1-1 50 65 3 4 1
1-2 (Tissue Engineering) (1) ( 1-1) (cells) (signals) (scaffold) 1-1 2
1-2-1 (adult cell) (stem cell) (hematopoietic stem cells) (mesenchymal stem cell, MSC) (2-4) 38±4 (5,6) (7,8) 3
1-2-2 TGF (Transforming growth factor) BMP (Bone morphogenetic protein) (9) (10) 1988 Maniatopoulos (dexamethasone) 10-7 ~10-9 M -glycerophosphate 5~10 mm ascorbic acid (2,3) (Polypodiaceae) Drynaria fortunei (Kunze) J. Sm. (bioreactor) 4
1. 2. 3. 4. (11) 1-2 1. (orbitally mixed Petri dishes)2. (magnetically stirred flasks)3. (12) 1-2 (a) (b) (c) () ( (d) () 5
1-2-3 1. 2. 3. 4. 5. 6. GGT (13) 6
1-3 (Scaffold) (Cells) (Signals) ( GGT) 1994 Yao (biodegradable) (tricalcium phosphate) (gelatin) (binding agent) (glutaraldehyde) (cross-linking agent) GTG (in vitro) (in vivo) (14-16) 2004 Liu (genipin) GGT (13) Jeng GGT (17) GGT 7
2-1 (mineral)/ (organic) 3/ (hydroxyapatite, HAP)(Ca 10 (PO 4 ) 6 (OH) 2 ) (collagen) 31 2-1 (Volkman s canals) (Haversian canals) (lamellae) (lacunae) (osteocytes) (canaliculi) 8
(Haversian system) (osteon) (interstitial lamellae) 2-1 (18) (trabeculae) 9
2-2 (osteoblast; OB) (osteocyte) (osteoclast; OC) (19,20) (shaped) (21) 2-2 (21) 2-2 10
2-2-1 (mesenchymal cell) (reticulated cells of bone marrow) (osteoprogenitor cell) ( osteoblast) (osteoid) (lacuna) (homeostasis) (22) (resorption) (formation) (multinuclear giant cell, MNGC) 100 m 2~50 (resorption bay)howship s (Howship s lacula) (23,24) 11
2-2-2 (25) (callus) ( ) (chondrocyte) (inductor) (osteoinduction) (template) 12
2-3 (cell) (blood) (tissue) (protein) (implants) (catheters) (artificial organs) (drug delivery) (toxin removal) (wound dress) (contact lenses) (biosensor) (cell carriers) (enzyme supports) (26) 2-3-1 1. (non-toxicity) 2. (functionality) 3. (sterilizability) (ethylene oxide, E.O.) (gas plasma) (ozone) 4. (biocompatibility) 5. (degradability) (proliferation) (differentiation) 13
2-3-2 (osteoclast) (resorbing) (osteoblast) (remodeling) 6 (20) (mineralization) (delayed union) (nonunion) (27) 14
2-3-2-1 (28) (autologous bone) (allologous bone) (xenologous bone) 15
2-3-2-1 (29-32) 1775 1860 1886 1902 Jones Bives (33) 1920 Albee Morrison (34) (dense blocks) (porous) (hydroxyapatite, HAP) (tricalcium phosphate, TCP) 1985 Yamamuro (35) 1988 Lin (36) DP-bioglass (osteoconductive potentiality) 16
1880 Gluck (37) 1930 1969 Shapiro (38) (poly-methylmethacrylate, PMMA) (bone cement)1990 Alici (39) polyethylene (40-42) 1983 Mittelmerier (43) (collagen) 1984 Chierici (44) 17
2-3-3 (45) (resorbability) (degradation rate) (cytotoxicity) 18
2-4 (self-renewal) (multi-lineage differentiation) (multipotent) (self-renewing) (cell lineage) (46) 2-3 (symmetric division) (asymmetric division) (47) (progenitor cell) (embryonic stem cells) (adult stem (adult stem cells) 19
(commitment) (hematopoietic stem cell) (transdifferentiation) (plasticity) 2-3 (hematopoietic stem cells) CD34 (mesenchymal stem cell, MSC) CD34 SH2SH3 CD105 20
2-4 (48) 2-4 21
2-5 (Polypodiaceae) (Davalliaceae) (49) 1995 Drynaria fortunei (Kunze) J. Sm. 2-5 2-5 (49) (50) 22
1. 2-6 2-6 (51) (50) 1. 2-7 2. (52) 2-8 23
(49) 2-7 2-8 (52) 24
(50) 2-9 2-10 (50) 2-9 (54) (2-11) 25
2-10 (53) 2-11 (54) 26
(55) (56) ( 2-12) (56) 2-12 (57) ( 2-13) 27
(58) ( 2-14) (57) 2-13 2-14 (58) 28
藁 (59) ( 2-15) (59) 2-15 3 (60) 甙 甙 (61) 甙 甙甙 (62) 甙 甙 甙 29
(Genipin) (Gelatin) (Tricalcium phosphate) GGT Dexamethasoneβ-glycerolphate L-ascorbic acid 3-1 (ceramics) (polymer) (naturally occurring cross-linking reagent) 3-1-1 (Tricalcium phosphate, TCP; Merck, Germany) (bioresorable) 1000 β 1180 α (14) β 30 40 mesh 200-300 µm 30
3-1-2 (binding agent) (fibrin) (collagen) (gelatin) (32,63) (porcine skin) (Bloom number 300, Sigma Chemical Co., USA) 50,000-100,000 (dalton) 85 % 10 % (swelling) 35 10-35 % (homogeneous) 5-20 % 60-80 25-30 % 90-100 18 % 70-75 (64) 31
3-1-3 (65-67) (cytotoxicity) (Cape Jasmine Fruit) (genipin; Challenge Bioproducts Co., Taiwan) (68) 皶 (69) (70) (71) 32
3-1-4 (Polypodiaceae) Drynaria fortunei (Kunze) J. Sm. 3-1 (72) 甙 甙 (73) 100 µg/m (74) S-D GGT 100 µg/ml (17) 100 µg/ml 3-1 33
3-2 3-2 (Genipin) (Gelatin) (Tricalcium phosphate) GGT (Scanning Electron Microscope, SEM) (Energy dispersive X-ray spectrometry, EDS) 2-3 GGT (in vitro test) 1 2 4 酶 Von Kossa s MTT GGT 1 2 4 (SEM) (in vivo test) GGT GGT GGT 34
X GGT SEM EDS X SEM ALP stain Von Kossa s stain MTT assay SEM 3-2 35
3-3 (Genipin) (Gelatin) (Tricalcium phosphate) GGT GGT(porous composite of genipin cross-linked gelatin with tricalcium phosphate) GGT GGT 3-3-1 100 g 500 ml 20 (Filter paper, Toyo Roshi Kaisha, Ltd. Japan) 50 ml -80 3 36
3-3-2 GGT 75 % GGT 13 (Sodium Chloride, NaCl; Gerbu, Germany) 40 60 mesh 250-470 µm 160-180 4 40 60 mesh 108.75 g (GGTNaCl13) 9 g 41 ml (distilled water) 75 (stirrer) 18 % 0.82 g 20 mg/ml 50 20 % (gelatin-genipin mixture) 27 g 37
-80 30 1.5 cm 0.2 cm 3-3 -80 γ (15 kgy) GGT GGT 3-4 38
3-3 GGT 3-4 GGT 39
3-4 GGT GGT S-3000N EDS 3-4-1 (Porosity) 3-5 Wo Wp Wt Ww d Wp Wo = ( Ww Wo) ( Wt Wp) Wo Wp Ww Wt 40
Vm Vs ( ) Vs - Vm (Porosity) = 100% Vs Vs Vm 3-5 41
3-4-2 (cross-linked glatin) (water uptake ability) (swelling ratio) 1.5 cm 0.2 cm GGT GGT (Wo) 20 ml 50 ml 361224 48 (Wt) Wt Wo (Swelling Ratio) = 100% Wo Wt Wo 42
3-4-3 500 mm 3 40 20 ml (Wo) 50 ml 20 ml 37 5 % CO 2 12468 12 (Wt) (Degradable Weight Loss Ratio) ( Wo Wt) = 100% Wo Wo Wt 43
3-4-4 SEM EDS GGT (SEM) (EDS) GGT GGT 1/2 (PBS) 3 5-10 305070809095100 % 15 (HCP-2 Critical Point Dryer, HITACHI, Japan)( 3-6) (E-1010 Ion Sputter, HITACHI, Japan)( 3-7) (S-3000N Scanning Electron Microscope, HITACHI, Japan)( 3-8) (EX-200, Energy dispersive X-ray spectrometry, EDS, Horiba, Japan) 44
3-6HCP-2 3-7 E-1010 3-8 S-3000N 45
3-5 3-5-1 (mesenchymal stem cell, MSC) (bone marrow stromal cell) (34) 46
3-5-1-1 L-DMEM (low-glucose Dulbecco s modified eagles medium;gibco, USA)10 % (fetal bovine serum, FBS)1 % (antibiotics; penicillin G, 100 U/ml; streptomycin, 0.1 mg/ml; amphotericin B, 0.25 mg/ml) (sodium bicarbonate, NaHCO 3 )3.7 g/l 500 ml 2 1 L 1 (stir) 1 L (laminar flow) 800 ml 1 L L-DMEM 3.7 g 10 ml 20 900 ml 7.2 100 ml 1 L (1000 ml) 0.22µm 500 ml 4 47
3-5-1-2 10-8 M Dexamethasone10 mm β-glycerolphate 50 µg/ml L-ascorbic acid DMEM (high-glucose Dulbecco s modified eagles medium;gibco, USA)10 % 1 % (sodium bicarbonate, NaHCO 3 ) 3.7 g/l sodium pyruvate 0.11 g/l 500 ml 2 1 L 1 (stir) 1 L 800 ml 1 L DMEM 3.7 gsodium pyruvate 0.11 g 10 ml Dexamethasone 10-8 M 0.0039 10 ml 10-3 M (Micropipet) 10 µl 10-3 M Dexamethasone 10-8 M2.16 g β-glycerolphate 0.05 g L-ascorbic acid 20 900 ml 7.2 100 ml 1 L (1000 ml) 0.22 µm 500 ml 4 48
3-5-1-3 2500-3000 g GGT 8 4 2 1 GGT 3 2-3 GGT (spinner flask) 1 2 4 GGT GGT 12 4 3 (Ketamin 10 ml/50 mg/ml ) (Rompun, Bayer, Germany)11 0.8~1.5 ml/kg 70 % Lidocaine (2 ml/ 10 mg/ml )1.0~1.2 ml (Agglutex injection, Heparin Sodium 5,000 Unit/ml ) 20 5 ml 18 20 22 T-75 (Flask) 37 5 % CO 2 (Incubator) 24 15 ml T-75 1500 rpm 49
5 3-9 3-10 T-75 (Pipet-aid) 5 ml (phosphate buffer solution, PBS, Sigma, USA) 1 ml 0.25 % Trypsin/EDTA (Sigma, USA) 2-3 Trypsin/EDTA 5 ml 15 ml 1500 rpm 5 2-3 1 2 3 50
(A) (B) (C) (D) (E) (F) 3-9 (A) (B) (C) (D) (E) (F) 51
(A) (B) (C) 3-10 (A) 4 (B) 6 8 (C) 12 (scale bar=20 µm) 52
3-5-2 (in vitro) 酶 (Alkaline phosphatase stain)von Kossa s MTT SEM 酶 Von Kossa s MTT () () L-DMEM DMEM 3 9 ml 1 ml 100 µg/ml PBS 0.25 % Trypsin/EDTA 6 () () 3 2 ml 1 10 4 2-3 53
3-5-2-1 酶 酶 酶 Sigma Alkaline Phosphatase Kit 86-R (Fix Solution) 酶 (Alkaline Phosphatase Stain Solution) 25 ml Citrate solution65 ml (Acetone)8 ml 37 % (Formaldehyde) 100 ml 2-8 18-26 酶 50 ml 45 ml 18-26 1 ml Sodium Nitrite Solution 1 ml FRV-Alkaline Solution 15 ml 2 diazonium salt solution diazonium salt solution 45 ml 1 ml Naphthol AS-BI Alkaline Solution (PBS) 2 30 45 酶 15 2 Hematoxylin Solution 2 2 54
3-5-2-2 Von Kossa s Von kossa s (silver nitrate, AgNO 3 ) (calcium phosphate, Ca 3 (PO4) 2 ) 5 % (silver nitrate solution) 5 g (silver nitrate, AgNO 3 ) 100 ml 5 % (sodium thiosulfate solution) 5 g (sodium thiosulfate, Na 2 S 2 O 3 ) 100 ml Nuclear fast red 0.1g Nuclear fast red 100 ml 5 % (Aluminum Sulfate) thymol 3 2 % (glutaraldehyde) 20 3 5 % 60 W 60 3 5 % 2-3 3 Nuclear fast red 5 3 55
3-5-2-3 MTT MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dehydrogenase MTT-formazan (acid/alcohol-0.04 N HCl in isopropanol)formanzan ELISA reader(mrx Microplate Reader, Dynatech Laboratories Inc., Chantilly, USA) 570 nm 650 nm (survival) (proliferation) MTT formazan formazan MTT -20 MTT (USB, Amersham Life Science) 50 mg 15 ml 10 ml PBS MTT 0.22 µm (Millipore, USA) 15 ml 4 formazan (acid/alcohol-0.04 N HCl in isopropanol) 50 ml 2 ml 1 N HCl 48 ml (isopropanol ) 96 5 10 3 1 10 4 2 10 4 3 10 4 4 10 4 cells/welln=6 100 ml 10 µl MTT 4 formazan well 200 µl formazan 56
10 formazan ELISA reader 570 nm 650 nm MTT 96 5 10 3 cells/well well 180 µl N=5 2 2 MTT 4 formazan ELISA reader 570 nm 650 nm MTT 57
3-5-2-4 GGT 12 4 GGT SEM (spinner flask) PBS 2 0.25 % Trypsin/EDTA 2 10 6 cells/ml GGT 12 (12-well plate) 500 µl( 1 10 6 cells) GGT 12 1 12 12 1 GGT 12 GGT GGT 58
(Bioreactor) 70 rpm 10 50 rpm (75) 3-11 (A) (B) 3-11 (A) (B) spinner flask 59
3-5-2-5 GGT 124 1/2 (Scanning Electron Microscope, SEM) 1/2 GGT GGT 1/2 (PBS) 3 5-10 2 % 48 3050 70809095100 % 15 (HCP-2 Critical Point Dryer, HITACHI, Japan) (E-1010 HITACHI, Japan) S-3000N 3-5-2-6 GGT 124 1/2 1/2 2 2 % 60
3-5-3 GGT GGT 124 2 8 1. GGT 2. 1 GGT 3. 2 GGT 4. 4 GGT 3 12 1. GGT 2. 1 GGT 3. 2 GGT 4. 4 GGT 8 X GGT GGT 61
3-5-3-1 (Ketamin 10ml/50 mg/ml ) (Rompun 25 mlbayer, Germany)11 0.8~1.5 ml/kg 70 % Lidocaine (2 ml/ 10 mg )1.0~1.2 ml 5 cm 1.5 GGT 4-0 1 ml (Cephalosporin Cephazolin Sodium 1 gm/vial ) 30 mg/kg 3-12 62
(A) (B) (C) (D) (E) (F) 3-12 (A) (B) (C) (D) (E) (F) 63
3-5-3-2 8 ( 3-13) (Urethane1, 1 g/10 ml, Sigma, USA) 4 ml 8 ml 2.5 cm 2.0 cm 10 % (formaldehyde) 3-13 64
3-5-3-3 10 % 48 (TBD-1, Rapid Decalcifier, Thermo Shandon, USA) 3050708090 95100 % 15 65
4-1 66
4-1-1 80 % 4-1 GGT 1.18±0.10 GGT 1.20 0.02 GGT 82.07±1.51 % GGT 80.51 0.13 % 4-1 GGT 1.18±0.10 GGT 1.20 0.02 (%) 82.07±1.51 80.51 0.13 67
4-1-2 (free volume) (38) 4-1 GGT GGT GGT GGT 甙 (Naringin, C 27 H 32 O 14, M.W.=580.53)( 4-2) (Genipin, C 11 H 14 O 5, M.W.=580.53)( 4-3) 4-1 GGT GGT 68
4-2 甙 4-3 12 GGT 24 GGT 69
4-1-2 GGT GGT 714284256 84 4-4 4-4 GGT GGT 1. 7 2. 84 (12 ) 10 % GGT 5 3. GGT GGT GGT 70
4-1-4 4-5 (A) GGT 50 (B) GGT 100 GGT GGT 280-430 µm 40-60 mesh 250-470 µm 71
(A) (B) 4-5 GGT (A) GGT 50 (B) GGT 100 72
4-1-5 GGT 4-6 4-2 4-6 GGT 4-2 GGT Element App Intensity Weight% Weight% Atomic% C K 4.98 0.5955 29.24 0.29 46.81 O K 4.06 0.4798 29.52 0.29 35.48 P K 3.40 1.4557 8.15 0.10 5.06 Ca K 6.03 0.9885 21.29 0.16 10.21 Nb L 2.61 0.7737 11.80 0.23 2.44 totals 100.00 73
4-2 (in-vitro) (in-vivo) 酶 (alkaline phosphatase stain)von Kossa s MTT GGT X GGT 74
4-2-1 4-2-1-1 酶 酶 (alkaline phosphatase stain) 酶 4-7 酶 4-8 酶 4-9 酶 4-7 4-8 4-9 75
(A) (B) (C) 4-7 酶 (A)1 (B)2 (C)4 (scale bar=20 µm) 76
(A) (B) (C) 4-8 酶 (A)1 (B)2 (C)4 (scale bar=20 µm) 77
(A) (B) (C) 4-9 酶 (A)1 (B)2 (C)4 (scale bar=20 µm) 78
4-2-1-2Von Kossa s Von kossa s (multilayer) (confluency) 4-10 2 (A) (B) (C) 4-11 3 (A) (B) (C) (C) 2 3 (B) (C) 234 Von kossa s 79
(A) (B) (C) 4-10 2 (A) (B) (C) (scale bar=20 µm) 80
(A) (B) (C) 4-11 3 (A) (B) (C) (scale bar=20 µm) 81
4-12 234 Von Kossa s 4-13 Von Kossa s 2 (A ) 3 (B ) 4 (C ) 4-14 Von Kossa s 2 (A ) (B ) (C ) 4-13 82
(A) (B) (C) 4-12 Von Kossa s (A)2 (B)3 (C)4 (scale bar=20 µm) 83
(A) (B) (C) 4-13 Von Kossa s (A)2 (B)3 (C)4 (scale bar=20 µm) 84
(A) (B) (C) 4-14 Von Kossa s (A)2 (B)3 (C)4 (scale bar=20 µm) 85
4-2-1-3 MTT MTT 4-15 ()/well formazan (O.D.570-650 nm) x=12.5198y-0.8707 x ()/well y: formazan (O.D.570-650 nm) 4-15formazan V.S. 96 2 ELISA reader 570 nm 650 nm ( 4-16) 86
4-16 4-2-1-4 (SEM) GGT spinner flask 124 1/2 ( 4-17) 1 2 (4-18) 4 (4-19) GGT 87
(B) 4-17 1 SEM (A)100 (A)1500 88
4-18 2 SEM (2500 ) 4-19 4 SEM (2500 ) 89
4-2-1-5 1/2 4-20 (A) (B) 4-20 2 (A)100 (B)200 (scale bar=10 µm) 90
4-2-2 GGT GGT 124 X GGT 4-2-2-1 GGT ( 4-21) ( 4-22) ( 4-23) ( 4-24) GGT 91
4-21 1 4-22 2 92
4-23 GGT 8 4-24 GGT 8 93
4-2-2-2 X GGT X-ray 4-25 GGT X-ray 4-26 GGT 4-3 GGT 17 % 1 (23 %)2 (28 %)4 (32 %) GGT 24 % 1 (28 %)2 (33 %)4 (38 %) 94
NB M HB (A) NB HB M (B) 4-25 GGT X-ray (A) (B) (C) (D) HB NB M 95
NB M HB (C) NB HB M (D) 4-25 96
NB M HB (A) NB M HB (B) 4-26 GGT X-ray (A) (B) (C) (D) HB NB M 97
NB M HB (C) NB M HB 4-26 (D) 4-3 1 2 4 GGT 17 GGT 24 23 28 28 33 32 38 98
4-2-2-3 4-27 GGT GGT GGT 4-28 GGT (erythrocytes) GGT 4-29 GGT GGT GGT 99
ITF M HB (A) OB (B) 4-27 (A)30 (B)500 HB M ITF OB 100
M (A) RBC (B) 4-28 GGT (A)100 (B)1500 M RBC 101
HB M ITF (A) D C (B) 4-29 GGT (A)30 (B)500 (C (D)1500 HB M ITF 102
(C) 4-29 (D) 103
4-2-2-4 GGT GGT 4-30 GGT (A)40 (B)(C)400 GGT (fibrous tissue) GGT 4-31 GGT (A)40 4-30 (B)40 (C)400 4-32 GGT (A)40 (B)100 (C)400 104
4-33 GGT (A)40 (B)100 (C)400 GGT 4-34 GG X-ray 105
C M NB HB B Fibrous Tissue (A) NB (B) NB (C) 4-30 GGT (A)40 (B)(C)400 HB M NB 106
NB M HB (A) M NB (B) NB (C) 4-31 GGT (A)(B)40 (C)400 HB M NB 107
M HB (A) NB (B) GGT NB (C) 4-32 GGT (A)40 (B)100 (C)400 HB M NB GGT 108
M (A) BLT (B) BLT (C) 4-33 GGT (A)40 (B)100 (C)400 M GGT BLT 109 GGT
M HB (A) NB (B) NB GGT (C) 4-34 GGT (A)(B)40 (C)40 HB M NB GGT 110
(Cells) (Signals (Scaffold) ( GGT) GGT GGT GGT 80 % 12 SEM EDS 酶 Von Kossa s 酶 酶 MTT GGT spinner flask 124 SEM GGT 111
GGT GGT X-ray SEM GGT - 112
GGT 113
1. 2001;5(6)646-653 2. 2002;757-64 3. Davies JE, Karp JM, Baksh D, Mesenchymal Cell CultureBone. In Method of Tissue Engineering, Academic Press, San Diego, New York, Boston, London, Sydney, Tokyo 2002; pp. 333-341 4. Krupnick AS, Shaaban A, Radu A, Flake AW, Tissue Engineering 2002;pp.145-160 5. Bruder SP, Jaiswal N, Haynesworth SE: Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following crypreservation. J Cell Biochem 1997;64:278-294 6. Haynesworth SE, Baber MA, Caplan AI: Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 1992;13:69-80 7.. 2001;5(6)662-668 8. 2001;5(6)669-671 9. 2001;24(3)430-435 10. 2003 11. Palsson B, Hubbell JA, Plonsey R, Bronzino JD: Tissue engineering, CRC Press, New York 2003;pp. 23-11 12. Botchwey EA, Pollack SR, Levine EM, Laurencin CT Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system. J Biomed Mater Res 200155242-253 13. 114
2004 14. Lin FH, Yao CH, Sun JS, Liu HC, Huang CW. Biological effects and cytotoxicity of the composite composed by tricalcium phosphate and glutaraldehyde cross-linked gelatin. Biomaterials 1998;19:905-917. 15. Liu HC, Yao CH, Sun JS, Lee CJ, Huang CW, Lin FH. Osteogenic evaluation of glutaraldehyde crosslinked gelatin composite with fetal rat calvarial culture model. Artif Organs 2001;25:644-654. 16. Chen TM, Yao CH, Wang HJ, Chou GH, Lee TW, Lin FH. Evaluation of novel malleable, biodegradable osteoconductive composite in a rabbit cranial defect model. Materials Chemistry and Physics 1998;55:44-50. 17. 2004 18. 1997;pp.144-146 19. Alan StevensJames Lowe 1995pp.233~271. 20. Huether SE, McCance KL. Understanding Pathophysiology. Second edition, 2000. 21. Frost HM. Intermediary organization of the skeleton. Boca Raton, FL: CRC Press 1986. 22. Sikavitsas VI, Temenoff JS, Mikos AG. Biomaterials and bone mechano-transduction. Biomaterials 200122, 2581-2593. 23. Dempster DW. Bone remodeling. In: Coe FL, Favus MJ, eds. Disorder of bone and mineral metabolism. Raven Press, New York, 1992, p. 355-380. 24. Parfitt AM. The physiological and clinical significance of bone histomorphometric data. In: Recker RR, ed. Bone histomorphometry: techniques and interpretation. Boca Raton, FL: CRC, 1983, p. 143-223. 25. Junquerira 1988. 115
26. Ratner BD, Hench L. Editorial overview: Perspectives on biomaterials. Current Opinion in Solid States & Materials Science 1999;4;379-380. 27. Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop 2000;10-27. 28. Gisep A. Research on ceramic bone substitutes: current status. Injury 2002;33:88-92. 29. Fujibayashi S, Kim HM, Neo M, Uchida M, Kokubo T, Nakamura T. Repair of segmental long bone defect in rabbit femur using bioactive titanium cylindrical mesh cage. Biomaterials, 200324, 3445-3451. 30. Alam MI, Asahina I, Ohmamiuda K, Takahashi K, Yokota S, Enomoto S. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhbmp-2. Biomaterials, 200122, 1643-1651. 31. Saito N, Takaoka T. New synthetic biodegradable polymers as BMP carriers for bone tissue engineering. Biomaterials, 200324, 2287-2293. 32. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials, 200122, 1705-1711. 33. Ravaglioli A, Krajewski A. Bioceramics Materials. Properties, Applications. Chapman and Hall, 1992, pp. 1-5. 34. Albee FH, Morrison HF. Studies in bone growth triple calcium phosphate as a stimulus to osteogenesis. Ann. Surg., 192071, 32. 35. Nakamura T, Yamamuro T, Higashi S, Kokubo T, Itoo S. A new glass-ceramic for bone replacement: evaluation of its bonding to bone tissue. J. Biomed. Mater. Res., 198519, 685-698. 36. Lin FH, Hon MH, Wu SC. Fabrication and biocompatibility of a porous bioglass ceramic in a Na2O-CaO-SiO2-P2O5 system. J. Biomed. Eng. 199113, 328-334. 37. Jacob K. Handbook of biomedical engineering. Acad. Press, Inc., 1988. 116
38. Shapiro J. In: Acrylic Cement in Orthopaedic Surgery. Personal Communication to J Charneley, E & S Livingstone, Edinburgh and London, 127. 39. Alici E, Alku OZ, Dost S. Prostheses designed for vertebral body replacement. J. Biomech., 199023, 799-809. 40. Ishizawa H, Ogino M. Formation and characterization of anodic titanium oxide films containing Ca and P. J Biomed Mater Res 1995;29:65-72. 41. Ishizawa H, Ogino M. Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment. J Biomed Mater Res 1995;29:1071-1079. 42. Takatsuka K, Yamamuro T, Nakamura T, Kokubo T. Bone-bonding behavior of titanium alloy evaluated mechanically with detaching failure load. J Biomed Mater Res 1995;29:157-163. 43. Mittelmeier H, Katthagen BD. Clinical experience with the implantation of collagen-apatite for local bone regeneration. [German] Zeitschrift fur Orthop und Ihre Grenzgebiete 1983;121:115-123. 44. Chieerici G. Biological response to a lyophilised collagen gel implanted in parietal bone defects in a Rhesus monkey. Collagen Corporation Internal Publication, 1984, Report 3, pp. 116. 45. Williams DF. Biocompatibility of clinical implant materials. CRC Press, Inc., 1981vol.1, pp. 199-222. 46. ( ) 2003;14(2)92-100 47. Stewart MD: Stem cell handbook, Humana Press Inc., New Jersey 2004;pp. 1-11 48. Stewart MD: Stem cell handbook, Humana Press Inc., New Jersey 2004;pp. 107-117 49. 1999pp.330. 117
50. 1977pp.313-314. 51. 1999pp.109 52. 1974pp.255 53. 1997pp.118 54. 1976pp.274 55. 1955pp.800 56. 1974pp.408-409 57. 1974pp.440 58. 1974pp.439 59. 1974pp.432 60. 3 1994;19(5):pp.261-263 61. 2001;14(3):pp.84-86 62. 1994;25(5):pp.249250258 63. Yaylaoglu MB, Korkusuz P, Ors U,Korkusuz F, Hasirci V. Development of a calcium phosphate-gelatin composite as a bone substitute and its use in drug release. Biomaterials, 1999;20,711-719. 64. 1997 65. Kosmala JD, Henthorn DB, Brannon-Peppas L. Preparation of interpenetrating networks of gelatin and dextran as degradable biomaterials. Biomaterials,2000;21,2019-2023. 66. Bigi A, Cojazzi G, Panzavolta S, Rubini K, Roveri N. Mechanical and thermal properties of gelatin at different degrees of glutaraldehyde crosslinking. Biomaterials, 2001;22,763-768. 67. Bigi A, Cojazzi G, Panzavolta S, Roveri N, Rubini K. Stabilization of gelatin films by crosslinking with genipin. Biomaterials, 118
2002;23,4827-4832. 68. Touyama R, Takeda Y, Inoue K, Kawamura I, Yatsuzuka M, Ikumoto T, Shingu T, Yokoi T, Inouye H. Studies on the blue pigments produced from genipin and methylamine. I. Structures of the brownish-red pigments, intermediates leading to the blue pigments. Chem. Pharm. Bull., 1994;42,668-673. 69. 1984;13:pp.367-368 70. 1988;pp.1191. 71. 1985;pp.189-198 72. 1988;pp.800-801. 73. 1996;pp.474. 74. 2003 75. 2002 119