土 壤 (Soils), 2016, 48(2): 298 305 DOI: 10.13758/j.cnki.tr.2016.02.014 1 鄱 阳 湖 典 型 洲 滩 植 物 物 种 多 样 性 季 节 动 态 特 征 1,2 1 1* 1 (1 210008 2 100049) 0.5 虉 Shannon-Wiener K903 [1 4] [5 6] [7 8] Engelhardt Ritchie [9] Carvalho [10] 2 700 km 2 1992 [11] [12] [13] [14 15] [16] [17 20] [21] (973 ) (2012CB417006)(2013FY111800) (41171024) * (wangxl@niglas.ac.cn) (1991 ) E-mail: libing9133@126.com
2 299 1 1.1 (115 49 ~ 116 44 E 28 24 ~ 29 46 N) 170 km 16.9 km 74 km ( ) ( 1) 17.6 1 450 ~ 1 550 mm 图 1 鄱 阳 湖 概 况 与 采 样 点 位 置 图 Fig. 1 The Poyang Lake area and location of sampling sites 4 6 4 600 km 2[22] [23] 1.2 2010 4 1 10 10 15 25 9 虉 (Phalaris arundinacea) (Carex cinerascens) (Carex argi) (Artemisia selengensis) (Polygonum hydropiper) (Phragmites communis) (Miscanthus sacchariflor) (Zizania latifolia) (Typha angustifolia) GPS 3 1 m 3 ~ 5 1 1.3 4 [24 25] (N i )=(++)/3 (1) [26]
300 48 表 1 鄱 阳 湖 典 型 洲 滩 湿 地 植 物 群 落 优 势 种 与 伴 生 种 Table 1 The dominant and companion species of typical hygrophilous vegetation in Poyang Lake 虉 虉 (Phalaris arundinacea) (Artemisia selengensis) 虉 虉 (Carex cinerascens) 虉 虉 (Carex argi) 虉 虉 (Polygonum hydropiper) 虉 (Phragmites communis) (Miscanthus sacchariflor) (Zizania latifolia) (Typha angustifolia) Simpson s i 1 N / N 2 (2) i S N i i N Simpson Shannon-Wiener s i 1 / ln / H N N N N (3) i (2) Shannon-Wiener [27] [28] Margalef i R S 1/lnP (4) P (2) Alatalo 1/ 1 / e H 1 E (5) λ Simpson H Shannon- Wiener [29] [30] Excel SPSS17.0 P<0.05 2 2.1 2 9 (0.64) (0.62) (0.61) 0.40 0.36 0.31 虉 (0.72) (0.69) (0.67)(0.67) (0.64) (0.48) (0.51) 图 2 鄱 阳 湖 典 型 植 物 群 落 优 势 种 重 要 值 季 节 变 化 Fig. 2 Seasonal changes of important values of the dominant species of typical hygrophilous vegetation in Poyang Lake
2 301 2.2 3a 虉 0.73 0.64 0.42 (0.17) 虉 0.13 ~ 0.52 虉 虉 (P<0.05) 虉 (P=0.06) Fig. 3 图 3 鄱 阳 湖 典 型 植 被 群 落 物 种 丰 富 度 与 群 落 多 样 性 季 节 动 态 Seasonal changes of biodiversity indices of typical hygrophilous vegetation in Poyang Lake ( 2b) 0.96 0.92 0.91 0.66 ~ 0.79 虉 (0.90) (0.90) 0.36 ~ 0.84 虉 (P<0.001) 2.3 Shannon-Wiener 0.69 ~ 0.96 ( 2c)> >>> 虉 > > > > 虉 1.12 (0.89) (0.88) (0.88) (0.83) (0.74) (0.73)(0.73) (0.55) (P=0.03) (P=0.04) (P=0.06) Shannon-Wiener Simpson
302 48 ( 2d) 0.55 0.51 0.51 (0.42) 虉 (0.41) (0.40) (0.35) (0.34) (0.34) 0.42 ~ 0.64 虉 (P=0.03) (P=0.06) 2.4 (6 179.64 ± 593.18)g/m 2 (5 878.58 ± 463.18)g/m 2 4 Fig. 4 图 4 鄱 阳 湖 典 型 植 物 群 落 生 物 量 与 各 多 样 性 指 数 的 关 系 Relationship between biodiversity indices and vegetation biomass in Poyang Lake 3 [27] 2010 9 10 [31] 9 10 0.5 [31] 虉 虉 12 ~ 15 m [34]
2 303 [12,31] ( 1) Shannon-Wiener [30] [28,33] Simpson Shannon-Wiener Simpson 虉 [35] 虉 [36] [37] 150 ~ 200 cm 75% ~ 85% 4 5 10 11 4 10 [38 40] 翾 [41] Ma [42] Tilman [43] [26] [38] Irena [44] 4 0.5 虉 [1] Liao J J, Shen G Z, Dong L. Biomass estimation of wetland vegetation in Poyang Lake area using ENVISAT advanced synthetic aperture radar data[j]. Journal of Applied Remote Sensing, 2013, 7(1): 073579 073579 [2] Fang J Y, Wang Z H, Zhao S Q, et al. Biodiversity changes in the lakes of the Central Yangtze[J]. Frontiers in Ecology and the Environment, 2006, 4(7): 369 377 [3] Costanza R, d'arge R, De Groot R, et al. The value of the world s ecosystem services and natural capital[j]. Nature, 1997, 387(6630): 253 260
304 48 [4] Assessment M E. Ecosystems and human well-being: A framework for assessment[m]. Washington DC: Island Press, 2003 [5] Pan Y Z, Shi P J, Zhu W Q, et al. Measurement of ecological capital of Chinese terrestrial ecosystem based on remote sensing[j]. Science in China Series (Earth Sciences), 2005, 48(6): 786 796 [6] Syrbe R U, Michel E,Walz U. Structural indicators for the assessment of biodiversity and their connection to the richness of avifauna[j]. Ecological Indicators, 2013, 31: 89 98 [7] Guo Q, Berry W L. Species richness and biomass: dissection of the hump-shaped relationships[j]. Ecology, 1998, 79(7): 2 555 2 559 [8] Tilman D, Wedin D, Knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystems[j]. Nature, 1996, 379(6567): 718 720 [9] Engelhardt K A, Ritchie M E. Effects of macrophyte species richness on wetland ecosystem functioning and services[j]. Nature, 2001, 411(6838): 687 689 [10] Carvalho P, Thomaz S M, Kobayashi J T, et al. Species richness increases the resilience of wetland plant communities in a tropical floodplain[j]. Austral Ecology, 2013, 38(5): 592 598 [11], Hu Qi,. 50 [J]., 2011, 66(5): 609 618 [12],,,. [J]., 2010, 19(6): 597 605 [13],,. [J]., 2007, 44(2): 318 326 [14],,,. MODIS [J]., 2013, 22(6): 705 712 [15],. [J]., 2001, 56(5): 532 540 [16],,,. [J]., 2011, 30(1): 134 144 [17],,,. [J]., 2010, 30(18): 5 033 5 042 [18],,,. [J]., 2014, 51(3): 618 626 [19],,,. [J]., 2012, 32(12): 3656 3669 [20],,,. [J]., 2013, 11(2): 186 191 [21],,,. [J]., 2013(10): 1 057 1 063 [22],,. [J]., 2009, 28(6): 1 722 1 730 [23]. [M]. :, 2004 [24] Magurran A E. Ecological diversity and its measurement[m]. Princeton: Princeton University Press, 1988 [25],,... [J]., 1995, 3(1): 38 43 [26],,. [J]., 2004, 2(3): 213 219 [27]. [J]., 1998, 6(3): 191 196 [28],,,. [J]., 2006, 12(6): 772 776 [29],,. [J]., 2006, 26(2): 176 181 [30],. [J]., 2008, 37(2): 29 33 [31],,,. [J]., 2013, 30(6): 844 848 [32],,. [J]., 2001, 20(4): 55 60 [33],,,. [J]., 2009, 29(11): 6 257 6 265 [34],. [M]. :, 2006 [35],,,. [J]., 2010, 19(6): 9 [36],,,. [J]., 2009(01): 17 24 [37],,. [J]., 2004, 2(4): 296 302 [38] Pollock M M, Naiman R J, Hanley T A. Plant species richness in riparian wetlands-a test of biodiversity theory[j]. Ecology, 1998, 79(1): 94 105 [39] Waide R B, Willig M R, Steiner C F, et al. The relationship between productivity and species richness[j]. Annual Review of Ecology and Systematics, 1999: 257 300 [40] Currie D J, Mittelbach G G, Cornell H V, et al. Predictions and tests of climate based hypotheses of broad scale variation in taxonomic richness[j]. Ecology letters, 2004, 7(12): 1 121 1 134 [41] 翾,,,. [J]., 2008, 28(11): 5 392 5 400 [42] Ma W H, He J S, Yang Y H, et al. Environmental factors covary with plant diversity productivity relationships among Chinese grassland sites[j]. Global Ecology and Biogeography, 2010, 19(2): 233 243 [43] Tilman D, Reich P B, Knops J M. Biodiversity and ecosystem stability in a decade-long grassland experiment[j]. Nature, 2006, 441(7093): 629 632 [44] Šímová I, Li Y M, Storch D. Relationship between species richness and productivity in plants: the role of sampling effect, heterogeneity and species pool[j]. Journal of Ecology, 2013, 101(1): 161 170
2 305 Seasonal Dynamic Characteristics of Species Diversity of Typical Hygrophilous Vegetation in Poyang Lakeshore Wetland LI Bing 1,2, YANG Guishan 1, WANG Xiaolong 1*, WAN Rongrong 1 (1 Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China) Abstract: Hygrophilous vegetation plays a critical role in the processes of wetland ecosystem material circulation and energy transformation. Species diversity of hygrophilous vegetation communities can reflect the stability, as well as complexity of wetland ecosystem structure. Random subplots and sampling lines were utilized to investigate the typical hygrophilous vegetation communities in Poyang Lake wetland. Results showed that the average important values of dominant species of studied typical hygrophilous vegetation communities were above 0.5, which indicated their dominant status. Compared to those in spring, the diversity of Carex argi community, Polygonum hydropiper community, Zizania latifolia community, Typha angustifolia community and Miscanthus sacchariflor community declined in autumn. However, the biodiversity of Phragmites communis and Carex cinerascens community ascended in autumn, this is because that the dominance of the dominant species was weaken by delayed recession of water level, while frequently switching between grass beach and water brought substantial nutrients in autumn. Because of different growth mechanisms and niche overlapping, the diversity of Phragmites communis community and Miscanthus sacchariflor community had a reciprocal relationship along the seasons. At last, insignificant correlation was found between plant biomass and biodiversity indices. Key words: Species richness; Community biodiversity; Hygrophilous vegetation community; Poyang Lake