[ 41,42,43,44,45,46,47,48 ] 1950-4 Homogeneous Nuclesation (Heterogeneous Nucleation) 41 19 4 (1994)pp. 247-256. 42 (1989), 43 Ryozi Uyeda, Studies of Ultrafine Particles in Japan: Crystallography. Methods of Preparation and Technological Applications, Progress in Materials Science, Vol. 35, 1991, pp.1-96. 44 22 1983 412. 45 (1989) Science Forum. 46 47 SR9109, 2002 9 648-666 48 No. 32, 2002 5 26-28
P s P o 5 r c 4 + G * G 0 r c 5 r c G 2 4 3 G = 4π r σ + πr G v (1) 3
σ r G v v G v kt P s Gv = ln (2) v Po T k (K) P s /P o G (RS) 5 r c G* = 0 r r c 2σ 2σv = = (3) G kt ln( P P ) v s o 3 3 2 * 16πσ 16πσ v G = = (4) 2 2 3( G ) 3( kt) ln( P P ) v s o G* r < r c r > r c (P s >> P o ) I I 16πσ v exp 3 3( kt) 3 2 = Io 2 [ ln(p )] s Po (5) I o RS(P s / P o ) 1 RS 261K RS 4 5 6 I 10-10 10-0.7 10 4.2 (1) [ 49,50 ] 49 R. F. Strickland-Constable, Kinetic and Mechanism of Crystallization, Academic Press, (1968) p.44.
RS RS aa(g) + bb(g) = cc(s) + dd(g) (6) a b d a b ( P ) APB / PD P A PB = K ( ) a b d PA PB / PD PD = d (7) P a A P b B P d D A B D (6) 1 51 SiCl 4(g) + CH 4(g) SiC (s) +4HCl (g) 1500 SiC 1500 SiC SiC 2 A B C 2[ 52 ] TiCl 4 -NH 3 TiN TiCl 4 NH 3 250 TiCl 4 NH 3 TiN( A) 600 TiCl 4 NH 3 TiN ( B) TiCl 4 -NH 3 TiN A 10-400 B 100 50 - No. 48 23 1985 51 52
(T) (P s /P o ) (J) J = 2πd D C (8) D o p o m C m (carrier gas) d p D f N(cm -3 ) C m (mol cm -3 ) 1/ 3 6 CmM Df = (9) π Nρ M ρ f f 1/ 2 πkt 2 = 4 dp N m 2 (10) N m
1 [ 51 ] (log kp) ( 1 ) 1000 1400 SiCl 4 -O 2 SiO 2 10.7 7.0 O TiCl 4 -O 2 TiO 2 4.6 2.5 O TiCl 4 -H 2 O TiO 2 5.5 5.2 O AlCl 3 -O 2 Al 2 O 3 7.8 4.2 O FeCl 3 -O 2 Fe 2 O 3 2.5 0.3 O FeCl 2 -O 2 Fe 2 O 3 5.0 1.3 O ZrCl 4 -O 2 ZrO 2 8.1 4.7 O NiCl 2 -O 2 NiO 0.2 - X CoCl 2 -O 2 CoO -0.7 - X SnCl 4 -O 2 SnO 2 1.0 - X 1000 SiCl 4 -H 2 -N 2 Si 3 N 4 1.1 1.4 X SiCl 4 -NH 3 Si 3 N 4 6.3 7.5 O SiH 4 -NH 3 Si 3 N 4 15.7 13.5 O 1500 1500 1500 SiCl 4 -CH 4 SiC 1.3 4.7 X O CH 3 SiCl 3 SiC 4.5 (6.3) X O SiH 4 -CH 4 SiC 10.7 10.7 O (CH 3 ) 4 Si SiC 11.1 10.8 O TiCl 4 -H 2 -N 2 TiN 0.7 1.2 X TiCl 4 -NH 3 -H 2 TiN 4.5 5.8 O TiCl 4 -CH 4 TiC 0.7 4.1 X O TiI 4 -CH 4 TiC 0.8 4.2 O TiI 4 -C 2 H 2 -H 2 TiC 1.6 3.8 O ZrCl 4 -H 2 -N 2 ZrN -2.7-1.2 X ZrCl 4 -NH 4 -H 2 ZrN 1.2 3.3 O ZrCl 4 -CH 4 ZrC -3.3 1.2 X NbCl 4 -NH 3 -H 2 NbN 8.2 8.1 O NbCl 4 -H 2 -N 2 NbN 4.3 3.7 O MoCl 4 -CH 4 -H 2 Mo 2 C 19.7 18.1 O MoO 3 -CH 4 -H 2 Mo 2 C 10.0 (8.8) O WCl 6 -CH 4 -H 2 WC 22.5 22.0 O SiH 4 Si 6.0 5.9 O WCl 6 -H 2 W 15.5 15.6 O MoO 3 -H 2 Mo 10.0 5.7 O NbCl5 -H 2 Nb -0.7 1.6 O
2 [ 52 ( ) SiCl 4 - NH 3 1000-1500 SiN x H y (c) SiH 4 -NH 3 500-900 SiN x H y (c) TiCl 4 -NH 3 600-1500 TiN 10-400 ZrCl 4 -NH 3 1000-1500 ZrN <100 (b) ( ) 10-100 A <200 A T M 250 T M >600 T M <~750 A B A T M >~1000 B VCl 4 -NH 3 700-1200 VN 10-100 T M =400-640 B Si (CH 3 ) 4 900-1400 SiC 10-200 A Si (CH 3 )Cl 3 Plasma SiC <30 (?)B SiH 4 -CH 4 1300-1400 SiC 10-100 C TiCl 4 -CH 4 Plasma TiC 10-200 (?)B TiI 4 -CH 4 1200-1400 TiC 10-150 B NbCl 5 -CH 4 Plasma NbC 10-100 (?)B MoCl 4 -CH 4 1200-1400 Mo 2 C 20-400 T M >~800 T M <~600 MoO 3 -CH 4 1350 Mo 2 C 10-30 C WCl 6 -CH 4 1300-1400 WC 20-300 B C T M >~1000 B T M <~1000 C a) 90% b) T M MCl 4 NH 3 MCl x -CH 4 H 2 c) Si 3 N 4 N H 1300 Si 3 N 4 A B C
2.1 [ 53, 54, 55, 56, 57, 58 ] [ 45 ] 1~100 1 2 3 4 5 6 Wada[ 58 ] 3 Xe Ar 4 [ 59 ] 3 Xe [ 58 ] ( ) Be 100 ~ 400 1000~ 2000 Mg 500 ~ 3000 Al 100 ~ 400 Cr W type 50 ~ 100 Fe 50 ~ 200 Ni 5 ~ 60 Co 10 ~ 20 Cu 10 ~ 200 Zn 50 ~ 200 Ag 100 ~ 300 Cd 100 ~ 400 Au 30 ~ 200 53 R. Kubo, J. Phys. Soc. Japan, 17, (1962) 975. 54 K. Kusaka, N. Wada and A. Tasaki, Japan J. Appl. Phys., 8, (1969) 599. 55 A. Tasaki, S. Tomiyama, S. Iida, N. Wada and R. Uyeda, Japan J. Appl. Phys., 4, (1965) 707. 56 T. Tanaka and N. Tamagawa, Japan J. Appl. Phys., 6, (1967) 1096. 57 T. Fujita, K. Ohshima, N. Wada and T. Sakskibara, J. Phys. Soc. Japan, 29, (1970) 797. 58 N. Wada, Japan J. Appl. Phys., 7(10), (1968) 1287. 59 K. Kimoto, I. Nishida, Japan J. Appl. Phys., 6(9), (1967)1047.
4 Ar [ 59 ] Be BeO Mg MgO Al Cr Mn α-mn β-mn(?) MnO α-mn β-mn(?) Fe Fe 3 O 4 Co Ni NiO Cu Cu 2 O Zn ZnO Ga Se Ag * Cd CdO In Sn Te Au Pb Bi * ** [ 60, 61, 62, 63 ] PbO 60 K. Kimoto, Y. Kamiya, M. Nonoyama and R. Uyeda, Japan J. Appl. Phys., 2, (1963) 702. 61 N. Wada, Japan J. Appl. Phys., 6, (1967) 553.,
1. Wada et al.[ 58,61 ] M m /M Ar M m /M He M m M Ar M He Xenon M m /M M m /M Ar 0.18 0.82 6 M m /M gas Xenon Xenon 6 ( V / V) M m /M gas 1 M m /M gas 1 Xenon Xenon Xenon Xenon 6 M m /M gas [ 58 ] 62 N. Wada, Japan J. Appl. Phys., 8, (1969) 551. 63 S. Yatsuya, S. Kasukabe and R. Uyeda, Japan J. Appl. Phys., 12, (1973) 1675.
2. 3. T 0 t 1 T 1 t 1 t 2 T 1 T 1 T 1 T 0 (t 2 - t 1 ) T 1 4. 5 4x10 100 3x10
5 7 5 [ 43 ] 3~40MHz, (0.12~11 m), 7 A) B) C) D) [ 4 ]
(1) 1 2 3 8 [ 64 ] 5 10 - Pa(3.8 10 - Torr) Ar He ( 1-100Torr) ( 200~500 ) 9 ( 4~5 ) 100 8 [ 42,65 ] I R I 2 R T M W T M 3380 Ta T M 2980 Mo T M 2630 C T M 3730 64 65 Hong-Ming Lin, Wen-Li Tsai, Shah-Jye Tzeng, Y. Hwu, Wen-An Chiou and Michael Coy, Engineering Chemistry & Metallurgy, Vol. 20 Supplement, Oct. 1999, pp. 462-467.
10 a 10 b 10 c 10 d boat 10 e Ag Au 10 f ZnS MgF 2 Na 3 AlF 6 SiO Ge Al g 10 h flash evaporation 11 [ 66 ] 12 [ 67 ] 12 b Inner Zone Inner Front 12 c Inner Zone 12 d Outer Zone Inner Zone Outer Front Outer Zone 12 e~g 66 Chi-Ming Hsu, Hong-Ming Lin, Kuen-Rong Tsai, and Pee-Yew Lee, J. Appl. Phys., 76(8), 1994, pp. 4793-4799. 67 S.Yatsuya, S. Kasukabe, and R. Uyeda, Jpn. J. Appl. Phys, 12, 1973 1675.
8 [ 64 ] 9 [ 42 ]
11 [ 66 ]
67 (2) [ 69 ] 68 69
l Ar He Ar 1989 Koizumi 15 [ 71 ] 16 10kW Ta 6 17 TiO 2 [ 72 ] 70 Tadashi Koizumi, S. Yokota, S, Matsumura, Y. Inoue, Nov. 21, 1989, US Patent 4881722 71 72
1 2 15 [ 71 ] 16 [ 71 ]
6 [ 41 ] (Torr) (V) (A) (kw) (g/min) ( ) Ta 760 40 200 8 0.05 15 Ti 760 40 200 8 0.18 20 Ni 760 60 200 12 0.8 20 Co 760 50 200 10 0.65 20 Fe 760 50 200 10 0.8 30 Al 400 35 150 5.3 0.12 10 Cu 500 30 170 5.1 0.05 30 (3) ( 2000kW ) 17 2 4.5 1800~2000 180 130 He 300 / l 5 73 Ryozi Uyeda, Studies of Ultrafine Particles in Japan: Crystallography. Methods of Preparation and Technological Applications, Progress in Materials Science, Vol. 35, 1991, pp.1-96. 74 M. Oda, Dissertation (in Japanese) Nagoya Univeristy (1986); H.U.T. (Mita) pp.115-132.
17 Oda 300 / 5 1800-2000 o C[ 74 ] (4) [ 42 ] (0.01Pa ) l kpa [7] 18 Bi Sn Ag Mn Cu Mg Fe Fe-Co Ni Al Zn Cu 50V 5mA 66 Pa Ar l 50mg N 2 Ti l0 TiN
Al NH 3 8 AlN N 2 130 Pa N 2 NH 3 Zr Hf V Nb Ta Cr Mr W 2-10 W Mo Ta Nb Zr Ti ( ) 0.2-0.7-18 [ 42 ] (5) ( ) Ge NaCl ( )
Ar 1.3kPa SiC 20 X SiC Si Si 19 [ 42 ] CO 2 Nd:YAG 200W Nd:YAG 3.6ms 20~33J He Fe Ni Cr Ti Zr Mo Ta W Al Cu Si CO 2 19 [ 42 ] 5[ 41 ] 5
5 [ 41 ] 1~100torr 200~760torr 20~30 /batch 1~50torr Ta torr TiN AlN 1torr CO 2 10~100torr SiC
2.2 Ar - (1). (2). (3). (4). (5). [ 7576 ] 20 20 [ 75 ] ( ) 13kPa 15%H 2 + 85%He (1) (2) 75 1995 76 (2001) 114
Al 52 Ti 48 Cu 91 Mn 9 ZrO 2 (3) 2002 Karl[ 77 ] ECR TiN TiCN TiAlN TiAlCN 21 1000V 3~4µm ECR 2 1 21 [ 77 ] 77 D. Karl, Production and characterization of dry lubricant coating for tools on the base of carbon, I. J. R. Met. & H. Mate., 20 2002 121-127.
2.3 (Vacuum Evaporation on Running Oil Surface, VEROS) 22 [ 7879 ] (a) 22 (a). VEROS [ 78 ] (b) Nakatani s VEROS [ 79 ] Ag Au Pd Cu Fe Ni Co Al In 3 (b) 78 S. Yatsuya, Y. Tsukasaki, K. Mihama, and R. Uyeda, J. Cryst. Growth, 45(1978)490-494. 79 I. Nakatani, T. Furubayashi, T. Takahashi, and H. Hanaoka, J. Magnetism and Magnetic Materials, 65(1987)261-264.
2.4 - [ 80 ] 23 Pd 300 / Fe, Co, Ni, Cu, Zn, Al, Ag, Bi, Sn, Mo, Mn, Ti, Pd, CuZn, PdNi, CeNi, Al 2 O 3, Y 2 O 3, TiO 2, ZrO 2 (1) (2) (3) (4) N 2 Ar - Ar H 2 50 30~40V 150~170A 20mg Fe [ 75 ] 23 - [ 80 ] 80 M. Uda, Kaiho(Bulletin), Metal. Soc. Jap. 22, (1981)412-420(in Japanese).
2.5 1998 G.Viera[ 81 ] RF Si-C-N RF (10~100 ) N 2 NH 3 Si-C-N SiC SiN BN SiC SiN BN 25~45 24 RF [ 69 ] RF 25[ 46 ] RF RF DC [ 42,82,83 ] RF [ 84 ] 81 G., J. L., S.N., E., Si-C-N nanometric powder produced in square-wave modulated RF glow discharges, D. R. Mater. 7 (1998) 407-411. 82 T. Yoshida, E. Endo, K. Saito, and K. Akashi, J. Appl. Phys. 54(1983)95-101. 83 T. Yoshida, The Future of Thermal Plasma Processing, Materials Transactions JIM[J], 31(1), (1990)1-11. 84 1999 12 31-35
24 RF T 1 RF E RF C RF E 1 2 1 3 4 1 3 G1 PF [ 70 ] 25 (c) [ 85 ] (a) RF (b) RF ( ) (c) RF [ 46 ] 85 17 15(1978)403
26 [ 42,31 ] 5kW 5MHz RF 15kW Si 3 N 4 SiC SiCl 4 Pyrex Si 3 NO 4 10 30 SiC β-sic 1 5 30,000K 10 2 3 ~106K/s 4 5
6 7
2.6 Al(OH) 3 [ 74 ] 27 [ 86 ] pulse duration (off-time) 6000~12000 [ 85,87 ] 28 86 Wei-Lun Lee, Hong-Ming Lin, Tsing-Tshih Tsung, Ho Chang, Chung-Kwei Lin, Synthesis of CuO Nanoparticles by ASNSS Technologies, Proceeding of the 2002 Annual Conference of the Chinese Soc. for Materials Science, Nov. 22-23, 2002, Taipei, Taiwan. 87 Proceeding of the 2002 Annual Conference of the Chinese Soc. for Materials Science, Nov. 22-23, 2002, Taipei, Taiwan.
(10) (11)[ 8889 ] Plasma H 2O( l) 2H( g) + O( g) f = 970. 93kJ mol (10) H + O + Cu CuO + H H o = 842. kj mol 2 ( g) ( g) ( S) ( S) 2 ( g) (11) H o f 4 27 [ 87 ] 88 Therald Moeller et al, Chemistry with Inorganic Qualitative Analysis, 1st ed. & 2nd ed., Academic Press, New York, 1980 & 1984 89 NBS Technical Note (1968), 270-4 (1969), 250-5 (1971), 270-7 (1973) and NBS Circular 500 (1952).
28 (a) (b) TEM (c)sem TEM [ 87 ]
3-2.7 (5 10 6 Pa) LC 15kV 500~800kA 10 7-10 8 A/cm 2 29 [ 90,75 ] 29 [ 90 ] E>0.6-0.7Ec(Ec ) 10 ( ) 6 90 D. Vollater, Aerosol Methods and Advanced Techniques for Nanoparticle Science and Nanopowder Technology, Proceeding of the ESF Exploratory Workshop, Duisburg, Germany, (1993)15.
30-40 500 2m 2 /g 50m 2 /g 100-200 10 2-10 30-40 X 6 [ 90 ] 35 kv 5 60kA 10 5 A/mm 2 10-5
2.8 1 2 7 8 9 30 30(I) G 1 1 G 2 2 G 1 A B A B ( B ) 30(II)
30 100 31 100 500Pa SiCl 4 SiO 2 AlCl 3 Al 2 O 3 TiCl 4 TiO 2 Co Cu Ni
1 31 (TiCl 4 +NH 3 ) 600 400 (TiCl 4 ) TiN TiN 500 Ti-Cl 460 SiH 4 CO 2 (10.6 ) SiH 2 + CO (10.6 m) 4(g) µ Si(s) 2H2(g) (11) 2 3SiH + CO (10.6 m) 4(g) + 4NH3(g) µ Si 3N4(s) 12H2(g) (12) 91 ( ) 17 (1982)816 92 23 (1984)800
SiH 2 + CO (10.6µ m) 4(g) + CH4(g) SiC (s) 4H2(g) (13) 2 2SiH + CO (10.6 m) 4(g) + C2H4(g) µ 2SiC (s) 6H2(g) (14) 1986 31 CO 2 10.6 150W 270-1020/cm 2 105W/cm 2 8-101 Pa [ 76 ] (a) 31 (a), [ 76 ] (b) 10, 5000 / [ 93 ] (b) 93 20 1999 457 94-1992 ISBN4-274-12900-4
7 [ 94 ] M, M : X, Y: g: gas, s: solid, fp: A M(g) M(s,fp) B MX(g) M(s,fp) + X(g) C MXY(g) MX(s,fp) + Y(g) D E F G M(g) + X(g) M(s,fp) MX(g) + Y(g) M(s,fp) + XY(g) MX(g) + Y(g) MY(s,fp) + X(g) MX(g) + M Y(g) MY(s,fp) + M X(g) PVD CVD CVD CVD CVD CVD CVD B C E F G
8 [ 45 ], NO 2 400 o C Nb 2 O 5, MoO 3, WO 3, B 2 O 3,V 2 O 5 175 500 o C 1000 1700 o C, (>5000K) Al 2 O 3 + TiO 2, Al 2 O 3, ZrO 2, SiO 2, ZnO, Cr 2 O 3, Fe 2 O 3, NiFe 2 O 4, TiO 2 -Cr 2 O 3, -Al 2 O 3, Cr 2 O 3 - Al 2 O 3 ( ) TiO 2 (anatase) H 2 -O 2 SiO 2, Al 2 O 3, ZrO 2 -Al 2 O 3 320 450 o C TiO 2, ZrO 2, HfO 2, ThO 2, Y 2 O 3, Dy 2 O 3 Yb 2 O 3 1000 o C Al 2 O 3 3000 o C ZnO, MgO ( ) TaC, TiC, NbC, SiC 1200 1500 o C TiC Silane 900 1500 o C SiC ( ) SiC ) SiC 1000 2000 o C BN AlN, Si 3 N 4, BN, Zr 3 N 4, TiN, VN, NbN, TaN 3000 o AlN, Si 3 N 4, BN, Zr 3 N 4, TiN, VN, C NbN, TaN 800 o C H 2 -F 2 Mo, W W, Mo, W-Mo,W-Re
9 [ 94 ] 2~100 <2000K 1ms~1s 10ms~10s 20~300 1200K< <3000K 1~10ms 10ms~1s 3~200 >5000K 1~100µs 1~100ms 2~200 1400K< <1800K 10µs~1ms 1~100ms