34 22 f t = f 0 w t + f r t f w θ t = F cos p - ω 0 t - φ 1 2 f r θ t = F cos p - ω 0 t - φ 2 3 p ω 0 F F φ 1 φ 2 t A B s Fig. 1

Similar documents
u d = R s i d - ωl q i q u q = R s i q + ωl d i d + ωψ 1 u d u q d-q i d i q d q L d L q d q ψ f R s ω i 1 i 5th i th 5 θ 1 θ θ 3 5 5

Electri c Machines and Control Vol. 21 No. 7 Jul totally enclosed fan-cool TEFC 55 kw DOI 10.

; 3/2, Buck-Boost, 3 Buck-Boost DC-DC ; Y, Fig. 1 1 BBMC The topology of three phase-three phase BBMC 3 BBMC (Study on the control strategy of

Fig. Distribution model of axial magnetic bearing air gap permeance G 6 ~ G 8 G G G ' 7-8 G 3 G 4 G ' 3 G ' 4 G 5 G 6 G 5 G

1 2 Z θ. 1 T z = 3 mm (b) 轴向气隙磁密 2 Fig. 2 Air gap flux density when rotor aligns with stator with trapezoidal P

CARDSM 3 1 CARDSM 1. 1 CARDSM 9 /6 1 CARDSM CARDSM axial coil assisted reluctance doubly salient motor CARDSM CARD

4 16 SRM J z J z B x B y SRM J. M. Stephenson J. Corda 1 SRM 6 T. J. E. Miller McGilpM Table 1 The basic parameter o

标题

3 6 permanent magnet synchronous motor LSPMSM G A x( μ ) + A x y( μ ) = - J y s + σ A t 7-8 Γ A = LSPMSM A Γ 2 ν n - ν A 2 n = δ c LSPMSM A J s μ σ v

Electri c Machines and Control Vol. 22 No. 11 Nov DOI /j. emc

/MPa / kg m - 3 /MPa /MPa 2. 1E ~ 56 ANSYS 6 Hz (a) 一阶垂向弯曲 (b) 一阶侧向弯曲 (c) 一阶扭转 (d) 二阶侧向弯曲 (e) 二阶垂向弯曲 (f) 弯扭组合 2 6 Hz

Electri c Machines and Control Vol. 21 No. 12 Dec :,,,,,,,, 15 kw r /min, : ; ; ; DOI:

(L d L q ). i d = 0,, [8].,,,,, / (maximum torque per ampere, MTPA) [9],. MTPA [9] [10],,,. MTPA, MTPA.,,,. MTPA,,,.,. 2 (Model of PMSM) d-q, :

Technical Acoustics Vol.27, No.4 Aug., 2008,,, (, ) :,,,,,, : ; ; : TB535;U : A : (2008) Noise and vibr

Y m G C I IMC C II IMC R Y = + C I IMC F f G - G^ + - F f G^ C I IMC D + C I IMC F f G - G^ 9 D() R() C IMC() Ⅱ CIMC() U() Ⅰ G() Y() Y m() - G

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

2 193 EMAT F a λ 1 a λ 1 /2 EMAT 8 9 EMAT H = J C 1 B = μh EMAT E = - B 3 t J = γe F = J B + B S 5 H J C B μ EMAT E EMAT EMAT γ J ANSYS B

P ID,, P ID P ID ; k P ; k I ; k D ; e ( k) k [ 10, 11 ], P ID ; e ( k), 2 e ( k) P ID, e ( k) P ID, P ID P I D, ( k P, k I, k D ), P ID P ID [

ELECTRI C MACHINES AND CONTROL Vol. 16 No. 10 Oct TM 77 A X Electromagnet

cm /s c d 1 /40 1 /4 1 / / / /m /Hz /kn / kn m ~

718 30,. [8],,,,,,. PMSM, (q ) (d ).,,,,. 2 IPMSM (Mathematical model of IPMSM and analysis of the flux-weakening control operation) 2.1 IPMSM (Mathem

( permanent magnet linear synchronous motor, PMLSM ), [ 1-3 ] PMLSM,, PMLSM PMLSM,, SPWM : 2 Hz; 018; 017 khz; JUNG Insoung [ 4 ] V PM

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

LaDefense Arch Petronas Towers 2009 CCTV MOMA Newmark Hahn Liu 8 Heredia - Zavoni Barranco 9 Heredia - Zavoni Leyva

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

mm ~

untitled

85% NCEP CFS 10 CFS CFS BP BP BP ~ 15 d CFS BP r - 1 r CFS 2. 1 CFS 10% 50% 3 d CFS Cli

m K K K K m Fig. 2 The plan layout of K K segment p


KUKA W. Polini L. Sorrentino Aized Shirinzadeh 6 7 MF Tech Pitbull Fox Taniq Scorpo Scorpo Compositum Windows KUKA 1 P 1 P 2 KU

2 ( 自 然 科 学 版 ) 第 20 卷 波 ). 这 种 压 缩 波 空 气 必 然 有 一 部 分 要 绕 流 到 车 身 两 端 的 环 状 空 间 中, 形 成 与 列 车 运 行 方 向 相 反 的 空 气 流 动. 在 列 车 尾 部, 会 产 生 低 于 大 气 压 的 空 气 流

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 10 p 11 θ 1 θ 2 θ 3 θ 4 θ 5 θ 6 θ 7 θ 8 θ 9 θ d 1 = 0 X c 0 p 1 p 2 X c 0 d pi p j p i p j 0 δ 90

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

m m m ~ mm

PID FIR 1 4 u t 5-6 y t i d = 0 M d2 y + A dy = f - f dt 2 dt d dy u q = R a i q + K e 7 dt + L di q a dt 1 u q f = K f R a

~ ~ ~

* CUSUM EWMA PCA TS79 A DOI /j. issn X Incipient Fault Detection in Papermaking Wa

θ 1 = φ n -n 2 2 n AR n φ i = 0 1 = a t - θ θ m a t-m 3 3 m MA m 1. 2 ρ k = R k /R 0 5 Akaike ρ k 1 AIC = n ln δ 2

#4 ~ #5 12 m m m 1. 5 m # m mm m Z4 Z5

2001年博士、硕士研究生招生计划表

[29] a N d N b 2 d sin θ N b ФФ a b Ф Ф θ θ a b Fig.1 Working principle demonstration of a phased-array antenna θ

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm


Microsoft Word 張嘉玲-_76-83_

g 100mv /g 0. 5 ~ 5kHz 1 YSV8116 DASP 1 N 2. 2 [ M] { x } + [ C] { x } + [ K]{ x } = { f t } 1 M C K 3 M C K f t x t 1 [ H( ω )] = - ω 2

EL ECTR IC MACH IN ES AND CON TROL Vol113 No11 Jan. 2009,, (, ) :, X 2Y,,,,,,, P ID P ID P ID,, : ; ; ; P ID : TM33 : A : X

fd α t = F mfdfd cos fd α - fd = ωt Z λ ss cos s [ 1 s = 1 α - α ] 1 α t F mfdfd fd fd ω λ ss s Z α 1 + fd 7-8 sz 1 - fd -

T e = K 1 Φ m I 2 cosθ K 1 Φ m I cosθ 2 1 T 12 e Φ / 13 m I 4 2 Φ m Φ m 14 I 2 Φ m I 2 15 dq0 T e = K 2 ΦI a 2 16

u GW 1-2 x + v y + w z = 0 1 u v w x y z ρuu + ρuv + ρuw = 3-4 x y z x( μ u x ) + y( μ u y ) + z ( μ u ) - p z x 2 ρvu + ρvv + ρ

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

标题

07-3.indd

Mnq 1 1 m ANSYS BEAM44 E0 E18 E0' Y Z E18' X Y Z ANSYS C64K C70C70H C /t /t /t /mm /mm /mm C64K

Microsoft Word - 专论综述1.doc

Microsoft Word 方刚_new_.doc

~ ~ 10 A ~ c A cm 10 5 ~ 10 6 V /cm Charles J. Kim 120 V 2 A 1

某动车组主变压器风道的谐响应分析

1.0 % 0.25 % 85μm % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song

/ 5% ~ 5% Fig. Experiment model of internal partial discharge. 5-6 a b 7 -..

~ a 3 h NCEP ~ 24 3 ~ ~ 8 9 ~ km m ~ 500 m 500 ~ 800 m 800 ~ m a 200

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 6 Dec

电力信息化2013年第1期.indb

[9] R Ã : (1) x 0 R A(x 0 ) = 1; (2) α [0 1] Ã α = {x A(x) α} = [A α A α ]. A(x) Ã. R R. Ã 1 m x m α x m α > 0; α A(x) = 1 x m m x m +

Fig. 1 1 a-a b-b a-a σ ma = MPa σ a = MPa σ 0a = MPa 0. 9 σ t =135 MPa b-b σ mb = MPa τ b = MPa σ 0b =

Ansys /4 Ansys % 9 60% MU10 M m 1 Fig. Actual situation of measured building 1 Fig. 1 First floor plan of typical r

通 过 厂 变 带 电, 这 种 设 计 减 少 了 机 组 自 带 厂 用 电 负 荷 能 力, 降 低 了 锅 炉 满 足 FCB 时 最 低 稳 燃 工 况, 同 时 造 成 燃 烧 调 整 量 加 大 本 电 厂 在 FCB 试 验 时, 电 泵 不 联 启, 始 终 保 持 汽 泵 运 行

<D2BDC1C6BDA1BFB5CDB6C8DAD7CAB8DFB7E5C2DBCCB3B2CEBBE1C3FBB5A52E786C7378>

Microsoft Word tb 赵宏宇s-高校教改纵横.doc

VLBI2010 [2] 1 mm EOP VLBI VLBI [3 5] VLBI h [6 11] VLBI VLBI VLBI VLBI VLBI GPS GPS ( ) [12] VLBI 10 m VLBI 65 m [13,14] (referen

Electri c Machines and Control Vol. 22 No. 1 Jan H APF H H APF APF APF H H APF APF DOI /j. emc TM 72

698 39,., [6].,,,, : 1) ; 2) ,, 14,, [7].,,,,, : 1) :,. 2) :,,, 3) :,,,., [8].,. 1.,,,, ,,,. : 1) :,, 2) :,, 200, s, ) :,.

f 2 f 2 f q 1 q 1 q 1 q 2 q 1 q n 2 f 2 f 2 f H = q 2 q 1 q 2 q 2 q 2 q n f 2 f 2 f q n q 1 q n q 2 q n q n H R n n n Hessian

Soliman Addenbrooke Potts Chehade Shahrour Fig. 1 Plan view for construction site m 2


1, : FLUENT 81 CA4113Z,,,,.,,. [ ] : :, 9 9t (<) + div (u<) = div ( < grad<) + S < (1) t, u, <, <, < S <,, 1., u i i, E,. k - RNG, () (3) [ 3-4 ],. 5

13-15 Lagrange 3. 1 h t + hu + hv = 0 1 x y hu + t x hu gh 2 ( ) + y huv = - gh z 0 ( + x u u 2 2 槡 + v + W C ) 2 x + fhv + z h x 2hv u ( t x )

ELECTRI C MACHINES AND CONTROL Vol. 16 No. 9 Sep y x 20 m /s μm TP 271 A X Control of planar

MHz 10 MHz Mbps 1 C 2(a) 4 GHz MHz 56 Msps 70 MHz 70 MHz 23 MHz 14 MHz 23 MHz 2(b)

第16卷 第2期 邯郸学院学报 年6月

USB PC LabVIEW SignalExpress Labview Vi Fig. 1 EMAT system based on orthogonal lock-in 5 amplifier PCB 15

Revit Revit Revit BIM BIM 7-9 3D 1 BIM BIM 6 Revit 0 4D 1 2 Revit Revit 2. 1 Revit Revit Revit Revit 2 2 Autodesk Revit Aut

successful and it testified the validity of the designing and construction of the excavation engineering in soft soil. Key words subway tunnel

2 3. 1,,,.,., CAD,,,. : 1) :, 1,,. ; 2) :,, ; 3) :,; 4) : Fig. 1 Flowchart of generation and application of 3D2digital2building 2 :.. 3 : 1) :,

11 : 1345,,. Feuillebois [6]. Richard Mochel [7]. Tabakova [8],.,..,. Hindmarsh [9],,,,,. Wang [10],, (80 µm),.,. Isao [11]. Ismail Salinas [12],. Kaw

Electri c Machines and Control Vol. 21 No. 11 Nov DEMD ICA DEMD ICA DEMD IMF IMF ICA DOI 10. 1

z = 0. [8] z = 0. R.. 1 [7]. ( λ o oxyz 1 ox ( oy ( oz SN ω ω = iω cos λ + kω sin λ ω = rad/s (24. 1 m ν 0 o f = mkv k mẍ = 2mωẏ s

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte

中国媒体发展研究报告

508 0 ( brushless doubly2fed machine, BDFM ) [ 1 ],, [ 2 ] P p,, f p ; P c,, f c, [ 1, 3 ],,, ( ),,, [ 4-5 ] [ 10 ], [ 6-9 ] ANSYS,,,, P p = 3, P c =

p = n p ei = n 1. 15k a qb f ei ( ) Gei 1 50 n p W p e - 12 W B e T q B = 1 T f = 50 Hz G e kg a

Microsoft Word - molecules supple.docx

Supplementary Information LC-MS-guided isolation of anti-inflammatory 2-(2-phenylethyl)chromone dimers from Chinese agarwood (Aquilaria sinensis) Hui-

1 119 Clark 1951 Martin Harvey a 2003b km 2

亚临界大容量电站锅炉过热器系统阻力

投影片 1

T R 1 t z v 4z 2 + x 2 t = 2 槡 v t z 200 m/s x v ~

31 17 www. watergasheat. com km 2 17 km 15 km hm % mm Fig. 1 Technical route of p

Transcription:

22 2 2018 2 Electri c Machines and Control Vol. 22 No. 2 Feb. 2018 1 2 3 3 1. 214082 2. 214082 3. 150001 DOI 10. 15938 /j. emc. 2018. 02. 005 TM 301. 4 A 1007-449X 2018 02-0033- 08 Research of permanent magnet motors cogging force affected by interferential magnetic field ZHAO Wen-feng 1 2 ZHAO Bo 3 XU Yong-xiang 3 1. National Key Laboratory on Ship Vibration & Noise Wuxi 214082 China 2. China Ship Science Research Center Wuxi 214082 China 3. School of Electrical Engineering and Automation Harbin Institute of Technology Harbin 150001 China Abstract Aiming at the underwater acoustical directiity of permanent magnet PM motor theoretical and numerical simulation methods are used to study radial force characteristics of fractional slot motor when ideal sine wae power and containing harmonic current power supplied. It is found that radial force of the fractional slot PM motor with ideal sinusoidal phase current periodically appears after some teeth. When phase current contains noninterfering harmonic current the radial force is aperiodic in time domain but it is still periodic in frequency domain. When harmonic current in phase current is interferential the radial force is aperiodic in both time domain and frequency domain. The aperiodic law is erified by an experiment in which phase current containing interfering harmonic current caused by pulse width modulation PWM. The radial force is the driing source of electromagnetic ibration and noise. Different forces leads to different ibrations on tooth. The aperiodic law of radial force can explain the acoustic directiity. Keywords PM motors electromagnetic force radial force electromagnetic ibration and noise harmonic interference 2016-07 - 10 863 2012AA09A306 1981 1978 1975

34 22 f t = f 0 w t + f r t 1 2 3 f w θ t = F cos p - ω 0 t - φ 1 2 f r θ t = F cos p - ω 0 t - φ 2 3 p ω 0 F F φ 1 φ 2 t A 1-2 0 B s 1 7000 1 Fig. 1 Schematic diagram of stator tooth space position t + Δt B t A 2 3 p s - 0 ω 0 Δt t + Δt B t A 3 t A 3-7 t +Δt B 2 8-11 4 12 f 0 t = F cos p 0 - ω 0 t - φ 1 f s t + Δt = F cos p s - ω 0 t - ω 0 Δt - φ 1 4 A B 1 1. 1 p s - 0 - ω 0 Δt = k 1 360 5 k 1 1 f w t f r t

2 35 6 9 z 0 p 0 z 0 = b + c 2mp 0 d = bd + c 6 d q = z = z 0 k p = p 0 k d 13 β = 360 /z 0 6 p 0 q = 7 5 8 9 = 2 3k 2 + 1 d 7 p s - 0 = ± 60 d 9 d 13 10 5 11 = 6k 2 + 1 d 10 p s - 0 = 6k 1 60 + ω 0 Δt d 11 6k 2 + 1 ω 0 Δt = ± 60 k 2 k 1 = ± k 2 11 s 0 9 9 ± 60 d ω I d f w t = F I cos p - ω I t - φ I I ω 0 Δt = ± 120 d ω 0 Δt 18 = ± 60 ω 0 Δt 60 d s t + Δt θ 0 t 12 f 0 t = f s t + Δt 12 s 0 9 60 d 1 A B Λ 13 14 p 0 t p s t + Δt 9 Λ 20 b t = f t + f t Λ θ 13 p t = b2 t 14 2 z 0 /6 Δt 60 15 z ' r = ωδt /β = z 0 /6 = p 0 q = p 0 bd + c /d p s - 0 = 3k 1 120 + ω 0 Δt d 8 2 3k 2 + 1 15 ω 0 Δt = ± 120 k 2 d z 0 2mp 0 k 1 k 1 = z 0 p 0 ± k 2 8 s 0 z 0 /m = m = 3 z 0 / 3 z 0 /6 d = p 0 15 d z r 16 z r = z ' r = bd + c 16 z 0 /6 d = 2p 0 d z r 17 ωδt = 120 z r = 2z ' r = bd + c 17 d bd + c 1. 2 18 F I I 5 Δt 19 k 3 ω I Δt = k 3 360 ± 60 ω I Δt = k 3 } 360 ± 120 19 ω 0 Δt = ± 60 d ω 0 Δt = ± 120 d ω I = 6k 3 ± 1 ω 0 ω I = 3k 3 ± 1 ω 0 } 20 ω 0 Δt 0 s ω 0 Δt 0 s 20 ω 0 Δt

36 22 ω I Δt I = ± 60 d ω I Δt I = ± 120 d 18 14 21 ω I s 0 20 ω I 21 F I11 F I22 ω I1 + 20 ω 0 Δt ω I2 F I F ω I - ω 0 19 ω I - ω 0 = ω I1 + ω I2 ω I bd + c 1 2 0 I Λ 2 2 0 I I1 1 2 I I2 1 F I cos p - ω I t - φ I + F cos p - ω 0 t - φ 2 2 Λ 2 = F 2 Iν cos2 p - ω I t - φ I + F 2 cos2 p - ω 0 t - φ 2 + 2F I11 F I22 cos 1 p - ω I1 t - φ I1 cos 2 p - ω I2 t - φ I2 + 2 2F 1 F 2 cos 1 p - 1 ω 0 t - φ 2 cos 2 p - 2 ω 0 t - φ 2 + 2 2 2. 1 F I F cos p - ω I t - φ I cos p - ω 0 t - φ 2 PMSM Δt = 0. 004 167 s ωδt = 120 9 z = 12 2p = 8 q = 1 /2 d bd + d c = 1 30 60 d 120 1 200 r /min 2 ωδt = 120 21 1 2 3 0. 000 83 0. 005 0. 009 16 s 2. 2 bd + c = 1 1 2 3 2 ~ 4 1 2 120 z = 12 2p = 8 1 2 3 30 80 Hz 330 Hz 3 4 20 Fig. 2 2 Toothflux densities of PMSM with ideal sinusoidal phase current

2 37 3 Fig. 3 Air gap magnetic field of PMSM with ideal sinusoidal phase current 4 Fig. 4 Radial force of PMSM with ideal sinusoidal phase current 5 ωδt = 120 Fig. 5 5 Toothflux densities of PMSM with noninterference phase current 6 7 1 2 3 330-80 = 250 410 Hz 330 + 80 = 410 6 Fig. 6 Air gap magnetic field of PMSM with noninterference phase current phase current 8 250 Hz 7 Fig. 7 Radial force of PMSM with noninterference

38 22 bd + c 2. 3 z = 12 2p = 8 80 Hz 160 Hz 8 2 s 0 ω 0 Δt = 120 Fig. 8 Radial force amplitude of PMSM with noninterference phase current ω 0 Δt 20 160 Hz 20 9 10 11 ω I 20 Fig. 9 9 Toothflux densities of PMSM with interference phase current 10 Fig. 10 Air gap magnetic field of PMSM with 11 interference phase current Fig. 11 Radial force of PMSM with interference phase current 12 3 80 Hz 160 Hz 3 z = 12 2p = 8 4 3 80-160 = 13 80 ω I 20 14

2 39 PWM 15 A 15 1 200 r /min A Fig. 15 Aphase current at speed 1 200 r /min 12 Fig. 12 Radial force amplitude of PMSM with interference phase current 16 1 200 r /min A Fig. 16 Spectrum map of A phase current at speed 1 200 r /min Fig. 13 bd + c = 1 17 13 Schematic diagram of sensor position ω I 20 PWM Fig. 14 14 Test loading installation diagram 16 A 800 Hz 80 Hz 160 Hz 320 Hz 160 Hz 17 80 Hz 240 Hz Fig. 17 Amplitude of ibration acceleration on different 320 Hz 80 Hz teeth 240 Hz

40 22 4 1 bd + c d ω 0 Δt = ± 60 d ω 0 Δt = ± 120 2 d ω I 6k 3 ± 1 ω 0 d ω I 3k 3 ± 1 ω 0 bd +c 8 37. 8 J. 3 1. C / / YANG Haodong CHEN Yangsheng. Electromagnetic ibration a- 2005 8. nalysis and suppression of permanent magnet synchronous motor 2005 15. 2. DRS 2011 31 24 83. J. 2005 27 5 15. 3 ZHU Z Q XIA Z P. Analytical modeling and finite-element computation of radial ibration force in fractional-slot permanent-magnet brushless machines J. IEEE Transactions on Industry Applications 2010 46 5 1908. 4 RAKIB I IQBAL H. Analytical model for predicting noise and ibrationin permanent-magnet synchronous motors J. IEEE Transactions on Industry Applications 2010 46 6 2346. 5 HUANG S AYDIN M LIPO T A. Electromagnetic ibration and noise assessment for surface mounted PM machines J. IEEE Power Engineering Society Summer Meeting 2001 1417. 6. J. 2010 14 3 12. TANG Renyuan SONG Zhihuan. Study on source of ibration and acoustic noise of permanent magnet machines by inerter J. Electric Machines and Control 2010 14 3 12. 7. J. 2013 17 8 37. LI Xiaohua HUANG Surong. Calculation and analysis of ehicle ibration and noise of permanent magnet synchronous motor applied in electricehicle J. Electric Machines and Control 2013 17. 2016 20 5 90. FANG Yuan ZHANG Tong. Effect of tangential electromagnetic force on ibration and noise of electric powertrain J. Electric Machines and Control 2016 20 5 90. 9 TAO Sun. Effect of pole and slot combination on noise and ibration in permanent magnet synchronous motor J. IEEE Transactions on Magnetics 2011 47 5 1038. 10 J. 2011 31 24 83. with fractional slot combination J. Proceedings of the CSEE 11 D 2011. 12 S. J. M 1985 42. 13 D 2010.