PowerPoint Template

Similar documents
PowerPoint Presentation

1 GIS 95 Y = F y + (1 F) (1) 0 0 Y0 kg/hm 2 /day F y 0 y c kg/hm 2 /day [12] y m 20 kg/hm 2 /hour Y = cl cn ch G [ F( y ) T m yo + (2) (1 F)(

Microsoft Word - 1--齐继峰_new_.doc

GHz Cloud Profile Rada CloudSat CloudSat Kenneth et al 11 CloudSat CALIPSO 16. 7% CloudSat Gerald et al 12 CloudSat 2B GROPR

[1-2] [2] NCEP [6] Palmer PDSI) 250 mm PDSI 3 (1) :, 5 (2), E 47 N (3) [7] ,

4 : 255 [ 2, 4 7 ] [ 8 11 ],,,, [ 12 ] Koldewey , [ 13 ],,, NCEP Koldewey, NCEP 2,, 1231km, 107km Koldewey ( N, E, 11m) A lfre

畜牧 动物医学 蚕 蜂

km km mm km m /s hpa 500 hpa E N 41 N 37 N 121

~ a 3 h NCEP ~ 24 3 ~ ~ 8 9 ~ km m ~ 500 m 500 ~ 800 m 800 ~ m a 200

IPCC CO (IPCC2006) 1 : = ( 1) 1 (kj/kg) (kgc/gj) (tc/t)

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

[1] Nielsen [2]. Richardson [3] Baldock [4] 0.22 mm 0.32 mm Richardson Zaki. [5-6] mm [7] 1 mm. [8] [9] 5 mm 50 mm [10] [11] [12] -- 40% 50%

ZUBAN.dvi

mm 400 mm 15 mm EOF mm/10a Fig. 1 Distributions

2013,33(11) 1929~1936 China Environmental Science 1980~2009 1, 1*, 1, 2 (1.,, , ) ~ ~2009 (API), 30.,, 3 ( ) API., 30,,

06王胜

17 4 Vol. 17, No CHIN ESE JOU RNAL OF POLAR RESEARCH December , 2 ( 1, ; 2,, ) NCEP , 30,,,, 28/ 10a,, - 3.

211 better than those in the control group, with significant difference between two groups (P < 0.05). The ocular hypertension of patients in the cont

11 : 1345,,. Feuillebois [6]. Richard Mochel [7]. Tabakova [8],.,..,. Hindmarsh [9],,,,,. Wang [10],, (80 µm),.,. Isao [11]. Ismail Salinas [12],. Kaw

5 : CERES(SYN) 1193 ;,,, (2) CERES,, CERES (GHGs), CERES ERBE CE- RES 3 ~4, CERES CERES(SynopticRadiativeFluxesand [9-10] Clouds,SYN),

一次辽宁暴雨过程的诊断及风场反演分析

1 引言

1.0 % 0.25 % 85μm % U416 Sulfate expansion deformation law and mechanism of cement stabilized macadam base of saline areas in Xinjiang Song

Settlement Equation " H = CrH 1+ e o log p' o + ( p' p' c o! p' o ) CcH + 1+ e o log p' c + p' f! ( p' p' c c! p' o ) where ΔH = consolidation settlem

2016,36(4) 961~969 China Environmental Science 1960~ , 2, 3, 1 (1.,,,,, , , ) 1960~2012,. :,,., 20 80, ;,.,,,, ,

30 26, ;,,,, ;, 500 hpa, [ 8 ], 0. 01, > 0. 5,, ( 1) 1,,, [ 9 ] 31 ( 2a), II 2 ( b c) 1 ( 1963, 1968, 1971, 1974, 1976, 1985) ( 1973, 1983, 1988, 1993

, 2 : ; 4 8, mm, mm, 43. 3% ; 350 mm, 70% , 32 d, d mm, 45. 1% mm, mm, 850 hpa (

MA

甘蔗糖业2011年电子合订本

E T 0 = γ 0 = 1 + R γ = nσ n nσ n ΔT 2 i - Σ n ΔT i T Pi - Σ n Σ n

Journal of Arid Meteorology Vol. 28 No. 4 Dec a

戊 酸 雌 二 醇 片 联 合 宫 颈 注 射 利 多 卡 因 用 于 绝 经 后 妇 女 取 环 的 临 床 效 果 评 价 陆 琴 芬, 等 371 Keywords groups, no removal difficulties and failure, was statistically s

(1) (2) (IVI) (2001) (IVI) 50% ~8% 1~30cm (IVI) Study on the Plant Succession of Slopeland Landslide Areas Following H

Microsoft PowerPoint _代工實例-1

北海道地方の地殻変動

Chinese oil import policies and reforms 随 着 经 济 的 发 展, 目 前 中 国 石 油 消 费 总 量 已 经 跃 居 世 界 第 二 作 为 一 个 负 责 任 的 大 国, 中 国 正 在 积 极 推 进 能 源 进 口 多 元 化, 鼓 励 替 代

标题

Leisure Participation Type Differences And Leisure Satisfaction Differences Between Various Body Mass Indices: A Correlation Study To Taiwan s College

8 : 731 Key words : narrow annular gap ; curvat ure ; critical heat flux ; annular flow,,,,,,,, ( ),, [122 ] kg/ (m 2 s) MPa

2015年4月11日雅思阅读预测机经(新东方版)

Untitiled

1556 地 理 科 学 进 展 30 卷 他 关 于 农 村 住 房 结 构 与 抗 震 性 能 的 研 究, 则 多 是 从 工 程 抗 灾 的 角 度, 研 究 某 种 构 造 类 型 的 房 屋, 力 图 找 到 传 统 房 屋 的 结 构 失 误 和 新 建 房 屋 中 存 在 的 问 [

[29] a N d N b 2 d sin θ N b ФФ a b Ф Ф θ θ a b Fig.1 Working principle demonstration of a phased-array antenna θ

2008年1月11日に岩手県釜石沖で発生した地震(M4.7)について

SWAN min TITAN Thunder Identification Tracking Analysis SWAN TITAN and Nowcasting 19 TREC Tracking Radar Echo by Correlaction T

274 28, [2,3 ],,,,,,,, /, : (O ECD) PSR ( Pressure2State2Response) [47 ], [812 ], MA [2,3,13 ], 1990 (O ECD) PSR, ; ; / PSR, [1417 ] (MA) 2000, 2005,

%

United Nations ~ ~ % 2010

1 : 97,,, ; , , ; :, h 15. 2, h ,, 1,, 3, : 1 1 d, 2 2 d;, , , 0812

5-25袁宏钧.indd

<4D F736F F D20A46AA4AFACECA7DEA46ABEC7B1D0AE76ACE3A873AD70B565A6A8AA47B3F8A769A4AFACE >

Microsoft Word - 刘 慧 板.doc

12-2 プレート境界深部すべりに係る諸現象の全体像

2015-6

标题

TestNian

劃 定 都 市 更 新 地 區 防 災 評 估 指 標 建 立 之 研 究 - 以 台 北 市 大 同 區 之 更 新 地 區 為 例 摘 要 民 國 八 十 八 年 台 灣 所 發 生 的 九 二 一 大 地 震 與 近 年 來 中 國 的 四 川 強 震 日 本 的 311 大 地 震, 皆 突

the southern city was higher than that in the northern city. In rural areas the proportion of the nuclear family in the northern region was higher tha

<4D F736F F D D31332DA655B0CFB9EAAC49A5AEA8E0B942B0CAB943C0B8BDD2B57BB27BAA70A4C0AA522D2D2DBBB2A46A >

资源 环境 生态 土壤 气象

Microsoft Word 張嘉玲-_76-83_

<30302DB7E2C3E6CDC6BDE9A3A D32A3A92E4D4449>

标题

: ;,, 0 0, 60, 0 80,, 76 78, (Deregulation),,,, (Open Sky), (ACI),006.%.8%,.7% 008,, 000, ( ), ( )0, / 6, ; 8, ;, ; 7, ; 06, 6, 006 0, ( ) 0,.%; 0 60,

political-legal Max Weber Essays in Sociology

Improved Preimage Attacks on AES-like Hash Functions: Applications to Whirlpool and Grøstl

H 2 SO ml ml 1. 0 ml C 4. 0 ml - 30 min 490 nm 0 ~ 100 μg /ml Zhao = VρN 100% 1 m V ml ρ g

Vol. 22 No. 4 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Aug GPS,,, : km, 2. 51, , ; ; ; ; DOI: 10.


國立中山大學學位論文典藏.PDF

CHIPS Oaxaca - Blinder % Sicular et al CASS Becker & Chiswick ~ 2000 Becker & Chiswick 196

(ICL),, 5 ( ), 40,, , [2,15-19], 3, (THI) (WCI) ( 1) 1 Tab.1 THI WCI and ICL grade standard,, ( ); 3, ;, 1 1, Fig.1 Structur

南華大學數位論文

36 1 Vol. 36 No Journal of the Meteorological Sciences Feb ZHANG Xi NIU Shengjie WEI Jincheng et al. Classificati

m 3 /a t /a m 3 /a t /a 4 t 6 t 8 t t 10 t 8 t 3

4.492 Daylighting in Buildings Class01

cm hpa hpa 2 45 N hpa ~ 12 Fig. 1 The observed rainfall distribution of Shanxi

untitled


decades and get distant from each other in other decades which is observed in the last three decades. Key words East China precipitation extrem

助 剂 改 善 其 止 血 效 果 1 实 验 1.1 原 料 和 试 剂 家 蚕 蛹 经 过 提 取 蛹 油 蛋 白 质 后 剩 余 的 残 渣 ( 主 要 成 分 为 蛹 皮 ), 烘 干 除 杂 粉 碎 后 待 用 ; 壳 聚 糖 ( 成 都 市 科 龙 化 工 试 剂 厂 ), 脱 乙 酰

Chinese Journal of Atmospheric Sciences Vol. 41 No. 1 Jan PM10 [J]., 41 (1): Wang Tianshu, Niu Shengjie Dust

Microsoft Word - A doc

(baking powder) 1 ( ) ( ) 1 10g g (two level design, D-optimal) 32 1/2 fraction Two Level Fractional Factorial Design D-Optimal D

% % * ~ 14 % 15~ 64 % 65 %


142 14, 1 ( 1), E E, N 43 N, km 2,,, 1 Fig. 1 Adm inistration map of counties in m iddle and lower reaches of L iaohe R

Maxwell [8] GDP Lipschitz McDonald [9] ULC [10] HBS [11] [12] [13] BIS IMF JP JP VAR [5] 1 W i = xi n Σx i k=1 1 4 Vol.24

36(4) (2004) Journal of Soil and Water Conservation, 36(4) (2004) earthworms dig soil on surface and prevent plants to grow. But until D


蒋 哲等 基于 CVM 的有机农业认知程度和消费意愿研究 201 (P 0.000). On the basis of these results, enhancing publicity, pricing reasonably, focusing on high- income groups ar

581 ( ) [ 1-2] 600 ( 1) S 613 ( 600 ) W ( ) ( 2) ( 1) 1 2 [ 3] ( 3) 232 [ 4] ( 4)

<4D F736F F D20C6ABC5D4B7D6CEF6CAD3BDC7B5C4B9C5CEC4D7D6D0CEC9F9D7D6B7A2D5B9C1BFBBAFD1D0BEBF2E646F63>

% % 34

4期

~ 10 2 P Y i t = my i t W Y i t 1000 PY i t Y t i W Y i t t i m Y i t t i 15 ~ 49 1 Y Y Y 15 ~ j j t j t = j P i t i = 15 P n i t n Y

115 的 大 量 废 弃 物 被 丢 弃 或 直 接 燃 烧 [3] 此 外, 海 南 省 文 昌 鸡 年 产 量 约 8 0 只, 鸡 粪 年 产 量 超 过 100 万 t 这 些 富 含 养 分 的 固 体 有 机 废 弃 物 不 进 行 处 理, 不 仅 会 极 大 浪 费 大 量 养 分

<4D F736F F D BFC6BCBCB9A4D7F7C4EAB1A82D FD0DEB8B4B5C45F2E646F63>

8629 / 35.0% / 130 / 1550 / 1/ % % / 400 / 430 /

Microsoft Word - 11-秦华伟.doc

Transcription:

Observation study of dust aerosolcloudprecipitation interactions over East Asia Jianping Huang, Wencai Wang, Bin Chen, Jing Su, Hongru Yan and Jianron Bi College of Atmospheric Sciences Lanzhou University http://climate.lzu.edu.cn/~jhuang Aug. 1819, 29, YinChun, China

outline The actuality of Northwest China The direct, indirect and semidirect effect of aerosols Results Conclusion

Northwest China is arid/semiarid area

Weather/Climate disasters frequently happen Debris flow, drought

This area is the a major source region of dust storm Distribution of Dust Storm over China

Many kinds of other aerosols in this area

Sensitive to global warming 5 3.9.8.7.6.5.4.3.2.1.1.2.3.4 Loess Plateau Humidity Region 2 8 9 1 11 12 13 1 Longterm trend of temperature in China Variation of annual mean temperature anomalies for Loess Plateau (red solid lines) and Humidity Region (black dashed lines) 5 3 11 1 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 Loess Plateau Humidity Region 2 8 9 1 11 12 13 1 Longterm trend of precipitation in China Variation of annual mean precipitation anomalies for Loess Plateau (red solid lines) and Humidity Region (black dashed lines)

Lan Zhou ( Fu et al. 26, Science ) Why the warming rate of the arid / semiarid area obviously higher than the humid area? The adjustment of circulation was caused by global warming Local aerosol effect on regional climate

Aerosols Direct Effect SemiDirect Effect Indirect Effect Diffusion Absorption & Scattering Cloud Formation Plant Production & Carbon Sink Atmospheric Radiation Budget Precipitation & Land Process Carbon Cycle Energy Cycle Water Cycle Aerosols Effect on Climate

The direct dust aerosol effect Absorb solar radiation! Heating Atmosphere!

Indirect aerosol effect Higher droplet Concentration (CCN) Smaller droplets Lower Precipitation rate Clouds longer lived More reflective cloud (Cooler climate)

Indirect Effect of Dust Aerosol Reduce the ice diameter and increase high cloud cover Huang et al., GRL, 26a Comparison of ice cloud diameter over the dustfree cloud (CLD) and clouds over the dust (COD) region. Correlation between Taklamagan dust storm index and ISCCP high cloud amount.

The semidirect aerosol effect Absorb solar radiation Evaporation of the cloud! Reduce low cloud cover Evaporation Warm the climate as low clouds scatter solar radiation back to space. Huang et al., GRL, 26b

SemiDirect Effect of Dust Aerosol Reduce low cloud water Path Huang et al., GRL, 26b Comparison of low cloud water path over the dustfree cloud (CLD) and clouds over the dust (COD) region.

SemiDirect Effect of Dust Aerosol Reduce low cloud water Path Huang et al., GRL, 26b Comparison of the cloud water path for dustfree with cloud over dust region as a function of effective cloud top temperature Te for (a) IWP, (b) LWP.

Dusty cloud reduced net TOA cloud cooling effect by % and may lead to warm atmosphere. 3 25 NET RF (COD) NET RF (CLD) CRF 2 15 1 5 Su et al, ACP 28 23 24 25 26 Year Comparison of the annual mean net radiative forcing at the TOA.

Su et al, ACP 28

81% dusty cloud warming effect is contributed by indirect/semidirect effect, 19% from direct effect. Su et al, ACP, 28

Ice cloud Dust transport Dust transport water cloud Dust transport Dust transport Dust aerosols longdistance transport

CALIPSO measurements can help to find dust transport paths 532nm total attenuated backscatter Back trajectories Huang et al., JGR, 28

35 N 45 N 7 E 11 E 35 N 45 N 12 E 16 E Two regions we choose

Data observe aerosols and clouds at the same altitude calculate the properties and radiative forcing of cloud

Definition of the dusty cloud

Dusty cloud can be identified by CALIPSO and CloudSat

Case in Source Region (a) (b) (c) (d) Vertical profiles of dusty cloud parameters in the source region, March 5, 27. CloudSat cloud mask image, CALIPSO 532nm total backscatter, volume depolarization ratio, 164nm/532nm backscatter color ratio.

Case in Remote Region (a) (b) (c) (d) Vertical profiles of dusty cloud parameters in the remote region, April 18, 27. CloudSat cloud mask image, CALIPSO 532nm total backscatter, volume depolarization ratio, 164nm/532nm backscatter color ratio.

Water cloud Results ice cloud Frequency(%) 1 8 6 2 Pure Cloud(11.65) Dusty Cloud(9.3) Frequency(%) 1 8 6 2 Pure Cloud(43.99) Dusty Cloud(35.69) 2 6 1 14 18 22 26 3 34 38 1 3 5 7 9 11 13 Re of Water Cloud in Source Region(um) De of Ice Cloud in Source Region(um) Frequency(%) 1 8 6 2 Pure Cloud(11.88) Dusty Cloud(11.68) Frequency(%) 1 8 6 2 Pure Cloud(55.28) Dusty Cloud(51.65) 2 6 1 14 18 22 26 3 34 38 Re of Water Cloud in Remote Region(um) 1 3 5 7 9 11 13 De of Ice Cloud in Remote Region(um) Comparison of water (Re) and ice (De) cloud particle size between the source and remote regions.

Water cloud ice cloud Frequency(%) 1 8 6 2 Pure Cloud(48.33) Dusty Cloud(33.26) Frequency(%) 1 8 6 2 Pure Cloud(139.13) Dusty Cloud(18.62) 5 15 25 35 45 55 65 75 85 95 15 45 75 15 135 165 195 225 255 285 LWP of Water Cloud in Source Region(g/m*2) IWP of Ice Cloud in Source Region(g/m*2) Frequency(%) 1 8 6 2 Pure Cloud(11.7) Dusty Cloud(74.13) Frequency(%) 1 8 6 2 Pure Cloud(273.24) Dusty Cloud(185.3) 5 15 25 35 45 55 65 75 85 95 LWP of Water Cloud in Remote Region(g/m*2) 15 45 75 15 135 165 195 225 255 285 IWP of Ice Cloud in Remote Region(g/m*2) Comparison of liquid water path (LWP) and ice water path (IWP) between the source and remote regions.

Water cloud ice cloud Frequency(%) 1 8 6 2 Pure Cloud(273.19) Dusty Cloud(274.45) Frequency(%) 1 8 6 2 Pure Cloud(242.45) Dusty Cloud(246.9) 21 22 23 2 25 26 27 28 29 3 31 32 Temperature of Water Cloud in Source Region(K) 21 22 23 2 25 26 27 28 29 3 31 32 Temperature of Ice Cloud in Source Region(K) Frequency(%) 1 8 6 2 Pure Cloud(27.) Dusty Cloud(274.16) Frequency(%) 1 8 6 2 Pure Cloud(246.21) Dusty Cloud(254.77) 21 22 23 2 25 26 27 28 29 3 31 32 Temperature of Water Cloud in Remote Region(K) 21 22 23 2 25 26 27 28 29 3 31 32 Temperature of Ice Cloud in Remote Region(K) Comparison of water and ice cloud temperature between the source and remote regions.

Water cloud ice cloud Re(um) 3 25 2 15 1 Dusty Cloud(9.3) Pure Cloud(11.65) De(um) 12 1 8 6 Dusty Cloud(35.63) Pure Cloud(43.99) 5 2 5 15 25 35 45 55 65 75 85 15 45 75 15 135 165 195 225 255 285 LWP in Source Region(g/m*2) IWP in Source Region(g/m*2) Re(um) 3 25 2 15 1 Dusty Cloud(11.68) Pure Cloud(11.88) De(um) 12 1 8 6 Dusty Cloud(51.65) Pure Cloud(55.28) 5 2 5 15 25 35 45 55 65 75 85 95 15 LWP in Remote Region(g/m*2) 15 45 75 15 135 165 195 225 255 285 IWP in Remote Region(g/m*2) Comparison of Re (De) as a function of LWP (IWP) between dusty and pure cloud over the source and remote regions.

Water cloud ice cloud Re(um) 3 25 2 15 1 5 Dusty Cloud(9.3) Pure Cloud(11.65) De(um) 1 8 6 2 Dusty Cloud(35.63) Pure Cloud(43.99) 1 3 5 7 9 11 13 1 3 5 7 9 11 OPD in Source Region OPD in Source Region Re(um) 3 25 2 15 1 Dusty Cloud(11.68) Pure Cloud(11.88) De(um) 1 8 6 Dusty Cloud(51.65) Pure Cloud(55.28) 5 2 1 3 5 7 9 11 13 OPD in Remote Region 1 3 5 7 9 11 OPD in Remote Region Comparison of Re (De) as a function of OPD between dusty and pure cloud over the source and remote regions.

The effective number concentration The perpendicular attenuated backscatter The effective radius 1um The parallel attenuated backscatter The layerintegrated depolarization ratio The equation for calculate the effective number concentration [Hu, et al., 27].

The effective number concentration Source Region Remote Region Frequency(%) 1 8 6 2 Dusty Cloud(131.52) Pure Cloud(8.11) Frequency(%) 1 8 6 2 Dusty Cloud(56.15) Pure Cloud(49.51) 2 6 1 1 18 22 26 3 3 38 2 6 1 1 18 22 26 3 3 38 The effective number concentration in source region(cm3) The effective number concentration in remote region(cm3) Comparison of the effective number concentration for dusty and pure cloud over the source and remote regions.

Radiative Forcing of Dusty and Pure Cloud C sw = F sw clr F sw C lw = F lw clr F lw C net = C sw The cloud radiative forcing is defined as the difference between the clearsky and the totalscene radiation results [Ramanathan et al., sw lw 1989], where F clr and F clr are the CERES clear sky broadband SW and LW radiative fluxes at the top of atmosphere (TOA), Fsw and Flw are SW and LW RF at the TOA for clouds (including dusty clouds) and for no cloud observation. + C lw

D Dusty P Pure W Water I Ice TOA NET radiative forcing of dusty and pure clouds in the source and remote regions.

SW RF of Water Cloud 6 5 3 2 1 Pure Cloud(154.13) Dusty Cloud(94.15) 25 26 27 28 29 3 SW RF of Water Cloud 6 5 3 2 1 Pure Cloud(248.9) Dusty Cloud(29.1) 25 26 27 28 29 Source Region LW RF of Water Cloud 2 15 1 5 Pure Cloud(76.8) Dusty Cloud(5.9) LW RF of Water Cloud 2 15 1 5 Pure Cloud(41.66) Dusty Cloud(28.34) Remote Region NET RF of Water Cloud 25 26 27 28 29 3 6 5 3 2 1 Pure Cloud(77.33) Dusty Cloud(44.6) 25 26 27 28 29 3 Temperature NET RF of Water Cloud 6 5 3 2 1 25 26 27 28 29 Pure Cloud(27.23) Dusty Cloud(18.75) 25 26 27 28 29 Temperature

SW RF of Ice Cloud 6 5 3 2 1 Pure Cloud(27.82) Dusty Cloud(139.67) 22 23 2 25 26 27 28 SW RF of Ice Cloud 6 5 3 2 1 Pure Cloud(342.86) Dusty Cloud(229.) 22 23 2 25 26 27 Source Region LW RF of Ice Cloud 2 15 1 5 Pure Cloud(98.5) Dusty Cloud(65.65) LW RF of Ice Cloud 2 15 1 5 Pure Cloud(69.56) Dusty Cloud(52.74) Remote Region NET RF of Ice Cloud 6 5 3 2 1 22 23 2 25 26 27 28 Pure Cloud(19.32) Dusty Cloud(74.2) 22 23 2 25 26 27 28 NET RF of Ice Cloud 6 5 3 2 1 22 23 2 25 26 27 Pure Cloud(273.29) Dusty Cloud(176.27) 22 23 2 25 26 27 Temperature Temperature

Summery and Conclusion Those studies shows some evidence of the direct, indirect and semidirect effect of Asian dust aerosol. The absorption of Asian dust aerosol can cause: heating atmosphere evaporate cloud droplets reduce cloud water path and optical depth reduce cloudcooling effect lead to warm local climate lower precipitation rate The dust aerosol warming effect may be dominated by semidirect effect.