2019 1 33( 200) Japanese Research Vol.33No.1 Fed.2018 1 2 (1. 100007;2. 102488) : 30 GMM :(1) ;(2) : ; GMM; :F1 :A :1004-2458(2019)01-0020-12 DOI:10.14156/j.cnki.rbwtyj.2019.01.003 2000 65 8821 9.9%201665 : 15003 70% 1970 7% [2] 15% ; 5.0 ( ) [1] [3] ; ; :2018-11-13 : A (GJ082017 SCX2975) : (1959 ) 20
: (Roper2002 [16] ) () : (1) Schneider (2008) (Siliv- U [17] erstovs2011 [4] ) (2) (1) :(1) (2) (Miyaza- wa2006 [8] ) 7% 14% 23(2002 23(1970 2025) 1993) : (1) 115 85 72 (D Aboal2012 [10] ;D 1 Singh2015 [11] ) (2) (Montobbio2002 [12] ; Metecalfe2005 [13] GaiandPissarides2007 [14] ) (3) [15] () (Rogerand Wasmer2011 [5] ) [9] (2) [6] (3) (1) (Frosch2009 [18] ) MenzandKühling (2011) (4) [7] (2) 1 43 21
2019 1 () [19] (2018) [21] 11 [20] 1 1 (Y) GDP /GDP; ; GDP/ ; GDP/ ; DEA-Malmquist ; /GDP; /GDP; ; : t+1 t M i (x t+1 : y t+1 x t y t ) t t+1 3 D t D t+1 ir= (gmn -g) 2 槡 hmn t t (1) n=1 g +1 t t+1 (1)gmn m n ;g ;h mn n ir [22] Malmquist (GPCA) [23][24] : D t 槡 M i (x t+1 y t+1 x t y t )= (x t+1 y t+1 (x Dt+1 t+1 y t+1 Di t (x t y t D t+1 i (x t y t (2) KMO (x t+1 y t+1 ) (x t y t ) 0.767 0.769 0.7Bart- 22
: let 0.000 : 85.748% INV it= (1- )INV it-1+l i it (3) 89.049% 85% INV i0= Li1 (4) gi+ i INV it L it () i t i 2002 2014 30 2 INV i0 Haletal.(2010) [25] gi 1 GDP 2 2 Groups CY JY LnCAGE LnJAGE LnCINV LnJINV LnCINV LnCAGE LnJINV LnJAGE LnCGOV LnJGOV LnCI LnJI LnCC LnJC LnCH LnJH LnCTRAD LnJTRAD 30 30 30 30 30 30 30 30 30 1. ;2. (65 )/ (15~64) /GDP 1 2 2012 2015 15% 23
2019 1 3 ; ; ; 3 25 2 1 11 22 26 24 24 8 12 11 20 2 41 44 7 13 4 26 28 12 19 46 37 26 19 23 38 10 9 15 18 23 1 17 16 11 37 27 32 7 10 28 39 45 23 20 29 2 7 14 41 21 15 44 3 3 15 40 30 18 26 18 12 24 27 1 44 18 30 18 12 20 38 28 5 9 17 20 21 9 7 34 26 43 25 22 9 43 14 19 15 9 10 24 25 33 21 34 5 13 16 36 41 22 16 10 21 25 25 36 13 14 37 2 2 17 42 34 19 4 2 28 30 28 40 28 11 35 6 7 45 43 3 3 6 30 29 30 33 15 19 23 32 39 17 5 8 29 27 22 42 8 5 5 30 29 8 12 21 39 12 6 14 46 27 15 5 46 1 1 3 35 42 13 23 19 45 4 4 21 17 24 4 6 13 18 20 17 29 9 16 16 14 20 10 22 33 4 16 31 10 8 7 31 23 25 6 31 35 6 11 11 22 27 38 13 29 36 24 1 3 27 26 32 8 14 40 : 2014 24
: () : Y it=α+β 1Yit-1+ β 2lnINVit+ β 3lnAGEit+ β 4lnGOVit+ β 5lnIit+ β 6lnCit+ β 7lnHit+ β 8lnTRADit+ μ i+εit (5) 4 5 AR Hansen Y it=α+η 1Yit-1+ η 2lnINVit+ η 3lnAGEit+ η 4lnINV AGE it+η 5lnGOVit+ η 6lnIit+ η 7lnCit+ η 8lnHit+ η 9lnTRADit+ μ i+εit (6) 2 4 1 6 26 i t Y it-1 Y it lninv it lnage it lninv AGE it lngov it lni it lnc it lnh it lntrad it μ i εit 1% 1 0.1570% 1% (5) 0.0699% (6) (GMM) GMM GMM GMM GMM (5) (6) GMM : 5 9 ΔY it=δβ 1Yit-1+Δ β 2lnINVit+Δ β 3lnAGEit+ Δβ 4lnGOVit+Δ β 5lnIit+Δ β 6lnCit+Δ β 7lnHit+ Δβ 8lnTRADit+Δεit (7) ΔY it=δη 1Yit-1+Δ η 2lnINVit+Δ η 3lnAGEit+ Δη 4lnINV AGE it+δη 5lnGOVit+Δ η 6lnIit+ Δη 7lnCit+Δ η 8lnHit+Δ η 9lnTRADit+Δεit (8) (7) (8) GMM Δ 1% 0.1166% (5) (6) GMM (SYS-GMM) GMM GMM GMM GMM GMM [26] GMM GMM (5)(8) 4 5 7 8 14 1014 1% 0.6346% 1% 0.0114%; 5% 1 2 :y=β0+β1x 1 +β2x 2 +β3x 1 x 2 +μ : y=α 0 + α 2 x 2 +α 3 (x 1 -μ1 )( x 2 -μ2 ) +μ μ1 μ2 x 1 x 2 : ( ) 186 10 11 12Hansen p 0.05 25
2019 1 4 SYS-GMM 1 2 3 4 5 6 7 8 L.CY 0.7686 *** 0.8534 *** 0.8168 *** 0.7683 *** 0.7390 *** 0.7352 *** 0.1067 * 0.0952 (0.7840) (0.0731) (0.0744) (0.0852) (0.0768) (0.0757) (0.0606) (0.0598) LnCAGE -0.1186 ** -0.0784 * -0.0846 * -0.10 ** -0.1465 *** -0.1570 *** -0.78-1.5045 ** (0.0568) (0.0416) (0.0495) (0.0460) (0.0521) (0.0557) (1.4522) (0.6176) LnCINV 0.0649 ** 0.0904 *** 0.0878 ** 0.0907 *** 0.0931 *** 0.0699 ** 0.8276 * 0.8783 *** (0.0290) (0.0305) (0.0272) (0.0330) (0.0280) (0.0276) (0.49) (0.3337) LnCINV LnCAGE 0.0166 0.0117 0.0203 0.0566 0.0555 0.1996 (0.0320) (0.0293) (0.0288) (0.0386) (0.0412) (1.2292) LnCH- 0.1241 ** -0.0509 ** -0.0692 *** -0.1500 *** -0.1526 *** -0.1222 *** 0.5774 0.2806 (0.0544) (0.0251) (0.0266) (0.0556) (0.0441) (0.04) (0.5671) (0.18) LnCGOV 0.1401 ** 0.0400 * 0.1087 *** 0.1962 *** 0.1725 *** -0.4893-1.3301 * (0.0584) (0.0222) (0.0408) (0.0621) (0.0556) (0.8908) (0.7935) LnCC -0.1073-0.1448 *** -0.2261 *** -0.1398 * 1.0574 2.0087 * (0.0810) (0.0549) (0.0695) (0.0729) (1.0734) (1.1409) LnCI -0.0619 ** -0.0935 *** -0.5082 0.2766 (0.0287) (0.0367) (0.0298) (0.8178) (0.61) LnCTRAD 0.0355 ** 0.0408 ** 0.1290 0.1641 (0.0180) (0.0180) (0.2641) (0.2406) Cons 0.7208 *** 0.3381 ** 0.3371 * 0.6291 ** 0.6591 *** 0.7232 *** -1.6773 1.0342 (0.2017) (0.1698) (0.1812) (0.2732) (0.2373) (0.2202) (5.8071) (5.2563) AR(1) -2.42-2.40-2.41-2.42-2.39-2.38-2.19-2.35 (0.016) (0.016) (0.016) (0.016) (0.017) (0.017) (0.029) (0.019) AR(2) 0.06-0.27-0.28-0.19 0.06 0.18-0.62-0.44 (0.954) (0.786) (0.779) (0.846) (0.949) (0.857) (0.532) (0.659) Hansen 26.42 28.74 27.85 27.82 25.38 24.31 25.87 26.29 (0.745) (0.632) (0.677) (0.678) (0.790) (0.833) (0.769) (0.750) Wald2961.03 10957.19 7145.29 44.36 41.62 4531.53 33.59 60.82 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) Obs 360 360 360 360 360 360 360 360 Groups 30 30 30 30 30 30 30 30 :1 * * * * * * 1% 5% 10% () ;2AR(1) AR(2)Hansen () P 26
: 5 SYS-GMM 9 10 11 12 13 14 L.JY 0.9070 *** 0.8194 *** 0.8320 *** 0.8085 *** 0.8084 *** 0.8234 *** (0.0373) (0.0889) (0.0817) (0.0854) (0.0861) (0.0814) LnJAGE- 0.5002 ** -0.73 * -0.73 * -0.6128 ** -0.6919 ** -0.6346 ** (0.2162) (0.2456) (0.2527) (0.2660) (0.2751) (0.2667) LnJINV 0.0100 ** 0.0114 0.0132 * 0.0140 * 0.0150 ** 0.0114 * (0.0048) (0.0077) (0.0076) (0.0079) (0.0075) (0.0065) LnJINV LnJAGE 0.1260 ** 0.1116 ** 0.1263 ** 0.1294 ** 0.1166 ** (0.0541) (0.0481) (0.0517) (0.0522) (0.0487) LnJC 0.1114 ** 0.1598 ** 0.1602 ** 0.1693 ** 0.2081 ** 0.1724 * (0.05) (0.0714) (0.0745) (0.0811) (0.0904) (0.0974) LnJGOV 0.0593 0.0214 0.0494 0.0420 0.0385 (0.0360) (0.0223) (0.0348) (0.0357) (0.0336) LnJI 0.0355 0.0403 0.0355 0.0337 (0.0216) (0.0301) (0.0287) (0.0262) LnJH -0.0082-0.0162-0.0155 (0.0089) (0.0129) (0.0110) LnJTRAD 0.0360 * 0.0213 (0.0191) (0.0250) Cons -0.8642 *** -0.7128 ** -0.7952 ** -1.0568 *** -1.1618 *** -0.99 *** (0.3062) (0.3133) (0.3500) (0.3961) (0.3886) (0.3750) AR(1) -3.08-2.95-2.98-2.97-2.97-2.99 (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) AR(2) 1.26 1.37 1.34 1.31 1.36 1.34 (0.207) (0.171) (0.179) (0.190) (0.173) (0.180) Hansen 42.51 43.31 42.78 43.23 41.45 (0.101) (0.088) (0.097) (0.089) (1.121) (0.122) Wald 8130.74 2428.39 3052.26 3049.77 3896.46 (0.000) (0.000) 0.000) (0.000) (0.000) (0.000) Obs 564 564 564 564 564 564 Groups : 4 27
2019 1 () ; GMM 6 7 1 4 5 ; 4 5 6 : 15 16 17 18 19 20 L.CY 0.1136 * 0.1000 * 0.1049 * L.JY 0.8234 * * * 0.9126 * * * 0.9168 * * * (0.0621) (0.0594) (0.0572) (0.0814) (0.1703) (0.0351) LnCAGE -1.8945-1.3490-1.2418 LnJAGE -0.1755 * * -0.3917 * * -0.1055 * * (2.4633) (1.9269) (2.1432) (0.0738) (0.1703) (0.0461) LnCINV 0.7596 * 1.5158 * * 1.5245 * * LnJINV 0.0114 * -0.1270 * 0.0136 * (0.4355) (0.6563) (0.6614) (0.0065) (0.0689) (0.0105) LnCINV LnCA -0.1681-1.1750-0.6084 LnJINV LnJA 0.0323 * * -0.0033 * * 0.0306 * GE (1.0298) (1.05) (0.9500) GE (0.0135) (0.1703) (0.0164) AR(1) -2.22-2.24-2.25 AR(1) -3.04-3.06-3.06 (0.027) (0.025) (0.024) (0.002) (0.002) (0.002) AR(2) -0.51-0.57-0.61 AR(2) 1.18 1.27 1.27 (0.609) (0.566) (0.540) (0.240) (0.204) (0.203) Hansen24.61 25.23 25.44 Hansen 40.83 42.46 42.33 (0.822) (0.797) (0.788) (0.136) (0.102) (0.105) Wald 54.87 29.20 29.58 Wald 10877.69 8235.58 8641.98 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) Obs 360 360 360 Obs 564 564 564 Groups 30 30 30 Groups : 4 1 15 18 65 16 19 17 20 1517 4 7 28
: 7 : 21 OLS 22 FE 23 RE 24 2SLS 25 DIF-GMM ( ) 26 DIF-GMM ( ) L.CY 0.4057 * * * 0.4376 * * * (0.1084) (0.1195) LnCAGE -0.14 * * * -0.4975 * * * -0.14 * * * -0.2770 * * * -0.1520 * * -0.1733 * * (0.1171) (0.1059) (0.1171) (0.0694) (0.0684) (0.0818) LnCINV 0.2664 * * * 0.2366 * * * 0.2664 * * * 0.2753 * * * 0.1412 * * * 0.1221 * (0.01) (0.0394) (0.01) (0.0272) (0.0527) (0.0626) LnCINV LnCAGE 0.0801 0.1027 0.0801 0.0786 0.0028 0.0017 (0.0737) (0.0684) (0.0737) (0.0498) (0.0507) (0.0564) R 2 0.8793 0.8979 0.8793 0.8393 AR(1) -3.02-2.30 (0.003) (0.021) AR(2) 0.81 0.76 (0.415) (0.449) Hansen 26.85 26.85 (0.140) (0.140) Obs 390 390 390 360 330 330 Groups 30 30 30 30 30 30 : 4 [28] 30 GMM : ; (1993 38 ) [29] [27] 29
2019 1 [R].[2017-06-09].htps://www. kantei.go.jp/jp/singi/keizaisaisei/pdf/miraitousi2017 t. 2016 65 pdf. 11.8% 61.6% [4]SILIVERSTOVSBKHOLODILIN K ATHIESSEN U.DoesaginginfluencestructuralchangeEvidencefrom 65 paneldata[j].economicsystems201135(2):244-260. 2016 11.9% [5]ROGER MWASMER M.Heterogeneity Maters:La- bourproductivity Diferentiatedby AgeandSkils[R]. [30] Documentsde Travaildela DESE-rWorking Papersof thedese2011. [31] [6]. [J]. 2012 65 (4):56-65. [7]MENZ TK HLINGJ.Populationagingandenviron- 199865 mentalqualityin OECDcountries:evidencefromsulfur dioxideemissionsdata[j].population & Environment 517.9 2008 2013 645.4 201133(1):55-79. 539.9 [8]MIYAZAWA K.Growthandinequality:ademographic explanation[j].journalofpopulation Economics2006 6 2010 19(3):559-578. 200065 [9]. [J]. 2014(3):145-166. [10]ABOALDGardaP.TechnologicalandNontechnologi- calinnovation and Productivityin Servicesvisa vis ManufacturinginUruguay[J].IdbPublications2012. [11]DAVINDER SINGHJAIMAL SINGH KHAMBA TARUN NANDA.RoleofTechnologicalInnovationin Improving ManufacturingPerformance:A Review[J]. InternationalScholarlyandScientificResearch &Inno- vation20159(1):398-402. [12]MONTOBBIO F.Anevolutionary modelofindustrial growthandstructuralchange[j].structuralchange & ; EconomicDynamics200213(4):387-414. [13]METCALFEJSRAMLOGAN R.Competitionand theregulationofeconomicdevelopment[j].quarterly ReviewofEconomics & Finance200545(2-3):215 [ ] -235. [1]. [14]GAIL RPISSARIDES C A.StructuralChangeina MultisectorModelofGrowth[J].American Economic [EB/OL].[2018-01-11].www.xinhuanet. Review200797(1):429-443. com/2017-10/27/c 1121867529.htm. [2]. 2014(6):1-6. [J]. [16]ROPERSLOVEJH.Innovationandexportperform- ( )2018(5):71-84. ance:evidencefromtheukandgermanmanufacturing [3]. 2017 Society5.0 30 [15]. [J]. plants[j].researchpolicy200231(7):1087-1102.
: [17]SCHNEIDER L.AlterungundtechnologischesInnova- tionspotential[j].zeitschriftfürbevlkerungswissen- schaft200833(1):37-54. [18]FROSCH KTIVIG T.Labour Marketsand Demo- [25]BRONWYN H. HalJacques Mairesse Pierre Mohnen.Measuringthe Returnsto R&D[J].UNU- rmerit WorkingPapersISSN1871-9872:1-46. [26]WINDMEIJERFRANK.Afinitesamplecorrectionfor graphicchange[m].wiesbaden:vs VerlagfürSozial- wissenschaften2009:137-146. [19]HICKSN L.GrowthvsBasicNeeds:IsThereaTrade- rof[j].worlddevelopment20067(11):985-994. (8):107-127. [21]. [28]. [J]. ( )2018(5):143-152. [J]. 2018(5):69-80. [22]. 201731(4):50-60. [M]. : 2013:144. [23]. (2017-6-23)[2018-7-20].htp://www8.cao.go. [J] 201130(1):98-106. [24]VIDAL RMA YSASTRY S.Generalized principal componentanalysis(gpca)[j].ieee Transactionson jp/kourei/whitepaper/w -2017/zenbun/29pdfindex. html. [31]. [J]. Patern Analysis & Machine Inteligence200527 201731(4):69-80. (12):1945-1959. tors[j].journalofeconometrics2005126(1):25-51. [27]ARJUN KHARPAL.JapanhasnofearofAI itcould boostgrowthdespitepopulationdeclineabesays[eb/ rdespite-rpopulation-rdecline-rabe-rsays.html. [29]. [J]. [30]. 29 [EB/OL]. [ ] TheEffectsofPopulationAgingandTechnologyInnovation onthequalityofeconomicgrowth BasedonSystem GMM EstimationforDynamicPanelData ZHANGJi-feng 1 DENG Mei-wei 2 (1.InstituteofJapaneseStudiesChineseAcademyofSocialSciencesBeijing100007China; 2.GraduateSchoolChineseAcademyofSocialSciencesBeijing102488China) thevarianceoflineareficienttwo-rstep GMM estima- [20]. OL].[2017-03-19].htps://www.cnbc.com/2017/03/ [J]. 2015 19/japan-rhas-rno-rfear-rof-rai-r-rit-rcould-rboost-rgrowth- Abstract:Bymeasuringtheeconomicgrowthqualityindicatorsof31provincesinChinaandcountiesin Japanthispaperexplorestheinfluencesoftechnologicalinnovationandagingonthequalityofeconomic growththroughsys-gmm model.themainconclusionsareasfolows:firstlyforbothchinaandjapan technologicalinnovationcanefectivelypromotethequalityofeconomicgrowthandtheagingofpopula- tionhasanegativeimpactonit;secondlytheinteractionbetweentechnologicalinnovationandpopulation aginghaspositiveinfluenceonthequalityofeconomicgrowthandtechnologicalinnovationcanbeusedas apowerfulmeasuretodealwiththechalengeofpopulationaging.howeverthisimpactissignificantin thejapaneseempiricalsamplebutnotinthechineseempiricalsample.inview ofthesechinashould learnfromjapanpromotethehealthlevelofagedpeopleandencourageagedpeopletoparticipateinso- cialactivitiesandreturntowork. Keywords:technologicalinnovation;populationaging;sys-gmm;regionaleconomy 31