./ 0 1 & & 2. 3 &. 4/. %! / (! %2 % ( 5 4 5 ) 2! 6 2! 2 2. / & 7 2! % &. 3.! & (. 2 & & / 8 2. ( % 2 & 2.! 9. %./ 5 : ; 5. % & %2 2 & % 2!! /. . %! & % &? & 5 6!% 2.

More information

untitled

untitled Taylor f( ), ; f ( ) cos( + α ), ; f( ) + si, ; f( ) e si, ; f ( ) ta, ; f( ) l(cos ), 6 ;, ( ) e, f, si l, f ( ),, f( ) + +,. f( ) + ( ) + ( ) + ( ) + ( ) + ( 8 8 + + + + + ( 9 6 7 8 + + + + +( ) 9 8

More information

untitled

untitled 4 6 4 4 ( n ) f( ) = lim n n +, f ( ) = = f( ) = ( ) ( n ) f( ) = lim = lim n = = n n + n + n f ( ), = =,, lim f ( ) = lim = f() = f ( ) y ( ) = t + t+ y = t t +, y = y( ) dy dy dt t t = = = = d d t +

More information

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ ! # % & ( ) % + ( ), & ). % & /. % 0 1!! 2 3 4 5# 6 7 8 3 5 5 9 # 8 3 3 2 4 # 3 # # 3 # 3 # 3 # 3 # # # ( 3 # # 3 5 # # 8 3 6 # # # # # 8 5# :;< 6#! 6 =! 6 > > 3 2?0 1 4 3 4! 6 Α 3 Α 2Η4 3 3 2 4 # # >

More information

95

95 95 96 http://www.ee.ncnu.edu.tw/announce/board.php?action=view&seqno=410 or QR 5K // 0 K 5K 5K // K 5K ------ 94 93 92 91 ( ) ( ) ( ) A e ( ) d st D L[ f ( t)] f ( t) e dt F( s) dx 0

More information

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ ! # % & ( ) +,. / 0 1 + 2. 3 4. 56. / 7 89 8.,6 2 ; # ( ( ; ( ( ( # ? >? % > 64 5 5Α5. Α 8/ 56 5 9. > Β 8. / Χ 8 9 9 5 Δ Ε 5, 9 8 2 3 8 //5 5! Α 8/ 56/ 9. Φ ( < % < ( > < ( %! # ! Β Β? Β ( >?? >?

More information

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ <

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ < ! # %!! ( (! +,. /0 0 1 2,34 + 5 6 7,3. 7, 8, 2 7 + 1 9 #. 3 : + ; + 5 83 8 % 8 2 ; , 1 1 8 2 =? : + 2 = 2 = Α 1,!. Β 3 + 5 Χ Β Β

More information

M ( ) K F ( ) A M ( ) 1815 (probable error) F W ( ) J ( ) n! M ( ) T ( ) L ( ) T (171

M ( ) K F ( ) A M ( ) 1815 (probable error) F W ( ) J ( ) n! M ( ) T ( ) L ( ) T (171 1 [ ]H L E B ( ) statistics state G (150l--1576) G (1564 1642) 16 17 ( ) C B (1623 1662) P (1601--16S5) O W (1646 1716) (1654 1705) (1667--1748) (1687--H59) (1700 1782) J (1620 1674) W (1623 1687) E (1656

More information

Microsoft Word - 2013公报28.doc

Microsoft Word - 2013公报28.doc 广 西 壮 族 自 治 区 人 民 政 府 公 报 广 西 壮 族 自 治 区 人 民 政 府 办 公 厅 2013 年 10 月 10 日 第 28 期 ( 总 第 1019 期 ) 目 录 广 西 壮 族 自 治 区 人 民 政 府 关 于 表 彰 2012 年 促 进 广 西 金 融 业 发 展 先 进 集 体 和 个 人 的 决 定 桂 政 发 2013 43 号 (2) 广 西 壮 族 自

More information

幻灯片 1

幻灯片 1 Digital Signal Processing mailfzh@nwpu.edu.cn /gary/ 1. FT FT. 3. 4. DFT 5. 6. DFT 7. 1. FT FT (FS) (FT) ( ) xt () Dirichlet (, ), 1 T () = ( Ω), ( Ω ) = () T T jkωt jkωt xt X k e X k xte dt e jkω t k

More information

试卷

试卷 竞赛试卷 ( 数学专业 参考答案 一 (5 分 在仿射坐标系中 求过点 M ( 与平面 :3x y + z 平行 且与 x y 3 z 直线 l : 相交的直线 l 的方程 4 解法一 : 先求 l 的一个方向向量 X Y Z 因为 l 过点 M 且 l 与 l 相交 所以有 4 X 3 - Y ( Z..4 分 即 X + Y Z...3 分 又因为 l 与 平行 所以有 联立上述两个方程解得 :

More information

! #

! # ! # ! # 第 吕玉 琦 等 人 体 心 脏 的 三 维 超 声 成 像 期 左 心 室边界 轮廓 的 校 正 由于 采 集 幅 图 象时 探 头 位 置 及 角度 稍 有变 化 就 会 导 致 幅 图象 的 心 尖 位置 及 左 心 室 长 轴 位置 在 图象 中 不 重合 因 此 必 须 进 行轮 廓 校 正 校 正 以 第 幅 二 维超 声 心 动 图 为 标 准 对 后 续的 幅 图 象

More information

; < 5 6 => 6 % = 5

; < 5 6 => 6 % = 5 ! # % ( ),,. / 0. 1, ) 2 3, 3+ 3 # 4 + % 5 6 67 5 6, 8 8 5 6 5 6 5 6 5 6 5 6 5 9! 7 9 9 6 : 6 ; 7 7 7 < 5 6 => 6 % = 5 Δ 5 6 ; Β ;? # Ε 6 = 6 Α Ε ; ; ; ; Φ Α Α Ε 0 Α Α Α Α Α Α Α Α Α Α Α Α Α Β Α Α Α Α Α

More information

幻灯片 1

幻灯片 1 常微分方程 浙江大学控制系 05/6/8 数值计算方法 本章内容 概述 初值问题的数值解法 欧拉 (Euler 法 龙格 - 库塔 (Runge-Kutta 法 多步法 稳定性 收敛性和刚性问题 微分方程组和高阶微分方程 边值问题 打靶法 差分法 05/6/8 数值计算方法 一阶线性常微分方程 降落伞问题 dv dt g cv m 初值 t=0,v=0 gm v( t e c 解析解 ( c/ m

More information

9 : : ; 7 % 8

9 : : ; 7 % 8 ! 0 4 1 % # % & ( ) # + #, ( ) + ) ( ). / 2 3 %! 5 6 7! 8 6 7 5 9 9 : 6 7 8 : 17 8 7 8 ; 7 % 8 % 8 ; % % 8 7 > : < % % 7! = = = : = 8 > > ; 7 Ε Β Β % 17 7 :! # # %& & ( ) + %&, %& ) # 8. / 0. 1 2 3 4 5

More information

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 :

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 : !! # % & % () + (. / 0 ) 1 233 /. / 4 2 0 2 + + 5. 2 / 6 ) 6. 0 ) 7. 8 1 6 / 2 9 2 :+ ; < 8 10 ; + + ( =0 41 6< / >0 7 0?2) 29 + +.. 81 6> Α 29 +8 Β Χ + Δ Ε /4 10 )+ 2 +. 8 1 6 > 2 9 2 : > 8 / 332 > 2

More information

第二节 换元积分法

第二节 换元积分法 第二节 换元积分法 一 第一类换元法 二 第二类换元法 三 小结 思考题 一 第一类换元法 问题 cos d ( )sin C, 解决方法利用复合函数, 设置中间变量. 过程令 cos d d d, sin cos d C sin C. 在一般情况下 : 设 F ( u) f ( u), 则 f ( u)d u F( u) C. 如果 u () ( 可微 ) d F[ ( )] f [ ( )] (

More information

#!! +!,! # &!. / !!, 7!!, & #! % 7! % )

#!! +!,! # &!. / !!, 7!!, & #! % 7! % ) !!! #!! #% % & ( & ) %( #!! +!,! # &!. / 0 1 2 34 45 6!!, 7!!, & #! 6 8 5 % 7! % ) ) %!! ( &!, #% & 4 ( % ) ! & ( ) & ) ) ) )! # # 5! # % % +, +, +, +, +, +, +, +,! 1 # # !! # # 9 & &! # # ( , # & # 6

More information

& ( )! +!, # %! ( & &.! / /.

& ( )! +!, # %! ( & &.! / /. ! # # % & ( )! +!, # %! ( & &.! / /. ! ( 0 & #% ( +% 0 /, / ( 0 1 (!# + 0 1 # % ( 0 1 2 3!# % + ( / %! 0! 1 2 3 +! !% ), (! & & ( +/ & ( 4 56 0 1 2 #% ( 0 % /) 1 2 ( 0 1 2 0 7 8 / + ( / 0 + +# 1 + ) 0

More information

# 7 % % % < % +!,! %!!

# 7 % % % < % +!,! %!! ! # % 7 8 9 7! & () + ),. + / 0 /. 1 0 /2 &3 )4, 4 4 5 / 6 : /! # ;!!!! # %! &!! ( ) # 7 % % % < % +!,! %!! % % = % % % % % # 9 =! 7 8 7 8 > 8 7 =7 # 9 # 8 7 8 % ) % % % % %! %. / % < < < % / % < < <

More information

% % %/ + ) &,. ) ) (!

% % %/ + ) &,. ) ) (! ! ( ) + & # % % % %/ + ) &,. ) ) (! 1 2 0 3. 34 0 # & 5 # #% & 6 7 ( ) .)( #. 8!, ) + + < ; & ; & # : 0 9.. 0?. = > /! )( + < 4 +Χ Α # Β 0 Α ) Δ. % ΕΦ 5 1 +. # Ι Κ +,0. Α ϑ. + Ι4 Β Η 5 Γ 1 7 Μ,! 0 1 0

More information

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ ! % & ( ),. / & 0 1 & 2 1 // % & 3 0 4 5 ( 6( ) ( & 7 8 9:! ; < / 4 / 7 = : > : 8 > >? :! 0 1 & 7 8 Α :! 4 Β ( & Β ( ( 5 ) 6 Χ 8 Δ > 8 7:?! < 2 4 & Ε ; 0 Φ & % & 3 0 1 & 7 8 Α?! Γ ), Η % 6 Β% 3 Ι Β ϑ Ι

More information

3978 30866 4 3 43 [] 3 30 4. [] . . 98 .3 ( ) 06 99 85 84 94 06 3 0 3 9 3 0 4 9 4 88 4 05 5 09 5 8 5 96 6 9 6 97 6 05 7 7 03 7 07 8 07 8 06 8 8 9 9 95 9 0 05 0 06 30 0 .5 80 90 3 90 00 7 00 0 3

More information

1 1 (a) (b) (c) (d) (e) 9 3 4 5 7 1 7 4 2 0 10 4 1 0 6 2 2 7 3 5 4 0 11 4 1 6 7 3 4 2 6 1 12 3 2 6 4 4 7 7 4 0 13 0 3 2 7 5 2 5 7 0 14 2 4 6 0 6 7 2 0 0 15 3 6 5 1 0 7 6 2 5 1 16 4 4 6 0 8 1 2 4 6 17 4

More information

1#

1# ! # % & ( % + #,,. + /# + 0 1#. 2 2 3 4. 2 +! 5 + 6 0 7 #& 5 # 8 % 9 : ; < =# #% > 1?= # = Α 1# Β > Χ50 7 / Δ % # 50& 0 0= % 4 4 ; 2 Ε; %5 Β % &=Φ = % & = # Γ 0 0 Η = # 2 Ι Ι ; 9 Ι 2 2 2 ; 2 ;4 +, ϑ Α5#!

More information

➀ ➁ ➂ ➃ Lecture on Stochastic Processes (by Lijun Bo) 2

➀ ➁ ➂ ➃ Lecture on Stochastic Processes (by Lijun Bo) 2 Stochastic Processes stoprocess@yahoo.com.cn 111111 ➀ ➁ ➂ ➃ Lecture on Stochastic Processes (by Lijun Bo) 2 (Stationary Processes) X = {X t ; t I}, n 1 t 1,..., t n I, n F n (t 1,..., t n ; x 1,..., x

More information

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9!

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9! # %!!! ( ) ( +, +. ( / 0 1) ( 21 1) ( 2 3 / 4!! 5 6 7 7! 8 8 9 : ; < 9 = < < :! : = 9 ; < = 8 9 < < = 9 8 : < >? % > % > % 8 5 6 % 9!9 9 : : : 9 Α % 9 Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3

More information