國立中山大學學位論文典藏

Similar documents
2010年第三屆運動科學暨休閒遊憩管理學術研討會論文集

(a)(b) (c)(d) 25% 100% (i) (ii) (iii)(iv) 2

緒 言 董 事 會 宣 佈, 為 能 更 具 效 率 調 配 本 集 團 內 的 資 金 有 效 降 低 集 團 的 對 外 貸 款, 並 促 進 本 集 團 內 公 司 間 的 結 算 服 務, 於 2016 年 9 月 30 日, 本 公 司 中 糧 財 務 與 管 理 公 司 訂 立 財 務

Microsoft Word - Panel Paper on T&D-Chinese _as at __final_.doc

Microsoft Word - MP2018_Report_Chi _12Apr2012_.doc

南華大學數位論文

李天命的思考藝術

皮肤病防治.doc

性病防治

中国南北特色风味名菜 _一)

全唐诗24

509 (ii) (iii) (iv) (v) 200, , , , C 57

ii

8 A B C D 9 A B C D 10 ABC D 11 A B C D 12 AB C D 13 A B CD 14 A B C D 15 A B C D 16 A B C D A1 B2 C3 D5 18 ABC D 19

第 31 卷 Vol. 31 总第 122 期!"#$%&' Z[\ ]^ _` a, :b c $ ' X $, C $ b c! >, O 47 2$b c 1 X, 9?, S, 4b c =>01, ; O 47 ' 0 $ 01 #, 04b c

捕捉儿童敏感期

tbjx0048ZW.PDF

全唐诗28

穨學前教育課程指引.PDF

眼病防治

中国南北特色风味名菜 _八)


中医疗法(下).doc

Microsoft Word - EDB Panel Paper 2016 (Chi)_finalr

( ) Wuhan University

39898.indb

穨ecr2_c.PDF

電腦相關罪行跨部門工作小組-報告書

i

发展党员工作手册

i

三維空間之機械手臂虛擬實境模擬

(b) 3 (a) (b) 7 (a) (i) (ii) (iii) (iv) (v) (vi) (vii) 57

i

, ,000 6 (i) (ii) 200, ,

C = C + C C = + + C C C C 1 2 3


爱学习

九十六學年度第一學期第三次定期考國文科試題

一、

二零零五年度报告框架稿

-i-

Microsoft Word - 强迫性活动一览表.docx

% 100% % 75% 14 (i)(ii) (iii) 2

Microsoft Word - 6-3神經系統_2_.doc

江苏宁沪高速公路股份有限公司.PDF

绝妙故事

Fig. 1 1 The sketch for forced lead shear damper mm 45 mm 4 mm 200 mm 25 mm 2 mm mm Table 2 The energy dissip

375,000, % 648,000, ,000, ,000, ,000, % ,000,000 2


榫 卯 是 什 麼? 何 時 開 始 應 用 於 建 築 中? 38 中 國 傳 統 建 築 的 屋 頂 有 哪 幾 種 形 式? 40 大 內 高 手 的 大 內 指 什 麼? 42 街 坊 四 鄰 的 坊 和 街 分 別 指 什 麼? 44 北 京 四 合 院 的 典 型 格 局 是 怎 樣 的

地盤監督作業守則

主 題 四 : 都 卜 勒 效 應 一 都 卜 勒 效 應 1. 現 象 : 當 波 源 與 觀 察 者 連 線 間 有 相 對 運 動 時, 聽 者 所 接 收 到 的 頻 率 ( 視 頻 ) 將 與 波 源 之 原 頻 率 不 同, 此 現 象 稱 為 都 卜 勒 效 應 例 如 站 於 路 旁

2. 我 沒 有 說 實 話, 因 為 我 的 鞋 子 其 實 是 [ 黑 色 / 藍 色 / 其 他 顏 色.]. 如 果 我 說 我 現 在 是 坐 著 的, 我 說 的 是 實 話 嗎? [ 我 說 的 對 還 是 不 對 ]? [ 等 對 方 回 答 ] 3. 這 是 [ 實 話 / 對 的

尿路感染防治.doc

f 2 f 2 f q 1 q 1 q 1 q 2 q 1 q n 2 f 2 f 2 f H = q 2 q 1 q 2 q 2 q 2 q n f 2 f 2 f q n q 1 q n q 2 q n q n H R n n n Hessian

天主教永年高級中學綜合高中課程手冊目錄

"# $ % & $# $ % & "!! " # $! %(() * )(

心理障碍防治(下).doc

untitled

Microsoft Word - Paper on PA (Chi)_ docx

Page i

<4D F736F F D203938BEC7A67EABD7B942B0CAC15AC075B3E6BF57A9DBA5CDC2B2B3B92DA5BFBD542E646F63>

14A 0.1%5% 14A 14A

(Chi)_.indb

穨_2_.PDF

世界名画及画家介绍(四).doc

山东2014第四季新教材《会计基础》冲刺卷第三套

I


EC( )13 第 2 頁 (b) 把 總 目 100 在 年 度 常 額 編 制 內 所 有 非 首 長 級 職 位 按 薪 級 中 點 估 計 的 年 薪 總 值 上 限 提 高 12,480,540 元, 即 由 461,070,000 元 增 至 473,550

:,,,, ( CIP ) /,. :, ISBN CIP ( 2001) : : 127, : : : ht t p: / / www. nwpup. com : :


樹 木 管 理 專 責 小 組 報 告 人 樹 共 融 綠 滿 家 園

地 球 科 學 質 在 第 壹 部 分 ( 高 一 基 礎 地 球 科 學 ) 的 出 題 題 數 最 多, 氣 象 部 分 次 之, 而 天 文 與 氣 象 的 題 數 比 例 也 一 直 是 相 互 增 減, 由 此 可 以 看 出 命 題 委 員 在 命 題 時 仍 會 注 意 評 量 內 容

A. B. C. D. 2. A. B. C. D. 3. A. 4 N B. 18 N C. 40 N D N 1

Ps22Pdf

( ) (a) (b)1 102I 50

就 构 成 了 盗 窃 罪 与 破 坏 交 通 设 施 罪 的 想 象 竞 合, 按 照 其 中 处 罚 较 重 的 犯 罪 处 罚 5. 答 案 :B 本 题 主 要 考 察 如 何 区 分 收 买 被 拐 卖 的 妇 女 儿 童 罪 与 拐 卖 妇 女 儿 童 罪 的 共 犯 问 题 ( 对 向

《侵权法》综合练习题

C Ann.indd

目 录 院 领 导 职 责... 1 院 长 职 责... 1 医 疗 副 院 长 职 责... 1 教 学 副 院 长 职 责... 2 科 研 副 院 长 职 责... 2 后 勤 副 院 长 职 责... 3 主 管 南 院 区 副 院 长 职 责... 3 党 委 书 记 职 责... 4

Teaching kit_A4_part4.indd

<4D F736F F D20A4A4B0EAB371AB4FB3E65FA4A4A4E5AAA95F5F >

Jiayuan International Group Limited , ,787, % 52% , , % % 3,

untitled

01repc_gb.doc

untitled

01repc.doc

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) 60.99%39.01%



考 查 知 识 点 肝 气 疏 泄 调 畅 气 机 的 作 用, 主 要 表 现 在 以 下 几 个 方 面 :(1) 促 进 血 液 与 津 液 的 运 行 输 布 ;(2) 促 进 脾 胃 的 运 化 功 能 和 胆 汁 分 泌 排 泄 ;(3) 调 畅 情 志 ;(4) 促 进 男 子 排 精

Ps22Pdf

<3935BCC6A5D2C1CDB6D52E747066>

CIP. / ISBN Ⅰ.... Ⅱ.... Ⅲ. Ⅳ. G CIP http / /press. nju. edu. cn


群科課程綱要總體課程計畫書

untitled

II II

Transcription:

Design of Rear Suspension Mechanisms of Mountain Bikes

/ I

Visual BASIC 6.0 II

Abstract The purpose of this work is to provide a design procedure of rear suspension mechanisms of mountain bikes by using the concept of engineering design method. First, the conditions and particularities of mountain biking are investigated and the performance specification of rear suspension mechanisms is set by focusing the investigations on the requirements of rear suspension mechanisms. Second, the requirements and constraints of generating different types of rear suspension mechanisms are developed and the systematic process of creative mechanism design is followed. Third, the different types of rear suspension mechanisms resulted from creative mechanism design are analyzed to realize the property of each type of rear suspension mechanisms and the procedure of kinematic design is developed by using the algorithm of heuristic combinatorial optimization method. Finally a computer aided design program written in Visual BASIC 6.0 programming language is developed to be the powerful tool of performance analysis and kinematic design of rear suspension mechanisms. III

I II III IV VI IX 6 -.. 6 -.. 6-3.. 0 3 3-.. 3 3-.. 4 3-3.. 30 3-4.. 3 3-5.. 3 33 4-.. 33 4-.. 35 4-3.. 37 IV

45 5-.. 45 5-.. 5 5-3.. 57 5-4.. 64 5-5.. 69 83 6-.. 83 6-.. 84 6-3.. 94 08.. 0 V

...3.4.5.6.7.8.9.. 7.. 7.. 9...... 3.. 3.. 4.. 4.0.. 5. 6. TREK STP400.. 7.3.. 8.4.. 9.5...6.. 3. 4. 4. 4.3 4.4 4.5 4.5 4.6.. 6.. 34.. 35.. 36.. 38 40 4 4 VI

4.7 4.8 5. 5. 5.3 5.4 5.5 5.6 5.7 5.8 5.9.. 43.. 44.. 46.. 48.. 49.. 5.. 53.. 54.. 56.. 57.. 58 5.0.. 60 5... 6 5... 65 5.3.. 66 5.4.. 67 5.5.. 70 5.6.. 70 5.7.. 7 5.8.. 7 5.9.. 73 5.0.. 74 5... 75 5... 75 5.3 Giant Warp -DS 76 5.4 Giant Warp-DS. 77 VII

5.5.. 78 5.6.. 78 5.7 Giant ATX-... 79 5.8 Giant ATX- 80 5.9.. 8 5.30.. 8 5.3.. 8 6. 6. 6.3 6.4 6.5 6.6 6.7 6.8 6.9.. 85.. 85.. 9.. 9.. 93.. 95.. 96.. 97.. 97 6.0.. 98 6... 99 6. 50.. 99 6.3.. 00 6.4 /. 0 6.5 /. 0 6.6.. 04 6.7.. 04 6.8 / 07 VIII

3. 3. 6... 7 9.. 9 IX

996 J. G. Seifert [] Suspension system Rigid frame bike Suspension fork bike Front and rear suspension bike996 [] 99697

E. L. Wang S. A. Needle M. L. Hull[3-5] Off-road bicycle 999 [6] CAD/CAE/CAM 988 E. Pennestri A. Strozzieri[7] Force ratio curve 986 [8] Leverage ratio 989 [9] 994 [0] Busby[]

[] Wilcox [3]Y Harris[4] Lawwill[5] D Aluisio [6] Harris Shiau[7] [8] [9] [0] GT STS-Lobo DH000Schwinn Homegrawn straight 8 ATX-00 3

4

Visual BASIC 6.0 5

Mountain biking Mountain bike MTB Mountain bike rear suspension mechanisms - Mountain biking Racing bicycle.a 68 Bicycle moto cross BMX.b 04 6

. a b. 6 6. 7

3 6 4 3 Bottem bracket 5 8

3 4.3.3 9

Crankset Chain Rear sprocket Freewheel Shifters Front derailleur Rear Rim brakes Brake blocks Hub brakes Brake pads Brake drum Disk Handle bar Handle stem Headset bearings Front fork Main frame Front suspension Front suspension Saddle Seatpost Wheels Drop-outs Hub Bearing Axis Spokes Rim Tire Inner tire.4 0

8 3 4 7 5 8 3 6 5 0 6 7 9 4 9 0 3 4 3 5 4 6 5 7 6 8 7 9 8 0 9 0.4

.5 3 4.5.6

.7.6 a b.7.8 3

3.9a.9b a b.8 a b.9 4

4.9 a b agiant Warp-DS bgiant ATX-.0 5

-.. 6

TREK SOFT TAIL PRO STP Pivotless rear suspension system.5. Litespeed.3a Moots.3b ½ 5.438. a b. TREK STP400 7

alitespeed Tsali bmoots YBB.3 Linkage suspension mechanism.0a.4a 3 4.4b.0 b 8

3 4 agiant Warp DS- 6 3 4 5 bgiant ATX-.4 9

-3-3 4 5 0

887 John Boyd Dunlop.5.5

.6 3.6

3- [4] Pahl Beitz[5] Planning and clarifying the task Ideas 3

Proposal Conceptual design Working structure 3 Embodiment design Construction structure 4 Detail design 3 4 3-4

Objectives tree method 3-3. 5

3. 6

Performance specification method 3 4 7

.5 770 70 700 330 00 30 3 4 50 5 Eye-to-eye length 0000 Travel /5/3 400 000 lbs/in. 7 357 kgw/cm 6 6585 0 3. D / W Demand Wish 8

D/W D D D 3 30700 75 95 D 4 W W W 7 W 50 5 0000 6 /5/3 400 lbs/in.000 lbs/in. 7 kgw/cm ~357 kgw/cm 8 0 kgw 3. ISOASJISDIN CNS Christiaans Bremner 9

Radke Amplification Attenuation 3.5 4.5 Hz Grandjean 3. (Hz) 34 4 5 4~0 8~ 0~0 3. 3-3 -3 6 7 8 9 0 30

3 3-4 3. 3

Force ratio curve F. Freudenstein T. W. Lee Heuristic combinatorial optimization 3-5 3

4-3 4 5 4. Swim arm 33

asuzuki Full-Floater bhonda Pro-Link 4. 4.a 4. b 6 5 6 4.c 3 4 34

a 6 5 4 3 4 3 b c 4. 4- Topological structure 35

983 [6] Design constraints 93 989 [7] Link Revolute pair 4.3 4.3 36

3 4 4-3 4-37

3 4.4 (b) (c) (a) (d) (e) 4.4 38

4.4 3 4 P 3 4.5 4.5 4.6 39

40 3 P 3 4 P 3 4 3 4 3 4 5 6 3 4 5 6 3 4 3 4 5 6 3 4 3 4 6 5 3 4 3 4 5 6

4 3 3 4 3 4 5 6 3 4 5 6 3 4 3 4 5 6 3 4 6 5 3 4 3 4 6 5 3 4 3 4 5 6 3 4 3 4 5 6 4.5

4 3 4 3 4 6 5 6 5 3 4 6 5 3 4 3 4 6 5 3 4 5 6 6 5 4 3 6 5 3 4 6 5 4 3 6 5 4 3 6 5 4 3 6 5 4 3 4.6

6-6-5 6-66- 4.7a 6-4.7b 6-6 4.7c 4.7d 6-5 E B 4 6 6-6 5 B 4 6 6-6 6- B E 4.8 F E 3 4 5 A D B 6 C F' B' 3 4 5 A' D' 6 C' G G' a6- b6-6 6 5 4 3 6 4 5 3 c 6- d 6-6 4.7 43

6-6- 6-6 6-7 6-3 6-4 6-5 6-8 6-9 6-0 6-6- 4.8 4.8 6-6-6 6-6-7 6-6-5 6-6-5 4.7 6-6 6- BE 44

Assur group Force ratio Visual BASIC 6.0 5- Assur groups 5. A C B A C XA YAXCYC AB BC r r AB BC B XBYB AB BC r AB r CB 45

Y A rab B á â è3 rcb ra rb è4 rc C X 5. B r r + r = r + r B = 5. A AB C CB X Y X Y B B = X + r cos θ = X + r cos θ 5.a A A AB AB 3 3 C C = Y + r sin θ = Y + r sin θ 5.b CB CB 4 4 r X A C AC α = tan Y X C A ( ) C Y X A 5.3 r AC r AB 46

β = cos r + r r AB AC CB ( ) AB r r AC 5.4 rab θ3 θ = α + Mβ 3 5.5 r + k M AC r AB M k M -B XBYB X Y B B = X + r cos θ 5.6a A A AB AB 3 3 = Y + r sinθ 5.6b rcb θ4 θ 4 = tan Y X B C ( ) B Y X C 5.7 3 4 D 47

Y A è3 3 4 r AB B C r CB á r CD è D X 5. 5. A C XAYA XCYC r r CB CD B D B = X + C rcb cos ( θ + α) X 5.8a B = Y + C rcb sin ( θ + α) Y 5.8b X Y D D = X + r cos θ 5.9a C C CD CD = Y + r sin θ 5.9b 3 4 r 3 r AB AB 48

θ 3 = tan Y X B A ( ) B Y X A 5.0 r AB [ ( X X ) + ( Y Y ) ] = 5. B A B A 5 Giant ATX- 5.3 3 4 5 6 D E 6 Y B 3 ä A â è6 ã 5 4 è4 C è5 F D á è G X 5.3 49

ABCDEF ADF XAYA XDYD XFYF rdc r DG 5 rbc 6 rab r AE C G C = X + r cos D DC ( θ + α) X 5.a C = Y + r sin D DC ( θ + α) Y 5.b X Y G G X D + r DG cos θ = 5.3a D DG = Y + r sin θ 5.3b 5 6 r r A C AB CB XAYA XCYC δ = tan Y X C A ( ) C + r r Y X AB AC BC γ = cos ( ) r AB A r r AC 5.4 5.5 5.4 5.5 θ = δ + M γ 6 5.6 M = B XBYB Ar AB 6 X B X A + r AB cos θ = 5.7a 6 50

Y B = Y + r sinθ 5.7b A AB 6 E XEYE E = X + r cos A AE 6 ( θ + β) X 5.8a E = Y + r sin A AE 6 ( θ + β) Y 5.8b E F 3 4 θ 3 = θ 4 = tan Y X F E ( ) F Y X E 5.9 r [ ( X X ) + ( Y Y ) ] EF = 5.0 F E F E 5. 5.0 B C E è4è5 è6 è r EF 5-5.4 Q Nt P Nt Force ratio 5. 5

W P P Q 5.4 ( ) ( ) P f ( ) = 5. Q 5

5.5 5.5 Force ratio curve Principle of virtual work 5.6 Free-body diagram Q P P δs U δ = P δs = Pδs 5. U 53

P s äè B á è D y C Q 5.6 Q δy U δ = Q δy = Qδy 5.3 U δ U + δu = P δ s + Qδy = 0 5.4 0 5.4 P Q δy δs = 5.5 5.5 y s y 54

δy = δ [ r sin( θ α) ] CD = r CD cos ( θ α) δθ 5.6 s δs = δr = δ δθ = r = δ ( ( XB XA ) + ( YB YA ) ) ( X + r cosθ X ) + ( Y + r sin θ Y ) AB ( C CB A C CB A ) AB [( X + r cos θ X ) r sin θ + ( Y + r sin θ Y ) r cosθ ] C CB A CB C CB A 5.7 CB 5.6 5.7 5.5 P Q rab rcd cos ( θ α) ( X + r cosθ X ) r sinθ + ( Y + r sinθ Y ) r cosθ C CB A CB C CB A CB = 5.8 5.8 5.7 Q Free-body diagram P 5. 5.5 δy = δ [ r sin( θ α) ] DC = r DC cos ( θ α) δθ 5.9 55

B E â 6 P A äè6 D è6 á 5 C äè è G Q 5.7 δs = δ r = δ δθ = r = δ ( ( XF XE) + ( YF YE ) ) ( X X r cos( θ +β) ) + ( Y Y r sin( θ +β ) EF ( ) F A AE 6 F A AE 6 EF 6 [( X X r cos( θ +β) ) r sinθ + ( Y Y r sin( θ +β) ) r cosθ ] F A AE 6 AE 6 F A AE 6 5.30 AE 6 5.9 5.30 5.5 P Q ref rcd cos( θ + α) δθ6 = 5.3 ( XF XA rae cos( θ6 + β ) rae sin θ6 + ( YF YA rae sin( θ6 + β) ) rae cosθ 6 δθ δθ δθ 6 = δθ δt δθ δt 6 θ& = θ& 6 = [ ( Y )( ) ( )( ) ] B YC X B X A Y B YA X B XC r sinθ ( X X ) + r cosθ ( Y Y ) CD B C CD B C 5.3 56

5.3 5.3 5-3 5.8 A C Q Q Free body diagram 5.8 Y A è3 3 r AB r CB C á r CD è D X Q 5.8 57

è3 P B C x C r BC á r CD è D Q C y a A x A è3 r AB A y 3 4 B P b 5.9 5.9a Q P C C x C y ( θ + α) Pcosθ r sin( θ + α) 0 Q r cos θ + Psin θ3 rbc cos 3 BC CD = 58 5.33 Q P

= cosθ 3 r BC Q r cosθ CD P 5.34 sin ( θ + α) sinθ r cos( θ + α) 3 BC B B x y Pcosθ = 5.35a 3 = Psin θ 5.35b 3 C x Pcosθ = 5.36a ( Psinθ Q) C y 3 + 3 = 5.36b A A x y = Pcos θ 5.37a 3 3 = Psin θ 5.37b 5.8 5.8 P Q = f ( ) 5.38 θ 5.8 r AB r = AB = r (X AB C ( θ + r ) = CB cos (X ( θ + α) X ) (Y + r sin( θ + α) Y ) B X A ) (Y A B Y C A ) CB A 5.39 59

L 0 k 5.38 P Q ( L r ( θ )) k 0 AB = = f ( θ ) 5.40 Q Q 5.39 5.0 AD F Q Free body diagram 5. Y B E 6 3 A â è6 5 C è5 4 F è4 D á è G Q X 5.0 60

F BC C è5 D x á è G Q D y -E y a B è 5 + -E x 3 E P E A x è4 â 6 A è6 F BC F x 4 F A y F y b6 c 5. 5.a Q 5 F BC D D x D y Q r F BC CD cos cos θ 5 θ + FBC sin θ5 rcd cos r sin( θ + α) = 0 CD ( θ + α) 5.4 6

Q 5 F BC F BC = cosθ 5 r CD sin Q r cosθ ( θ + α) sin θ r cos( θ + α) CD 5 CD 5.4 C C x y F BC cosθ = 5.43a F BC sin θ 5 5 = 5.43b D x = F cos θ 5.44a BC ( F sin θ Q) D y BC 5 + 5 = 5.44b 5.b 6 5 F BC P A A x A y F BC B B x y BC ( θ5 + π) = FBC cosθ5 ( θ5 + π) = FBC sin θ5 = F cos 5.45a = F sin 5.45b BC F BC cos θ + Psin θ 5 4 r r AB AE sin θ cos 6 F sin θ r cos θ ( θ + β) Pcos θ r sin( θ + β) = 0 6 BC 5 AB 4 AE 6 6 5.46 6

5 F BC 5.38 P F sin θ BC = sin θ r 4 AE r cos cosθ F cos θ r sin θ 5 AB 6 BC 5 AB 6 P 5.47 ( θ + β) cosθ r sin( θ + β) 6 4 AE 6 E E x y Pcosθ = 5.48a = Psin θ 4 4 5.48b A A x y = F cosθ Pcosθ 5.49a = F BC BC sin θ 5 5 Psin θ 4 4 5.49b 5.c E EF E -E x -E y F F x y = E = Pcosθ 5.50a x y 4 = E = Psin θ 5.50b 4 5.3 5.8 63

P Q = g( ) 5.5 θ 5.0 r EF r = EF = r ( ( ) ( ) ) EF ( θ ) = X F X E + YF YE ( X X r cos( θ + β) ) + ( Y Y r sin( θ + β) ) ( ) F A AE 6 F A AE 6 5.5 L 0 k 5.5 P Q ( L r ( θ )) k 0 EF = = g( θ ) 5.53 Q Q 5.53 5-4 3 4 64

5. D 5.3 G y 3 5. 5. 5.3 65

5.3 4T 3T T48T 38T 8TT 0 5 5.4a b ½ ½ ½ 5.4c ½ 63.5 66

N/ N a (N/)5 N0 b ½ N/ N c 5.4 5.40 5.5 Q 6085 kgw 67

00 kgw 355.5 kgw 70 kgw 7080 /hr 50 kgw P max 5.40 5.5 EF EF = L 0 r EF 5.54 Travel EF k 68

5-5 Visual BASIC 6.0 3 4 5.5 3 5.6 5.7a 5.7b 69

5.5 5.6 70

a b 5.7 7

5.8 5.9 5.0 5.8 7

5.9 5.0 73

5. 3 5. 74

5. 3 5. 75

Giant Warp-DS Giant ATX- a b 5.3 Giant Warp -DS 76

Giant Warp-DS 5.3 Giant Warp-DS C00 B8030A-3070 D465-45 5.4 ABBC CD BD 75467 43 mm 5.5 0 9 3.7 mm 5.6 9. mm 4.06 5.9 4.06 5.9 C D 5.4 Giant Warp-DS 77

5.5 5.6 78

6 3 4 5 b 5.7 Giant ATX- 79

Giant ATX- 5.7 Giant ATX- ABCDE F -40 75 075 3500 00-5000 -800 G 390-0 5.8 5.9 0 5.30 5.3 5.30 470.8 mm 48.6 mm 0.8 mm.80. Giant Warp-DS 5.8 Giant ATX- 80

5.9 5.30 8

5.3 8

3- Heuristic combinatorial optimization 6-5-4 3 4 5-4 63.5 3 83

4 3-6- 6-6. ABC D ABC D 6. 5.8 5.3 6-84

Y B A D X C 6. Y B A F C G D 6. 85

F. Freudenstein T. W. Lee[8] Heuristic combinatorial optimization Dr. Shen Lin Mathematical programming technique Continuous method Discrete Combinatorial optimization 965 Dr. Shen Lin Heuristic method S s S C S f (s) C T T T 3 T f (T ) < f (T) T T 4 86

S Pseudorandom feasible solutiont x x x ë T y y y ë T T 3 g i G i f i g i i x x x i- y y y i- gain g i f i f i- G i i G ig g g i f i f 0 G i > 0 4 N C 5 87

6 Look-ahead procedure 35 7 g g g 8 9 35 0 i - q i q q i q 88

L N S T T BBk k T i i3 L T 3 i a i BB 5 b TEMIN c i i i 89

4 i a 3c i i b 3b L 5 5 L L T T 6 TT 6 5.8 5.3 90

6.3 0 5 B-Spline B-Spline 6.3 9

6.4 6.5 6.4 9

6.5 x y For-Next x y 800 30 700 0 80 473760 93

Root mean square error R.M.S.E n Σ i = ( f ( θ ) f ( θ )) designed n n wanted n 6. f designed f wanted n n 6. 6-3 Downhill Union Cycliste Internationale UCI 3.5 3.5 94

3 3 6.6 6. 5 4 3 5 0 5 0 5 30 6.6 0 5 0 5 0 5 4.5 4.5 4.3 4.0 3.5.0 6. 95

6. 0.0 6.7 6.86.9 6.0 6.7 96

6.8 6.9 97

6.0 6. 6. 98

6. 6. 50 99

40 69 6. 50 8 6. 45.3 6.3 6.3 00

50 kgw 40 kn/m 800 lb/in. 80 45 800 lb/in. 6. - 4. 4. 6.4 6.5 0.09 6.3 0

6.4 / 6.5 / 0

6.6 6.7a e 0. 0.7 0.8 0.7 0.5 90 6.6 6.8a b 0. 6.8a ABE AEF 90 03

6.6 6.7a 04

6.7b 6.7c 05

6.7d 6.7e 06

6.8a 6.8b 07

3 4 5 Visual BASIC 6.0 08

3 4 09

. J. G. Seifert, M. J. Luetkemeier, M. K. Spencer, D. Miller, and E. R. Bruke, The Effects of Mountain Bike Suspension Systems on Energy Expenditure, Physical Exertion, and Time Trial Performance During Mountain Bicycling, Int. J. Sports Med., Vol. 8, No. 3, pp. 97-00. 997.. 3. E. L. Wang and M. L. Hull, A Model for Determining Rider Induced Energy Losses in Bicycle Suspension Systems, Vehicle System Dynamics, Vol. 5, pp. 3-46, 997. 4. E. L. Wang and M. L. Hull, Minimization of Pedaling Induced Energy Losses in Off-road Bicycle Rear Suspension Systems, Vehicle System Dynamics, Vol. 8, pp. 9-306, 997. 5. S. A. Needle and M. L. Hull, An Off-Road Bicycle With Adjustable Suspension Kinematics, ASME Journal of Mechanical Design, Vol. 9, pp.370-375, 997. 6. 7. E. Pennestri and A. Strozzieri, Optimal Design and Dynamic Simulation of A Motorcycle with Linkage Suspension, Int. J. of Vehicle Design, Vol. 9, No. 3, pp. 339-350, 988. 0

8. 9. 0.. J. S. Busby, Bicycle rear suspension system, U. S. Patent Number: 540949, Apr. 5, 995.. J. S. Busby, Bicycle with shock absorbing rear assembly and common chain stay shock absorber mounting bracket, U. S. Patent Number: 60363, Mar. 4, 000. 3. W. M. Wilcox, M. A. Rhoades and M. L. Zeigle, Suspension for a bicycle having a Y shaped frame, U. S. Patent Number: 5685553, Nov., 997. 4. T. L. Harris, Rear wheel suspension for a bicycle and bicycle equipped therewith, U. S. Patent Number: 54590, Sep. 6, 995. 5. M. Lawwill, Rear suspension bicycle, U. S. Patent Number: 5957473, Sep. 8, 999. 6. C. P. D Aluisio and M. M. Galasso, Bicycle suspension system, U. S. Patent Number: 579674, Aug., 998. 7. D. Shiau, Bicycle frame with shock absorber, U. S. Patent Number: Des. 390506, Feb. 0, 998. 8. 379698 89 9. 4055 84 0. 35595 83 0

. J. Olsen, Mountain Biking, Stackpole Books, 989.. R. Van der Plas, Bicycle Technology, Bicycle Books San Francisco, 99. 3. L. Zinn, Mountain Bike Performance Handbook, MBI Publishing Company, 998. 4. 5 8-34 995 5. G. Pahl and W. Beitz, Engineering Design, Second Edition, translated by Wallance, K., Blessing, L., and Bauert, F., edited by Wallance, K., Springer-Verlag London Limited, 996. 6. -3 983 7. 8 55-63 989 8. T. W. Lee and F. Freudenstein, Heuristic Combinatorial Optimization in the Kinematic Design of Mechanisms, ASME Journal of Engineering for Industry, Nov. 976, pp. 77-80.