High-Performance Flexible Asymmetric Supercapacitor Based on CoAl-LDH and rGO Electrodes

Similar documents
Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is the Partner Organisations 2018 Supporting Information Well-

ph ph ph Langmuir mg /g Al 2 O 3 ph 7. 0 ~ 9. 0 ph HCO - 3 CO 2-3 PO mg /L 5 p

<4D F736F F D20B8BDBCFEA3BAB9ABCABEC4DAC8DD2DB9FDB6C9BDF0CAF4D1F5BBAFCEEFC4C9C3D7BDE1B9B9D0C2D3B1B5C4CDE2B3A1D7F7D3C3CFECD3A6CCD8D0D4BCB0BBFAC0EDD1D0BEBF2E646F6378>

スライド 1

untitled

<D2BDC1C6BDA1BFB5CDB6C8DAD7CAB8DFB7E5C2DBCCB3B2CEBBE1C3FBB5A52E786C7378>

Microsoft Word _File000004_ docx

24-2_cover_OK

Microsoft Word - ED-774.docx

一次辽宁暴雨过程的诊断及风场反演分析

标题

输电线路智能监测系统通信技术应用研究

中溫矽基熱電材料介紹及其應用

47 12 Vol.47,No JOURNALOFUNIVERSITYOFSCIENCEANDTECHNOLOGYOFCHINA Dec.2017 : (2017) ,,, (, ) :.,,. (RGO)/MoS 2,. 8.9m

果葡糖浆中5-HMF生成影响因素及其去除方法

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.

12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe

In Hydrothermal Synthesis of Hydroxyapatite Microspheres with Polyvinylpyrrolidone as Template

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

原 子 层 沉 积 法 在 氧 化 亚 铜 薄 膜 上 沉 积 一 种 或 多 种 氧 化 物 ( 氧 化 钛 TiO 2 氧 化 铝 Al 2O 3 及 氧 化 锌 ZnO 等 ), 对 不 同 保 护 膜 改 性 的 氧 化 亚 铜 薄 膜 进 行 结 构 表 征 和 光 催 化 性 能 测 试

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Society of Chemistry 2013 Supporting Informatio

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

スライド 1

PCA+LDA 14 1 PEN mL mL mL 16 DJX-AB DJ X AB DJ2 -YS % PEN

Mixtions Pin Yin Homepage

2502 Vol 33 PANI S D-CSA 1R L-CSA Alfa Aesar ITO 25 ~ 35 Ω /cm 2 Millipore CHI630B ITO Pt SCE Hitachi S-4800 Philips FEI

~ ~

% % % % % % ~

Microsoft PowerPoint _代工實例-1


Microsoft Word _File000001_ docx

标题

s 15 contact s W Si 3 N μm N / m 4 AFM 95% AFM WPOJ UPOJ WPOJ UPOJ 260 ~ 280 nm WPOJ-DS UPOJ-DS 1 cm 1 cm DEAE-ce

64

380 研 究 论 文 发 酵 天 数 双 乙 酰 测 定 : 参 照 GB 标 准 发 酵 液 中 的 化 学 成 分 的 测 定 : 采 用 GC-8A 型 气 相 色 谱 测 定 1.5 离 子 注 入 方 法 [6] 把 待 处 理 的 菌 株 细 胞 均 匀 涂

Microsoft PowerPoint - ryz_030708_pwo.ppt

H 2 SO ml ml 1. 0 ml C 4. 0 ml - 30 min 490 nm 0 ~ 100 μg /ml Zhao = VρN 100% 1 m V ml ρ g

Microsoft Word - 2.v3n1.gjtm.docx

标题

3 Ce /ZnO XRD Ce ZnO 0% 0 5% 2 Ce Ce /ZnO XRD 1 0% 1 5% 2 0% 2 2θ = g

资源 环境 生态 土壤 气象

Microsoft Word _File000003_ doc

~ a 3 h NCEP ~ 24 3 ~ ~ 8 9 ~ km m ~ 500 m 500 ~ 800 m 800 ~ m a 200

Microsoft Word - 刘 慧 板.doc

Microsoft Word - bxyj2007_01_zongdi225.doc

Microsoft PowerPoint - ATF2015.ppt [相容模式]

中 文 摘 要 芦 荟 和 金 银 花 抗 菌 成 分 提 取 及 其 对 棉 织 物 的 整 理 中 文 摘 要 随 着 生 活 水 平 的 提 高 和 健 康 环 保 意 识 的 增 强, 人 们 对 棉 织 物 卫 生 保 健 功 能 的 要 求 越 来 越 高, 故 对 棉 织 物 进 行

TestNian

T K mm mm Q345B 600 mm 200 mm 50 mm 600 mm 300 mm 50 mm 2 K ~ 0. 3 mm 13 ~ 15 mm Q345B 25

untitled

* CUSUM EWMA PCA TS79 A DOI /j. issn X Incipient Fault Detection in Papermaking Wa

李草 副教授 博士 1986 年 2 月出生于湖北监利 2007 年 6 月毕业于武汉大学化学与分子科学学院, 获理学学士学位 ; 随后进入武汉大学化学与分子科学学院生物医用高分子材料教育部重点实验室, 在张先正教授的指导下攻读博士学位 2012 年 7 月博士毕业后进入湖北大学材料科学与工程学院工

km km mm km m /s hpa 500 hpa E N 41 N 37 N 121

Microsoft Word - GJPHV3N2-4.doc

%

1.0 % 0.25 % 85μm % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song

931-33FR-E 1,2,3,4- BTCA DP FR-E BTCA DP X- DP60 Ea kJ/mol kJ/mol lna

was used for the preparation of titanium dioxide modified polyvinylidene fluoride ultrafiltration membrane. Structure and properties of the membrane a

标题

Microsoft Word tb 赵宏宇s-高校教改纵横.doc

《中国科学》A、E、G与F小开本版式设计

B B Table 1 Chem ical composition of stainless steels 304 and 301B % C Si Mn P S Cr N i N Mo Cu Fe

~ ~ ~

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm

Microsoft PowerPoint - Aqua-Sim.pptx

Electri c Machines and Control Vol. 22 No. 11 Nov DOI /j. emc

DOI /j.issn Food Research And Development UPLC-MS/MS 5 0.

电 话 随 访 对 初 产 妇 产 褥 期 母 乳 喂 养 行 为 及 意 向 的 影 响 The effect of telephone follow-up on breastfeeding behaviors and intentions of new mothers during the po

不同工作週期對直流脈衝電漿化學氣相沉積法蒸鍍 DLC 薄膜於氮氧化處理 JIS SKD11 工具鋼之研究 Characteristics of DLC Films Coated on Oxynitriding-treated JIS SKD11 Tool Steel S.H. C

UDC Empirical Researches on Pricing of Corporate Bonds with Macro Factors 厦门大学博硕士论文摘要库

% % 99% Sautman B. Preferential Policies for Ethnic Minorities in China The Case

相 关 报 道 近 年 来 临 床 上 运 用 多 种 针 灸 疗 法 治 疗 肥 胖 及 其 引 起 的 并 发 症, 如 高 脂 血 症 糖 尿 病 高 血 压 及 痛 经 等, 均 获 得 满 意 疗 效. caused by sedentary lifestyle and genetic f

助 剂 改 善 其 止 血 效 果 1 实 验 1.1 原 料 和 试 剂 家 蚕 蛹 经 过 提 取 蛹 油 蛋 白 质 后 剩 余 的 残 渣 ( 主 要 成 分 为 蛹 皮 ), 烘 干 除 杂 粉 碎 后 待 用 ; 壳 聚 糖 ( 成 都 市 科 龙 化 工 试 剂 厂 ), 脱 乙 酰

240 生 异 性 相 吸 的 异 性 效 应 [6] 虽 然, 心 理 学 基 础 研 [7-8] 究 已 经 证 实 存 在 异 性 相 吸 异 性 相 吸 是 否 存 在 于 名 字 认 知 识 别 尚 无 报 道 本 实 验 选 取 不 同 性 别 的 名 字 作 为 刺 激 材 料, 通

(CIP) : /. :, (/ ) ISBN T S H CI P (2006) CH IJIASH EN GXIAN G YINSHI WEN H U A Y U CHENGY U 1

jiàn shí

168 健 等 木醋对几种小浆果扦插繁殖的影响 第1期 the view of the comprehensive rooting quality, spraying wood vinegar can change rooting situation, and the optimal concent

ECM S4800 FE-SEM 1-2 MWNTs / PLGA MWNTs Image-Pro Plus 200 kv JEM2100 TEM MWNTs Pyris Diamond DSC TGA Perkin Elmer 40 ~ ~ / min

Microsoft Word - TIP006SCH Uni-edit Writing Tip - Presentperfecttenseandpasttenseinyourintroduction readytopublish

j n yín

2 JCAM. June,2012,Vol. 28,NO. 6 膝 关 节 创 伤 性 滑 膜 炎 是 急 性 创 伤 或 慢 性 劳 损 所 致 的 关 节 滑 膜 的 无 菌 性 炎 症, 发 病 率 达 2% ~ 3% [1], 为 骨 伤 科 临 床 的 常 见 病 多 发 病 近 年 来

THE APPLICATION OF ISOTOPE RATIO ANALYSIS BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER A Dissertation Presented By Chaoyong YANG Supervisor: Prof.D

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

护国运动时期云南都督府的“拥护共和”奖功制度

~ 10 2 P Y i t = my i t W Y i t 1000 PY i t Y t i W Y i t t i m Y i t t i 15 ~ 49 1 Y Y Y 15 ~ j j t j t = j P i t i = 15 P n i t n Y

Microsoft Word doc

朱烨

untitled


[ ],,,,,,,,,,,,,,, [ ] ; ; ; [ ]F120 [ ]A [ ] X(2018) , :,,,, ( ),,,,,,, [ ] [ ],, 5

48 東華漢學 第20期 2014年12月 後 卿 由三軍將佐取代 此後 中大夫 極可能回歸原本職司 由 於重要性已然不再 故而此後便不見 中大夫 記載於 左傳 及 國 語 關鍵詞 左傳 中大夫 里克 丕鄭 卿

(CIP) : /. :, (/ ) ISBN T S H CI P (2006) XIANGPIAOWANLI JIUW ENH UA YU CH ENGYU

标题

OVLFx3C7_Series_A3_bgry-KB.pub

材料科技简报

: 307, [], [2],,,, [3] (Response Surface Methodology, RSA),,, [4,5] Design-Expert 6.0,,,, [6] VPJ33 ph 3,, ph, OD, Design-Expert 6.0 Box-Behnken, VPJ3

Stock Transfer Service Inc. Page No. 1 CENTURY PEAK METALS HOLDINGS CORPORATION (CPM) List of Top 100 Stockholders As of 12/31/2015 Rank Sth. No. Name

标题

國立中山大學學位論文典藏.PDF

11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte

Transcription:

Nano-Micro Lett. (217) 9:31 DOI 1.17/s482-17-134-8 ARTICLE High-Performance Flexible Asymmetric Supercapacitor Based on CoAl-LDH and rgo Electrodes Shuoshuo Li 1,2. Pengpeng Cheng 1,2. Jiaxian Luo 1,2. Dan Zhou 1,2. Weiming Xu 1,2. Jingwei Li 1,2. Ruchun Li 1,2. Dingsheng Yuan 1,2 Received: 23 December 216 / Accepted: 15 January 217 / Published online: 18 February 217 The Author(s) 217. This article is published with open access at Springerlink.com Highlights CoAl-LDH (layer double hydroxide) electrode and binder-free rgo (reduced graphene oxide) electrode were successfully synthesized and assembled to produce a flexible ASC (asymmetric supercapacitor). The assembled ASC device exhibited excellent capacitive performance. Abstract A flexible asymmetric supercapacitor (ASC) based on a CoAl-layered double hydroxide (CoAl-LDH) electrode and a reduced graphene oxide (rgo) electrode was successfully fabricated. The CoAl-LDH electrode as a positive electrode was synthesized by directly growing CoAl-LDH nanosheet arrays on a carbon cloth (CC) through a facile hydrothermal method, and it delivered a specific capacitance of 616.9 F g -1 at a current density of 1Ag -1. The rgo electrode as a negative electrode was synthesized by coating rgo on the CC via a simple dipcoating method and revealed a specific capacitance of 11. F g -1 at a current density of 2 A g -1. Ultimately, the advanced ASC offered a broad voltage window (1.7 V) and exhibited a high superficial capacitance of 1.77 F cm -2 at 2 ma cm -2 and a high energy density of.71 mwh cm -2 at a power density of 17.5 mw cm -2, along with an excellent cycle stability (92.9% capacitance retention over 8 charge discharge cycles). CoAl-LDHs Electrode KOH/PVA Gel rgo Electrode + Load _ Keywords Flexible asymmetric supercapacitor Layer double hydroxides Reduced graphene oxide Cycle stability 1 Introduction & Dingsheng Yuan tydsh@jnu.edu.cn 1 2 School of Chemistry and Materials Science, Jinan University, Guangzhou 51632, People s Republic of China Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Jinan University, Guangzhou 51632, People s Republic of China The increasing demand for portable electronic devices and hybrid vehicles has stimulated the development of highperformance flexible energy storage devices [1 5]. Flexible supercapacitors (SCs), which have played a key role in medical treatment, military, entertainment, and industry, are considered as potential candidates for flexible and

31 Page 2 of 1 Nano-Micro Lett. (217) 9:31 portable energy storage devices because of their high flexibility and light weight [6 9]. Although SCs have desired properties such as fast charge discharge rate, high power density, and cycling stability, the energy density of flexible SCs needs to be improved to meet the fast-growing market for portable electronic devices and the development of hybrid vehicles [1 15]. According to the equation of energy density (E =.5 CV 2 ), the energy density can be enhanced by increasing the specific capacitance (C) or the voltage window (V) [16 19]. On the one hand, developing appropriate electrode materials favors enhancing the specific capacitance and correspondingly improving the energy density [2 22]. Based on the energy storage mechanisms, electrode materials can be classified into two types: electric double-layer capacitors (EDLC) and pseudocapacitors. The EDLC electrode material stores energy based on electrostatic charge accumulation on the surface between the electrode and electrolyte [23 26]. Carbon materials have mostly been used because of their high specific surface area, good electrical conductivity, and excellent stability. Among them, graphene, a single-atom-thick sheet of hexagonally arrayed sp 2 -bonded carbon atoms, which has a high theoretical specific capacitance of 55 F g -1, has emerged as a promising candidate for electrode materials [27 3]. Pseudocapacitive electrode materials mainly rely on fast and reversible faradic reactions to store energy. Transition metal oxides and hydroxides have extensively been developed as electrode materials of this type. However, considering their poor electronic conductivity, various transition metal hydroxides and oxides combined with electrically conductive frameworks, such as a carbon cloth (CC) and Ni foam, have attracted increasing attention [31 33]. For example, Yu et al. have reported that NiFe 2 O 4 nanoparticles can be directly grown on a flexible CC substrate by a facile surfactant-assisted hydrothermal method that showed good electrochemical properties [34]. This designed device possessed several advantages including flexibility, a binder-free process, and portability, which are more desirable for portable electronic devices. On the other hand, constructing an asymmetric system with different positive and negative electrode materials can increase the voltage window and thus enhance the energy density. Fang et al. successfully fabricated a flexible coaxial-type fiber solid-state asymmetrical SC (ASC) based on Ni 3 S 2 nanorod array electrodes and pen-ink electrode. Compared to symmetric SCs (SSCs) based on Ni 3 S 2 electrodes, the ASC device provides an increased energy density [35]. Based on the above consideration, here, a flexible ASC device was designed, including CoAl-layered double hydroxide (CoAl-LDH) and reduced graphene oxide (rgo) grown on the CC as the positive electrode and the negative electrode, respectively. Accordingly, the CoAl-LDH electrode with ultrathin nanosheets and porous nanostructure showed a high specific capacitance of 616.9 F g -1 at a current density of 1 A g -1. As the negative electrode, rgo showed a specific capacitance of 11 F g -1 at a current density of 2 A g -1. When assembled together, the flexible ASC delivered a high capacitance of 1.77 F cm -2 at 2mAcm -2 and a high energy density of.71 mwh cm -2 at a power density of 17.5 mw cm -2. 2 Experimental Section 2.1 Preparation of CoAl-LDH Nanosheet on CC (CC@CoAl-LDHs) The CC (1. 9 2. cm 2 ) was cleaned with concentrated hydrochloric acid, acetone, and deionized water and then dried. The cleaned CC was immersed in 2. mol L -1 Co(NO 3 ) 2 6H 2 O solution for 1 min and then removed. The resulting CC was dried at 6 C for 15 min. The whole procedure was repeated three times. The preprocessed CC was placed into a Teflon-lined autoclave with 2. mmol Co(NO 3 ) 2 6H 2 O, 2. mmol Al(NO 3 ) 3,4.mmolCO(NH 2 ) 2, 8. mmol NH 4 F, and 6. ml H 2 O. Then, the autoclave was sealed and heated in an oven at 14 C for 16 h. After cooling down to 25 C, the CC was washed with deionized water and alcohol several times and dried at 6 C for 24 h. 2.2 Preparation of rgo on CC (CC@ rgo) GO was prepared using Hummer s method. Aqueous GO solution (5. ml, 1. mg ml -1 ) was reacted in a Teflonlined autoclave at 18 C for 6 h. After cooling down to room temperature, the products were filtered, washed, and freeze-dried. Then, 1. mg rgo powders were dispersed in 1. ml N-methyl-2-pyrrolidone (NMP) and ultrasonicated for 1 h to form stable aqueous rgo. The CC was immersed in aqueous rgo for 2 min, removed, and dried at 6 C for 5 min. The process was repeated 1 times to obtain CC@rGO. 2.3 Materials Characterization The samples were characterized using a MSAL-XD2 X-ray diffractometer (XRD, Cu Ka, 4 kv, 2 ma, k = 1.546 Å). The morphologies were examined by scanning electron microscopy (SEM, ZEISS Ultra 55) and field-emission transmission electron microscopy (FETEM, JEM21) operating at 2 kv. Nitrogen sorption isotherms of the asprepared materials were studied using a Micromeritics TriStar 3 analyzer at 77 K. The plot of specific surface area was deduced from the isotherm analysis of the adsorption data at a relative pressure (P/P ) of 1., and the average pore

Nano-Micro Lett. (217) 9:31 Page 3 of 1 31 diameters were collected from the peak value of the pore diameter distribution. 2.4 Electrochemical Measurements All electrochemical measurements were taken on an electrochemical workstation (CHI 66D, CH Instruments, Inc.) at room temperature in a conventional three-electrode system. A Ni foil and a Hg/HgO electrode were used as the counter and reference electrodes, respectively. The working electrode was measured by cyclic voltammetry (CV) and galvanostatic charge discharge in a 6-M KOH aqueous solution. 2.5 Flexible Asymmetric Supercapacitor Devices The flexible asymmetric SC consists of CC@CoAl-LDHs as the positive electrode, CC@rGO as the negative electrode, and PVA/KOH as the electrolyte and separator. The assembly process is as follows: PVA/KOH gel was prepared by mixing 6 g of PVA powder into 1 ml of 6 M KOH aqueous solution. The mixture was heated to 9 C with stirring until it became clear. Then, the positive and negative electrodes were immersed into the PVA/KOH gel for 15 min and then solidified for 1 min. Next, the electrodes were immersed in the gelled electrolyte again and assembled into a sandwich structure. The fabrication of a flexible ASC cell was completed after the gel electrolyte solidified at room temperature. 3 Results and Discussion 3.1 Positive Electrode Figure 1a shows the XRD pattern of CoAl-LDHs. A strong peak appeared at 2h = 12.2 and 23.9, corresponding to the diffraction lattice of the (3) and (6) planes, respectively, which suggested that the as-prepared material had a hydrotalcite-type structure [17]. Fourier transform infrared spectroscopy (FTIR) of the as-prepared CoAl- LDHs is shown in Fig. 1b. The strong absorption peak at 3446 cm -1 corresponded to the O H stretching vibration of the hydroxyl groups. Peaks at 137 and 789 cm -1 corresponded to the v3 vibration and bending modes of CO 3 2-, respectively. In addition, the weak absorption at 1636 cm -1 was attributed to the bending vibration of water molecules. Other peaks below 8 cm -1 were related to the metal oxygen (M O) stretching and bending vibrations [36]. N 2 adsorption and desorption isotherms were performed to analyze the porous structure and porous size distribution of the CoAl-LDH nanosheets, as shown in Fig. 1c. The sample presented a type III curve with a H1 hysteresis loop at a high relative pressure, demonstrating the presence of macropores and mesopores. The specific surface area of CoAl-LDHs can be calculated using the Brunauer Emmett Teller (BET) equation and could reach up to 45 m 2 g -1. The Barrett Joyner Halenda (BJH) pore-sizedistribution curve is shown in Fig. 1c (insets). A noticeable narrower peak of the pore size distribution could be observed and showed the desired pore size distribution at 4 nm. The abundant pores could potentially enhance electrolyte diffusion and improve the power capability of the obtained sample. Furthermore, the energy-dispersive X-ray spectroscopy (EDX) spectrum (Fig. 1d) revealed that the CoAl-LDH nanosheets mainly contained Co, Al, Cu, O, and C, while most of the C and Cu signals were from the carbon-supported and Cu grid. All these results indicate that CoAl-LDHs were successfully prepared. The morphologies of CC@CoAl-LDHs were characterized by SEM and TEM. Figure 2a shows the SEM image of CC@CoAl-LDHs. It is clearly observed that CoAl- LDHs uniformly covered the CC with a dense packing. The magnified SEM image in Fig. 2b revealed that the CoAl- LDHs are composed of around 1-nm-thick nanosheets, which could increase the specific surface area of CoAl- LDHs and yield excellent electrochemical properties. In addition, the TEM images of CoAl-LDHs scraped from the CC are displayed in Fig. 2c, d. Figure 2c shows the CoAl- LDH nanosheets corresponding to the SEM. The HRTEM image of the CoAl-LDH nanosheet (Fig. 2d) showed a lattice spacing of.8 nm, corresponding to the (3) plane. To investigate the electrochemical performance of the CC@CoAl-LDHs, the CV curves were measured at different scan rates in 6 M KOH solution, as shown in Fig. 3a. A pair of redox peaks was present in every CV curve, which indicated that the CoAl-LDHs were typical pseudocapacitor materials. All the redox peaks were symmetrical at different scan rates, implying the excellent reversible redox reaction at/near the surface of the CoAl- LDH electrode. The galvanostatic charge discharge curve of CoAl-LDHs at different current densities is shown in Fig. 3b. The presence of an obvious charge discharge platform further evidenced that CoAl-LDHs possessed pseudocapacitance characteristics. Meanwhile, the specific capacitance of CoAl-LDHs in Fig. 3c could be calculated from the discharge time using the following equation: C ¼ it ð1þ mdv where i, t, m, and DV represent the discharge current (A), discharge time (s), mass of active materials (g), and total potential deviation (V), respectively. The CoAl-LDHs delivered a high specific capacitance of 616.9 F g -1 at a current density of 1 A g -1. Simultaneously, a capacitance

31 Page 4 of 1 Nano-Micro Lett. (217) 9:31 Intensity (a.u.) 3 6 1 2 3 4 5 6 7 8 2 Theta (degree) Transmittance (%) 68 1636 551 789 423 3446 137 4 3 2 1 Wavenumber (cm 1 ) 9 8 7 6 5 4 3 2 1 Volume absorbed (cm 3 g 1 ) Pore volume (cm 3 g 1 ).25.2.15.1.5 4 8 12 Pore size (nm) Adsorption Desorption.2.4.6.8 1. Relative pressure (P/P ) Intensity (a.u.) C Co O Cu CoAl Co Cu 2 4 6 8 1 Energy (kev) Fig. 1 a XRD pattern; b FTIR; c N 2 adsorption desorption isotherms and pore sizes distribution (inset); d EDX spectroscopy of CoAl-LDHs 2 µm 2 nm (3) d=.8 nm 5 nm 2 nm Fig. 2 a, b SEM images of CoAl-LDHs on CC electrode and c, d TEM images of CoAl-LDHs of 454.4 F g -1 was still retained at a very high current density of 2 A g -1, indicating a good rate capability. These excellent electrochemical properties could be attributed to three factors: (1) The CoAl-LDHs uniformly covered on the surface of the CC could improve the electron transport from the active materials to the current collector; (2) the two-dimensional porous structure could accelerate the permeation of electrolyte for fast and reversible faradic reactions, increase the specific surface area of CoAl-LDHs and accordingly enhance the electrochemical properties; (3) the redox reaction between Co 2? and Co 3? in CoAl-LDHs could contribute more efficiently

Nano-Micro Lett. (217) 9:31 Page 5 of 1 31 Current (A).6.4.2.2.4 5 mv s 1 1 mv s 1 15 mv s 1 2 mv s 1 25 mv s 1 Potential (V) vs. Hg (HgO).5.4.3.2.1.1.2.3.4.5.6 Potential (V) vs. Hg/HgO 1 A g 1 2 A g 1 5 A g 1 1 A g 1 2 A g 1 2 4 6 8 Time (s) Specific capacitance (F g 1 ) 6 4 2 5 1 15 2 Current density (A g 1 ) Capacitance retention (%) 1 8 6 4 2 5 1 15 2 Cycle number Fig. 3 Electrochemical performances of the CoAl-LDHs@CC electrode: a CVs at different scan rates; b GCD curves at different current densities; c Plot of C sp versus current density; d Cycling performances during 2 cycles at a large current density of 1 A g -1 2 Intensity (a.u.) 1 1 2 3 4 5 6 7 8 2 Theta (degree) 1 µm 2 nm 1 nm Fig. 4 a XRD pattern of rgo@cc; b the SEM image of rgo@cc electrode; and (c, d) the TEM image of rgo to the pseudocapacitance [37]. In addition, the long-term cycling stability of the CoAl-LDH electrode was evaluated by galvanostatic charge discharge measurement for 2 cycles at a current density of 1 A g -1. As shown in Fig. 3d, the specific capacitance of the CoAl-LDH electrode still remained 95.8% after 2 cycles and suggested an excellent stability. 3.2 Negative Electrode The XRD pattern of rgo is shown in Fig. 4a. It can clearly be observed that two diffraction peaks were located at 26 and 43, associated with the (2) and (1) planes of carbon, respectively. Moreover, the morphologies and microstructures of rgo were investigated by SEM and

31 Page 6 of 1 Nano-Micro Lett. (217) 9:31 Current density (A cm 2 ).15.15 2 mv s 1 5 mv s 1 5 mv s 1 1 mv s 1 1 mv s 1.3 1..8.6.4.2.2 Potential (V) vs. Hg/HgO Potential (V) vs. Hg/HgO.2.4.6.8 1. 2 2 A g 1 5 A g 1 1 A g 1 15 A g 1 2 A g 1 4 6 8 1 Time (s) Specific capacitance (F g 1 ) 12 9 6 3 Capacitance retention (%) 1 8 6 4 2 5 1 15 2 5 1 15 2 Current density (A g 1 ) Cycle number Fig. 5 Electrochemical performances of the rgo@cc electrode: a CVs at different scan rates; b GCD curves at different current densities; c Plot of specific capacitance versus current density; d Cycling performance during 2 cycles at a large current density of 1 A g -1 Current (A).3.1.1.3 1.V.6V.5 rgo CoAl-LDH.8.6.4.2.2.4.6 Current (A).15.1.5.5.1 1. V 1.2 V 1.4 V 1.6 V 1.7 V.5 1. 1.5 Potential (V) vs. Hg/HgO Potential (V) Current (A).3.2.1.1.2.3 5 mv s 1 1.8 1 mv s 1 2 mv s 1 1.5 5 mv s 1 1 mv s 1 1.2 2 mv s 1.9 2 ma cm 2 5 ma cm.6 2 1 ma cm 2.3 15 ma cm 2 2 ma cm 2.3.6.9 1.2 Potential (V) Potential (V) 1.5 1.8 1 2 3 4 Time (s) Fig. 6 a Comparison of the CV curves of positive and negative electrodes; b CV curves of the ASC at different voltages; c CV curves of ASC device at different scan rates; d GCD curves of ASC device at different current densities TEM. Figure 4b shows that rgo was coated well on the surface of the CC substrate to form 3D architectures, which could be beneficial in reducing aggregation of the rgo. The TEM in Fig. 4c, d revealed that rgo possessed a rippled silk veil structure with a wrinkled shape. The electrochemical performance of rgo by CV and galvanostatic charge discharge was measured in 6 M KOH aqueous solution over the potential range of.1 to -.9 V. Figure 5a shows the CV curves of rgo at various scan rates from 5 to 1 mv s -1. The quasi-rectangular shape

Nano-Micro Lett. (217) 9:31 Page 7 of 1 31 Capacitance (F cm 2 ) 1.8 1.5 1.2.9.6.3 4 8 12 16 2 Current density (ma cm 2 ) Current (A).15.1.5.5.1.15.2 9 18.4.6.8 1. 1.2 1.4 1.6 1.8 Potential (V) Power density (mw cm 2 ) 1 1 1 1..8.6.4.2.3.4.5.6.7.8 2 4 6 Energy density (mwh cm 2 ) Cycle number Capacitance retention (F cm 2 ) 8 Fig. 7 a The capacitance calculated from Fig. 6d; b CV curves (at 5 mv s -1 ) under different bending conditions; c Ragone plot of ASC device (inset: ared LED lighted by ASC device); d Cycle stability of the ASC device at a current density of 15 ma cm -2 Table 1 The comparison of the capacitive performance of CoAl-LDHs//rGO ASC with others ASC Areal capacitance (F cm -2 ) Voltage (V) Energy density (mwh cm -2 ) Power density (mw cm -2 ) References RGO@MnO 2 //RGO.34 1.5.115 3.8 [38] MnO 2 @PEDOT:PSS//AC 1.67 2. [39] NiO//rGO.28 1.7 [4] PPy@MnO 2 //AC 1.41 1.8.63.9 [41] NiCoO 4 @Ni 3 S 2 //AC 2.25 1.8 [42] CoAl-LDHs//rGO 1.77 1.7.71 17.5 This work indicated its excellent electric double-layer capacitance. In particular, the shape of the CV curves did not change under a fast or slow scanning rate, indicating excellent stability. Figure 5b shows the galvanostatic charge discharge curves of rgo at different current densities (2 2 A g -1 ). All the charge discharge curves possessed a symmetrical and linear triangle profile, implying that the rgo electrode had a rapid I V response and charge discharge reversibility. The specific capacitance of the rgo electrode at different charge discharge current densities was calculated, as shown in Fig. 5c. We determined that the specific capacitance was about 11 F g -1 at a current density of 2 A g -1, along with 98 F g -1 at a current density of 2 A g -1.In addition, the stability of the capacitance of rgo was determined after 2 cycles at a current density of 15 A g -1. As shown in Fig. 5d, the rgo electrode retained 98.5% of its initial specific capacitance after 2 cycles and exhibited outstanding cycling stability. 3.3 Performance of ASC Based on CoAl-LDH and rgo Electrodes A flexible ASC was fabricated by using CC@CoAl-LDH as the positive electrode, CC@rGO as the negative electrode, and KOH/PVA as the gelled electrolyte. To achieve the best electrochemical performance of ASC, the charge balance should be q? = q -. q = C 9 DE 9 m, where C represents the specific capacitance of the electrode material, DE is the voltage window of the charge discharge process, and m is the mass of active materials. To obtain q? = q -, the mass of active materials on the electrode must be:

31 Page 8 of 1 Nano-Micro Lett. (217) 9:31 m þ ¼ C DE ð2þ m C þ DE þ Hence, based on the value of the specific capacitance and voltage window for the CoAl-LDH and rgo electrodes, the optimal mass ratio between two electrodes was about 1:6. Figure 6a shows a comparison of the CV curves of the positive (CoAl-LDHs) and negative (rgo) electrodes. It could be seen that the potential difference between the two electrodes was 1.6 V, and hence, the fabricated ASC could operate over a voltage window of 1.6 V. To verify this, the fabricated ASC was subjected to CV tests at different voltages from 1 to 1.7 V. As shown in Fig. 6b, the fabricated ASC revealed a stable capacitive behavior even when the voltage window reached up to 1.7 V. The enhanced performance could be ascribed to the synergistic effect between the CoAl-LDH and rgo electrodes. To further assess the performance of the ASC, CV and galvanostatic charge discharge were performed. As shown in Fig. 6c, the flexible ASC exhibited rectangular CV curves, and the current clearly increased as the scan rate increases, implying excellent rate capability. All the GCD curves obtained with different current densities (2 2 ma cm -1 ) over a potential window of 1.7 V (Fig. 6d) showed typical triangular shapes, representing a well-balanced charge storage. The areal specific capacitance (Fig. 7a) of ASC calculated from the galvanostatic charge discharge curves under different current densities was 1.77, 1.51, 1.17,.89, and.83 F cm -2 at 2, 5, 1, 15, and 2 ma cm -2. The mechanical flexibility of the ASC is very important for wearable applications. Interestingly, no apparent changes in the CV curves were observed under different bending conditions (Fig. 7b). That is, the capacitance remained almost unchanged as the bending angles changed from to 18. These results proved the excellent mechanical flexibility of the ASC. Furthermore, the energy density and power density of the ASC are shown in a Ragone plot (Fig. 7c), which are calculated using the following equations: E ¼ :5 C m ðdvþ 2 ð3þ P av ¼ E ð4þ Dt where C m (F cm -2 ) represents the specific capacitance of ASC, DV (V) is the operating voltage of the cell, Dt (s) is the discharge time, E (Wh cm -2 ) is the energy density, and P av (W cm -2 ) is the power density. The as-fabricated FASC devices showed a high energy density of.71 mwh cm -2 at a power density of 17.5 mw cm -2. As listed in Table 1, the CoAl-LDHs//rGO presented a high capacitance, energy density, and power density compared to others. In addition, the charged flexible ASC was able to power a commercial light-emitting diode (LED), as shown in the inset of Fig. 7c, implying the use of ASC for practical applications. The long-term cycling stability of the ASC device (Fig. 7d) was measured under galvanostatic charge discharge at the current density of 15 ma cm -2. After 8 cycles, the capacitance was reversibly maintained with only 7.1% loss of the initial value. 4 Conclusion A flexible asymmetric supercapacitor has been successfully fabricated by using CC@CoAl-LDHs as the positive electrode and CC@rGO as the negative electrode. PVA/ KOH gel was used both as the electrolyte and the separator. Superior electrochemical properties of the flexible ASC were obtained, including high superficial specific capacitance of 1.77 F cm -2 at a current density of 2 ma cm -2,a wide operating potential of 1.7 V, and a high energy density of.71 mwh cm -2 at a power density of 17.5 mw cm -2. Importantly, this flexible ASC will find wide applications in portable electronic devices and hybrid vehicles. Acknowledgements This work was supported by National Natural Science Foundation of China (2137615 and 21576113) and Foshan Innovative and Entepreneurial Research Team Program (No. 214IT162). Open Access This article is distributed under the terms of the Creative Commons Attribution 4. International License (http://crea tivecommons.org/licenses/by/4./), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. References 1. T. Li, G.H. Li, L.H. Li, L. Liu, Y. Xu, H.Y. Ding, T. Zhang, Large-scale self-assembly of 3D flower-like hierarchical Ni/Co- LDHs microspheres for high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 8, 2562 2572 (216). doi:1.121/acsami.5b1158 2. M. Shao, Z. Li, R. Zhang, F. Ning, M. Wei, D.G. Evans, X. Duan, Hierarchical conducting polymer@clay core-shell arrays for flexible all-solid-state supercapacitor devices. Small 11, 353 3538 (215). doi:1.12/smll.2143421 3. Y. Li, J. Dong, J. Zhang, X. Zhao, P. Yu, L. Jin, Q. Zhang, Nitrogen-doped carbon membrane derived from polyimide as free-standing electrodes for flexible supercapacitors. Small 11, 3476 3484 (215). doi:1.12/smll.2143575 4. Z. Qi, A. Younis, D. Chu, S. Li, A facile and template-free onepot synthesis of Mn 3 O 4 nanostructures as electrochemical supercapacitors. Nano-Micro Lett. 8, 165 173 (215). doi:1. 17/s482-15-74-5. Z.H. Wang, D.O. Carlsson, P. Tammela, K. Hua, P. Zhang, L. Nyholm, M. Stromme, Surface modified nanocellulose fibers

Nano-Micro Lett. (217) 9:31 Page 9 of 1 31 yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 9, 7563 7571 (215). doi:1. 121/acsnano.5b2846 6. Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, J. Han, M. Wei, D.G. Evans, X. Duan, A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core shell nanoarrays. Nano Energy 2, 294 34 (216). doi:1. 116/j.nanoen.215.12.3 7. H. Chen, S. Zeng, M. Chen, Y. Zhang, Q. Li, Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors. Carbon 92, 271 296 (215). doi:1. 116/j.carbon.215.4.1 8. G.S. Gund, D.P. Dubal, N.R. Chodankar, J.Y. Cho, P. Gomez- Romero, C. Park, C.D. Lokhande, Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO 2 and Fe 2 O 3 thin films directly fabricated onto stainless steel. Sci. Rep. 5, 12454 (215). doi:1.138/srep12454 9. X. Zang, X. Li, M. Zhu, X. Li, Z. Zhen, Y. He, K. Wang, J. Wei, F. Kang, H. Zhu, Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale 7, 7318 7322 (215). doi:1.139/c5nr584a 1. T.M. Masikhwa, M.J. Madito, D.Y. Momodu, J.K. Dangbegnon, O. Guellati et al., High performance asymmetric supercapacitor based on CoAl-LDH/GF and activated carbon from expanded graphite. RSC Adv. 6, 46723 46732 (216). doi:1.139/ c6ra7419g 11. X. Dong, L. Wang, D. Wang, C. Li, J. Jin, Layer-by-layer engineered Co-Al hydroxide nanosheets/graphene multilayer films as flexible electrode for supercapacitor. Langmuir 28, 293 298 (212). doi:1.121/la238685 12. J. Zhao, J. Chen, S. Xu, M. Shao, Q. Zhang, F. Wei, J. Ma, M. Wei, D.G. Evans, X. Duan, Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv. Funct. Mater. 24, 2938 2946 (214). doi:1.12/adfm.2133638 13. L.F. Chen, Z.Y. Yu, X. Ma, Z.Y. Li, S.H. Yu, In situ hydrothermal growth of ferric oxides on carbon cloth for low-cost and scalable high-energy-density supercapacitors. Nano Energy 9, 345 354 (214). doi:1.116/j.nanoen.214.7.21 14. L. Wang, D. Wang, X.Y. Dong, Z.J. Zhang, X.F. Pei, X.J. Chen, B. Chen, J. Jin, Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors. Chem. Commun. 47, 3556 3558 (211). doi:1. 139/ccc542h 15. X. Cao, B. Zheng, W. Shi, J. Yang, Z. Fan, Z. Luo, X. Rui, B. Chen, Q. Yan, H. Zhang, Reduced graphene oxide-wrapped MoO 3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv. Mater. 27, 4695 471 (215). doi:1.12/adma.215131 16. J. Xu, Q.F. Wang, X.W. Wang, Q.Y. Xiang, B. Hang, D. Chen, G.Z. Shen, Flexible asymmetric supercapacitors based upon Co 9 S 8 nanorod//co 3 O 4 @RuO 2 nanosheet arrays on carbon cloth. ACS Nano 7, 5453 5462 (213). doi:1.121/nn4145s 17. W. Lin, W. Yu, Z. Hu, W. Ouyang, X. Shao, R. Li, D.S. Yuan, Superior performance asymmetric supercapacitors based on flake-like Co/Al hydrotalcite and graphene. Electrochim. Acta 143, 331 339 (214). doi:1.116/j.electacta.214.8.24 18. P. Sun, Z. Deng, P. Yang, X. Yu, Y. Chen, Z. Liang, H. Meng, W. Xie, S. Tan, W. Mai, Freestanding CNT WO 3 hybrid electrodes for flexible asymmetric supercapacitors. J. Mater. Chem. A 3, 1276 128 (215). doi:1.139/c5ta2316e 19. M. Boota, B. Anasori, C. Voigt, M.Q. Zhao, M.W. Barsoum, Y. Gogotsi, Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28, 1517 1522 (216). doi:1. 12/adma.215475 2. G. Sun, X. Zhang, R. Lin, J. Yang, H. Zhang, P. Chen, Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Angew. Chem. Int. Ed. 54, 4651 4656 (215). doi:1.12/anie.21411533 21. X. Wu, L. Jiang, C. Long, T. Wei, Z. Fan, Dual support system ensuring porous co-al hydroxide nanosheets with ultrahigh rate performance and high energy density for supercapacitors. Adv. Funct. Mater. 25, 1648 1655 (215). doi:1.12/adfm. 2144142 22. W. Yu, W. Lin, X. Shao, Z. Hu, R. Li, D. Yuan, High performance supercapacitor based on Ni 3 S 2 /carbon nanofibers and carbon nanofibers electrodes derived from bacterial cellulose. J. Power Sources 272, 137 143 (214). doi:1.116/j.jpowsour. 214.8.64 23. J. Chen, X. Wang, J. Wang, P.S. Lee, Sulfidation of NiMn-layered double hydroxides/graphene oxide composites toward supercapacitor electrodes with enhanced performance. Adv. Energy Mater. 6, 151745 (216). doi:1.12/aenm.2151745 24. J. Tao, W. Ma, N. Liu, X. Ren, Y. Shi, J. Su, Y. Gao, Highperformance solid-state supercapacitors fabricated by pencil drawing and polypyrrole depositing on paper substrate. Nano- Micro Lett. 7, 276 281 (215). doi:1.17/s482-15-39-3 25. M. Li, F. Liu, J.P. Cheng, J. Ying, X.B. Zhang, Enhanced performance of nickel aluminum layered double hydroxide nanosheets/carbon nanotubes composite for supercapacitor and asymmetric capacitor. J. Alloys Compd. 635, 225 232 (215). doi:1.116/j.jallcom.215.2.13 26. L. Li, Q. Zhong, N.D. Kim, G. Ruan, Y. Yang et al., Nitrogendoped carbonized cotton for highly flexible supercapacitors. Carbon 15, 26 267 (216). doi:1.116/j.carbon.216.4.31 27. M.A. Bissett, I.A. Kinloch, R.A. Dryfe, Characterization of MoS 2 -graphene composites for high-performance coin cell supercapacitors. ACS Appl. Mater. Interfaces 7, 17388 17398 (215). doi:1.121/acsami.5b4672 28. Y.P. Chen, B.R. Liu, Q. Liu, J. Wang, Z.S. Li, X.Y. Jing, L.H. Liu, Coaxial CoMoO 4 nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solidstate asymmetric supercapacitors. Nanoscale 7, 15159 15167 (215). doi:1.139/c5nr2961a 29. L. Jiang, L. Sheng, C. Long, T. Wei, Z. Fan, Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Adv. Energy Mater. 5, 15771 (215). doi:1. 12/aenm.215771 3. M. Li, J.P. Cheng, F. Liu, X.B. Zhang, 3D-architectured nickel cobalt manganese layered double hydroxide/reduced graphene oxide composite for high-performance supercapacitor. Chem. Phys. Lett. 64, 5 1 (215). doi:1.116/j.cplett.215.1.3 31. A.D. Jagadale, G. Guan, X. Li, X. Du, X. Ma, X. Hao, A. Abudula, Ultrathin nanoflakes of cobalt manganese layered double hydroxide with high reversibility for asymmetric supercapacitor. J. Power Sources 36, 526 534 (216). doi:1.116/j.jpowsour. 215.12.97 32. Z. Huang, S. Wang, J. Wang, Y. Yu, J. Wen, R. Li, Exfoliationrestacking synthesis of coal-layered double hydroxide nanosheets/reduced graphene oxide composite for high performance supercapacitors. Electrochim. Acta 152, 117 125 (215). doi:1. 116/j.electacta.214.11.85 33. Z.Y. Yu, L.F. Chen, S.H. Yu, Growth of NiFe 2 O 4 nanoparticles on carbon cloth for high performance flexible supercapacitors. J. Mater. Chem. A 2, 1889 (214). doi:1.139/c4ta492b 34. J. Wen, S. Li, K. Zhou, Z. Song, B. Li, Z. Chen, T. Chen, Y. Guo, G. Fang, Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni 3 S 2 nanorod array and pen ink electrodes. J. Power Sources 324, 325 333 (216). doi:1.116/j. jpowsour.216.5.87

31 Page 1 of 1 Nano-Micro Lett. (217) 9:31 35. X. Yang, K. Xu, R. Zou, J. Hu, A hybrid electrode of Co 3- O 4 @PPy core/shell nanosheet arrays for high-performance supercapacitors. Nano-Micro Lett. 8, 143 15 (215). doi:1. 17/s482-15-69-x 36. S. Huang, G.N. Zhu, C. Zhang, W.W. Tjiu, Y.Y. Xia, T. Liu, Immobilization of Co-Al layered double hydroxides on graphene oxide nanosheets: growth mechanism and supercapacitor studies. ACS Appl. Mater. Interfaces 4, 2242 2249 (212). doi:1.121/ am3247x 37. J.X. Feng, S.H. Ye, X.F. Lu, Y.X. Tong, G.R. Li, Asymmetric paper supercapacitor based on amorphous porous Mn 3 O 4 negative electrode and Ni(OH) 2 positive electrode: a novel and highperformance flexible electrochemical energy storage device. ACS Appl. Mater. Interfaces 7, 11444 11451 (215). doi:1.121/ acsami.5b2157 38. B. Liu, D. Kong, Z.X. Huang, R. Mo, Y. Wang, Z. Han, C. Cheng, H.Y. Yang, Three-dimensional hierarchical NiCo 2 O 4 nanowire@ni 3 S 2 nanosheet core/shell arrays for flexible asymmetric supercapacitors. Nanoscale 8, 1686 1694 (216). doi:1.139/c6nr26a 39. Z. Su, C. Yang, C. Xu, H. Wu, Z. Zhang, T. Liu, C. Zhang, Q. Yang, B. Li, F. Kang, Co-electro-deposition of the MnO 2 PED- OT:PSS nanostructured composite for high areal mass, flexible asymmetric supercapacitor devices. J. Mater. Chem. A 1, 12432 (213). doi:1.139/c3ta13148c 4. A. Sumboja, C.Y. Foo, X. Wang, P.S. Lee, Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv. Mater. 25, 289 2815 (213). doi:1.12/adma.212564 41. J. Tao, N. Liu, L. Li, J. Su, Y. Gao, Hierarchical nanostructures of polypyrrole@mno 2 composite electrodes for high performance solid-state asymmetric supercapacitors. Nanoscale 6, 2922 2928 (214). doi:1.139/c3nr5845j 42. W. Zilong, Z. Zhu, J. Qiu, S. Yang, High performance flexible solid-state asymmetric supercapacitors from MnO 2 /ZnO core shell nanorods//specially reduced graphene oxide. J. Mater. Chem. C 2, 1331 1336 (214). doi:1.139/c3tc31476f