カテゴリー Ⅱ 日本建築学会環境系論文集第 80 巻第 710 号, ,2015 年 4 月 J. Environ. Eng., AIJ, Vol. 80 No. 710, , Apr., 2015 軒下部に衝突する火炎の熱伝達特性 HEAT TRANSFER TO AN

Similar documents
カテゴリー Ⅰ 日本建築学会環境系論文集第 82 巻第 733 号, ,2017 年 3 月 J. Environ. Eng., AIJ, Vol. 82 No. 733, , Mar., 2017 DOI

計画系 741 号 カテゴリー Ⅱ 日本建築学会計画系論文集第 82 巻第 741 号, ,2017 年 11 月 J. Archit. Plann., AIJ, Vol. 82 No. 741, , Nov., 2017 DOI

國立中山大學學位論文典藏

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm

92

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流

[29] a N d N b 2 d sin θ N b ФФ a b Ф Ф θ θ a b Fig.1 Working principle demonstration of a phased-array antenna θ

cm /s c d 1 /40 1 /4 1 / / / /m /Hz /kn / kn m ~

カテゴリー Ⅱ 日本建築学会環境系論文集第 82 巻第 737 号, ,2017 年 7 月 J. Environ. Eng., AIJ, Vol. 82 No. 737, , Jul., 2017 DOI

by industrial structure evolution from 1952 to 2007 and its influence effect was first acceleration and then deceleration second the effects of indust

通 过 厂 变 带 电, 这 种 设 计 减 少 了 机 组 自 带 厂 用 电 负 荷 能 力, 降 低 了 锅 炉 满 足 FCB 时 最 低 稳 燃 工 况, 同 时 造 成 燃 烧 调 整 量 加 大 本 电 厂 在 FCB 试 验 时, 电 泵 不 联 启, 始 终 保 持 汽 泵 运 行

m m m ~ mm

708 北 京 工 业 大 学 学 报 2011 年 以 往 的 试 验 结 果 进 行 对 比, 选 取 15D 20D 作 为 对 比 参 数, 试 件 参 数 见 表 1. Fig. 1 图 1 试 件 尺 寸 及 配 筋 图 ( mm) Geometry and reinforcement

标题

Microsoft Word - 上傳電子檔.doc

一次辽宁暴雨过程的诊断及风场反演分析

カテゴリー Ⅰ 日本建築学会計画系論文集第 80 巻第 710 号, ,2015 年 4 月 J. Archit. Plann., AIJ, Vol. 80 No. 710, , Apr., 2015 Facebook かまくらさん にみる場所の特徴 THE FEATURE

CFDesign 2 1 CFDesign CFDesign CAD ~ r /min mm 1

鋼構造論文集第 20 巻第 79 号 (2013 年 9 月 ) AN EVALUATION METHOD FOR ULTIMATE COMPRESSIVE STRENGTH OF STAINLESS STEEL PLATES BASED ON STRESS-STRAIN DIAGRAM * **

( s y s t e m ) ( s t r e s s ) (stress model) ( s y s t e m ) [ ] [ 5 ] C o x [ 3 ] 1 [ 1, 2 ] [ 6-8 ] [ 9 ] Tw Fam Med Res 2003 Vol.1 No.1 23

km km mm km m /s hpa 500 hpa E N 41 N 37 N 121

the requirements of load - bearing rescue and turning of the large fire engine can be served as an outdoor safety area. 5 The second floor

SWAN min TITAN Thunder Identification Tracking Analysis SWAN TITAN and Nowcasting 19 TREC Tracking Radar Echo by Correlaction T

θ 1 = φ n -n 2 2 n AR n φ i = 0 1 = a t - θ θ m a t-m 3 3 m MA m 1. 2 ρ k = R k /R 0 5 Akaike ρ k 1 AIC = n ln δ 2

UDC Empirical Researches on Pricing of Corporate Bonds with Macro Factors 厦门大学博硕士论文摘要库

第二十四屆全國學術研討會論文中文格式摘要

カテゴリー Ⅱ 日本建築学会環境系論文集第 82 巻第 733 号, ,2017 年 3 月 J. Environ. Eng., AIJ, Vol. 82 No. 733, , Mar., 2017 DOI

Maup re,,,,,, ;,,,,,,,,,, PC 1985 Cognac,, 80, [ 526 ], 420m 160m [ 728 ], PC,,,,,,,,, , [ 3 ] 3008mm, 488mm, 222mm, ( ) 2880mm , 4914, 6

1. 前 言 由 於 石 油 價 格 浮 動, 汽 油 價 格 節 節 高 升 及 二 氧 化 碳 等 廢 棄 大 量 排 放 造 成 全 球 環 境 的 改 變, 因 此 世 界 各 國 都 極 力 提 倡 節 能 減 碳 進 而 掀 起 腳 踏 車 城 市 的 風 潮 因 應 目 前 自 行 車

(2005 (2006, (2006 ( , ( ,,,,,, ( (ASFR ASFR : x, B x x, P f x x (1 (2 4,, , 2 1 :, 1 2, 20-29

第16卷 第2期 邯郸学院学报 年6月

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m +

m 2, m 2,,,, 20. 5m,, 4. 6 m 2 3, m, 87200m 2,, ( ) Leoadaly 1 C40, 2200mm 2650mm, 30m, 49000kN 71000kN, 193m, 156m,,, 2 1,


cm hpa hpa 2 45 N hpa ~ 12 Fig. 1 The observed rainfall distribution of Shanxi

Ansys /4 Ansys % 9 60% MU10 M m 1 Fig. Actual situation of measured building 1 Fig. 1 First floor plan of typical r

2 207 Manuel Castells

SVM OA 1 SVM MLP Tab 1 1 Drug feature data quantization table

カテゴリー Ⅱ 日本建築学会環境系論文集第 82 巻第 734 号, ,2017 年 4 月 J. Environ. Eng., AIJ, Vol. 82 No. 734, , Apr., 2017 DOI


m m 5m ~ PTFE Q45B 1 670MPa PMSAP MIDAS SAP2000 MIDAS MIDAS s 0.

京都大学防災研究所年報 第56号(平成24年度)

Technical Acoustics Vol.27, No.4 Aug., 2008,,, (, ) :,,,,,, : ; ; : TB535;U : A : (2008) Noise and vibr

142 () Fig. 2 Tracks of typhoon 35 m/ s.,. NASA QuikSCA T L3 (10 m ),, km, 25 km,20, 2 m/ s (320 m/ s) 10 %(2030 m/ s)., ()

g 100mv /g 0. 5 ~ 5kHz 1 YSV8116 DASP 1 N 2. 2 [ M] { x } + [ C] { x } + [ K]{ x } = { f t } 1 M C K 3 M C K f t x t 1 [ H( ω )] = - ω 2

カテゴリー Ⅲ 日本建築学会環境系論文集第 81 巻第 723 号, ,2016 年 5 月 J. Environ. Eng., AIJ, Vol. 81 No. 723, , May, 2016 DOI

Microsoft Word - 1--齐继峰_new_.doc

一般社団法人電子情報通信学会 信学技報 THE INSTITUTE OF ELECTRONICS, IEICE Technical Report INFORMATION THE INSTITUTE OF AND ELECTRONICS, COMMUNICATION ENGINEERS IEICE L

Time Estimation of Occurrence of Diabetes-Related Cardiovascular Complications by Ching-Yuan Hu A thesis submitted in partial fulfillment of the requi

OA-253_H1~H4_OL.ai

研究論文 Assessment of Effectiveness of Passenger Seatbelt Reminder on Using Belt Rate - Toward Introducing Its Assessment in the New Car Assessm

2

カテゴリー Ⅱ 日本建築学会計画系論文集第 81 巻第 720 号, ,2016 年 2 月 J. Archit. Plann., AIJ, Vol. 81 No. 720, , Feb., 2016 DOI

C J. C. Caldwell 訛 輯 輥 訛 輰 輥 Victor Nee 1 輥 輱 訛 ~

m K K K K m Fig. 2 The plan layout of K K segment p

8 : 731 Key words : narrow annular gap ; curvat ure ; critical heat flux ; annular flow,,,,,,,, ( ),, [122 ] kg/ (m 2 s) MPa

國立高雄大學○○○○○○學系(研究所)(標楷體18號字

カテゴリー Ⅰ 日本建築学会計画系論文集第 82 巻第 734 号, ,2017 年 4 月 J. Archit. Plann., AIJ, Vol. 82 No. 734, , Apr., 2017 DOI

第六篇

從實驗教材到官方課程──小學社會科板橋模式教材與改編本教科書的發展

标题

Microsoft Word - TIP006SCH Uni-edit Writing Tip - Presentperfecttenseandpasttenseinyourintroduction readytopublish

Microsoft Word - 05 許雪姬3校稿0123.doc

. 3. MOOC 2006 MOOC Automated Text Marker 2014 e-rater Yigal et al MOOC Coursera Edx 97

240 生 异 性 相 吸 的 异 性 效 应 [6] 虽 然, 心 理 学 基 础 研 [7-8] 究 已 经 证 实 存 在 异 性 相 吸 异 性 相 吸 是 否 存 在 于 名 字 认 知 识 别 尚 无 报 道 本 实 验 选 取 不 同 性 别 的 名 字 作 为 刺 激 材 料, 通

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

Microsoft Word - HC20138_2010.doc

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

1, : FLUENT 81 CA4113Z,,,,.,,. [ ] : :, 9 9t (<) + div (u<) = div ( < grad<) + S < (1) t, u, <, <, < S <,, 1., u i i, E,. k - RNG, () (3) [ 3-4 ],. 5

<4D F736F F D D3532A4E9AA76AEC9B4C1BB4FC657C160B7FEA9B2A5C1AC46B3A1B4DEB2A3A7BDAAFEC4DDAA4CB77EB8D5C5E7B3F5A4A7ABD8A5DF2E646F63>


Fig. 1 1 a-a b-b a-a σ ma = MPa σ a = MPa σ 0a = MPa 0. 9 σ t =135 MPa b-b σ mb = MPa τ b = MPa σ 0b =

Shanghai International Studies University THE STUDY AND PRACTICE OF SITUATIONAL LANGUAGE TEACHING OF ADVERB AT BEGINNING AND INTERMEDIATE LEVEL A Thes

T K mm mm Q345B 600 mm 200 mm 50 mm 600 mm 300 mm 50 mm 2 K ~ 0. 3 mm 13 ~ 15 mm Q345B 25

11 : 1345,,. Feuillebois [6]. Richard Mochel [7]. Tabakova [8],.,..,. Hindmarsh [9],,,,,. Wang [10],, (80 µm),.,. Isao [11]. Ismail Salinas [12],. Kaw

(Microsoft Word - 11-\261i\256m\253i.doc)

KUKA W. Polini L. Sorrentino Aized Shirinzadeh 6 7 MF Tech Pitbull Fox Taniq Scorpo Scorpo Compositum Windows KUKA 1 P 1 P 2 KU

論文集29-1_前6P.indd

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

mm ~


~ 10 2 P Y i t = my i t W Y i t 1000 PY i t Y t i W Y i t t i m Y i t t i 15 ~ 49 1 Y Y Y 15 ~ j j t j t = j P i t i = 15 P n i t n Y

カテゴリー Ⅰ 日本建築学会計画系論文集第 80 巻第 717 号, ,2015 年 11 月 J. Archit. Plann., AIJ, Vol. 80 No. 717, , Nov., 2015 DOI

11.xps

( ) [11 13 ] 2 211,,, : (1),, 1990 ( ) ( ),, ; OD, ( ) ( ) ; , ( ), (2) 50 %,, 1999 ( ) ( ) ; (3),,

报 告 1: 郑 斌 教 授, 美 国 俄 克 拉 荷 马 大 学 医 学 图 像 特 征 分 析 与 癌 症 风 险 评 估 方 法 摘 要 : 准 确 的 评 估 癌 症 近 期 发 病 风 险 和 预 后 或 者 治 疗 效 果 是 发 展 和 建 立 精 准 医 学 的 一 个 重 要 前

pdf

经 济 与 管 理 耿 庆 峰 : 我 国 创 业 板 市 场 与 中 小 板 市 场 动 态 相 关 性 实 证 研 究 基 于 方 法 比 较 视 角 87 Copula 模 型 均 能 较 好 地 刻 画 金 融 市 场 间 的 动 态 关 系, 但 Copula 模 型 效 果 要 好 于

14 17.,., Fig. 1 Bougeur gravity map of research region 2 Fig. 2 Magnetic map of research region

,,,,,,, :,,,,, ;,,,,,, : N = Y pr, dn N = dy Y - dpr pr, Y, N, pr,, (1),, ( : / ) :,, : t pr = e 1980 t = 1,t 9

压 缩 分 散 型 预 应 力 锚 索 近 年 来 有 了 较 多 的 应 用, 并 取 得 了 良 好 的 加 固 效 果 软 弱 岩 土 体 的 主 要 特 性 是 无 论 其 峰 值 强 度 还 是 残 余 强 度 都 是 很 低 的, 其 承 载 力 低 稳 定 性 差 压 缩 分 散 型

% %

基于因子分析法对沪深农业类上市公司财务绩效实证分析

1.0 % 0.25 % 85μm % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song

2 决 (1) (2) (3) 408AD-537AD AD-509AD 2.66 ( 1990) 衆 ( ) 6.5 1) 1)

<4D F736F F D20A46AA4AFACECA7DEA46ABEC7B1D0AE76ACE3A873AD70B565A6A8AA47B3F8A769A4AFACE >

华山山前断裂中段晚第四纪活动的地貌表现及响应

Transcription:

カテゴリー Ⅱ 日本建築学会環境系論文集第 8 巻第 71 号,35-313,215 年 4 月 J. Environ. Eng., AIJ, Vol. 8 No. 71, 35-313, Apr., 215 軒下部に衝突する火炎の熱伝達特性 HEAT TRANSFER TO AN EAVE DURING FLAME IMPINGEMENT 樋本圭佑 1 2, 出口嘉一 Keisuke HIMOTO and Yoshikazu DEGUCHI A series of model experiment was conducted for evaluating heat transfer to a non-flammable eave during flame impingement. Excess temperature T and incident heat flux to the eave q were measured under sixteen experimental runs with varying parameters of eave section geometry, burner geometry, installation position of the burner, and fuel supply rate. In order to correlate the imum excess temperature T, a reference length scale L was deduced from the governing dimensionless parameter Q. Dimensional analysis of thermal structure of the flow showed that the imum excess temperature T is expected to be proportional to x H L in the flaming regime, and x H L 1 in the non-flaming regime. The agreement with the experimental data was reasonable for all the tested eave sections and burner geometries. Keywords: Historic Urban Area, Model Experiment, Fire Spread, Heat Transfer, Eave 1)-6) 7) 2 8) 9), 1) 1 16 1 2 独立行政法人建築研究所博士 ( 工学 ) 竹中工務店技術研究所博士 ( 工学 ) Building Research Institute, Dr.Eng. Research & Development Institute, Takenaka Corporation, Dr.Eng. 35

(mm) (mm) H (mm) mf L/ 1 4 2., 6., 1. 2 2 1., 2., 6. A 3 4 2., 6., 1. 4 2 1., 2., 6. 69 5 4 5., 11.5, 18. 6 2 5., 11.5 1 2 4 B 7 4 5., 11.5, 18. 8 2 5., 11.5 x=y= z= 9 2., 6., 1. A 3 9mm 1 2., 6., 1. 11 5., 11.5, 18. 9mmz B 12 5., 11.5, 18. 4 13 2., 6., 1. 4,mmx 4mmy A 14 4 2., 6., 1. 149 (1) 15 () 5., 11.5, 18. B 16 5., 11.5, 18. 69mm (2) (3) 4/1 3 A 1mm1mmB 1mm4mm 2 3 x x y (1) (2) 2 4 B H (1) 2mm (2) 4mm 2 m f 16 2 3 m f m f x=5mm m f 1.~18. L/ Q m f 91.26kJ/L 1 m f 36

(1) (2) (3) x= x T K =3.2mm 1 2 52 y=mm C x=mm2mm 4mm6mm1,mm1,4mm y=-14mm W14mm E 2s m f 1 3 T q H m f 2. L / m f 1. L / H L fl, x x L fl q CAPTEC CAPTHERM 1 2 6 y=mm x=1mm3mm5mm8mm1,2mm 1,7mm 2s 3 L fl m f H L fl, x L fl L fl.3s 3s 1 3s L fl, C L fl, I L fl, M 5 1 L fl, M 8~82mm H L fl, M L fl, M H.42.78 L fl 1) 1 2 5 2 Q cpt g B QB 1 2 3 2 Q cpt g B Q Q c P (1) T g B L, QB 6 fl M 6 11), 12) A QB 1 B Q 1 B Q A -57.8%+37.5% B -14.3%+4.5% x A H=4mm m =1. L/ 1913 B f 37

7 z=5mm T Cy=mm 6 Ey=14mm Wy=-14mm 3 x=mm C C E W E W T C 5mm E W 7) ECW W T B m f =11.5 L/ 567 8 z=5mm T x=mm T x=4mmx=1,mm E W T C 1 7(a) T C T T x=4mm 6mm 7 y x T T x 1) 38

T 16.9 5.38 3 3 Q 2 H 5 r H.18 3 3 2 3 Q 2 H 5 r H r H.18 T r (2) T, 2 3 5 3 T, Q H (3) z A T T z Q 2 3 z Q c T gz Az 2 3 P (2) (4) (3)(4) 2 z H Az H (5) 13) T T T H, r T H r, 2 3, TQH f r H (6) f QH (7) 1 2 5 2 QH Q cpt g H (6) 1) 1) 2) z H Az H 2 3) (6) r H H 1)3) L (6) T T f x H L (8) T L (1) y (1) 2 B L (9) QL Q cp 1 2 3 2 T g L 1 L 2 Q c T g 1 2 3 P (1) L (8) f y 2 x z z u w x z (11) 1 p gt z (12) 2 ut wt k T q x z c 2 z (13) P c P u w x z p k q z d dx udx lim w C (11 ) z 1 lim p gtdz (12 ) z d dx 1 utdz c P q C q dz (13 ) C q C (11 ) 1 14) 2) u T x u T b u u u z b T T z b T (14) (11 )~(13 ) d dx bu u d C (11 ) 1 lim p g bt T d z d dx bu T (12 ) 1 u T d q C q dz (13 ) cp 39

(12 ) 1 (13 ) 1 2 lim p z 2 u (15) q C St cpu T (16) 1 R H F q dz C (17) St H F R b u T x l b x u x m n T x (18) (11 )~(13 ) x (13 ) 2 1 2 St 8) l m n 2 3 b x 1 3 u x T x b x u x (19) -1 T x 1~8 (8) 9(a) T T x H L (19) 2.5 T 2 7.22 x H L T 1 1.5 x H L x H L 1.7 x H 5. x H 1.7 L 5. L (2) T T x H L -2 x H L =1.7 x H L =5. x H L.68 2.25 1.19~4.22 2.3~27.9 (2) 9(a)x H L x H L 15) T T x x.375q B. 75 L (21) 3) 1(a) 1~8 9~12 13~16 9(b)9(c) y 2.5 T 12.3 T 1.37 2.5 T 7.22 T 2.57 x H L 3 x H L 1.7 x H 1.5 x H L 4.5 x H x H L 2 x H L 1.7 x H 1 x H L 3. x H 1.7 L 4.5 L 1.7 L 3. L (22) (23) x H L -3 x H L -1.5 x H L =5. x H L =3. x H L x x.3q B. 3 L (24) 1(b) (21) x 1(c) q T (8) q f x H L (25) 11(a)~(c) q x H L 31

T 4 1. 61 36.1 x H L q (26) 2. 13 65.4x H L q (27) 1. 66 34.x H L q (28) 311

q T y=mm C q T q x H L T x H L -1 x H L L T q JSPS 2436248 B [m] b [m] cp [kj/kgk] D [m] g [m/s 2 ] H [m] H F [kj/kg] k [kw/mk] L [m] L fl [m] L fl, x [m] m f [L/] p [Pa] Q [kw] Q [kw/m] Q q [kw/m 3 ] q [kw/m 2 ] q C [kw/m 2 ] St T [K] T [K] T [K] u x [m/s] u x [m/s] w z [m/s] x [m] x [m] [1/K] [kg/m 3 ] R 1) Alpert R.L., Calculation of response time of ceiling-mounted fire detectors, Fire Technology, Vol.8, No.3, pp.181-195, 1972 2) You H.Z., Faeth G.M., Ceiling heat transfer during fire plume and fire impingement, Fire and Materials, Vol.3, No.3, pp.14-147, 1979 3) Kokkala M.A., Experimental study of heat transfer to ceiling from an impinging diffusion flame, Fire Safety Science, Proc. 3rd Int l Symp., pp.261-27, 1991 4) Heskestad G., Hamada T., Ceiling jets of strong fire plumes, Fire Safety Journal, Vol.21, pp.69-82, 1993 5) No.484pp.149-156 1996.6 6) No.55pp.1-621.12 7) Hinkley P.L., Wraight H.G.H, Theobald C.R., The contribution of flames under ceilings to fire spread in compartments, Fire Safety Journal, Vol.7, pp.227-242, 1984 8) Delichatsios A.D., The flow of fire gases under a beamed ceiling, Combustion and Flame, Vol.41, pp.1-1, 1981 9) Sugawa O. Simple estimation model on ceiling temperature and velocity of fire induced flow under ceiling. Fire Science and Technology, Vol.21, No.1, pp.57-67, 21 1) Oka Y., Ando M. Temperature and velocity properties of a ceiling jet impinging on an unconfined inclined ceiling, Fire Safety Journal, Vol.55, pp.97-15, 213 11) Zukoski E.E., Kubota T., Cetegen B., Entrainment in Fire Plumes, Fire Safety Journal, Vol.3, pp.17-121, 198/1981 12) Yuan L.M., Cox, G., An experimental study of some line fires, Fire Safety Journal, Vol.27, pp.123-139, 1996 13) 22.1 14) Turner J.S., Buoyancy effects in fluids, Cambridge University Press, 1973 15) Heskestad G., Virtual origin of fire plumes, Fire Safety Journal, Vol.5, pp.19-114, 1983 1) 3 2) 13).6~.48 1 3) 15) x T x H E C W T x H T x T T x 312

HEAT TRANSFER TO AN EAVE DURING FLAME IMPINGEMENT Keisuke HIMOTO 1 and Yoshikazu DEGUCHI 2 1 Building Research Institute, Dr.Eng. 2 Research & Development Institute, Takenaka Corporation, Dr.Eng. A series of model experiment was conducted for evaluating heat transfer to a non-flammable eave during flame impingement. Excess temperature under an eave T, and incident heat flux to the eave q, were measured under sixteen experimental runs with varying parameters of eave section geometry, burner geometry, installation position of the burner, and fuel supply rate. Experimental results showed that diffusion of the impinged flame/plume progresses as it flows along the eave. However, in some cases, its distribution in width direction was not uniform such that the excess temperature in the center was lower than the excess temperature near the side wall as the impinged flow was attached to the side wall. Thus, in this study, the imum excess temperature in the plane perpendicular to the main flow direction T was selected as the reference excess temperature for evaluating the change of thermal behavior. Thermal behavior of a flame/plume impinged to an eave is similar to that of a flame/plume impinged to a ceiling. Thus, for the modeling of thermal behavior of a flame/plume impinged to an eave, there was a possibility of adopting the modeling approach similar to that of a flame/plume impinged to a ceiling. An existing model for the ceiling jet which is widely used in fire safety design of buildings normalizes a length from the impingement point x by the ceiling height H. However, applicability of this model to the present experimental result was not satisfactory as was expected. Major reasons for this are: (1) the ceiling model is deduced from the weak plume theory and is not applicable to the flow which involves flaming; (2) the ceiling model does not assume restriction of the impinged flow in the horizontal direction such as an eave does; and (3) there is no rationality of adopting the eave height or ceiling height H as an normalizing length scale in a model which assumes the impingement point as the virtual heat source. Based on these, a reference length scale L was deduced from the governing dimensionless parameter Q and was used in place of the eave height H. The present experimental result was well correlated with the new dimensionless length parameter x H L. Dimensional analysis of thermal structure of the flow showed that the imum excess temperature T is expected to be proportional to x H L in the flaming regime, and x H L 1 in the non-flaming regime. This estimate was verified with the present experimental result for all the tested eave sections and burner geometries. Even better agreements were obtained by adjusting x H L based on the virtual heat source assumption. Incident heat flux to the eave q was also correlated with x H L with reasonable accuracy, though the transition of behavior with regard to the transition of regime was not as clear as that of T. This is because the intensity of thermal radiation heat transfer is proportional to the heat source temperature to the power of four, and the transition of regime is less influential on the behavior transition of q. The present experiment was conducted using diffusion flame burners placed on the horizontal floor as the heat source, and does not replicate the actual window flame that impinges to an eave. However, the reasonableness of the new dimensionless length parameter x H L for this specific experimental condition indicates that thermal behavior of an actual window flame impinged to an eave can also be correlated with the similar approach as long as a length scale L is selected adequately. (214 年 8 月 21 日原稿受理,215 年 1 月 14 日採用決定 ) 313