國立中山大學學位論文典藏.PDF



Similar documents
风电并网技术

Chapter 24 DC Battery Sizing

「香港中學文言文課程的設計與教學」單元設計範本

全唐诗28

(1)(6)(e) 2

鹽 鹼 地 29 交 通 水 利 用 地 29 交 通 用 地 29 水 利 用 地 30 荒 蕪 地 30 荒 地 30 公 園 用 地 30 公 園 用 地 30 土 地 改 良 物 30 公 務 及 營 運 用 土 地 改 良 物 30 二 房 屋 建 築 及 設 分 類 明 細 表 房 屋

通 过 厂 变 带 电, 这 种 设 计 减 少 了 机 组 自 带 厂 用 电 负 荷 能 力, 降 低 了 锅 炉 满 足 FCB 时 最 低 稳 燃 工 况, 同 时 造 成 燃 烧 调 整 量 加 大 本 电 厂 在 FCB 试 验 时, 电 泵 不 联 启, 始 终 保 持 汽 泵 运 行

2015年廉政公署民意調查

Microsoft Word - Panel Paper on T&D-Chinese _as at __final_.doc

一、

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (i) (ii)(iii) (iv) (v)

Microsoft Word - MP2018_Report_Chi _12Apr2012_.doc

南華大學數位論文

李天命的思考藝術

皮肤病防治.doc

性病防治

中国南北特色风味名菜 _一)

全唐诗24

509 (ii) (iii) (iv) (v) 200, , , , C 57

-i-

Microsoft Word - 强迫性活动一览表.docx

IEC A( ) B C D II

68003 (Project Unity TC)_.indb

4.3 電 流 洩 漏 對 電 度 表 之 計 量 ( 糾 紛 ) 影 響 其 他 原 因...46 第 五 章 問 卷 調 查 與 分 析 問 卷 研 究 步 驟 因 素 與 信 度 分 析 問 卷 結 果 分 析 -1 (1

《信息系统安全等级保护测评准则》


2. 我 沒 有 說 實 話, 因 為 我 的 鞋 子 其 實 是 [ 黑 色 / 藍 色 / 其 他 顏 色.]. 如 果 我 說 我 現 在 是 坐 著 的, 我 說 的 是 實 話 嗎? [ 我 說 的 對 還 是 不 對 ]? [ 等 對 方 回 答 ] 3. 這 是 [ 實 話 / 對 的

FJW531.S72

Microsoft Word - Final Chi-Report _PlanD-KlnEast_V7_ES_.doc

C Ann.indd

<4D F736F F D203938BEC7A67EABD7B942B0CAC15AC075B3E6BF57A9DBA5CDC2B2B3B92DA5BFBD542E646F63>

捕捉儿童敏感期

Microsoft Word - 中三選科指南 2014 subject


中医疗法(下).doc

穨學前教育課程指引.PDF

眼病防治

中国南北特色风味名菜 _八)

一、單選題 (50題 每題1分 共50分)

穨ecr2_c.PDF

電腦相關罪行跨部門工作小組-報告書

i

发展党员工作手册

i

39898.indb

增 刊 相 红 阳 : 超 临 界 350 MW 机 组 四 大 管 道 管 材 及 规 格 优 化 109 型 式 : 超 临 界 一 次 中 间 再 热 单 轴 三 缸 两 排 汽 双 抽 供 热 汽 轮 机 额 定 转 速 :3000r/min 旋 转 方 向 : 顺 时 针 ( 从 汽 机

目 录 院 领 导 职 责... 1 院 长 职 责... 1 医 疗 副 院 长 职 责... 1 教 学 副 院 长 职 责... 2 科 研 副 院 长 职 责... 2 后 勤 副 院 长 职 责... 3 主 管 南 院 区 副 院 长 职 责... 3 党 委 书 记 职 责... 4

(b) 3 (a) (b) 7 (a) (i) (ii) (iii) (iv) (v) (vi) (vii) 57

民 國 105 年 大 專 程 度 義 務 役 預 備 軍 官 預 備 士 官 考 選 簡 章 目 錄 壹 考 選 依 據 1 貳 考 ( 甄 ) 選 對 象 1 參 資 格 規 定 1 肆 員 額 及 專 長 類 別 2 伍 報 名 及 選 填 志 願 日 期 方 式 3 陸 選 填 官 科 (

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

Chroma 61500/ bit / RMS RMS VA ()61500 DSP THD /61508/61507/61609/61608/ (61500 ) Chroma STEP PULSE : LISTLIST 100 AC DC

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix) (x) (xi) 60.99%39.01%

untitled

<4D F736F F D205B345DB5D8AE4CACD AECAAFC5C1C9C1DCBDD0AB48A4CEB3F8A657AAED>

Ps22Pdf

UDC

II II

標準 BIG 中文字型碼表 A 0 9 B C D E F 一 乙 丁 七 乃 九 了 二 人 儿 入 八 几 刀 刁 力 匕 十 卜 又 三 下 丈 上 丫 丸 凡 久 么 也 乞 于 亡 兀 刃 勺 千 叉 口 土 士 夕 大 女 子 孑 孓 寸 小 尢 尸 山 川 工 己 已 巳 巾 干 廾

儿童饮食营养与健康(五).doc

群科課程綱要總體課程計畫書


SIK) 者, 需 實 施 1 年 以 上, 經 體 格 檢 查 無 後 遺 症 者 5. 身 體 任 何 部 分 有 刺 青 紋 身 穿 耳 洞 者, 不 得 報 考, 各 項 檢 查 結 果 須 符 合 體 位 區 分 標 準 常 備 役 體 位 二 在 校 軍 訓 成 績 總 平 均 70 分

<4D F736F F D20312D3120D5D0B9C9CBB5C3F7CAE9A3A8C9EAB1A8B8E5A3A92E646F63>

(5 ) ( ) ( ) ( )

高層辦公建築避難演練驗證與避難安全評估之研究


98825 (Project Sunshine) Chi_TC_.indb

发 债 主 体 供 销 集 团 成 立 于 2010 年 1 月 18 日, 是 经 国 务 院 批 准 设 立 国 家 工 商 总 局 核 准 注 册 成 立 的 中 华 全 国 供 销 合 作 总 社 ( 以 下 简 称 供 销 总 社 ) 直 属 核 心 全 资 企 业 截 至 2015 年

天主教永年高級中學綜合高中課程手冊目錄

( ) Wuhan University


信息管理部2003

Ps22Pdf

就財務委員會委員審核2015至16年度開支預算所提出初步問題的答覆

2009年第1期.doc

www. chromaate. com Chroma H I-V (MPPT) / 6630/ /61500/ / Chroma


江苏宁沪高速公路股份有限公司.PDF

[ ] [ ] Sino-French Life Insurance Co., LTD. ( ) ( ) ( )

声 明 本 公 司 全 体 董 事 监 事 高 级 管 理 人 员 承 诺 股 票 发 行 方 案 不 存 在 虚 假 记 载 误 导 性 陈 述 或 重 大 遗 漏, 并 对 其 真 实 性 准 确 性 和 完 整 性 承 担 个 别 和 连 带 的 法 律 责 任 根 据 证 券 法 的 规 定

國家圖書館典藏電子全文

Ps22Pdf

ii

在 上 述 物 理 模 型 中 ( 三 隻 猴 子 的 重 量 都 一 樣 ), 考 慮 底 下 四 個 問 題 : () 當 三 股 力 量 處 於 平 衡 狀 態, 而 且 F 點 處 於 ABC 的 內 部 時, 利 用 力 的 向 量 和 為 零 的 觀 念, 求 角 度 AFB, BFC,

untitled

绝妙故事

untitled

榫 卯 是 什 麼? 何 時 開 始 應 用 於 建 築 中? 38 中 國 傳 統 建 築 的 屋 頂 有 哪 幾 種 形 式? 40 大 內 高 手 的 大 內 指 什 麼? 42 街 坊 四 鄰 的 坊 和 街 分 別 指 什 麼? 44 北 京 四 合 院 的 典 型 格 局 是 怎 樣 的

尿路感染防治.doc

QWWTML

_Chi.ps, page Preflight ( _Chi.indd )

心理障碍防治(下).doc


ii

云南水电开发中的生态环境问题研究

Microsoft Word - LD5515_5V1.5A-DB-01 Demo Board Manual

202,., IEC1123 (1991), GB8051 (2002) [4, 5],., IEC1123,, : 1) IEC1123 N t ( ). P 0 = , P 1 = , (α, β) = (0.05, 0.05), N t = [4]. [6

®Ñ¥U41.indb

Microsoft Word - Paper on PA (Chi)_ docx

建築工程品質管理案例研討

Transcription:

A Study on the Impacts of Grid Connection Wind Power Generations

() ()A Study on the Impacts of Grid Connection Wind Power Generations 9131646 () ()Zhi-Yuan Kuo () ()Chan-Nan Lu ()

() Wind power generations have increased impacts on the electric utility power systems. When the wind power is placed into service in an electric system, it becomes a functioning part of the system, which may require other design changes to the system and special practices to integrate it to the system. The presence of the wind power generation units will directly affect voltage profiles along a feeder by changing the direction and magnitude of active/reactive power flows. A number of coordination issues including safety issue, protection, voltages and frequency control presently require study in order to understand technical limits to the penetration of wind power or distributed generation on a given system. The aim of this thesis is to investigate the impacts of wind generators connected to a distribution system. To take load uncertainty and wind power generation uncertainty due to wind speed variation in the analysis, Monte Carlo simulation technique is used. A number of cases are tested to assess the impacts of wind power generations in various scenarios for the studied network. Test results have shown that the when wind power generators are connected to distribution network, it would not only reduce the probability of occurrence of undervoltage but also decrease the feeder losses. The analytical models proposed in this thesis can provide the utility useful information in placing the wind power generators.

I

Abstract Wind power generations have increased impacts on the electric utility power systems. When the wind power is placed into service in an electric system, it becomes a functioning part of the system, which may require other design changes to the system and special practices to integrate it to the system. The presence of the wind power generation units will directly affect voltage profiles along a feeder by changing the direction and magnitude of active/reactive power flows. A number of coordination issues including safety issue, protection, voltages and frequency control presently require study in order to understand technical limits to the penetration of wind power or distributed generation on a given system. The aim of this thesis is to investigate the impacts of wind generators connected to a distribution system. To take load uncertainty and wind power generation uncertainty due to wind speed variation in the analysis, Monte Carlo simulation technique is used. A number of cases are tested to assess the impacts of wind power generations in various scenarios for the studied network. Test results have shown that the when wind power generators are connected to distribution network, it would not only reduce the probability of occurrence of undervoltage but also decrease the feeder losses. The analytical models proposed in this thesis can provide the utility useful information in placing the wind power generators. Keyword Wind power generations, Monte Carlo simulation II

----------------------------------------------------------------------- I ---------------------------------------------------------------------- II --------------------------------------------------------------------------- III ------------------------------------------------------------------------ VI ------------------------------------------------------------------------- X ----------------------------------------------------------------- 1 1-1 ------------------------------------------------------ 1 1-2 --------------------------------------------------------- 2 1-3 --------------------------------------------------------------- 5 -------6 2-1 ------------------------------------------------ 6 2-2 ----------------------------------------------------- 11 2-3 ----------------------------------------------- 12 2-4 -------------------------------------------- 19 2-5 ----------------------------- 20 III

2-6 ----------------------------------------- 25 2-7 IEEE --------------------------- 32 -------------------------- 38 3-1 ----------------------------------------- 38 3-2 ----------------------------------------- 41 3-3 -------------------------- 43 3-3-1 -------------------------------------------- 44 3-3-2 -------------------------------------------- 45 3-4 ----------------------------------------------- 47 3-4-1 ----------------------------------------------------- 47 3-4-2 ----------------------------------------------------------- 47 3-5 48 3-6 P st P lt ----- 55 -------------------------- 63 4-1 -----------------------------------------------------64 4-2 ----------------------------------------------- 67 4-2-1 --------------------------- 67 IV

4-2-2 --------------------------------- 70 4-2-3 --------------------------------- 72 4-2-4 P st P lt --------76 4-2-5 ------------------------ 79 4-2-6 ----------------------------------------------- 82 ------------------------------------------- 98 5-1 ------------------------------------------------------------------- 98 5-2 ------------------------------------------------------ 101 -------------------------------------------------------------------- 102 V

2-1 ----------------------------------- 6 2-2 --------------------------------------------- 16 2-3 --------------------------------------------- 18 2-4 Cp- ------------------------------------------------------- 19 2-5 --------------------------------------------------- 20 2-6 ------------------------------------------------ 22 2-7 ------------------------------------------------ 22 2-8 ----------------------------------------------------------- 23 2-9 ------------------------------------- 34 3-1 --------------------------------------------------- 38 3-2 --------------------------------------------------- 38 3-3 d(%)( φ + θ) ------40 3-4 d(%)r --------------40 3-5 ------------------------------------------------ 42 3-6 ------------------------------------------------ 48 3-7 --------------------------------------- 50 VI

3-8 ------------------- 52 3-9 ------------------------------------ 52 3-10 ------------------------------------------ 54 3-11 ------------------------ 56 4-1 ------- 64 4-2 --------------------------------- 66 4-3 ------------------- 69 4-4 ------------- 71 4-5 ------------- 72 4-6 ------------------------------ 73 4-7 ---------------------- 73 4-8 CB -------------------------- 75 4-9 CB ----------------------- 75 4-10 P st P lt -------------------------------78 4-11 ( )P st P lt ---------------78 4-12 ( )P st P lt ---------------79 4-13 ----------- 80 VII

4-14 24 ( )----------------------------- 82 4-15 24 ( )-------------------------- 82 4-16 24 ( )-------------------------- 83 4-17 24 ( )------------------------ 83 4-18 (BK0) ( 1000 )------- 84 4-19 (BK0) ( 1000 )------- 84 4-20 (BK0) ---------- 85 4-21 (BK0) ---------- 86 4-22 ----------- 86 4-23 (BK0) ---- 87 4-24 -------- 87 4-25 --- 88 4-26 ------------------------------------------- 89 4-27 ------------------------------------------- 89 4-28 -------------------------------------- 90 4-29 24 ( )----------------------------- 90 4-30 24 ( )-------------------------- 91 VIII

4-31 ( )--------- 92 4-32 ( )------ 92 4-33 --------------------------- 93 4-34 -------------------------- 93 4-35 IEEE (30 BUS)------------------------------- 94 4-36 -------------------- 96 4-37 -------------------- 96 4-38 24 ---------------- 97 IX

2-1 1998~2003 ------------------------------7 2-2 --------------------- 13 2-3 ---------------------------------------14 2-4 IEEE-519,1992 --------------------29 3-1 ------------------------------------------------56 3-2 ---------------------------------------57 3-3 ----------------------------------------------------- 60 3-4 ( )---------------------------------- 61 3-5 ( )---------------------------------- 61 4-1 ----------------------------------------------------- 65 4-2 ---------------------------------------------------66 4-3 ---------------------------------------------68 5-1 IEEE (30 BUS) ---------------95 X

1-1 [1] 20 2000 1000 3 4 [2] 750 200 1500 204 0 0.1 [2] 50 70 1

200 [2] 1-2 IEEE 1988 IEEE 1001-1988 (Guide for Interfacing Dispersed Storage and Generation Facilities with Electric Utility Systems) IEEE 1001-1988 2

IEEE IEEE Std. 929-1988IEEE ( 2000 ) ANSI/IEEE Std. 1021-1988IEEE IEEE Std. 1094-1991IEEE IEEE Std. C37.95-1989IEEE / IEEE WG C-5 500kW 1992 10 IEEE 519-1992IEEE IEEE Std. 1035-1989 IEEE (Recommended Practice) 1990 IEEE 3

IEEE SCC21 P-1547 JEAG 9701-2001 3 [3]-[4] 4

1-3 P st P lt P st P lt 5

2-1 2003 40,000 MW 800 2,200 2-1 5 31.8% 2-1 0 5 10 15 20 25 30 35 40 45 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 (GW) 2-1 [5] 6

2-1 1998~2003 [5] MW MW % % 1998 2,597 10,235 1999 3,922 51% 13,932 37% 2000 4,495 15% 18,449 32% 2001 6,824 52% 24,927 35% 2002 7,227 6% 32,037 29% 2003 8,344 15% 40,301 26% 27.8% 31.8% 80 80 90 10 14,000 2000 1990 1,743MW 2000 18,449MW 370 20% 2003 39,151MW 2006 79,497MW (Grid connection) (Hybrid System) 7

(Wind Farm) ( Altamont Pass Tehachapi ) LNG 25 (2MW ) 80 1,000MW 89 (Public Utility Regulatory Policy Act) 20%30%2000 12,822MW 2006 54,000MW 150-250 1.1-4.5MW( EnerconE112 4.5MW) 2010 6 12% 8

340MW 2006 1,706MW 2001 1,456MW 2006 4,256MW 1998 31MW2001 357MW 2010 3,000MW( 3% ) (2.64 (3.5MW) (2.4MW) MW) 10MW 0.03% 18% 4.7%[6] 2010 500MW[7] 10MW USW 12.7 / 100 5.8 / 19.4 / 9

90 11 4 600 Enercon E40 11.4KV 2.5 / 13 600 25 / 89 12 4 / 15 / 660 25 / 11.4kV 1.15 10

4 / 16 / 1.75 25 / MW 85 10 2-2 [8] 59% 30~50% 20%~45% 11

2.5~4m/s 12~15m/s 20~25m/s (pitch regulation) (stall control) 600kW 45m1000kW 55m 2000kW 75m (1~3 ) 2 3 2-3 [9] 12

(Stall Regulator) (Pitch Regulator) 2-2 2-2 [10] (Stall Regulator) (Pitch Regulator) 19 80 100 ( 60%) 2000 2000 ( 97~99%) 2005 3000 ( 98~99%) 2-3 13

2-3 [11] 1980 2000 2005 <100 600~1000 1000~3000 60% 97~99% 98~99% 500 / 2 /1100 / 2 /1250 / 2 / 4,000 / 1,000 / < 1,000 / 40 / 5~6 / 3~4 / 60 0 (Synchronous generator, SG) (Permanent-magnet generator, PMG) (Asynchronous induction generator, IG) (IG) Converter/Inverter 22.51 1/3 14

( >2.51) Vestas 660kW ( ) (Opti-Slip system) ( 10% ) (Opti-Speed system) 60% Converter Inverter Enercon E40 (PMG) (Rectifier) / (Inverter) 15

660kW 2000kW MWT-S MWT-S600 MWT-S2000 (SG) (Pitch Control) 2-2 2-2 [9] 16

( ) 20~30rpm 3600rpm (Rectifier) (Inverter) Enercon EN 230kW280kW600kW1500kW 1800kW Lagerway 750kW (IG) ( ) 2~4%( ) 17

2-3 2-3 [9] Vestas NEG-MiconBonusNordexJacobsFuhrlanderDewind Mitsubisi Lagerway GE( )Nzond 18

2-4 [12] (F) F=0.5*Cp**A*V 2 A ( m 2 ) ( kg/m 3 Cp V ( m/s) F 3 P=0.5*Cp**A*V (kw) (2-1) Cp =R/V R (rad/s) Cp- 2-4 2-4 Cp- [12] 19

2-5 ( ) 2-5 2-5 [12] 20

[13] ( ) ( ) [14]2-6 10kW 21

2-6 2-7 10kW 10kW 2-7 22

2-8 2-8 23

24

2-6 [15] ( 11.4kV22.8kV 0kA69kV40kA161kV50kA345kV63kA) ±5% ±10% ±2.5% ±2.5% 1 25

22.8kV( )±5% 10% (1) (2) (101V 6V (3) ( 1 2% 101V6V202V20V) (4) ( (101V6V202V20 V ) 2kVA 6kVA 15kVA 202V20V ) ) ( 2% 10% ) 26

(5) ( 2% 10% ) (6) ( ) 161kV ( ) 85% 100 27

0.9( ) 85% ( 80%) 85% 95% IEEE/Std 519-1992 (peak) (ture rms voltmeters) IEEE/Std 519-1992 ULIEEEIEC 85% 95% 85% k- 28

(Area Electric Power System, Area EPS) (PCC) IEEE 519-1992 2-4 2-4 IEEE-519,1992 [16] h < 11 11 < h < 17 17 < h < 23 23 < h < 35 35 < h TDD IEEE-519 10.3 I SC /I 1 < 20 4.0 2.0 1.5 0.6 0.3 5.0 25 IEEE P1547 (type testing) IEEE 519-1992 IEEE 519-1992 20 (THD) 3% I L 25% 50%75% 50% 25%50% IEEE 519-1992 THD 40 29

IEEE 519-1992 ( I SC /I L 20 ) IEEE 519 ( ) 35kV ( ) ( ) 30

60kV (1) (2) a. b. (a) (b) (c) (3) 31

(4) 2-7 IEEE [17] ) ( ) (A,B,C1,2,3 ( ) 32

( ) () ( ) / 33

( 2-10) H 2-9 [17] 34

(Y- -YY-YZig-Zag ) : ( ) (Basic Impulse Insulation Level, BIL ) BIL BIL ( ) 35

Isokeraunic ( -/) ( BEL ) ( ) 36

/ Islanding (0.1Hz) 37

3-1 Z L I V S V R Load 3-1 V S XI I V R a b c RI d e 3-2 38

3-1 V S =V R +Z L I (3-1) Z L =R+jX (3-2) V S V S V S = V R +ab+de= V R + I Rcos+ I Xsin (3-3) P= V R I cos Q= V R I si n I V S = V R + R Pφ+ X Q φ (3-4) V R I I=I p +ji q (3-5) d = Z I = (R + = V S k 2 L S V n jx) ( I (cosφcosθ sin φsin θ) + p + j I ) = Z q L (cosφ + S j... S k n jsin φ) I (cosθ + cos( φ + θ) jsin θ) cos( ) 100 cos( ) S S n d(%) 100 φ + θ = φ + θ (3-6) R k S k S n R(R=S k /S n ) 39

d φ 3-3 d(%)( φ + θ) [18] 3-4 d(%)r [18] 40

3-3 3-4 0.95 0.95 3-2 [19] ( ) MVA sc 3-5 MVA (1) ()( ) MVA SC 2 (kv) 2 = = (kv) Y (3-7) Z (2) (pu)( ) MVA r MVA SC = (3-8) Zpu Y (S) Z () Z pu (p.u.) 41

MVA r (MVA) kv (kv) MVA sc (MVA) 3-5 MVA MVA sc =(kv) 2 Y MVA sc Y MVA Y MVA = MVA MVA 1 2 1,2 MVA1 + MVA 2 (3-9) MVA = + 1+ MVA MVA 2 1 2 (3-10) MVA (1) (2) MVA sc MVA (3) MVA MVA sc 42

(4) I sc I sc = MVA sc 3 kv r (3-11) 3-3 [20] ( ) (Wind Turbine Power Curve) (Bus Data) - (Swing)(Load) - - - 43

- (Branch Data) - - (System Data) - - - 3-3-1 - (Gauss-Seidel Method) - (Newton-Raphson Method) (De-coupled) - - - - Pk Q k P = θ Q θ P V θ Q V V k k (3-12) V k+ 1 = V k + V, θ k k+ 1 = θ k + θ k k k 44

3-3-2 PQ RX PQ RX (3-13) (3-14) P = f (U) (3-13) U P = I 2 R R R 1 s s (3-14) I R R R s PQ PQ (3-15)(3-16)(3-17) 2 2 2 2 2 X X 2 2 V 2RP (V 2RP) 4P (R X ) c + + = V + X + X (3-15) 2 2 2 X X 2(R + X ) 2(R + X ) Q 2 c V P X X c 45

R Q = Q 0 2 Q P Q P (3-16) 1 2 (3-16)Q, Q, Q 0 1 2 (3-15)(3-16) 2 X X c 2 Q = V + X P (3-17) 2 X X V c PQ ASPEN PSSE 46

Aspen PSSE 3-4 [21] 3-4-1 (1) (2) (3) (4) 3-4-2 (Unsymmetrical Faults) (Single Line-to-Ground Fault) (Double Line-to-Ground Fault) (Line-to-Line Fault) (Three Line-to-Ground Fault) (Sequence Network) 47

(Symmetrical Component) k 3-6 ( Z f ) 3-6 I ( + ) k, fa Pos.-Seq.-Network I I ( ) k, fa Neg.-Seq.-Network ( 0 ) k, fa Zero.-Seq.-Network 3Z f 3-6 [21] 3-5 48

(Random Sampling) [22] [22] 1. 2. [22] 1. 2. [23] 1. 2. P Wi =E(P W )i + (randn)i Wi i 49

3. P l n=e(p l )n +(randn)n l n n bus E(P W ) W E(P l ) l randn : 0 1 (normal probability distribution) f (x ) = ( x ) 2 / 2 2 1 µ σ 2πσ e (3-18) =, = =3.14159, e =2.71828 3-7 [24] 50

[24] 3-7 1. 2. 3. 4. 5. 3-8 6. 1( ) 7. 1 68.26% 2 95.44% 3 99.72% 3-9 (a)(b)(c) 51

σ=5 σ=10 3-8 [24] 99.72% 95.44% 68.26% -3-2 -1 +1 +2 +3 3-9 [24] 52

3-10 ABC 1000 53

>24 = +1 >1000 = +1 STOP 3-10 54

3-6 P st P lt (1) (Short term flicker severity, P st ) P st 10 P st P = 0.0314P + 0.0525P + 0.0657P + 0.28P + 0.08P (3-19) st 0.1 1.0 3.0 10 50 P 0.1 0.1%S f 0.1%S f 10 ( 3-11) 0.1% S f (2) (Long term flicker indicator, P lt ) P lt P st 2 P lt P lt N 3 1 3 = N Pst (3-20) k k= 1 55

N=12 P st 10 2 12 P st P st N 12 3-11 3-1 V 10 3-1 IEC 61000-3-3/5 IEC 61000-3-7 (a) P st =1.25, P lt =1.0 (a)132kv (b)p 1.0, P =0.8 (b)132k P st P st =1.0, P lt =0.65 P lt st= lt V P st =1.0, P lt =0.8 10 Hz V 10 0.45-220~250V 35kV 56

P st <E Psti (3-21) P lt <E Plti (3-22) P st P lt E Psti E Plti PCC IEC 61000-3-7 3-2 IEC Std. 61000-3-7 (Indicative planning levels) 3-2 Indicative values of planning levels MV HV-EHV P st 0.9 0.8 P lt 0.7 0.6 P st S n = P = c( Ψ,V ) (3-23) lt k a Sk 57

c( k, V a ) k V a S n S k k V a k V a P = P = S 1 stσ ltσ k i= 1 N wt (c ( Ψ,V ) S i k a n,i ) 2 (3-24) S k c i ( k,v a ) S n,i N wt 58

P st S 0.31 n = 18 N10 k f ( Ψk ) (3-25) S k P 0.31 = 8 N k ( Ψ ) lt 120 f k S n S k (3-26) k f ( k ) k P stσ = 18 ( S k N wt i=1 N Ψ 3.2 10,i (k f,i ( k ) Sn.i ) ) 0.31 (3-27) P ltσ = S 8 k ( N wt i= 1 N 120,i (k, i f ( Ψ k ) S n,i ) 3.2 ) 0. 31 (3-28) N 10,i N 12 0,i 10 2 k f,i ( k ) S n,i IEC61400-21-2 [25] 59

P n = 600kW S n = 607kVA U n = 690V I n = 508A P 60 = 645kW Q 60 = 645kvar [25] V a = 7.2 m/s S = 25MVA k k = 55 N = 3 c( k,v a ) k = 30 o 50 o 70 o 85 o a 10kV V = 6m/s7.5m/s8.5m/s 10m/s 3-3 3-3 [25] k 30 50 70 85 Va (m/s), c(,v ) k a 6.0 m/s 7.1 5.9 5.1 6.4 7.5 m/s 7.4 6.0 5.2 6.6 8.5 m/s 7.8 6.5 5.6 7.2 10.0 m/s 7.9 6.6 5.7 7.3 60

k f ( k ) 85 o k =30 o 50 o 70 o 10 N 10 2 N 120 3-4 3-5 3-4 ( ) [25] 10 3 N 10 2 N 120 k 30 50 70 85 k f ( k ) 0.35 0.34 0.38 0.43 k u ( k) 0.7 0.7 0.8 0.9 30 3-5 ( ) [25] 10 1 N 10 2 8 N 120 k 30 50 70 85 k f ( k ) 0.35 0. 34 0.38 0.43 k u ( k ) 1.30 0.85 1.05 1.60 7.2 m/s 55 o 3-3 5.8 607 kva 25MVA 3-23 3-24 61

607 P lt = 3 5.8 = 0.244 251000 IEC 61000-3-7 P lt =0.8 IEC 55 o 3-4 3-5 3-25 3-28 N* N 120 =330 =90( ) k f (55 o )=0.35 0.31 607 P = 8 (3 30) 0.35 = 0.27 lt 251000 N*N 120 =38=24 () k f (55 o )=0.62 0.31 607 P lt = 8 (3 8) 0.62 = 0.32 251000 IEC 61000-3-7 P =0.8 IEC lt 62

( 3-6) 4-2-2 4-2-3 MVA ( 3-73-8) 4-2-4 IEC61400-21-2 ( 600kW) ( 3-3 3-5) 3-23 3-28 IEC 61000-3-7 63

4-1 4-1 64

4-1 ( ) 4-1 69kV 12.55kA 4-1 #1 #2 ( )P(kW) Q(kVAR) ( )P(kW) Q(kVAR) AA0 1449.5 288.4 BA0 137.1 27.2 AAa0 1364.4 271.5 BAa0 1320.4 262.7 AB0 381.1 75.8 BB0 17.2 3.4 ABa0 164.8 32.7 BBa0 44.6 8.8 AC0 152.4 30.3 BC0 68.7 136.7 ACa0 249.8 49.7 BCa0 137.2 273.0 AD0 198.6 39.5 BD0 103.0 205.0 ADa0 1045.4 208.0 BDa0 68.7 13.6 SUM 5006 995.9 BE0 145.7 28.9 BEa0 34.2 6.8 BF0 68.5 13.6 BFa0 291.6 58.0 BG0 77.1 15.3 BGa0 68.5 13.6 BH0 51.5 10.2 BHa0 34.2 6.8 BI0 34.2 6.8 BIa0 600.2 119.4 BJ0 60.0 11.9 BJa0 114.1 22.7 BK0 25.7 5.1 SUM 3502.4 1249.5 65

A1 A2 B1B2B3 600kW 4-2 4-2 600 690V 0.15 p.u. 11.4/0.69 kv 0.69 kv BUS G*2 G*2 G*2 G*2 4-2 66

4-2 4.8MW 4-2 4-2-1 67

1.0 4-3 1.0 0.95 0.95 ( BK0) 4-3 PQ PSSE ASPEN 4-3 1.0 0.95 0.95 (MW) (MW) (MVAR) (MW) (MVAR) (MW) (MVAR) 1.2 (2 ) 1.2 0 1.2-0.394 1.2 0.394 1.2 (2) 1.2 0 1.2-0.394 1.2 0.394 1.2 (2) 1.2 0 1.2-0.394 1.2 0.394 1.2 (2) 1.2 0 1.2-0.394 1.2 0.394 68

8 PF=0.95 lead PF=1.0 PF=0.95 lag 7 6 5 d(%) 4 3 2 1 0 0 10 20 30 40 50 Short circuit ratio(r) 4-3 4-3 4-3 BK0 R=10203040 50 4-3 0.95 0.95 69

( 3-6) PF=1.0 R=10 BK0 30.4MVA 71.87 o 3.04MVA 3% 3% ) cos(71.87 3.04 100 (BK0) d = 30.4 o 4-3 4-2-2 70

4-4 4-4 4-4 4-5 4-5 ( ) (kw) 200 180 160 140 120 100 80 60 40 20 0 0 2 4 6 8 10 (km) 4-4 71

200 300 600 (kw) BA0 BG0 BK0 BA0+BG0+BK0 0 100 400 500 4-5 4-2-3 SS2 BK0 4-6 4-6 72

1000 2 3000 4 5 6 7 8000 9 SS2 BA0 BB0 BC0 BD0 BE0 BF0 BG0 BH0 BI0 BJ0 BK0 (bus name) (A) 0 000 000 000 000 000 000 4-6 10 20 30 40 4-7 50 60 (%) 0 SS2 BA0 BB0 BC0 BD0 BE0 BF0 BG0 BH0 BI0 BJ0 BK0 (bus name) 73

4-7 4-6 ( 3-7 3-11) BA0 4 (1.2*4=4.8MVA) BA0 96.7MVAS base =100MVA 0.15p.u. = 100 0.15 100 4 =32 (MVA) 1.2 (0.69 =>11.4kV) = 6 0.15 =40 (MVA) = 32 40 + 96.7 =114.48 (MVA) 32+ 40 11.4kV I sc = 114.48 =5.80 (ka) 3 11.4 4-6 74

6800 7600 8000 8600 SS2 BA0 BB0 BC0 BD0 BE0 BF0 BG0 BH0 BI0 BJ0 BK0 ) (A) 8200 8400 7000 7200 7400 7800 (bus name 4-8 CB 0 2 4 6 8 10 14 (%) 4-9 CB 12 SS2 BA0 BB0 BC0 BD0 BE0 BF0 BG0 BH0 BI0 BJ0 BK0 (bus name) 75

4-8 CB ( ) 4-9 4-8 4-8 4-9 CB 4-2-4 P st P lt 76

倂 倂 (PCC) ( 3%) IEC (P st ) (P lt )( P lt =0.46, P st =0.6) IEC61400/21/2 P st P lt IEC 61000-3-7 4-10 10 m/s () P st P lt IEC 77

Pst (P lt) 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 6 m/s 7.5 m/s 8.5 m/s 10 m/s 0 5 10 15 20 25 SCR 4-10 P st P lt 4-10 4-11 ( )P st P lt 78

4-12 ( )P st P lt 4-11 4-12 4-11 4-12 4-11 4-12 ( ) P st P lt IEC 4-2-5 ( ) 79

( ) 22.8kV() 5% (11.4kV 22.8kV 10kA) (km) 9 8 7 6 5 4 3 2 1 0 0 10 20 30 40 50 60 70 80 90 (5% ) 4-13 80

4-13 5% 4-13 BA0( 1.25 ) BA0 96.7MVA 82.68 1.2MVA 5% 37.97MVA S wt = ( 1.2 96.7 0.05 1.2 = 37.97 ) cos(82.68 ) (MVA) -5% ( 1.2 ) 96.7 cos( 82.68 o ) BA0 (96.7 + 37.97)MVA = BA0 3 11.4kV = 6.82(kA) - 81

4-2-6 (BK0) Load Variation(p.u.) 1.2 1 0.8 0. 6 0.4 0.2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (hour) 4-14 24 ( ) Load Variation(p.u.) 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (hour) 4-15 24 ( ) 82

4-14 4-15 (kw) (kw) 2500 2000 1500 1000 500 0 500 450 400 350 300 250 200 150 100 50 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (hour) 4-16 24 ( ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (hour) 4-17 24 ( ) 83

4-16 4-17 ( BK0) 4-18 (BK0) ( 1000 ) 4-19 (BK0) ( 1000 ) 84

4-18 4-19 1000 4-20 4-21 (BK0)24 1.00 max min mean (p.u.) 0.99 0.98 0.97 0.96 0.95 0.94 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (hour) 4-20 (BK0) 85

1.00 max min mean 0.99 (p.u.) 0.98 0.97 0.96 0.95 0.94 1 2 3 4 5 6 7 8 9 101112131415161718192021222324 (hour) 4-21 (BK0) 4-22 4-23 24 250 max min mean 200 (kw) 150 100 50 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (hour) 4-22 86

250 max min mean (kw) 200 150 100 50 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (hour) 4-23 (BK0) 4-24 4-25 1.00 max min mean 0.99 (p.u.) 0.98 0.97 0.96 0.95 0.94 SS2 BA0 BB0 BC0 BD0 BE0 BF0 BG0 BH0 BI0 BJ0 BK0 (bus name) 4-24 87

1.00 max min mean 0.99 (p.u.) 0.98 0.97 0.96 0.95 0.94 SS2 BA0 BB0 BC0 BD0 BE0 BF0 BG0 BH0 BI0 BJ0 BK0 (bus name) 4-25 4-26 25 / 4-27 88

4-28 4-26 4-27 89

4-28 4 0.6MVA (BK0) (m/s) 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (hour) 4-29 24 ( ) 90

(m/s) 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (hour) 4-30 24 ( ) 4-29 4-30 () 4-14 4-15 2-4 ( 2-1) (BK0) 4-31 4-32 24 4-31 4-32 4-20( ) 91

(p.u.) 1.01 1.00 0.99 0.98 0.97 0.96 0.95 0.94 max min mean 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (hour) 4-31 ( ) 1.01 max min mean (p.u.) 1.00 0.99 0.98 0.97 0.96 0.95 0.94 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 (hour) 4-32 ( ) 92

4-33 4-34 24 (kw) 2500 2000 1500 1000 500 0 max min mean 1 3 5 7 9 11 13 15 17 19 21 23 (hour) 4-33 (kw) 2500 2000 1500 1000 500 max min mean 0 1 3 5 7 9 11 13 15 17 19 21 (hour) 23 4-34 93

IEEE 30 BUS 4-35 ( ) 5-1 4-35 IEEE (30 BUS) 94

5-1 IEEE (30 BUS) Bus Number Bus Type Load Generator Wind Generator P(MW) Q(MVAR) P(MW) Q(MVAR) P(MW) Q(MVAR) 1 1 0 0 260.2-16.1 0 0 2 2 21.7 12.7 40 50 0 0 3 0 2.4 1.2 0 0 0 0 4 0 7.6 1.6 0 0 0 0 5 2 94.2 19 0 37 0 0 6 0 0 0 0 0 0 0 7 0 22.8 10.9 0 0 2.4 0 8 2 30 30 0 37.3 0 0 9 0 0 0 0 0 0 0 10 0 5.8 2 0 0 0 0 11 2 0 0 0 16.2 0 0 12 0 11.2 7.5 0 0 0 0 13 2 0 0 0 10.6 0 0 14 0 6.2 1.6 0 0 0 0 15 0 8.2 2.5 0 0 0 0 16 0 3.5 1.8 0 0 0 0 17 0 9 5.8 0 0 0 0 18 0 3.2 0.9 0 0 0 0 19 0 9.5 3.4 0 0 0 0 20 0 2.2 0.7 0 0 0 0 21 0 17.5 11.2 0 0 0 0 22 0 0 0 0 0 0 0 23 0 3.2 1.6 0 0 2.4 0 24 0 8.7 6.7 0 0 0 0 25 0 0 0 0 0 0 0 26 0 3.5 2.3 0 0 2.4 0 27 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 29 0 2.4 0.9 0 0 0 0 30 0 10.6 1.9 0 0 0 0 SUM 283.4 126.2 300.2 135 7.2 0 95

(p.u.) 1.07 1.06 1.05 1.04 1.03 1.02 1.01 1 0.99 0 5 10 15 20 25 30 (bus number) 4-36 1.08 1.06 (p.u.) 1.04 1.02 1 0.98 0.96 0.94 0 5 10 15 20 25 30 (bus number) 4-37 4-36 4-37 BUS7BUS23 BUS26 BUS 96

(kw) 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 0 5 10 15 20 25 (hour) 4-38 24 4-38 BUS 97

5-1 75%~90% ASPEN PSSE 98

1. 2. 3. 99

4. 倂 () ( ) 倂 5. 100

5-2 1. 2. ( ) 3. 4. 101

[1] [2] 2003 1 pp.1~pp.2. (http://wind.erl.itri.org.tw) [3] P. Jorgensen, J.S. Christensen, J.O. Tande, Power Quality and Grid Connection of Wind Turbines, IEE 14th International Conference, June 1997. [4] W. El-Khattam, Y.G. Hegazy, M.M.A. Salama, Stochastic Power Flow Analysis of Electrical Distributed Generation Systems, IEE 14th International Conference, June 1997. [5] (European Wind Energy Association) (http://www.ewea.org/) [6]. [7] [8] (http://www.tlpm.com.tw/new_page_1.htm) [ 9] 657 2003 5 pp.121-143. [10] [11] 102

[12]. [13] [14] - JEAG-9701-2001. [15]. [16] IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE std 519-1992. [17] IEEE Recommended Practice for the Electrical Design and Operation of Windfarm Generating Stations, IEEE Std. 1094-1991. [18] A. P. Stavros, D. H. Nikos,Technical Requirement for the Connection of Dispersed Generation to the Grid, IEEE Power Engineering Society Summer Meeting, July 2001. [19], A.1-A.6. [20] 2003, pp.91-pp.94. [21] 2003, pp.94-pp.95. [22]. 103

[23] P. Jorgensen, J.S. Christ ensen, J.O. Tande, Probabilistic Load Flow Calculation using Monte Carlo Techniques for Distribution Network with Wind Turbines, IEEE Power Engineering Society Summer Meeting, October 1998. [24] R. A. David, J. S. Dennis, A. W. Thomas, STATISTICS FOR BUSINESS AND ECONOMICS(6th), pp.238-pp.240. [25] Wind turbine generator systems-part21: measurement and assessment of power quality characteristics of grid connected wind turbines, IEC 61400-21, 2001. 104