CuInSe 2 CuGaSe 2 The Study of thecuinse 2 Characteristics and The Synthesis of CuGaSe 2 Nano Powders
,,,,,,,,,,,,,,,, p,,,,,
,,,,
Abstract In this experiment,we used the solvothermal method that described by Y.Qian et al,to synthesize nano powder which have different morphology.we had demonstrated it that by controlling and changing the temperature,reaction time and washing agents,to control the size and it leads to the change of the energy gap.in others,we changed the,and used the same method to synthesize CuGaSe 2 powder.it was used to improve the efficirncy of the solar cell devices. The synthetic temperature 180 and rection time 48hrs are the best condition in nano spherical powder experiment.the synthetic temperature 180 and reaction time 42hrsare the best condition in nano rods experiment.the synthetic temperature 210 and reation time 24hrs,we synthesize CuGaSe 2.And in the kinetic mechanism of nano powder,we think that the second phase is the important factor that influence the growth of nano poweder,and also influence the size of powder.
Y.Qian Advanced Materials CuInSe 2 CuInSe 2,, CuInSe 2, CuGaSe 2, 180, 48 CuInSe 2 ; 180, 42, CuInSe 2 210, 24, CuGaSe 2,,
..1 1.1.1 1.2 CuInSe 2 4 1.3 CuGaSe 2...6 1.4.6 1.5 I-III-VI.7 1.6.7 1.7..9 12 2.1 CuInSe 2...12 2.2 CuGaSe 2.12 2.3CuInSe 2...12 2.4 2.5CuInSe 2...18 2.6CuInSe 2...18 20 3.1 CuInSe 2...20 3.2 CuGaSe 2.21
3.3CuInSe 2...21 3.4.22 3.5...23 26 4.1 CuInSe 2 26 4.2 CuInSe 2 28 4.3 CuInSe 2 29 4.4 CuGaSe 2..30 4.5 CuGaSe 2..31...33..34
4.3 4.4,,.40 4.5 (energy gap) 40 4.6 4.24..40 4.7 4.25.41
1.1 I-III-VI 2 Chalcopyrite.42 1.2 Cu 2 Se In 2 Se 3..42 1.3 MEH-PPV/C 60 PCBM 43 1.4 MDMO-PPV/C 60 PCBM.43 1.5 P3HT/CdSe.44 1.6 CuInSe 2 /P3HT 44 1.7 ITO/ CuGaSe 2 -polymer /CuInSe 2 -polymer/al 45 2.1 Cu(en) 2 46 2.2 46 2.3 La Mer.47 2.4...47 2.5.48 3.1..49 3.2..49 3.3..50 4.1 DI-water...51 4.2.51 4.3 18,DI-water XRD.52
4.4 36,DI-water XRD..52 4.5 40,DI-water XRD..53 4.6 48,DI-water XRD..53 4.7 54,DI-water XRD..54 4.8 60,DI-water XRD..54 4.10 18, XRD 55 4.11 36, XRD.56 4.14 48, XRD 57 4.15 54, XRD 58
, TEM 61 23 24 4.25 CuInSe 2 TEM.63 4.26 24,CuGaSe 2 XRD.63 4.27 36, CuGaSe 2 XRD 64 4.28 48, CuGaSe 2 XRD 64..65 4.30 CuGaSe 2 1 65 4.31 CuGaSe 2 2 66 4.32 CuGaSe 2.66 4.33 CuGaSe 2 67
1.1,,,,,, 1973,,,,,, 6 10 11, 4 10 20, (0.2~3µm) 2 10 30,, 100 1
1972 Carrisa Plains 1983 1986 ( 6MW ) 20 20 20 1987 28.6MW 1990 46.5MW 1993 600MW 2000 1000MW 500MW 2030 100,000MW 2000 single crystal silicon polycrystal silicon amorphous silicon a-si III-V ( GaAs ) ( InP ) ( InGaP ) II-VI ( CdTe ) ( CuInSe ) 83.1% 10~15% 2
I-III-VI 2 CuInSe 2, p-n,, CuInSe 2,,,,,,,, (spin coating),,, 3
1.2 CuInSe 2 1 CuInSe 2 II-VI I-III-VI 2 II I III 1.1 Chalcopyrite Zinc blende C C a 0 5.78Å c 11.62Å a/c 2.01 1.2 Cu 2 In In 2 Se 3 Chalcopyrite Cu/In 0.82 1.04 (defect level) CuInSe 2 CuInSe 2 electro-deposition spray pyrolysis sputtering Molecular Beam Epitaxy CuInSe 2 CuInSe 2 10-8 torr 10-10 torr, 4 4
CuInSe 2 high-energy mechanical alloying Solvothermal method Carmalt [2] CuCl 2 InCl 3 Na 2 Se toluene 72 500 C CuInSe 2 CuCl 2 InCl 3 Se 1 10 180 C CuInSe 2 CuInSe 2 alkoxide 5
Antonelli Ying 3 chelating agent HO-M acetylacetone ethylenediamine 1.3 CuGaSe 2 CuGaSe 2 CuInSe 2 I-III-VI 2, (Chalcopyrite), CuInSe 2,, CuGaSe 2 CuInSe 2, 4 1.4 C 2 H 2 sp 2 sp 2 sp 2 - (dimerization) 6
(Peirels) 掺 掺 1.5 -III- CISe Copper Indium Disenillide CIGSe Copper Indium Gallium Senillide 10% CISe 19.5% 12.2% 120 60 cm 2 14% 30 30 cm 2 1.6 Spin coating 7
TiO 2 CdSe CuInSe 2 C 60 PCBM 2000,A. J. Heeger C 60 PPV [5-8] 1.3 1.4 2001 Heeger N. S. Sariciftci [9-10] Buckminsterfullerene C 60 3 % 7.5mm 2 1.5AM 2003 N. S. Sariciftci MDMO-PPV P3HT III-VI 2 I-III-VI 2 3.2% 1 inch 2 1.5AM 2002 Berkley A. Paul. Alivisators [12] nano-rod CdSe P3HT 1.7% 1 1cm 2 1.5AM 1.5, 2003 Arici [13] poly hexylthiophene(p3ht) CuInSe 2, 1.6, CISe:P3HT=6:1 [11] 8
80mw/cm 2, 1V, 0.3mA/cm 2 Bereznev CuInSe 2 polypyrrole(ppy), 100-mW/cm 2, 0.5V, 6.5mA/cm 2, PPy CuInSe 2, 1.7 Solvothermal method CuInSe 2 CuGaSe 2, nm Quantum size Spherical rod tube wire [5] 9
[8] CuInSe 2 Solvothermal method Se powder InCl 3 4H 2 O CuCl 2 2H 2 O ethylenediamine InSe 2 Cu en 2 CuInSe 2 CuGaSe 2, Se powder GaCl 3 powder CuCl 2 2H 2 O ethylenediamine,, (GaSe 2 ) Cu en 2 CuGaSe 2 ITO/PEDOT PSS/ CuInSe 2 (CuGaSe 2 ) active layer /Al 1.7 ITO PEDOT [30],,, OLED ITO 5.1 5.2eV 10
N-type CuInSe 2 Self-organized p-n Al 11
2.1 CuInSe 2 CuInSe 2 Se powder InCl 3 4H 2 O CuCl 2 2H 2 O (chelating agents) ( polydentate ligands ) 2.1 Cleation ability 14 2 InCl 3 3 Se 2- In 2 Se 3 6Cl (2.1) In 2 Se 3 Se 2-2 InSe 2 (2.2) Cu 2+ 2en Cu en 2 (2.3) InSe 2 Cu en 2 CuInSe 2 2 en (2.4) Se powder InCl 3 4H 2 O CuCl 2 2H 2 O (1) (2) 12
180 C (3) 2.2 CuGaSe 2 CuGaSe 2, Se powder GaCl 3 CuCl 2.2H 2 O, 2 GaCl 3 3 Se 2- Ga 2 Se 3 6Cl (2.5) Ga 2 Se 3 Se 2-2 GaSe 2 (2.6) Cu 2+ 2en Cu en 2 (2.7) GaSe 2 Cu en 2 CuGaSe 2 2 en (2.8) 2.3 CuInSe 2 CuGaSe 2 InSe 2 GaSe 2 Cu(en) 2 CuInSe 2 CuGaSe 2 recrystallization nucleation growth 13
1. [15-19] (supersaturation) 2.2 A B C A B C 2. [20~21] (nucleation threshold) 2.3 La Mer 1950 G G s G v (2.9) G s G v G v G s, r G r 4πr 2 γ 3 4 πr 3 G v (2.10) 14
2.4 r c (2.5),, r c,, G r r c d Gr dr 8πrγ 4πr * G v 0 (2.11) 2γ r c Gv (2.12) 2.5 [27],, ;,, : J 0 =K 1 exp(-k 2 / µ 2 ) (2.13) J 0,K 2 =16πσ 3 V 2 1 /3kT, K 1 1 10 25 cm -3 sec -1 2.6 t1 C1 t3 C3 t4 15
t5 Kelvin equation δ M γ 2 RTρ r (2.14) δ M γ ρ r (2.10) 3. [22~23] 16
r c, ; InSe 2 GaSe 2 Cu(en) 2 CuInSe 2 CuGaSe 2,,,, 17
, (Meta-stable phase),,,, 2.5 XRD Lorentzain Scherrer Equation Scherrer Equation D hkl 0.9 λ / β cos θ (2.15) β 2θ π 180 (2.16) CuKα 1.5418 Å 2.6 CuInSe 2 - (Bohr radius a B =54 Å) [24] (exciton) CuInSe 2 18
(FTIR), (cm -1 ), : T(%) exp(-αx) (2.17) E hν 1240 / λ (nm) (2.18) (αhν) 2 hν CuInSe 2 T, α h (Planck s constant) ν 19
,,, DK-30 27L W CuInSe 2 CuGaSe 2 X Schell equation, [14] 3.1 CuInSe 2 CuInSe 2 3.1 1. Se powder 2.59 mmol InCl 3 4H 2 O 1.29 mmol CuCl 2 2H 2 O 1.26 mmol anhydrous-ethylenediamine 40ml 50ml 2., 3. 4. 180 C 18 5. 20
60 o C 10-2 torr 4 CuInSe 2 3.2 CuGaSe 2 1. Se powder 2.59 mmol GaCl 3 1.29 mmol CuCl 2 2H 2 O 1.26 mmol anhydrous-ethylenediamine 40ml 50ml 2., 3. 4. 210 C 24 5. 60 o C 10-2 torr 4 CuGaSe 2 3.3, ;, 21
3.4 3.4.1 3.1 (1) Telfon 250 C (2) 65mm (3) 11mm 70mm( ) (4) 50ml,, 3.4.2 3.2 (1) (2) 65mm 115mm (3) 10mm 80mm (4) 70ml (5) O-ring 4mm 22
O-ring 3.4.3, 3.3 (1) / (2) 27L (3) (4) 1500 W (5) 30 300 C (6) PID LED 3.5 3.5.1 X-ray X-ray (XRD) CuKα (incident light), 1.5418 Å, (λ) (d) Bragg s Law: nλ=2dsinθ, X-ray JCPDS card 23
100nm, Scherrr s equation: t=0.9λ/bcosθ t ;λ 1.5418 Å;B (F.W.H.M),θ Bragg, 3.5.2 (FTIR) [25] ( ) -, FTIR ;, / ;, FTIR, 3.5.3 CuInSe 2 TEM PHILIPS F-20 CuInSe 2 24
3.5.4 X (EDS) X -, F-20 X X 3.5.5 CuGaSe 2 TEM (PHILIPS,CM-200) CuGaSe 2, 25
4.1 CuInSe 2,, XRD, CuInSe 2 (112) (220) (312) (400) peak, CuSe(107) CuSe(110), In 3+, InSe,,InSe,, CuInSe 2,, 4.1.1,,, CuInSe 2,, (DI-water), 26
DI-water ( 4.1) ( 4.2) 4.1.2, 18,36,40,48,54, 60, XRD, (4.3),(4.4),(4.5),(4.6),(4.7),(4.8) voight (112), Scherrer equation ( 4.1), 48, 48,, 4.9 48,, (48 ), 200, 180,, CuSe(110) CuSe(201), 180 (2.4),,,,, 18,36,42,45,48,54,72, (4.10),(4.11),(4.12),(4.13),(4.14),(4.15),(4.16) XRD,, Scherrer equation ( 4.3) (36 ), 27
200 C, 4.17, 180 C ( 4.4), 180 C 42, 180 C,,, 4.1.3, (72hrs), XRD 4.18,, 35.86nm, 26.39nm( 4.5),, CuSe, 4.2 CuInSe 2 (FTIR) CuInSe 2, (T%) (cm -1 ), (Eg), Quantum size effect [31],,, 28
(Blue shift) (absorption constant) (photon) (bound electron-hole pair) (electronic defect state density) 4.19,4.20,4.21, 22.36nm,31.39nm 26.39nm (ahv) 2 Eg, 1.111ev,1.078ev 1.1028ev, 4.5,, 4.3 CuInSe 2 Philips F-20 CuInSe 2, 4.1 DI-water CuInSe 2, 20~30nm, 4.25, CuInSe 2, CuInSe 2 29
, SEM CuInSe 2 F-20 (EDS), 4.22 4.23 Cu:In:Se 1:1:2 CuInSe 2, 4.6 4.22,4.24, Cu:Se=1:1, 4.7, CuSe, XRD peak, DI-water, 48,,, 42,,, DI-water, [32], Al [33], [34],,, CuInSe 2, 4.4 CuGaSe 2 30
(solvothermal method) CuGaSe 2, CuInSe 2 180, CuGaSe 2, 210, CuGaSe 2 Ga Se Cu, CuGaSe 2, CuGaSe 2, 24 36 48 CuGaSe 2, XRD, 4.26 4.27 4.28 Scherrer equation, 21.9nm 20.99nm 22.48nm, 4.29 4.5 CuGaSe 2 (Philips CM-200) CuGaSe 2 4.30, 20nm 4.31,, 20nm 4.32 4.33, 20nm,, CuInSe 2,,, 31
, CuGaSe 2, 32
CuInSe 2,, CuInSe 2, 180, 48, 23nm CuInSe 2, ;, 180, 42, 22nm CuInSe 2 (nanorod) CuInSe 2,, CuGaSe 2, 210, 24, CuGaSe 2, CuGaSe 2 CuInSe 2, CuInSe 2,,CuGaSe 2,, CuInSe 2,, 33
6 1.1 I-III-VI 2 Chalcopyrite ABX 2 1.2 Cu 2 Se In 2 Se 3 42
圗 1.3MEH-PPV/C 60 PCBM 圗 1.4 MDMO-PPV/C 60 PCBM 43
1.5 (A)P3HT (B)P3HT CdSe (C) 1.6 44
Al electrode CuGaSe 2/ CuInSe 2 / ITO Glass substrate 圗 1.7 ITO/ CuGaSe 2 -polymer /CuInSe 2 -polymer/al 45
圗 2.1 Cu(en) 2 supersaturation curve solubility curve metastable C C B B A T C 2.2 46
圗 2.3 La Mer [10] 圗 2.4 [9] 47
圗 2.6 [9] 48
圗 3.1 3.2 49
3.3 50
4.1 DI-water [26] 4.2 51
4500 4000 (112) 3500 3000 (220) counts 2500 2000 1500 (312) CuSe(110) 1000 (400) 500 0 20 30 40 50 60 70 2? 4.3 18,DI-water XRD 3000 2500 (112) 36hrs 2000 (220) counts 1500 1000 CuSe (107) (110) (312) (400) 500 0 20 30 40 50 60 70 2? 4.4 36,DI-water XRD 52
(112) 2500 40hrs 2000 (220) counts 1500 CuSe (110) (312) 1000 (400) 500 20 30 40 50 60 70 2? 4.5 40,DI-water XRD 5000 (112) 48hrs 4000 (220) counts 3000 2000 (312) 1000 (400) 0 20 30 40 50 60 70 2? 4.6 48,DI-water XRD 53
5000 (112) 4000 (200) 54hrs 3000 counts 2000 (312) 1000 (400) 0 20 30 40 50 60 70 2? 4.7 54,DI-water XRD 7000 (112) 60hrs 6000 5000 (220) counts 4000 3000 (312) 2000 1000 (400) 0 20 30 40 50 60 70 2 theta 4.8 60,DI-water XRD 54
32 30 28 Size(nm) 26 24 22 10 20 30 40 50 60 reaction times(hrs) 6000 5000 (112) 18hrs 4000 (220) counts 3000 2000 (312) 1000 (400) 0 20 30 40 50 60 70 2? 4.10 18, XRD 55
(112) 7000 6000 5000 (220) 36hrs counts 4000 3000 (312) 2000 (400) 1000 0 20 30 40 50 60 70 2? 4.11 36, XRD 10000 (112) 42hrs 8000 (220) counts 6000 4000 (312) 2000 (400) 0 20 30 40 50 60 70 s theta 56
10000 (112) 45hrs 8000 (220) counts 6000 4000 (312) 2000 (400) 0 20 30 40 50 60 70 2 theta 10000 (112) 48hrs 8000 counts 6000 4000 (220) (312) 2000 (400) 0 20 30 40 50 60 70 reaction times 4.14 48, XRD 57
(112) 10000 8000 (200) counts 6000 4000 (312) 2000 (400) 0 20 30 40 50 60 70 reaction times 4.15 54, XRD 7000 (112) 6000 coubts 5000 4000 3000 2000 (220) (312) 1000 (400) 0 20 30 40 50 60 70 2 theta 58
14000 (112) 12000 10000 (220) counts 8000 6000 (312) 4000 2000 (400) 0 20 30 40 50 60 70 2 theta (112) 8000 6000 (220) counts 4000 (312) 2000 (400) 0 20 30 40 50 60 70 2 theta 59
0.7 Eg=1.111 0.6 0.5 (ahv) 2 0.4 0.3 0.2 0.1 0.0 0.7 0.8 0.9 1.0 1.1 1.2 Eg 1.4 Eg=1.098 1.2 1.0 (ahv) 2 0.8 0.6 0.4 0.2 0.0 0.7 0.8 0.9 1.0 1.1 1.2 Eg 60
Eg=1.1028 0.5 0.4 (ahv) 2 0.3 0.2 0.1 0.0 0.7 0.8 0.9 1.0 1.1 1.2 Eg, TEM 61
62
4.25 CuInSe 2 TEM [26] 5000 4000 (112) 24hrs 3000 (204) counts 2000 1000 (220) (312) (116) (400) 0 GaSe(116) 20 30 40 50 60 70 2 theta 24 XRD 63
12000 (112) 36hrs 10000 counts 8000 6000 4000 2000 (220) (204) (312) (116) (400) 0 GaSe(116) 20 30 40 50 60 70 2 theta 4000 3500 (112) 48hrs 3000 counts 2500 2000 (204) 1500 (220) (312) 1000 500 (116) (400) 0 20 30 40 50 60 70 2 theta 64
22.6 22.4 22.2 22.0 size(nm) 21.8 21.6 21.4 21.2 21.0 20.8 20 25 30 35 40 45 50 hrs 4.30 CuGaSe 2 1 65
4.31 CuGaSe 2 2 4.32 CuGaSe 2 66
4.33CuGaSe 2 67
: (Ethylenediamine) : (Ethylenediamine) 39
: (Ethylenediamine) 4.4,, F.W.H.M 0.3098 0.2280 Size 26.39nm 35.86nm Reaction time: 72hrs Temperature: 180 Washing agent:alcohol 4.5 (energy gap) 22.325nm 26.39nm 31.39nm (nm) Eg(ev) 1.111 ev 1.1028 ev 1.098 ev 4.6 4.24 Cu In Se atom% 45.515 1.711 52.772 40
4.7 4.25 Cu In Se atom% 26.537 19.06 54.402 41
1.1 25-30% 24% 34% 14-17% 20% III-V GaAs, InP 15% II-VI CdS, CdTe, CuInSe 2 18% 11-14% 35% 27.8% 13.5% 5-7% 17-18% 15.8% 36
99.99%(Alfa Aesar Co.) 3.1 1. Selenium powder Se - 325 mesh 99.5%(Alfa Aesar Co.) 2. Indium(III) Chloride Tetra-hydrate InCl 3 4H 2 O 3. Cupric Chloride Hydrate Cell Culture CuCl 2 2H 2 O 4.Gallium(III) chloride,ultra dry,99.999%(metals basis) 1. Anhydrous-ethylenediamine 2. Diethylamine 3.aceton, 4.Alcohol, 1. 50ml 2. 3., 37
3.2 Se 0.205g 2.59mole CuCl 2 2H 2 O 0.221g 1.26 mole InCl 3 4H 2 O 0.38g 1.29 mole An-hydrous ethylenediamine (solvent) Sealed,maintained 180 C for18 hour Di-water 60 C 4hour 38
[1] Hans Joachim Moller, Semiconductors for Solar Cells [2] Yian Qian Synthesis by a Solvothermal Route and Characterization of CuInSe 2 Nanowhiskers and Nanoparticles, Advanced Materials. No. 17, 1456-1459. 1999 [3] D. M. Antonelli Synthesis of Hexagonally Packed Mesoporous TiO 2 by a Modified Sol-Gel Method, Angew. Chem. Int. Ed. Engl., 34, 18, 2014.(1995) [4] [5] N. S. Sariciftci, Phys. Rev. B, 47, 13835 (1993). [6] N. S. Sariciftci, J. Chem. Phys., 104, 4267 (1996). [7] G. Yu,,Science, 270, 1789 (1995). [8] N. S. Sariciftci, Science, 258, 1474 (1992). [9] N.S. Sariciftci, J. Mater. Res., Vol. 19, No. 7, 1924 (2004). [10] Christoph J, Adv. Funct. Mater., Vol. 11, No. 1, 15 (2001) [11] Elif Arici, Adv. Funct. Mater. Vol.13, No. 2, 165 (2003) [12] Wendy U. Huynh, Science, Vol 295, 2425-2427 (2002). [13] E. Arici, Hybrid solar cells based on inorganic nanoclusters and conjugated polymers, Thin solid films, 451-452, 612-618 2003 [14] Yian Qian, Advanced Materials. No. 17, 1456-1459, (1999). [15] J. W. Mullin, Crystallization, Butterworth-Heinemann, Boston (1993). [16] C. B. Murray, Annu. Rev. Mater. Sci., 30(1), 545-610 (2000). [17] X. Peng, J, J. Am. Chem. Soc., 120(21), 5343-5344 (1998). 34
[18] Z. Qiao,Radiat. Phys. Chem., 58, 287-292 (2000). [19] A. D. Yoffe, Adv. Phys., 42(2), 173-266 (1993). [20] L. E. Brus, J. Chem. Phys., 80(9), 4403-4409 (1984). [21] Y. Wang, J. Chem. Phys., 87(12), 7315-7322 (1987) [22] Y. Kayanuma, Phys. Rev. B., 38(14), 9797-9805 (1988). [23] Y. Wang and N. Herron, Phys. Rev. B., 42(11), 7253-7255 (1990). [24]Y. Kayanuma Phys. Rev. B., 41(14), 10261-10263(1990). [25],, (1998) [26] Wei-Lun Lu,The Synthesis of CuInSe2 nano powders and fabrication of hybrid solar cells(2005) [27] Ivan V Markov,Crystal growth for beginners, by World Scientific Publishing Co,Pte.Ltd(1995) [28] H.Arend,Crystal Growth in Science and Technology, Published in cooperation with NATO Scientific Affairs Division(1989) [29] Harald Hoppe,Materials Research Society,Organic solar cell:an overview(2004) [30] J.Kois,Glass/ITO/In(O,S)/CuIn(S,Se) 2 solar cell with conductive polymer window layer,solar Energy Materials Solar cell 87(2005) 657-665 [31] S.Furukwa,Jpn.J.Appl Phys 27(11) L2207(1998) [32]F.J.Humphreys,ActaMaterialia,Volume45,Issue12,,page5031-5039(1 997) [33]Paul.Honeyman-Colvin,Journal of the American ceramic Society Volume 79 page1810 (July1996) [34] Journal of Metamorphic Geology,Volume 14,page 155( March1996) 35