Microsoft Word 屈超群_new_.doc

Similar documents
ph ph ph Langmuir mg /g Al 2 O 3 ph 7. 0 ~ 9. 0 ph HCO - 3 CO 2-3 PO mg /L 5 p

untitled

,800 r min h, Li 3 Fe 2 (PO 4 ) 3 /C 12 Panalytical X'Pert X ( Philip),,Cu (λ = nm), 40 kv, 30 ma, 00167, 10 s,10 ~ 80,MDI Jade 5

24-2_cover_OK

<4D F736F F D20B8BDBCFEA3BAB9ABCABEC4DAC8DD2DB9FDB6C9BDF0CAF4D1F5BBAFCEEFC4C9C3D7BDE1B9B9D0C2D3B1B5C4CDE2B3A1D7F7D3C3CFECD3A6CCD8D0D4BCB0BBFAC0EDD1D0BEBF2E646F6378>

助 剂 改 善 其 止 血 效 果 1 实 验 1.1 原 料 和 试 剂 家 蚕 蛹 经 过 提 取 蛹 油 蛋 白 质 后 剩 余 的 残 渣 ( 主 要 成 分 为 蛹 皮 ), 烘 干 除 杂 粉 碎 后 待 用 ; 壳 聚 糖 ( 成 都 市 科 龙 化 工 试 剂 厂 ), 脱 乙 酰

Sn 1 3 Sn-Co Sn XRD X pert PRO X 1 Panalytical Cu Kα kv 30 ma 20 ~ s LEO1530 LEO SEM 1 4 Sn-Co 2025 Sn-Co 1 mol L m

<D2BDC1C6BDA1BFB5CDB6C8DAD7CAB8DFB7E5C2DBCCB3B2CEBBE1C3FBB5A52E786C7378>

第 期 牛文翰等 模板辅助合成氮掺杂的多孔碳基氧还原电催化剂的研究进展!"#$ %&' ' () * +,,,,,,( *,( - -, ( '+, *, -,,, +, ',,. /, ',,+, " $ 2 * ' /+ / / / (+ 5 (/(

H 2 SO ml ml 1. 0 ml C 4. 0 ml - 30 min 490 nm 0 ~ 100 μg /ml Zhao = VρN 100% 1 m V ml ρ g

cm /s c d 1 /40 1 /4 1 / / / /m /Hz /kn / kn m ~

Mixtions Pin Yin Homepage

研究领域 主要从事电化学 化学电源与新能源材料领域的研究, 在航天用锂离子电池系统 锂离子电 池正负极材料研发与工程化 燃料电池发电技术与集成 纳米材料的工艺开发及应用等方面 有多年的研究工作积累 获奖情况 入选北京高等学校 青年英才计划 社会兼职 1 北京市科委重点实验室 / 工程中心评审专家 2

mm ~

(CIP) : /. :, (/ ) ISBN T S H CI P (2006) CH IJIASH EN GXIAN G YINSHI WEN H U A Y U CHENGY U 1

标题

Microsoft Word tb 赵宏宇s-高校教改纵横.doc

《中国科学》A、E、G与F小开本版式设计

[1-3] (Smile) [4] 808 nm (CW) W 1 50% 1 W 1 W Fig.1 Thermal design of semiconductor laser vertical stack ; Ansys 20 bar ; bar 2 25 Fig

会议总体日程安排

by industrial structure evolution from 1952 to 2007 and its influence effect was first acceleration and then deceleration second the effects of indust

3 Ce /ZnO XRD Ce ZnO 0% 0 5% 2 Ce Ce /ZnO XRD 1 0% 1 5% 2 0% 2 2θ = g

* CUSUM EWMA PCA TS79 A DOI /j. issn X Incipient Fault Detection in Papermaking Wa

s 15 contact s W Si 3 N μm N / m 4 AFM 95% AFM WPOJ UPOJ WPOJ UPOJ 260 ~ 280 nm WPOJ-DS UPOJ-DS 1 cm 1 cm DEAE-ce

标题


12-1b T Q235B ML15 Ca OH Table 1 Chemical composition of specimens % C Si Mn S P Cr Ni Fe

T K mm mm Q345B 600 mm 200 mm 50 mm 600 mm 300 mm 50 mm 2 K ~ 0. 3 mm 13 ~ 15 mm Q345B 25

在 培 养 职 前 卓 越 化 学 教 师 的 院 校, 会 编 一 本 过 去 称 作 化 学 教 学 论 实 验, 现 在 拟 为 卓 越 化 学 教 师 教 育 实 验 教 学 研 究 的 教 材 各 院 校 对 这 门 课 程 所 给 的 学 时 不 太 一 样, 但 都 是 围 绕 实 验

填 写 要 求 一 以 word 文 档 格 式 如 实 填 写 各 项 二 表 格 文 本 中 外 文 名 词 第 一 次 出 现 时, 要 写 清 全 称 和 缩 写, 再 次 出 现 时 可 以 使 用 缩 写 三 涉 密 内 容 不 填 写, 有 可 能 涉 密 和 不 宜 大 范 围 公

JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol. 31 No. 5 Oct /35 TU3521 P315.

理化视窗19期内文.indd

~ 10 2 P Y i t = my i t W Y i t 1000 PY i t Y t i W Y i t t i m Y i t t i 15 ~ 49 1 Y Y Y 15 ~ j j t j t = j P i t i = 15 P n i t n Y

姓吊

第16卷 第2期 邯郸学院学报 年6月

Fig. 1 Frame calculation model 1 mm Table 1 Joints displacement mm

~ 4 mm h 8 60 min 1 10 min N min 8. 7% min 2 9 Tab. 1 1 Test result of modified

填 表 说 明 1. 本 表 所 填 数 据 截 至 时 间 为 2011 年 9 月 底 2. 本 表 请 用 A4 纸 双 面 打 印, 加 盖 学 校 公 章 后 上 报 3. 表 内 所 填 数 据 请 学 校 认 真 核 实, 确 保 准 确 无 误 4. 建 设 完 成 情 况 对 照

é é

Stock Transfer Service Inc. Page No. 1 CENTURY PEAK METALS HOLDINGS CORPORATION (CPM) List of Top 100 Stockholders As of 12/31/2015 Rank Sth. No. Name

220 20, Vol. 32, No. 6 食 品 科 学 分 析 检 测 荡 体 系 被 用 来 检 测 和 鉴 别 组 成 极 其 复 杂 的 中 药 2007 年 [7-20] 张 泰 铭 等 提 出 了 中 药 非 线 性 化 学 指 纹 图 谱 的 概 念, 并 对 其 形 成 的 原

% GIS / / Fig. 1 Characteristics of flood disaster variation in suburbs of Shang

中溫矽基熱電材料介紹及其應用

NANO COMMUNICATION 23 No.3 90 CMOS 94/188 GHz CMOS 94/188 GHz A 94/188 GHz Dual-Band VCO with Gm- Boosted Push-Push Pair in 90nm CMOS 90 CMOS 94

TGF-β AngⅡ B SD ~ 220g SPF. SCXK No SYXK ~ 25 40% ~ 70% OR37G-C

Microsoft Word - 16-p doc

WATER PURIFICATION TECHNOLOGY April 5th, 0.4 TiO TiO UV-0PC UNICO [0] TiO TiO TiO HNO 00 W TiO TiO TiO >40 nm TiO 0 ml 0 mg / L -. TiO 6 ml 40 ml 60 m

untitled

untitled

Microsoft Word 方刚_new_.doc

标题

現代學術之建立 陳平 美學十五講 淩繼堯 美學 論集 徐複觀 書店出版社 的方位 陳寶生 宣傳 敦煌文藝出版社 論集續篇 徐複觀 書店出版社 莊子哲學 王博 道家 的天方學 沙宗平 伊斯蘭教 周易 經傳十

ISSN: MAX-phase

z




Microsoft Word _editing

标题

115 的 大 量 废 弃 物 被 丢 弃 或 直 接 燃 烧 [3] 此 外, 海 南 省 文 昌 鸡 年 产 量 约 8 0 只, 鸡 粪 年 产 量 超 过 100 万 t 这 些 富 含 养 分 的 固 体 有 机 废 弃 物 不 进 行 处 理, 不 仅 会 极 大 浪 费 大 量 养 分

Schumpeter Mensch Freeman Clark Schumpeter Mensch 1975 technological stalemate 2000 Van Dujin 1977 OECD 1992 Freeman 1982 Van

4 1 5 Vol. 41 No Journal of Shanghai Normal University Natural Sciences Oct 对导电塑料沙丁镍镀层的耐腐蚀性进行分析, 通过电化学试验, 分析了不同工艺的沙丁镍镀层


/MPa / kg m - 3 /MPa /MPa 2. 1E ~ 56 ANSYS 6 Hz (a) 一阶垂向弯曲 (b) 一阶侧向弯曲 (c) 一阶扭转 (d) 二阶侧向弯曲 (e) 二阶垂向弯曲 (f) 弯扭组合 2 6 Hz

31 17 www. watergasheat. com km 2 17 km 15 km hm % mm Fig. 1 Technical route of p

PCA+LDA 14 1 PEN mL mL mL 16 DJX-AB DJ X AB DJ2 -YS % PEN

厦 门 大 学 科 技 周 报

(1) ( 1965 ),, 1952 [9] 2.1 (2) 1 53 (E i ), 2 (P i ) (G E (G P, 31 (Q i ) 3, : G E (x,y)= (E i Q(x i, y i )) E i G P (x,y)=

10 中 草 药 Chinese Traditional and Herbal Drugs 第 43 卷 第 1 期 2012 年 1 月 生 药 打 粉 入 药 的 基 本 特 点, 借 鉴 材 料 学 粉 体 学 等 学 科 的 研 究 成 果, 在 中 药 传 统 制 药 理 念 的 启 发


11 25 stable state. These conclusions were basically consistent with the analysis results of the multi - stage landslide in loess area with the Monte

SWAN min TITAN Thunder Identification Tracking Analysis SWAN TITAN and Nowcasting 19 TREC Tracking Radar Echo by Correlaction T

382 25,,, 4.2 g 96% m.p.139~140 ( [21] :138~139 ), (4- )-2,2 6,2 - (L), [17], 2.5 mmol 1-(2- )-, 2.5 mmol 1-(2- )-(4- ) -1-2,2 6,2 (25.0 mmol),


Microsoft Word - 1--齐继峰_new_.doc

Microsoft Word 定版

ti2 guan4 bo1 bo5 huai4 zheng4 hong1 xi2 luo2 ren4

續論


~ ~ ~

jiàn shí

θ 1 = φ n -n 2 2 n AR n φ i = 0 1 = a t - θ θ m a t-m 3 3 m MA m 1. 2 ρ k = R k /R 0 5 Akaike ρ k 1 AIC = n ln δ 2

第 33 卷 第 2 期 2010 年 4 月 脱 蛋 白 较 好 的 方 法 是 Sevag 法, 它 是 根 据 蛋 白 质 在 氯 仿 等 有 机 溶 剂 中 变 性 的 特 点, 使 蛋 白 质 变 性 成 胶 状, 此 法 条 件 温 和, 可 避 免 多 糖 的 降 解

lí yòu qi n j n ng

ZHONG Chong A Study on the Map of Provincial Capital of Zhejiang Past and Present

240 生 异 性 相 吸 的 异 性 效 应 [6] 虽 然, 心 理 学 基 础 研 [7-8] 究 已 经 证 实 存 在 异 性 相 吸 异 性 相 吸 是 否 存 在 于 名 字 认 知 识 别 尚 无 报 道 本 实 验 选 取 不 同 性 别 的 名 字 作 为 刺 激 材 料, 通

48 東華漢學 第20期 2014年12月 後 卿 由三軍將佐取代 此後 中大夫 極可能回歸原本職司 由 於重要性已然不再 故而此後便不見 中大夫 記載於 左傳 及 國 語 關鍵詞 左傳 中大夫 里克 丕鄭 卿

doc


68 ( ) 2006,,,,,,,,,, (narrative history),,, [1 ] (P ),,,,,,, [ 2 ] ( P ), ;,,,,,,,,,,,,,, (1917),, 30,,,, :,, ;,,,,, ( ) ( ), :,,,,,,,,,,

<4D F736F F D20B2CCA3BA4542B2A1B6BE BFB9CCE5D3EBB1C7D1CAB0A9B7D6C6DAB5C4B9D8CFB52E646F63>

11 : 1345,,. Feuillebois [6]. Richard Mochel [7]. Tabakova [8],.,..,. Hindmarsh [9],,,,,. Wang [10],, (80 µm),.,. Isao [11]. Ismail Salinas [12],. Kaw

píng liú zú


IT 36% Computer Science Teachers Association, CSTA K K-12 CSTA K-12 K-12 K-6 K6-9 K STEM STEM STEM

Scoones World Bank DFID Sussex IDS UNDP CARE DFID DFID DFID 1997 IDS

successful and it testified the validity of the designing and construction of the excavation engineering in soft soil. Key words subway tunnel

4期

In Hydrothermal Synthesis of Hydroxyapatite Microspheres with Polyvinylpyrrolidone as Template

2502 Vol 33 PANI S D-CSA 1R L-CSA Alfa Aesar ITO 25 ~ 35 Ω /cm 2 Millipore CHI630B ITO Pt SCE Hitachi S-4800 Philips FEI

Transcription:

第 27 卷第 6 期无机材料学报 Vol. 27 No. 6 2012 年 6 月 Journal of Inorganic Materials Jun., 2012 文章编号 : 1000-324X(2012)06-0561-07 DOI: 10.3724/SP.J.1077.2012.00561 聚阴离子型锂离子电池正极材料 Li 3 V 2 (PO 4 ) 3 的研究进展 屈超群 1, 魏英进 2, 姜涛 (1. 吉林师范大学功能材料物理与化学教育部重点实验室, 四平 136000; 2. 吉林大学物理学院, 长春 130012) 2 摘要 : 具有聚阴离子型结构的 Li 3 V 2 (PO 4 ) 3 正极材料凭借比容量高 结构稳定性好 工作电压高以及成本低的综合 性优势受到了广泛的关注, 被众多专家学者视为下一代锂离子动力电池正极材料的理想之选. 本文对 Li 3 V 2 (PO 4 ) 3 材料的结构 电化学性质 制备方法 存在的问题和解决的方案进行了综述. 同时对 Li 3 V 2 (PO 4 ) 3 正极材料的发展趋势进行了展望. 关键词 : 锂离子电池 ; 正极材料 ; Li 3 V 2 (PO 4 ) 3 ; 聚阴离子型结构 ; 综述 中图分类号 : TM912 文献标识码 : A Research Progress in Li 3 V 2 (PO 4 ) 3 as Polyanion-type Cathode Materials for Lithium-ion Batteries QU Chao-Qun 1, WEI Ying-Jin 2, JIANG Tao 2 (1. Key laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, China; 2. College of Physics, Jilin University, Changchun 130012, China) Abstract: The polyanion-type cathode material of Li 3 V 2 (PO 4 ) 3 is an ideal cathode material for next-generation lithium-ion battery. It has attracted wide attention due to its comprehensive merits in high specific capacity, excellent structural stability, high operating-voltage, and low cost, etc. The structure, electrochemical properties, preparation methods, existing open questions and possible solutions of certain bottleneck issues of Li 3 V 2 (PO 4 ) 3 were discussed in this paper. The research trends of Li 3 V 2 (PO 4 ) 3 cathode material was also prospected. Key words: lithium-ion battery; cathode material; Li 3 V 2 (PO 4 ) 3 ; polyanion-type; review 锂离子电池以其体积小 循环性能好及对环境友好等特点正在逐步取代镍氢电池, 成为最有前途的车载动力电池. 然而, 现有的锂离子电池由于能量密度 安全性以及成本等问题, 仍然不能完全满足电动汽车用电池的需求. 对于锂离子电池的性能来说, 最主要的影响因素是正极材料. 传统正极材料如钴酸锂 锰酸锂和磷酸铁锂等都存在容量低和工作电压不高的缺点, 这严重制约了锂离子电池能量密度的提高, 进而会影响到电动汽车的续航里程等关键问题. 近年来, 许多学者在探求新型锂离子电池正极材料的过程中, 将研究重点逐步转移到一种具有聚阴离子型结构的 Li 3 V 2 (PO 4 ) 3 正极材料上. 该正极材料凭借比容量高 ( 理论容量 197 mah/g) 结构稳定性好 工作电压高以及成本低的综合性优势, 受到了广泛的关注, 逐渐成为锂离子电池领域专家学者研究的热点. 选择这种材料作为锂离子电池正极活性物质, 可以大大提高锂离子电池的能量密度. 同时, 该材料也被众多专家学者视为下一代锂离子动力电池正极材料的理想之选. 收稿日期 : 2011-10-13; 收到修改稿日期 : 2011-11-30 基金项目 : 国家自然科学基金 (50702024) National Natural Science Foundation of China (50702024) 作者简介 : 屈超群 (1982 ), 女, 博士, 讲师. E-mail: chaoqun-530@126.com

562 无机材料学报第 27 卷 1 Li 3 V 2 (PO 4 ) 3 的基本性质 1.1 Li 3 V 2 (PO 4 ) 3 的结构 Li 3 V 2 (PO 4 ) 3 具有两种不同的结构, 包括 Nasicon 型 (Na Super Ionic Conductor) 结构和 β-fe 2 (SO 4 ) 3 型结构. Nasicon 型 Li 3 V 2 (PO 4 ) 3 属于菱方结构, 空间群为 R3, 晶胞参数为 a=0.832 nm, b=2.245 nm [1]. 由于其热稳定性不好, 通常它只能通过离子交换法制备, 并且电化学性能较差, 因此人们对其进行的研究较少. β-fe 2 (SO 4 ) 3 型 Li 3 V 2 (PO 4 ) 3 具有类 Nasicon 结构, 属于单斜晶系, 空间群为 P2 1 /n, 晶胞参数为 a=0.862 nm, b= 0.855 nm, c=1.203 nm, β=90.45 o, V = 0.8906 nm 3, 其晶体结构如图 1 所示 [2]. 从图 1 可以看出, Li 3 V 2 (PO 4 ) 3 中 PO 4 四面体和 VO 6 八面体通过共用顶点的 O 原子构成三维骨架结构, 每个 PO 4 四面体周围有四个 VO 6 八面体, 而每个 VO 6 八面体周围则有六个 PO 4 四面体, 这样就以 M 2 N 3 ( 其中 M = VO 6, N = PO 4 ) 为结构单元形成了三维网状结构 [3]. Li 原子分布在网状结构的空隙中, 每个晶胞中共有 12 个 Li 原子, 分别占据三个晶体学位置. 另外, Li 原子具有三维的扩散通道, 可以产生很强的各向异性的离子导电, 这使得材料具有很高的离子扩散系数 [4]. 1.2 Li 3 V 2 (PO 4 ) 3 的电化学性质 Li 3 V 2 (PO 4 ) 3 每个分子式中存在 3 个 Li + 离子, 在 [5] 不同的充放电区间会表现出不同的电化学性质. 在 3.0~4.3 V 电压范围内 Li 3 V 2 (PO 4 ) 3 可以脱出两个 Li + 离子, 此时的理论容量为 132 mah/g, 充放电曲线如图 2 所示. 从图 2 可以看出, 在此电压区间内充电曲线和放电曲线呈对称形状, 都有三个明显的平台, 分别位于 3.60/3.58 V 3.68/3.65 V 和 4.08/4.02 V 附近, 三个电压平台都对应着 V 3+ /V 4+ 电对的氧化还原反应. 其中, 前两个平台为第一个锂离子的脱出 : 第一个电压平台代表 Li 3 V 2 (PO 4 ) 3 和 Li 2.5 V 2 (PO 4 ) 3 两相之间的转变, 第二个平台代表 Li 2.5 V 2 (PO 4 ) 3 和 Li 2 V 2 (PO 4 ) 3 两相之间的转变. 而第三个平台对应于第二个锂离子的脱出, 此时发生的是 Li 2 V 2 (PO 4 ) 3 和 Li 1 V 2 (PO 4 ) 3 两相之间的转变. 前三个平台对应的充放电反应为 : 3+ 3+ 3+ 4+ + 3 4 3 2 4 3 3+ 4+ 4+ 4+ + 2 4 3 1 4 3 LiV V (PO) LiV V (PO)+Li+e (1) Li V V (PO ) Li V V (PO ) +Li +e (2) 当充放电电压范围在 3.0~4.8 V 时, Li 3 V 2 (PO 4 ) 3 中三个 Li + 离子可以全部脱出, 此时的理论容量为 197 mah/g( 如图 3). 在该电压区间内存在四个充电平台, 前三个平台与 3.0~4.3 V 电压区间内的三个充电平台一致, 而位于 4.56 V 附近的第四个平台则表示第三个锂离子的脱出, 同时对应着 V 4+ /V 5+ 氧化还原电对, 此时发生 Li 1 V 2 (PO 4 ) 3 和 V 2 (PO 4 ) 3 两相之 [6] 图 2 在 3.0~4.3 V 电压区间内 Li 3 V 2 (PO 4 ) 3 的充放电曲线 Fig. 2 Charge-discharge potential profile of Li 3 V 2 (PO 4 ) 3 between 3.0 V and 4.3 V [6] [2] 图 1 单斜 Li 3 V 2 (PO 4 ) 3 的结构示意图 Fig. 1 The structure of Li 3 V 2 (PO 4 ) 3 compound [2] 图 3 在 3.0~4.8 V 电压区间内 Li 3 V 2 (PO 4 ) 3 的充放电曲线 [7] Fig. 3 Charge-discharge potential profile of Li 3 V 2 (PO 4 ) 3 between 3.0 V and 4.8 V [7]

第 6 期屈超群, 等 : 聚阴离子型锂离子电池正极材料 Li 3 V 2 (PO 4 ) 3 的研究进展 563 间的转变. 但是, 在 3.0~4.8 V 区间内的放电曲线却明显不同于充电曲线. 第二和第三个锂离子的重新插入并未表现出较为平坦的电压平台, 而是呈现为比较光滑的曲线, 这说明此时并未发生 V 2 (PO 4 ) 3 和 Li 2 V 2 (PO 4 ) 3 两相之间的转变, 只是一种固溶体行为. 第四个平台对应的充电反应为 : 4+ 4+ 4+ 5+ + Li1V V (PO 4) 3 V V (PO 4) 3 + Li + e (3) 总的充放电反应为 : 3+ 3+ 4+ 5+ + Li V V (PO ) V V (PO ) + 3Li + 3e (4) 3 3 4 4 3 2 Li 3 V 2 (PO 4 ) 3 的制备方法 2.1 固相法 固相法是一种合成锂离子电池材料比较常用的方法, 通常是指两种或两种以上固体直接参与反应, 同时引起化学变化的反应 [8]. Li 3 V 2 (PO 4 ) 3 中 V 元素的价态为 +3, 而通常合成该材料所用钒源大多为含有 V 5+ 的 V 2 O 5 或 NH 4 VO 3. 因此, 需要利用还原剂才能将 V 5+ 还原成 V 3+, 而氢气和碳则是还原剂中较好的选择. 所以, 将合成 Li 3 V 2 (PO 4 ) 3 的固相法分为两种, 即氢气还原法和碳热还原法. 2.1.1 氢气还原法合成 Li 3 V 2 (PO 4 ) 3 的基本流程是将锂盐 ( 如 Li 2 CO 3 LiF LiCH 3 COO LiOH) 钒化合物 ( 如 V 2 O 5 NH 4 VO 3 ) 和磷酸盐 ( 如 (NH 4 ) 2 HPO 4 NH 4 H 2 PO 4 ) 按一定比例混合, 研磨后在较低温度 ( 如 300 ) 和惰性气体 (N 2 或 Ar) 保护下进行预处理, 最后在通有 H 2 的管式炉中以较高的温度 (700~900 ) [5] 进行烧结, 得到最终产物. Saidi 等利用纯 H 2 作为还原剂, 在 850 下制备出纯相的 Li 3 V 2 (PO 4 ) 3, 在 3.0~4.3 V 和 3.0~4.8 V 电压区间以 0.05C 倍率进行测试时, 首次放电容量分别为 125 mah/g 和 [9] 170 mah/g, 接近理论容量. Fu 等采用氢气还原法, 利用 LiF 作为锂源合成出了纯相的 Li 3 V 2 (PO 4 ) 3, 该材料具有非常出色的电化学性能. 在 3.0~4.8 V 电压区间以 1C 倍率进行测试时, 首次放电容量可达 158 mah/g, 50 次循环后容量保持率为 94%. 氢气还原法合成 Li 3 V 2 (PO 4 ) 3 的主要缺点是 : 所得材料的颗粒分布不均匀, 且尺寸较大, 大大地增加了 Li + 离子在体材料内的传输距离, 降低了材料的倍率性能 ; 所需合成温度较高, 要在通有氢气的管式炉中进行烧结, 由于氢气易燃易爆, 所以非常危险, 并且氢气价格比较昂贵, 不利于节约成本. 2.1.2 碳热还原法 (CTR) 是一种在冶金方面应用比较普遍的合成方法, 主要是利用 C 与 O 的结合力, 在 [10] 高温下发生氧化还原反应. Barker 等将碳热还原方法应用于制备锂离子电池正极材料 LiFePO 4 上, 得到了循环性能非常优良的材料, 而且该方法所需成本较低, 无危险, 适合于工业化. 利用碳热还原方法制备 Li 3 V 2 (PO 4 ) 3 的主要反应方程式如下 : 3 Li 2 CO 3 + V 2 O 5 + 3NH 4 H 2 PO 4 + C 2 5 9 Li3V 2(PO 4) 3 + CO2 + 3NH3 + H2O (5) 2 2 首先将锂盐 钒化合物 磷酸盐与过量的碳或者含碳有机物按照一定的比例混合, 然后再在通有惰性气体的管式炉中进行烧结, 得到最终产物. 此时, 碳或者有机物在高温分解时产生的碳不但可以将原材料中高价态的 V 5+ 还原成低价态的 V 3+, 而且过量的碳还可以大大地提高材料的电导率. 目前, 合成 Li 3 V 2 (PO 4 ) 3 所采用的碳源主要有炭黑 [11] 蔗糖 [12-13] 酚醛树脂 [2] 聚偏氟乙烯 [14] 聚苯乙烯 [15] 硬脂酸 [16] 结晶食糖 [17] [18-19] 抗坏血酸 [20] 等. Zhong 等利用 LiOH V 2 O 5 NH 4 H 2 PO 4 和过量 25wt% 的炭黑作为原料, 在 800 的温度下成功制备出具有表面碳包覆的 Li 3 V 2 (PO 4 ) 3 材料. 该材料在 3.0~4.3 V 电压区间以 0.1C 倍率进行充放电时, 首次容量为 120 mah/g, 30 次循环后容量为 112 mah/g, [21] 容量保持率高达 93%. 应皆荣等采用蔗糖作为碳源, 在 800 下合成出了纯相的 Li 3 V 2 (PO 4 ) 3. 电化学测试结果表明, 材料无论在 3.0~4.3 V 电压区间还是在 3.0~4.8 V 电压区间都展示了非常好的循环性 [22-23] 能和倍率性能. 刘素琴等采用氢氧化锂 五氧化二钒和磷酸氢铵作为原料, 利用碳热还原方法制备了 Li 3 V 2 (PO 4 ) 3 正极材料, 在 0.1C 倍率下充放电, 首次的充电容量为 136 mah/g, 放电容量为 135 mah/g, 充放电效率接近 100%, 而且经过二十次循环后放电容量仍然能够维持在 109 mah/g, 相 [24] 当于初始容量的 83%. Zheng 等采用 V 2 O 5 NH 4 H 2 PO 4 和 Li 2 CO 3 作为原料, 草酸作为还原剂, 酒精作为溶剂, 首先通过球磨的方式制备出无定形的 Li 3 V 2 (PO 4 ) 3 前驱体, 然后通过低温烧结的方式合成出了具有单斜结构的 Li 3 V 2 (PO 4 ) 3 材料. 该材料颗粒平均尺寸为 30 nm, 且具有多孔形貌. 材料在 0.1C 倍率下放电容量可以稳定在 130.1 mah/g, 电化学性能优越. 2.2 溶胶 凝胶法 溶胶 - 凝胶法是制备固体氧化物或其它化合物

564 无机材料学报第 27 卷 的一种方法, 属于湿化学方法中的一种. 该方法主要是用含有高化学活性组分的化合物为原料, 在液相中将这些原料均匀混合, 并进行水解 缩合反应, 在溶液中形成稳定的透明溶胶体系, 溶胶经陈化 胶粒间缓慢聚合, 形成具有三维空间网络结构的凝胶, 凝胶再经过干燥 烧结固化最终得到成分比较均匀的材料 [25]. 溶胶 - 凝胶法与其它传统方法相比具有明显的优越性, 如前驱体溶液化学均匀性好 ( 可达分子级水平 ) 合成温度较低 粒径较小且分布窄 比表面积大 反应过程易于控制 设备简单等, 近些年来被广泛应用于锂离子电池正 负极材料的制备上 [26-28]. 目前, 也已经有许多工作者通过溶胶 - 凝胶法制备了 Li 3 V 2 (PO 4 ) 3 正极材料 [29-33]. [34] Li 等将计量比的 Li 2 CO 3 V 2 O 5 和 NH 4 H 2 PO 4 溶于蒸馏水中, 然后加入饱和柠檬酸溶液, 混合溶液在恒温加热磁力搅拌器上于 80 左右形成凝胶, 完毕后将混合物放入通有氩气的管式炉中, 300 预处理 4 h, 随炉冷却后取出样品仔细研磨, 压片, 最后在同样的气氛下 750 烧结 4 h, 得到 Li 3 V 2 (PO 4 ) 3 /C 复合材料. 柠檬酸在此过程中不但起到了螯合剂的作用, 而且还充当还原剂, 将 V 5+ 还原成 V 3+. 此外, 柠檬酸高温分解时产生的碳抑制了晶粒的长大, 使得材料最终具有纳米尺寸. 该复合材料以 28 ma/g 的电流密度进行充放电测试时, 首次充 放电容量分别为 194 和 189 mah/g, 库伦效率为 97%. 当电流密度提高到 140 ma/g 时, 首次放电容量为 170 mah/g, 经过 50 次循环后容量仍能够 [35] 维持在 141 mah/g, 容量衰减仅为 5%. Chen 等首先把 V 2 O 5 溶于双氧水中制备出 V 2 O 5 凝胶, 然后再将此凝胶与适量的 LiOH NH 4 H 2 PO 4 和柠檬酸混合, 经过两步烧结得到了颗粒尺寸为 300 nm, 并且具有表面碳包覆的 Li 3 V 2 (PO 4 ) 3 正极材料. 电化学测试结果表明 : 在温度为 25 充放电倍率为 1C 时, 首次放电容量为 117 mah/g, 50 次循环后容量保持率为 98%, 当倍率增加到 2C 时, 首次放电容量为 110 mah/g, 50 次循环后容量保持率为 90%; 在温度为 55 充放电倍率为 1C 时, 首次放电容量为 123 mah/g, 50 次循环后容量保持率为 99%, 当倍率增加到 2C 时, 首次放电容量为 115 mah/g, 50 次循 [36] 环后容量几乎无衰减. Ren 等通过使用草酸作为凝胶剂合成出了具有核 - 壳结构, 且为纳米尺寸的 Li 3 V 2 (PO 4 ) 3 @C 复合正极材料, 该材料也展示出了非常出色的电化学性能. 2.3 微波合成法 微波法是采用 冷热源 进行加热的一种合成 方法, 主要通过电磁波的形式与反应物进行接触, 具有一系列传统方法不具备的独特优点. 该方法加热迅速, 有效地缩短了热传导时间, 而且在整个加热过程中反应物体内分子运动剧烈, 相互碰撞频率较高, 大大地提高了反应速率 [37]. 但该方法反应过程难于控制, 设备投入量较大, 不利于工业化生产. [38] 任等将 Li 2 CO 3 V 2 O 5 NH 4 H 2 PO 4 及过量的炭黑按化学计量比均匀混合, 然后在氩气的保护下 300 进行预处理, 再将所得粉末压制成圆片, 放入微波炉中在 800~900 下加热 10 min 左右, 最终得到 Li 3 V 2 (PO 4 ) 3 正极材料. 900 下保温 11 min 的产物电化学性能最为优良, 在 3.0~4.8 V 电压区间以 0.2C 倍率进行充放电测试, 材料存在四个明显的充电平台, 首次充电容量为 177 mah/g, 放电容量为 145 mah/g, 经过 50 次循环后放电容量为 98 mah/g. [39] Yang 等通过温控微波合成法, 在 750 下对前驱体加热 5 min, 合成出了纯相具有单斜结构的 Li 3 V 2 (PO 4 ) 3 材料. 该材料与在相同温度下通过传统固相法合成的 Li 3 V 2 (PO 4 ) 3 相比具有更小的结晶尺寸和更高的放电容量. 2.4 水热合成法 水热合成法属液相化学的范畴, 是指在特制的密闭反应器中, 采用水溶液作为反应体系, 通过对反应体系加热 加压, 创造一个相对高温 高压的反应环境, 使得通常难溶或不溶的物质溶解, 并且重结晶的一种方法. 用水热合成法制备出的纳米晶体, 不仅粒度分布均匀 晶粒发育完整, 而且原料较便宜, 能够得到理想的化学配比的晶体. [40] Liu 等采用 Li 2 CO 3 V 2 O 5 C 2 H 2 O 4 和 H 3 PO 4 作为初始原料, 利用水热法在 180 下制备得到了 Li 3 V 2 (PO 4 ) 3 正极材料. 该材料具有纳米棒形状, 尺寸为 φ60 nm 1 μm. 材料在 0.5C 1C 2C 5C 和 10C 倍率下放电容量分别是 141.6 136.1 134.6 124.8 和 101.1 mah/g, 具有非常好的电化学性能. [41] 马等通过水热法在温度高于 250 的情况下, 合成了聚苯胺掺杂的磷酸钒锂正极材料. 材料在 0.1C 倍率下, 初始放电容量达到 170 mah/g, 循环 50 周后容量保持率在 95% 以上, 5C 倍率下放电容量仍有 121 mah/g, 表现出了优异的高倍率性能. 3 Li 3 V 2 (PO 4 ) 3 存在的问题及解决方案 在聚阴离子型 Li 3 V 2 (PO 4 ) 3 材料中, 较大的磷酸根离子替代了传统金属氧化物材料中的氧离子, 一方面提高了材料的结构稳定性, 但另外一方面却增

第 6 期屈超群, 等 : 聚阴离子型锂离子电池正极材料 Li 3 V 2 (PO 4 ) 3 的研究进展 565 加了金属钒离子之间的距离, 降低了 Li 3 V 2 (PO 4 ) 3 的电子导电率 [42], 影响了材料的电化学性能. 目前, 针对 Li 3 V 2 (PO 4 ) 3 材料改性方面的研究主要包括表面碳包覆 金属离子掺杂和制备复合材料三种. 3.1 表面碳包覆 [43] Wang 等通过固相反应, 采用聚乙二醇作为碳源合成了具有表面碳包覆的 Li 3 V 2 (PO 4 ) 3 /C 正极材料. 通过拉曼和透射电子显微镜等方法确定了表面碳的存在, 这些碳一方面有效地提高了 Li 3 V 2 (PO 4 ) 3 的电导率, 另一方面抑制了 Li 3 V 2 (PO 4 ) 3 粒子的长大. 电化学测试结果表明 : 材料在 3.0~4.3 V 电压区间以 5C 倍率进行充放电时, 首次放电容量为 106 mah/g, 700 次循环后容量为 99 mah/g, 容量维持率为 93%, 展现了优良的倍率 [14] 性能. Rui 等采用柠檬酸 葡萄糖 聚偏氟乙烯和淀粉四种不同的有机物作为碳源合成的碳包覆 Li 3 V 2 (PO 4 ) 3 展示了不同的电化学性能, 其中以柠檬酸作为碳源合成的材料在低倍率 (0.1C 和 0.5C) 时具有更高的容量, 而以聚偏氟乙烯作为碳源合成的 Li 3 V 2 (PO 4 ) 3 在较高的倍率时 (2C 3C 和 5C) 展示了优越的电化学性能. 3.2 金属离子掺杂 上述表面碳包覆的方法主要是以降低颗粒表面的接触电阻为前提, 进而间接地提高材料电导率, 而对于材料本体的电导率基本没有影响, 但是提高材料本体的电导率也是非常关键的问题. 通过对材料进行少量的金属离子掺杂, 改变其电子结构则是提高本体电导率的最有效方法. 目前, 掺杂 Li 3 V 2 (PO 4 ) 3 的金属离子主要有 Al 3+[44] Fe 3+[45] Cr 3+[46] Y 3+[47] Ge 4+[48] Co 3+[49] Mn 3+[50] Mg 2+[51] 和 Ti 4+[52] 等等. [45] Ren 等采用传统固相法合成了具有不同浓度 Fe 3+ 离子掺杂的 Li 3 Fe x V 2-x (PO 4 ) 3 (x = 0.01 0.02 0.04 和 0.06) 材料, 其中 Li 3 Fe 0.02 V 1.98 (PO 4 ) 3 材料的电导率比未进行掺杂的 Li 3 V 2 (PO 4 ) 3 提高了 16 倍, 并且展示了非常优越的电化学性能. 在 3.0~4.8 V 区间, 0.2C 倍率下首次放电容量为 180 mah/g, 50 次循环后放电容量为 137 mah/g, 容量保持率为 76%, 这些数值都要高于未进行 Fe 3+ 掺杂的 Li 3 V 2 (PO 4 ) 3. [46] Chen 等对 Li 3 V 2 (PO 4 ) 3 进行了 Cr 3+ 离子掺杂, 通过对掺杂材料进行结构精修, 可以发现材料的单斜结构并未改变, 电导率却有了明显的提高, 其中 Li 3 V 1.9 Cr 0.1 (PO 4 ) 3 材料的电化学性能最为优良. 3.3 复合材料 复合材料是由两种或两种以上不同性质的材料, 通过物理或化学的方法, 在宏观上组成具有新性能的材料. 各种材料在性能上互相取长补短, 产生协同效应, 使复合材料的综合性能优于原组成材料, 进而满足各种不同的要求. [53] Zhang 等首先采用碳热还原法制备了 Li 3 V 2 (PO 4 ) 3 /C 复合材料, 然后再将该复合材料与 AgNO 3 和葡萄糖进行混合, 搅拌 2 h 后过滤, 对所得沉淀物进行过滤, 干燥, 即得到 Li 3 V 2 (PO 4 ) 3 / (Ag+C) 复合材料. 该材料相比于纯相 Li 3 V 2 (PO 4 ) 3 和 Li 3 V 2 (PO 4 ) 3 /C 复合材料具有更高的放电容量, 更好 [54] 的循环性能以及更优秀的倍率性能. Jiang 等在合成 Li 3 V 2 (PO 4 ) 3 的过程中添加了 1.8wt% 的金属铜粉制备出了 Li 3 V 2 (PO 4 ) 3 /Cu 复合材料, 并且 Cu 粒子均匀地分布在 Li 3 V 2 (PO 4 ) 3 粒子之间, 阻止了颗粒之间的团聚, 降低了 Li 3 V 2 (PO 4 ) 3 粒子之间的接触电阻, 有效地提高了其电导率. 无论是在 3.0~4.8 V 电压区间还是在 3.0~4.3 V 电压区间, Li 3 V 2 (PO 4 ) 3 /Cu 复合材料相对于纯相 Li 3 V 2 (PO 4 ) 3 都具有更高的充放电 [55] 容量和更好的循环性能. Zheng 等首先利用 Fe(NO 3 ) 3 和 NH 4 VO 3 制备出 FeVO4 xh 2 O 前驱体, 然后通过化学氧化还原法合成出了 LiFePO 4 - Li 3 V 2 (PO 4 ) 3 复合材料. 该材料展示了比纯相 Li 3 V 2 (PO 4 ) 3 更为优异的电化学性能, 在 0.1C 1C 和 3C 倍率下循环 30 次容量仍然能够维持在 139.1 135.5 和 116 mah/g. 4 结论 日臻成熟的新能源汽车技术必将带动一个更为庞大的锂离子电池市场, 这对于我国这个世界上重要的锂电池生产国来说是一个难得的发展机遇. 尽管 LiFePO 4 是目前性能最好的锂电池正极材料, 但是该材料在我国的生产和应用受到了由美国主导的知识产权壁垒的严重限制. Li 3 V 2 (PO 4 ) 3 和 LiFePO 4 一样, 同属聚阴离子型材料, 但是它相对于 LiFePO 4 具有更高的离子扩散系数 更大的能量密度以及更高的理论比容量, 有望替代 LiFePO 4 成为新一代锂离子电池正极材料. 从上述的总结中可以看出, 对于 Li 3 V 2 (PO 4 ) 3 的研究目前仍停留在实验室初期阶段, 距离实际投产应用仍需一段时间. 但是, 如果材料在高电压充放电范围内的循环性能 高低温性能以及倍率性能等几个关键问题能够得到解决, 材料的综合竞争性能势必会大大提升. 随着对 Li 3 V 2 (PO 4 ) 3 材料研究的不断深入, 材料在锂离子电池领域的应用将会具有更广阔的发展空间.

566 无机材料学报第 27 卷 参考文献 : [1] Burba C M, Frech R. Vibrational spectroscopic studies of monoclinic and rhombohedral Li 3 V 2 (PO 4 ) 3. Solid Stated Ionics, 2007, 177(15): 3445 3454. [2] Fu P, Zhao Y M, Dong Y Z, et al. Synthesis of Li 3 V 2 (PO 4 ) 3 with high performance by optimized solid-state synthesis routine. J. Power Sources, 2006, 162(1): 651 657. [3] Masquelier C, Wurm C, Rodriguez-Carvajal J, et al. A powder neutron diffraction investigation of the two rhombohedral NASICON analogues: γ-na 3 Fe 2 (PO 4 ) 3 and Li 3 Fe 2 (PO 4 ) 3. Chem. Mater., 2000, 12(2): 525 532. [4] Patoux S, Wurm C, Morcrette M, et al. A comparative structural and electrochemical study of monoclinic Li 3 Fe 2 (PO 4 ) 3 and Li 3 V 2 (PO 4 ) 3. J. Power Sources, 2003, 119-121(1): 278 284. [5] Saidi M Y, Barker J, Huang H, et al. Performance characteristics of lithium vanadium phosphate as a cathode materials for lithium-ion batteries. J. Power Sources, 2003, 119-121(1): 266 272. [6] Barker J, Saidi M Y, Swoyer J L. A carbothermal reduction method for preparation of electroactive materials for lithium ion applications. J. Electrochem. Soc., 2003, 150(6): A684 A688. [7] Rui X H, Ding N, Liu J, et al. Analysis of the chemical diffusion coefficient of lithium ions in Li 3 Fe 2 (PO 4 ) 3 cathode material. Electrochim. Acta, 2010, 55(7): 2384 2390. [8] 武俊萍. 锂离子电池正极材料 Li 3 V 2 (PO 4 ) 3 的合成及性能研究. 哈尔滨 : 哈尔滨工业大学硕士论文, 2007. [9] Fu P, Zhao Y M, Dong Y Z, et al. Low temperature solid-state synthesis routine and mechanism for Li 3 V 2 (PO 4 ) 3 using LiF as lithium precursor. Electrochim. Acta, 2006, 52(3): 1003 1008. [10] Barker J, Saidi M Y, Swoyer J L. Lithium iron (Ⅱ) phospho-olivines prepared by a novel carbothermal reduction method. Electrochem. Solid-State Lett., 2003, 6(3): A53 A55. [11] Li Y Z, Liu X, Yan J. Study on synthesis routes and their influences on chemical and electrochemical performances of Li 3 V 2 (PO 4 ) 3 / carbon. Electrochim. Acta, 2007, 53(2): 474 479. [12] Jiang T, Wang C Z, Chen G, et al. Effects of synthetic route on the structural, physical and electrochemical properties of Li 3 V 2 (PO 4 ) 3 cathode materials. Solid Stated Ionics, 2009, 180(9/10): 708 714. [13] Chen Z Y, Dai C S, Wu G, et al. High performance Li 3 V 2 (PO 4 ) 3 /C composite cathode material for lithium ion batteries studied in pilot scale test. Electrochim. Acta, 2010, 55(28): 8595 8599. [14] Rui X H, Li C, Chen C H. Synthesis and characterization of carbon-coated Li 3 V 2 (PO 4 ) 3 cathode materials with different carbon sources. Electrochim. Acta, 2009, 54(12): 3374 3380. [15] Qiao Y Q, Wang X L, Zhou Y, et al. Electrochemical performance of carbon-coated Li 3 V 2 (PO 4 ) 3 cathode materials derived from polystyrene-based carbon-thermal reduction synthesis. Electrochim. Acta, 2010, 56(1): 510 516. [16] Qiao Y Q, Wang X L, Xiang J Y, Z, et al. Electrochemical performance of Li 3 V 2 (PO 4 ) 3 /C cathode materials using stearic acid as a carbon source. Electrochim. Acta, 2011, 56(5): 2269 2275. [17] Rui X H, Yesibolati N, Chen C H. Li 3 V 2 (PO 4 ) 3 /C composite as an intercalation-type anode material for lithium-ion batteries. J. Power Sources, 2011, 196(4): 2279 2282. [18] Qiao Y Q, Tu J P, Xiang J Y, et al. Effects of synthetic route on structure and electrochemical performance of Li 3 V 2 (PO 4 ) 3 /C cathode materials. Electrochim. Acta, 2011, 56(11): 4139 4145. [19] Huang J S, Yang L, Liu K Y. One-pot syntheses of Li 3 V 2 (PO 4 ) 3 /C cathode material for lithium ion batteries via ascorbic acid reduction approach. Mater. Chem. Phys., 2011, 128(3): 470 474. [20] Zhong S K, Yin Z L, Wang Z X. Synthesis and characterization of novel cathode material Li 3 V 2 (PO 4 ) 3 by carbon thermal reduction method. Trans. Nonferrous Met. Soc. China, 2006, 16(2): s708 s710. [21] YING Jie-Rong, GAO Jian, JIANG Chang-Yin, et al. Preparation and characterization of Li 3 V 2 (PO 4 ) 3 cathod Material for Lithium ion Batteries. Journal of Inorganic Materials, 2006, 21(5): 1097 1102. [22] 刘素琴, 唐联兴, 黄可龙, 等. 新型锂离子电池正极材料 Li 3 V 2 (PO 4 ) 3 的合成及其性能. 中国有色金属学报, 2005, 15(8): 1294 1299. [23] 刘素琴, 唐联兴, 黄可龙. 碳热还原法合成正极材料 Li 3 V 2 (PO 4 ) 3 及其性能. 电源技术, 2006, 30(6): 473 476. [24] Zheng J C, Li X H, Wang Z X, et al. Li 3 V 2 (PO 4 ) 3 cathode material synthesized by chemical reduction and lithiation method. J. Power Sources, 2009, 189(1): 476 479. [25] 肖政伟. 以不同原材料制备锂离子电池复合正极材料 LiFePO 4 /C 的研究. 长沙 : 中南大学博士论文, 2008. [26] Fu L J, Liu H, Li C, et al. Electrode materials for lithium secondary batteries prepared by Sol-Gel methods. Prog. Mater. Sci., 2005, 50(7): 881 928. [27] Hsu K F, Tsay S Y, Hwang B J. Synthesis and characterization of nano-sized LiFePO 4 cathode materials prepared by a citric acid-based Sol-Gel route. J. Mater. Chem., 2004, 14(17): 2690 2695. [28] Yang J, Xu J J. Nonaqueous Sol-Gel synthesis of high-performance LiFePO 4. Electrochem. Solid-State Lett., 2004, 7(12): A515 A518. [29] Tang A P, Wang X Y, Liu Z M. Electrochemical behavior of Li 3 V 2 (PO 4 ) 3 /C composite cathode material for lithium-ion batteries.

第 6 期屈超群, 等 : 聚阴离子型锂离子电池正极材料 Li 3 V 2 (PO 4 ) 3 的研究进展 567 Mater. Lett., 2008, 62(10/11): 1646 1648. [30] Fu P, Zhao Y M, An X N, et al. Structure and electrochemical properties of nanocarbon-coated Li 3 V 2 (PO 4 ) 3 prepared by Sol-Gel method. Electrochim. Acta, 2007, 52(16): 5281 5285. [31] Zhao Q, Li Y H, Zhong S K, et al. Syntheis and electrochemical performance of Li 3 V 2 (PO 4 ) 3 by optimized Sol-Gel synthesis routine. Trans. Nonferrous Met. Soc. China, 2010, 20(8): 1545 1549. [32] Rui X H, Li C, Liu J, et al. The Li 3 V 2 (PO 4 ) 3 /C composites with high-rate capability prepared by a maltose-based Sol-Gel route. Electrochim. Acta, 2010, 55(22): 6761 6767. [33] Jiang T, Pan W C, Wang J, et al. Carbon coated Li 3 V 2 (PO 4 ) 3 cathode material prepared by PVA assisted Sol-Gel method. Electrochim. Acta, 2010, 55(12): 3864 3869. [34] Li Y Z, Zhou Z, Gao X P, et al. A promising Sol-Gel route based on citric acid to synthesize Li 3 V 2 (PO 4 ) 3 /carbon composite material for lithium ion batteries. Electrochim. Acta, 2007, 52(15): 4922 4926. [35] Chen Q Q, Wang J M, Tang Z, et al. Electrochemical performance of the carbon coated Li 3 V 2 (PO 4 ) 3 cathode material synthesized by Sol-Gel method. Electrochim. Acta, 2007, 52(16): 5251 5257. [36] Ren M M, Zhou Z, Gao X P, et al. Core-shell Li 3 V 2 (PO 4 ) 3 @C composites as cathode materials for lithium-ion batteries. J. Phys. Chem. C, 2008, 112(14): 5689 5693. [37] 牟群英, 李贤军. 微波加热技术的应用与研究进展. 物理, 2004, 33(6): 438 442. [38] 任慢慢, 李宇展, 周震, 等. 微波法合成正极材料 Li 3 V 2 (PO 4 ) 3. 电池, 2006, 36(1): 13 14. [39] Yang G, Liu H D, Ji H M, et al. Temperature-controlled microwave solid-state synthesis of Li 3 V 2 (PO 4 ) 3 as cathode materials for lithium battery. J. Power Sources, 2010, 195(16): 5374 5378. [40] Liu H W, Cheng C X, Huang X T, et al. Hydrothermal synthesis and rate capacity studies of Li 3 V 2 (PO 4 ) 3 nanorods as cathode material for lithium ion batteries. Electrochim. Acta, 2010, 55(28): 8461 8465. [41] 马铖杰, 梁怡婧, 刘松博. 水热法合成聚苯胺掺杂的锂离子电池正极材料磷酸钒锂. 河南化工, 2011, 28(6): 3 5. [42] Padhi A K, Nanjiundaswamy K S, Masquelier C. Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation. J. Electrochem. Soc., 1997, 144(8): 2581 2586. [43] Wang J W, Liu J, Yang G L, et al. Electrochemical performance of Li 3 V 2 (PO 4 ) 3 /C cathode material using a novel carbon source. Electrochim. Acta, 2009, 54(28): 6451 6454. [44] Barker J, Gover R K B, Burns P, et al. The effect of Al substitution on the electrochemical insertion properties of the lithium vanadium phosphate, Li 3 V 2 (PO 4 ) 3. J. Electrochem. Soc., 2007, 154(4): A307 A313. [45] Ren M M, Zhou Z Li Y Z, et al. Preparation and electrochemical studies of Fe-doped Li 3 V 2 (PO 4 ) 3 cathode materials for lithium-ion batteries. J. Power Sources, 2006, 162(22): 1357 1362. [46] Chen Y H, Zhao Y M, An X N, et al. Preparation and electrochemical performance studies on Cr-doped Li 3 V 2 (PO 4 ) 3 as cathode materials for lithium-ion batteries. Electrochim. Acta, 2009, 54(24): 5844 5850. [47] Zhou S K, Liu L T, Jiang J Q, et al. Preparation and electrochemical properties of Y-doped Li 3 V 2 (PO 4 ) 3 cathode materials for lithium batteries. J. Rare Earth, 2009, 27(1): 134 137. [48] Liu S Q, Li S C, Huang K L, et al. Kinetic study on Li 2.8 (V 0.9 Ge 0.1 )(PO 4 ) 3 by EIS measurement. J. Alloys Compd., 2006, 450(1/2): 499 504. [49] Kuang Q, Zhao Y M, An X N, et al. Synthesis and electrochemical properties of Co-doped Li 3 V 2 (PO 4 ) 3 cathode materials for lithium-ion batteries. Electrochim. Acta, 2010, 55(5): 1575 1581. [50] Bini M, Ferrari S, Capsoni D, et al. Mn influence on the electrochemical behaviour of Li 3 V 2 (PO 4 ) 3 cathode material. Electrochim. Acta, 2010, 56(6): 2648 2655. [51] Dong Y Z, Zhao Y M, Duan H. The effect of doping Mg 2+ on the structure and electrochemical properties of Li 3 V 2 (PO 4 ) 3 cathode materials for lithium-ion batteries. J. Power Sources, 2011, 660(1): 14 21. [52] 刘素琴, 李世彩, 黄可龙, 等 (LIU Su-Qin, et al.). Ti 4+ 离子掺杂对晶体结构与性能的影响. 物理化学学报 (Acta Phys. Chim. Sin.), 2007, 23(4): 537 542. [53] Zhang L, Wang X L, Xiang J Y, et al. Synthesis and electrochemical performances of Li 3 V 2 (PO 4 ) 3 /(Ag+C) composite cathode. J. Power Sources, 2010, 195(15): 5057 5061. [54] Jiang T, Wei Y J, Pan W C, et al. Preparation and electrochemical studies of Li 3 V 2 (PO 4 ) 3 /Cu composite cathode material for lithium ion batteries. J. Alloys Compd., 2009, 488(1): L26 L29. [55] Zheng J C, Li X H, Wang Z X, et al. Novel synthesis of LiFePO 4 -Li 3 V 2 (PO 4 ) 3 composite cathode material by aqueous precipitation and lithiation. J. Power Sources, 2010, 195(1): 2935 2938.