电动力学 第五章:辐射电磁场

Size: px
Start display at page:

Download "电动力学 第五章:辐射电磁场"

Transcription

1 1 / 1 电动力学 第五章 : 辐射电磁场 杨焕雄 中国科学技术大学物理学院近代物理系 hyang@ustc.edu.cn May 25, 2018

2 电磁波的产生机制 : 2 / 1 电磁波是电磁场存在的基本形式. Maxwell 方程组告诉我们 : 时变的电场 磁场相互激发, 在空间中就形成了电磁波. 于是, 产生电磁波的关键是产生随时间变化的电场和磁场. 1 从微观角度讲, 产生电磁波的前提条件是荷电粒子做加速运动. 做加速运动的荷电粒子所产生的电场与磁场均是随时间变化的. 2 从宏观角度讲, 产生电磁波的前提条件是存在随时间变化的电流分布, 例如频率为 ω 的交变电流密度矢量 : J( x, t) = J( x)e iωt 电磁波由载有交变电流的天线辐射出来. 本章任务 : 讨论宏观电荷体系在其线度远小于电磁波波长情形下的辐射问题.

3 计算辐射场的一般公式 : 当交变电流分布给定时, 计算辐射电磁场的基础是 Lorenz 规范中的推迟势公式 : A(t, x) = µ 0 d 3 x J( x, t r/c) 4π r 此处 r = x x. 设交变电流分布随时间的周期性变化具有确定的频率 ω, J(t, x) = J( x) e iωt 则 : A(t, x) = µ 0 d 3 x J( x ) exp [ iω(t r/c) ] 4π r [ µ 0 = d 3 x ] J( x ) e iωr/c e iωt = A( x)e iωt 4π r 即电磁波的频率也将是 ω, 这里, A( x) = µ 0 d 3 x J( x ) e ikr 4π r 3 / 1

4 计算辐射场的一般公式 ( 二 ): 式中, k = ω/c e ikr 是 推迟作用因子, 表示电磁波从交变电流所在地点传播至场点的过程中有位相滞后 kr. 对于频率确定的交变电流而言, 由矢势 A 的上述表达式出发可以完全确定电磁场 : 1 电磁场的磁感应强度 B 可通过直接计算矢势的旋度求得 : B = A 2 求出 B 后, 电场强度 E 可由 Maxwell 方程求得. 在电流分布区域之外, J = 0,Maxwell 方程写为 : 所以, B = µ 0 ϵ 0 t E = iω c 2 E = ik c E E = ic k B 4 / 1

5 矢势的展开式 : Lorenz 规范中, 具有确定频率 ω 的交变电流所激发的电磁场由推迟矢势 A( x) = µ 0 d 3 x J( x ) e ikr 4π r 描写. 这里有三个 线度 值得注意 : 1 电流分布区域 的线度 :l 3. 2 电磁波的波长 : λ = 2π k = 2πc ω 3 场点到电流分布区域的距离 :r = x x. 为简单起见, 我们仅研究分布于一个 小区域 内的交变电流所产生的辐射电磁场. 所谓 小区域, 指的就是其线度远小于电磁波的波长以及观测距离 r : l λ, l r. 5 / 1

6 矢势的展开式 ( 二 ): 6 / 1 至于 r 与 λ 的关系, 又可以区别三种情况 : 1 近场区 :r λ 2 感应区 :r λ 3 辐射区 :r λ 三个区域中电磁场的特点是不同的 : 在近场区,r λ kr 1, 从而推迟因子 e ikr 1, A( x) µ 0 d 3 x J( x ) 4π r 这是静磁场的矢势. 即电磁场近似表现为静磁场. 在远场区,r λ kr 1, 从而推迟因子 e ikr 的贡献不可忽略. 通常是在远场区接收电磁波, 需要计算远场才能确定辐射功率和角分布. 这是我们的主要研究对象. 感应区是一个过渡区.

7 矢势的展开式 ( 三 ): 建立坐标系, 把坐标原点选择在电流的分布区域 内. 如此, x 的数量级为 l 3. 设远处场点 P 相对于原点的位置矢量为 : P x = R e R, R l, 则 P 点与电流元 J( x )d 3 x 之间的距离可表为 : 即 : 从而, r = x x = R e R x = R 2 2R e R x + x x R [1 1R ] e R x r R e R x x O x r J ( x )d 3 x A( x) µ 0 4π d 3 x J( x ) exp[ik(r e R x )] R e R x 7 / 1

8 矢势的展开式 ( 四 ): 或者, A( x) µ 0e ikr 4π R d 3 x J( x ) exp [ i 2π e R x /λ ] 1 e R x /R 式中出现了两个小参数, 即 x /λ 和 x /R. 可以把推迟势对于这两个小参数做 Taylor 展开. 在计算远场区的矢势时, 只需保留 1/R 的最低次项, 但需保留对位相因子中小参数 x /λ 展开的各级项. 所以, A( x) µ 0e ikr d 3 x J( x ) exp ( i 2π e R x /λ ) 4π R µ 0e ikr + ( i 2π/λ) n d 3 x J( x ) ( e R x ) n 4π R n! n=0 µ 0e ikr ( d 3 x J( x ) 1 i 2π ) 4π R λ e R x + 最后一式中的各项对应于各级电磁多极辐射. 8 / 1

9 数学恒等式 : 为了看清推迟矢势多极展开各项的物理意义, 类似于静磁情形, 现在构造一个数学恒等式. 我们已经约定电流分布于小区域 中, 没有电流溢出 的边界面 S. 所以, 若以 f, g 表示源点坐标的两个任意的标量函数, 则有 : [ ] f( x ) g( x ) J( x ) d s = 0 S 可以利用奥高定理将此式左端改写为区域 上的体积分 : [ ] d 3 x f( x ) g( x ) J( x ) 注意到, (fg J) = (f g + g f) J + fg J 以及交变电流情形下的电荷守恒定律 : J( x ) = iωρ( x ), 我们有 : ] d 3 x [f J( x ) g + g J( x ) f = iω d 3 x fg ρ( x ) 9 / 1

10 数学恒等式 ( 二 ): 10 / 1 取 f = 1, g = x i. 在直角坐标系中, f = 0, g = e j jx i = e j δ ij = e i 上述数学恒等式退化为 : iω d 3 x x iρ( x ) = d 3 x J( x ) e i = d 3 x J i ( x ) 鉴于直角坐标系基矢是常矢量, 上式的成立意味着 : d 3 x J( x ) = iω p = p 式中的 p 代表电流分布的电偶极矩 : p = d3 x ρ( x ) x. 所以, 推迟矢势多极展开的首项描写电偶极辐射 : A (0) ( x) = µ 0 d 3 x J( x ) = µ 0e ikr p 4πR 4πR

11 数学恒等式 ( 三 ): 11 / 1 取 f = x i, g = x k. 在直角坐标系中, f = e j jx i = e j δ ij = e i, g = e k 上述数学恒等式退化为 : iω d 3 x x ix k ρ( x ) = 回忆电荷体系的电四极矩定义, D ij = 3 d 3 x x ix jρ( x ) [ ] d 3 x x i J k ( x ) + x k J i( x ) 这个恒等式又可以写为 : [ ] d 3 x x i J k ( x ) + x k J i( x ) = iω 3 D ik = 1 D ik 3

12 数学恒等式 ( 四 ): 采用直角坐标系, 可以把推迟矢势展开式的第二项表为 : A (1) ( x) = i µ 0 e ikr ( ) 2π/λ d 3 x J( x ) ( e R x ) 4πR = i µ 0k e ikr 4πR 2 d 3 x J( x ) ( x x ) = i µ 0k e ikr 4πR 2 x i e k d 3 x x i J k ( x ) 上式中的积分还可进一步简化. 由上页求得的数学恒等式知 : x i e k d 3 x x i J k ( x ) = 1 ] 2 x i e k d 3 x [x i J k ( x ) x k J i( x ) x i e k D ik = 1 ] 2 x i e k d 3 x ϵ ikl [ x J( x ) + 1 l 6 x i e k D ik [ ] 1 = x d 3 x x J( x ) x i e k D ik = x m x i e k D ik 12 / 1

13 数学恒等式 ( 五 ): 式中的 m 由下式定义, m = 1 2 d 3 x x J( x ) 它正是电流分布的磁偶极矩矢量. 所以, 推迟矢势展开式的第二项描写 磁偶极矩 与 电四极矩 所产生的辐射 : A (1) ( x) = i µ 0k e ikr ( m 4πR 2 x + 16 ) x i e k D ik 它们各自对应的推迟矢势如下 : A (1) m ( x) = i µ 0k e ikr 4πR 2 m x A (1) D ( x) = iµ 0k e ikr 24πR 2 x i e k D ik 请注意这些矢势对于场点与源点之间的距离的依赖均是 1/R. 13 / 1

14 电偶极辐射 : 如前所述, 频率为 ω 的振荡电偶极矩产生的辐射电磁场具有如下推迟矢势 : A( x) = µ 0e ikr p 4πR 在计算电磁场强时, 需要对 A 作用梯度算符. 我们只需将计算精度保持在 1/R 即可, 所以 仅需作用到推迟因子 e ikr 上, 而无需作用到矢势的分母上. 注意到 : e ikr = e R R e ikr = ik e R e ikr z p R θ e R P 以及, t e iωt = iω e iωt 对 辐射场 的矢势求时间导数或旋度 散度相当于作代换 : ik e R, t iω. 14 / 1

15 电偶极辐射 ( 二 ): 所以, 电偶极辐射场的磁感应强度可按如下方式计算 : [ µ0 e B = A ikr ] = ik e R p 4πR = iω µ 0e ikr 4πc R e R p = eikr 4πϵ 0 c 3 R e R p = eikr p 4πϵ 0 c 3 e R R 同理, E = i ω B = ic k ik e R B = c B e R = eikr 4πϵ 0 c 2 R ( p er ) er 15 / 1

16 电偶极辐射 ( 三 ): 16 / 1 选择振荡电偶极矩的方向沿极轴, 则 : p = p e z 于是, p e R = p e z ( e z cos θ + e x sin θ cos ϕ + e y sin θ sin ϕ ) = p sin θ ( e y cos ϕ e x sin ϕ ) ( ) 1 = p sin θ sin θ ϕ e R = p sin θ e ϕ 进而, ( p er ) er = p sin θ e ϕ e R R = p sin θ e θ p z θ e R B E

17 电偶极辐射 ( 四 ): 于是, 电偶极辐射场的场强矢量具有如下分布形式 : B = E = p e ikr 4πϵ 0 c 3 R sin θ e ϕ p e ikr 4πϵ 0 c 2 R sin θ e θ z p R θ e R B E 显见 : 1 电偶极辐射场的 E 和 B 均是横场 (TEM 波 ). 2 磁力线是围绕极轴的闭合圆周, 电力线是经面上的闭合曲线, B = ik e R B = 0, E = ik e R E = / 1

18 思考 : 回忆第一章的一道习题 : 1 电荷体系的偶极矩定义为, p(t) = d 3 xρ( x, t) x 请使用电荷守恒定律证明 p 的时间变化率为 : d p dt = d 3 x J( x, t) 结合此题的结论 1, 试问前面的有关电偶极辐射的讨论意味着什么? 1 事实上, 这个结论在前面正文中也推导出来过. 18 / 1

19 电偶极辐射 ( 五 ): 辐射场的实际应用涉及计算其 辐射功率 和 角分布. 这两个量均可通过计算辐射场的平均能流密度矢量求得. 电偶极辐射场的平均能流密度计算如下 : S = 1 [ ] R E B 2µ 0 = p 2 sin 2 θ 32π 2 ϵ 0 c 3 R 2 e R 正如所料, e R 是能流密度矢量的方向, 亦即电偶极辐射场的波矢 k 的方向. S 的表式中, 因子 sin 2 θ 描写电偶极辐射场能流分布的方向性, 称为电偶极辐射的角分布. 显然, 在 θ = π/2 的赤道面上辐射最强, 但沿电偶极轴线方向 (θ = 0, π) 没有辐射. z p R θ e R B E 19 / 1

20 电偶极辐射 ( 六 ): 20 / 1 Angular Distribution 1.0 电偶极辐射场的角分布的全貌如右图示 : Θ 求 S 在半径为 R 的球面上的面积分, 就得到了电偶极辐射场的总辐射功率 : P = S e R R 2 dω = p 2 32π 2 ϵ 0 c 3 2π 0 π dϕ dθ sin θ sin 2 θ = 1 p 2 0 4πϵ 0 3c 3

21 电偶极辐射 ( 七 ): 21 / 1 电偶极辐射场的总辐射功率 : P = 1 p 2 4πϵ 0 3c 3 1 注意到对于频率为 ω 的交变电流分布, t iω. 所以, 若振荡电偶极矩随时间的演化由下式描写 : p = p 0 e iωt, 且电偶极矩振幅 p 0 不随时间变化, 则电偶极辐射总功率正比于偶极子振荡频率的四次幂 :P ω 4. 2 实际应用中, 振荡电偶极子总是通过交变的电流分布实现的, p = d 3 x J( x) e iωt I 0 e iωt, p iωi 0 e iωt 技术上只能保证交变电流的振幅 I 0 不随时间变化. 电偶极辐射场的总发射功率实际上正比于偶极子振荡频率的二次幂 : P ω 2

22 短天线的辐射场 : 作为振荡电偶极子的一个具体实例, 现在考虑一个长度为 l 的直线型天线, 如右图. 此天线为中心馈电型. 天线上下两半段上电流方向相同, 均沿 e z 方向. 馈电点处电流强度有最大值 I 0, 但在天线两端电流强度为零. os ci l l at o r z z = l /2 z = l /2 I (z) 若为短天线,l λ = 2πc/ω, 则天线上的电流分布近似为线性形式 : [ I(z) = I z ], z l/2 l 当然, I(t, z) = I(z)e iωt 22 / 1

23 短天线的辐射场 ( 二 ): 短天线的电偶极矩时间变换率计算如下 : p = +l/2 d 3 x J(t, x ) = e z dz I(t, z) = 1 2 e z I 0 l e iωt l/2 从而, p = iω p = i 2 e z I 0 l ω e iωt [ ] = iπci 0 l/λ ez e iωt 短天线的电偶极辐射总功率为 : P = 1 p 2 4πϵ 0 3c 3 = π [ ] 2 π µ0 12ϵ 0 c I2 0 l/λ = I 2 [ ] 2 0 l/λ 12 ϵ 0 若保持天线上电流的峰值 I 0 不随时间变化, 则短天线的电偶极 [ ] 2. 辐射功率正比于 l/λ 23 / 1

24 短天线的辐射电阻 : 24 / 1 短天线的电偶极辐射功率正比于 I 2 0, P = π µ0 I 2 ( ) 2 0 l/λ I 2 12 ϵ 0 0 因此, 短天线在向外发射电磁波的过程中相当于一个电阻器, 其电偶极辐射功率相当于一个等效电阻上的损耗功率. 这个等效电阻称为短天线的 辐射电阻, 记为 R r, 显然 : R r = π 6 P = 1 2 R r I 2 0 µ0 ϵ 0 ( l/λ ) 2 查表知 :µ 0 = 4π 10 7 H m 1, ϵ 0 = F m 1. 由此算得 : µ0 4π ϵ Ω

25 短天线的辐射电阻 ( 二 ): 所以, R r 197 ( l/λ ) 2 Ω 辐射电阻是表征天线辐射电磁波能力的一个参数. 天线的辐射电阻愈大, 表示在输入电流强度给定的前提下, 辐射功率愈大. 短天线的辐射电阻正比于 (l/λ) 2. 对于短天线而言,l λ, 因此, 短天线的辐射能力是弱的. 要提高天线的辐射能力, 需要增大天线的长度以致 l λ, 此时天线的辐射已不能用电偶极辐射来近似描写. 第十九次作业 : 郭硕鸿著 电动力学 ( 第三版 ), 第 页, 第 7,12,13 题. 25 / 1

26 磁偶极辐射 : 磁偶极辐射场的推迟矢势为 : 相应的电磁场强度计算如下 2 : B A( x) = i µ 0k e ikr 4πR m e R = A = ik e R A = µ 0k 2 e ikr 4πR e R ( m e R ) = µ 0 e ikr 4πc 2 R e R ( m e R ) = µ 0 e ikr 4πc 2 R ( m e R ) e R E = i c2 ω B = i c2 ω ik e R B = c e R B = µ 0 e ikr 4πcR e R [ ( m e R ) e R ] = µ 0 e ikr 2 注意 :k = ω/c. 4πcR ( m e R ) 26 / 1

27 磁偶极辐射 ( 二 ): 磁偶极辐射场的平均能流密度矢量计算如下. 注意到 e R B = 0, 我们有 3 : S = 1 2µ 0 R ( E B ) = 1 R [ (c B e R ) B ] = c B 2 e R 2µ 0 2µ 0 µ 0 = 32π 2 c 3 R 2 ( m e R ) e R 2 µ 0 = [ m m 32π 2 c 3 R 2 ( e R m) ( e R m ) ] e R 建立球坐标系, 把磁偶极子置于坐标原点且以 m 的方向为极轴. 如此, e R m = m cos θ,θ 为场点对应的极角. 可以把磁偶极辐射场的平均能流密度矢量改写为 : S = µ 0ω 4 m 2 32π 2 c 3 R 2 sin2 θ e R 3 事实上, 磁偶极辐射场是 TEM 波 : e R E = e R B = / 1

28 磁偶极辐射 ( 三 ): 磁偶极辐射场的总辐射功率计算如下 : sin 2 θdω = 8π 3, P = µ 0ω 4 m 2 12πc 3 例 : 一载流线圈半径为 a, 激发的交变电流的振幅为 I 0, 角频率为 ω. 求辐射功率. 解 : 载流线圈的磁偶极矩的大小为, 其峰值是 : 所以, 载流线圈的辐射功率为 : m = πa 2 I = πa 2 I 0 e iωt P = µ 0ω 4 I 2 0 (πa2 ) 2 12πc 3 m = πa 2 I 0 = 4π5 3 µ0 ( a ) 4 I 2 ϵ 0 λ 0 当电流峰值 I 0 不随时间变化时, 磁偶极辐射的功率 (a/λ) 4, 因此磁偶极辐射比电偶极辐射小 (a/λ) 2 数量级. 小线圈的辐射能 28 / 1

29 电四极辐射 : 电四极辐射场的推迟矢势是 : A( x) = i µ 0k e ikr 24πR 2 x i e k D ik = eikr x i D ik 24πϵ 0 c 3 R 2 e k 式中, D ij = 3 d 3 x x ix jρ( x ) 由于 A 表达式中存在因子 x i, 这是场点直角坐标的 i- 分量, 电四极辐射场的推迟矢势对场点的依赖仍是 1/R. 下面求电四极辐射场的场强. 磁感应强度计算如下 : B 注意到数学恒等式, = A... = ik e R A = eikr x i D ik ( ) ek 24πϵ 0 c 4 R 2 e R x i δ ik ( ek e R ) = xi e i e R = x e R = R ( e R e R ) = 0 29 / 1

30 电四极辐射 ( 二 ): 我们可以在 B 的表达式中把有迹的电四极矩 Dik 更换为无迹的电四极矩 D ik : D ij = d 3 x ( 3x ix j δ ij r 2) ρ( x ) 显然, D ij = D ij + δ ij [ ] d 3 x r 2 ρ( x ) 所以, 电四极辐射场的磁感应强度分布为 :... B = eikr x i D ik 24πϵ 0 c 4 R 2 ( e k e R ) 其电场强度分布为 : E = c B e R = eikr x i... D ik 24πϵ 0 c 3 R 2 [ ( ek e R ) e R ] 不难看出, 电四极辐射场仍是 TEM 波 : e R B = e R E = / 1

31 电四极辐射 ( 三 ): 电四极辐射场的平均能流密度矢量计算如下 : S = 1 ( R E B) 2µ 0 = ϵ 0c 2 [ ] 2 R (c B e R ) B = ϵ 0c 2 2 B 2 e R = 1... x i x j D... ik D jl [ δkl 4πϵ 0 288πc 5 R 4 ( e k e R ) ( e l e R ) ] e R 1 电四极辐射场的平均能流密度分布对于场点距离的依赖仍是所期望的 1/R 2 衰减律. [ 2 电四极辐射场的角分布由因子 δkl ( e k e R ) ( e l e R ) ] 确定. 3 设电荷分布区域线度为 l, 则 D ij O(l 2 ), 于是电四极辐射场的辐射功率正比于 (l/λ) 4, 它与磁偶极辐射同数量级, 但比电偶极辐射小 (l/λ) 2 数量级. 31 / 1

32 例题 : 例 : 求右图所示的电四极子以频率 ω 振荡时的辐射功率和角分布. z Q 2Q θ l l Q 解 : 此电四极子的电荷体密度为 : ρ( x ) = Q δ(x ) δ(y ) [ δ(z l) 2δ(z ) + δ(z + l) ] e R 所以, 电四极矩张量 Dij 只有 zz 分量非零 :... D zz = 3 d 3 x z 2 ρ( x ) = 6Q l 2 D zz = 6Q l 2 ( iω) 3 = i 6Q l 2 ω 3 R 32 / 1

33 例 ( 二 ): 振荡电四极子也是通过交变电流实现的, 相应的电流强度为 : I = d Q dt = iω Q e iωt 技术上所能控制的是保证电流强度的峰值 I 0 = ω Q 不随时间变化. 利用 I 0, 我们有 :... D zz = i 6I 0 (ω l) 2 = i 24π 2 c 2 I 0 ( l/λ ) 2 所以, x i x j D ik D jl [ δkl ( e k e R ) ( e l e R ) ]... = z 2 D zz 2 [ 1 ( e z e R ) 2] = (R cos θ) 2 576π 4 c 4 I 2 ( ) 4 [ 0 l/λ 1 cos 2 θ ] = 576π 4 c 4 I 2 0 R 2 sin 2 θ cos 2 θ ( l/λ ) 4 此电四极辐射场的平均能流密度因此写为 : 33 / 1

34 例 ( 三 ): S = π2 I 2 0 2ϵ 0 c R 2 sin2 θ cos 2 θ ( l/λ ) 4 er Angular Distribution 电四极辐射的角分布由因子 sin 2 θ cos 2 θ 确定, 全貌如右图所示 Θ 电四极辐射总功率为 : P = S e R R 2 dω = π2 I 2 ( ) 2π π 0 4 l/λ dϕ dθ sin 3 θ cos 2 θ = 4π3 2ϵ 0 c 即电四极辐射场的辐射功率与磁偶极辐射具有相同的数量级. µ0 ( l ) 4 I 2 ϵ 0 λ 0 34 / 1

35 作业 : 第二十次作业 : 郭硕鸿著 电动力学 ( 第三版 ), 第 页, 第 8,10,11 题. 35 / 1

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ .................................2.......................... 2.3.......................... 2.4 d' Alembet...................... 3.5......................... 4.6................................... 5 2 5

More information

电动力学习题课 - 第一章

电动力学习题课 - 第一章 电动力学习题课 第一章 Cheng-Zong Ruan Department of Astronomy, BNU September 26, 2018 ElectroDynamics, exercise class chzruan 1/25 第一章作业 从静电场麦克斯韦方程的积分形式 E = 0( 静电场无旋 ). L E dl = 0 推导微分形式 从毕奥 - 萨法尔定律 (2.8) 式推导磁场旋度和散度公式

More information

5 (Green) δ

5 (Green) δ 2.............................. 2.2............................. 3.3............................. 3.4........................... 3.5...................... 4.6............................. 4.7..............................

More information

S = 1 2 ( a + b) h a b = a 1 a b = a 1 b b 2 2 πr 2r π π 2 = ( - 2)r 2 2 = - 2 = 57 2r 2r 2 6 5 7 4 3 6 5 4 3 3 4 5 6 7 7 5 7 6 1 1 1 1 1 2 3 5 7 7. 2 3 4 6 12 3 4 12 12 1

More information

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

器之 间 向一致时为正 相反时则为负 ③大量电荷的定向移动形成电 流 单个电荷的定向移动同样形成电流 3 电势与电势差 1 陈述概念 电场中某点处 电荷的电势能 E p 与电荷量 q Ep 的比值叫做该点处的电势 表达式为 V 电场中两点之间的 q 电势之差叫做电势差 表达式为 UAB V A VB 2 理解概念 电势差是电场中任意两点之间的电势之差 与参考点的选择无关 电势是反映电场能的性质的物理量

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

( )... ds.....

( )... ds..... ...... 3.1.. 3.1.. 3.1: 1775. g a m I a = m G g, (3.1) m I m G. m G /m I. m I = m G (3.2)............. 1 2............ 4.................. 4 ( )... ds..... 3.2 3 3.2 A B. t x. A B. O. t = t 0 A B t......

More information

高等数学A

高等数学A 高等数学 A March 3, 2019 () 高等数学 A March 3, 2019 1 / 55 目录 1 函数 三要素 图像 2 导数 导数的定义 基本导数表 求导公式 Taylor 展开 3 积分 Newton-Leibniz 公式 () 高等数学 A March 3, 2019 2 / 55 函数 y = f(x) 函数三要素 1 定义域 2 值域 3 对应关系 () 高等数学 A March

More information

08-01.indd

08-01.indd 1 02 04 08 14 20 27 31 35 40 43 51 57 60 07 26 30 39 50 56 65 65 67 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ω ρ ε 23 λ ω < 1 ω < 1 ω > 0 24 25 26 27 28 29 30 31 ρ 1 ρ σ b a x x i +3 x i

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5, # # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( 0 2 3 ( & +. 4 / &1 5, !! & 6 7! 6! &1 + 51, (,1 ( 5& (5( (5 & &1 8. +5 &1 +,,( ! (! 6 9/: ;/:! % 7 3 &1 + ( & &, ( && ( )

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

More information

Microsoft PowerPoint - ch2-d 静电场 [兼容模式]

Microsoft PowerPoint - ch2-d 静电场 [兼容模式] .5 格林函数法 Metho of een Function 一 分离变量法和镜像法能解的情况 分离变量法能解的情况: 自由电荷全聚集在边界上, 也就是说 : 在要求解电场区域没有自由电荷 泊松方程转变为拉普拉斯方程 边界条件 ρ 镜像法能解的情况: 在求解区域内没有自由电荷, 或者只有有限几个点电荷, 并且区域边界或介质界面规则 电场能用等效电荷代替 边界条件 二 een 函数法能解的情况 能用

More information

WL100014ZW.PDF

WL100014ZW.PDF A Z 1 238 H U 1 92 1 2 3 1 1 1 H H H 235 238 92 U 92 U 1.1 2 1 H 3 1 H 3 2 He 4 2 He 6 3 Hi 7 3 Hi 9 4 Be 10 5 B 2 1.113MeV H 1 4 2 He B/ A =7.075MeV 4 He 238 94 Pu U + +5.6MeV 234 92 2 235 U + 200MeV

More information

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

More information

07-3.indd

07-3.indd 1 2 3 4 5 6 7 08 11 19 26 31 35 38 47 52 59 64 67 73 10 18 29 76 77 78 79 81 84 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

More information

ϕ ϕ R V = 2 2 314 6378 1668 0 T =. 24 = 2 R cos32 33931 V = = = 1413. 68 32 T 24 2 R cos90 V = = 0 90 T ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ 1

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

第一章三角函数 1.3 三角函数的诱导公式 A 组 ( ) 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角, 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C 2 ( 中诱导公式 ) ( ) B. cos(

第一章三角函数 1.3 三角函数的诱导公式 A 组 ( ) 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角, 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C 2 ( 中诱导公式 ) ( ) B. cos( 第一章三角函数 1. 三角函数的诱导公式 A 组 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C ( 中诱导公式 ) B. cos( B C) cos A D. sin( B C) sin A sin60 cos( ) sin( 0 )cos( 70 ) 的值等于

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

( )

( ) ( ) * 22 2 29 2......................................... 2.2........................................ 3 3..................................... 3.2.............................. 3 2 4 2........................................

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

1 2 1.1............................ 2 1.2............................... 3 1.3.................... 3 1.4 Maxwell.................... 3 1.5.......................... 4 1.6............................ 4

More information

微积分 授课讲义

微积分 授课讲义 2018 10 aiwanjun@sjtu.edu.cn 1201 / 18:00-20:20 213 14:00-17:00 I II Taylor : , n R n : x = (x 1, x 2,..., x n ) R; x, x y ; δ( ) ; ; ; ; ; ( ) ; ( / ) ; ; Ů(P 1,δ) P 1 U(P 0,δ) P 0 Ω P 1: 1.1 ( ). Ω

More information

《分析化学辞典》_数据处理条目_1.DOC

《分析化学辞典》_数据处理条目_1.DOC 3 4 5 6 7 χ χ m.303 B = f log f log C = m f = = m = f m C = + 3( m ) f = f f = m = f f = n n m B χ α χ α,( m ) H µ σ H 0 µ = µ H σ = 0 σ H µ µ H σ σ α H0 H α 0 H0 H0 H H 0 H 0 8 = σ σ σ = ( n ) σ n σ /

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

untitled

untitled 5 55-% 8-8 8-5% - 7 7 U- lim lim u k k k u k k k k ` k u k k lim.7. 8 e e. e www.tighuatutor.com 5 79 755 [ e ] e e [ e ] e e e. --7 - u z dz d d dz u du d 8d d d d dz d d d d. 5-5 A E B BA B E B B BA

More information

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin

5 551 [3-].. [5]. [6]. [7].. API API. 1 [8-9]. [1]. W = W 1) y). x [11-12] D 2 2πR = 2z E + 2R arcsin D δ R z E = πr 1 + πr ) 2 arcsin 38 5 216 1 1),2) 163318) 163318). API. TE256 A doi 1.652/1-879-15-298 MODE OF CASING EXTERNA EXTRUSION BASED ON THE PRINCIPE OF VIRTUA WORK 1) ZHAO Wanchun,2) ZENG Jia WANG Tingting FENG Xiaohan School

More information

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P. () * 3 6 6 3 9 4 3 5 8 6 : 3. () ; () ; (3) (); (4) ; ; (5) ; ; (6) ; (7) (); (8) (, ); (9) ; () ; * Email: huangzh@whu.edu.cn . () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) :

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

Π Ρ! #! % & #! (! )! + %!!. / 0% # 0 2 3 3 4 7 8 9 Δ5?? 5 9? Κ :5 5 7 < 7 Δ 7 9 :5? / + 0 5 6 6 7 : ; 7 < = >? : Α8 5 > :9 Β 5 Χ : = 8 + ΑΔ? 9 Β Ε 9 = 9? : ; : Α 5 9 7 3 5 > 5 Δ > Β Χ < :? 3 9? 5 Χ 9 Β

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

untitled

untitled 4 y l y y y l,, (, ) ' ( ) ' ( ) y, y f ) ( () f f ( ) (l ) t l t lt l f ( t) f ( ) t l f ( ) d (l ) C f ( ) C, f ( ) (l ) L y dy yd π y L y cosθ, π θ : siθ, π yd dy L [ cosθ cosθ siθ siθ ] dθ π π π si

More information

第 14 章 第 14 章 麦克斯韦方程组和电磁波 麦克斯韦方程组和电磁波 麦克斯韦在总结了从库仑到安培 法拉第等人关于电磁学研究的成果的基础 上 建立了著名的电磁场理论 现在称为经典电磁场理论 提出了 有旋场 和 位 移电流 的假说 指出变化的电场和磁场形成统一的电磁场 预言电磁场能够以波 动的形式在空间传播 称为电磁波 并且算出电磁波在真空中传播的速度等于光速 从而断定光在本质上就是一种电磁波

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 & ! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ

More information

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) ! # % & # % ( ) & + + !!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) 6 # / 0 1 + ) ( + 3 0 ( 1 1( ) ) ( 0 ) 4 ( ) 1 1 0 ( ( ) 1 / ) ( 1 ( 0 ) ) + ( ( 0 ) 0 0 ( / / ) ( ( ) ( 5 ( 0 + 0 +

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

Microsoft PowerPoint - 第8章.ppt [兼容模式]

Microsoft PowerPoint - 第8章.ppt [兼容模式] 第八章电磁波的辐射 本章目录 : 8. 推迟位的多级子展开 8. 电偶极矩的场 8.33 磁偶极矩的场 8.4 线天线的辐射场 辐射的基本概念. 什么是辐射? 辐射 : 随时间变化的电磁场离开波源向空间传播的现象 产生辐射的源称为天线. 辐射产生的必要条件 () 时变源存在 () 源电路是开放的 3. 影响辐射强弱的原因 () 源电路尺寸与辐射波的波长相比拟时辐射较为明显 () 源电路越开放, 辐射就越强

More information

F.L.Wright1869 1959 A.Schoenberg1874 1951 M.Chagall1887 JohnvonNeu-mann1903 1957 ONeugebauer1899 5876 A 0 TLodge1558 1625 TKyd,1558 1594 G Peele1558 1597 JLyly 1554 16O6 CMarlowe

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

1

1 相對內容大綱 : 高考課程大網第一章第 3 節 參考 : 高級程度物理第一冊第七章 6.0 6. 6. 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.0 6. 6.0 CD 6. P ( x, y (pola coodinate P (,θ ( 6.. P θ OP x B s θ P θ (angula position θ θ [ θ ](angula displacement θ

More information

欢迎参加 《计量基础知识》培训班

欢迎参加  《计量基础知识》培训班 µ kσ y µ t y i y µ+kσ n 1 i = ik = k 1 n ( ) v i = i n ( i s ( ) = i = 1 n 1 ) 2 s ( ) = s( ) n σ d 3 d s G ( n ) 1 1 2 1 1 10 10, n n n n = = 1 1 1 2 2 1 11 11, n n n n = = 1 1 1 3 2 2 21 21, n n

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information

國家圖書館典藏電子全文

國家圖書館典藏電子全文 1 3 4 5 n Y Y n t t t = 1 ˆ) ( n Y Y n t t t = 1 ˆ n Y Y Y n t t t t = 1 ˆ 6 n Y Y n t t t = 1 ˆ) ( n Y Y Y n t t t t = 1 ˆ) ( t Y t Yˆ n Y t = φ 0 + φ1yt 1 + φyt +... + φ pyt p + εt Y t Y t n φ n ε n

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

习 题 12

习    题  12 .7 Lgrge. ( + = f, ) = f (,, ) = + + + = + + =, f (,, ) = + + A + B + C = 0, > > > 0 A + B + C = L (,, λ) = λ( + ) L = λ = 0 L = λ = 0 λ = ( + ) = 0, = =, + = 4, f m f(, ) = = 4 L (,,, λ) = + λ( + + )

More information

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

More information

电动力学 第二章:静电场,静电标势及唯一性定理

电动力学  第二章:静电场,静电标势及唯一性定理 1 / 1 电动力学 第二章 : 静电场, 静电标势及唯一性定理 杨焕雄 中国科学技术大学物理学院近代物理系 hyang@ustc.edu.cn April 9, 2018 2 / 1 静电场的标势 : 静电场的麦克斯韦方程组是 : D = ρ, E = 0. 静电场是无旋场, E = φ x z o q( x + d x) d l p( x) y 现在求空间中相距 d l 的两点的电势差 dφ.

More information

( ) (! +)! #! () % + + %, +,!#! # # % + +!

( ) (! +)! #! () % + + %, +,!#! # # % + +! !! # % & & & &! # # % ( ) (! +)! #! () % + + %, +,!#! # # % + +! ! %!!.! /, ()!!# 0 12!# # 0 % 1 ( ) #3 % & & () (, 3)! #% % 4 % + +! (!, ), %, (!!) (! 3 )!, 1 4 ( ) % % + % %!%! # # !)! % &! % () (! %

More information

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

More information

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α Ε! # % & ( )%! & & + %!, (./ 0 1 & & 2. 3 &. 4/. %! / (! %2 % ( 5 4 5 ) 2! 6 2! 2 2. / & 7 2! % &. 3.! & (. 2 & & / 8 2. ( % 2 & 2.! 9. %./ 5 : ; 5. % & %2 2 & % 2!! /. . %! & % &? & 5 6!% 2.

More information

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

More information

ο HOH 104 31 O H 0.9568 A 1 1 109 28 1.01A ο Q C D t z = ρ z 1 1 z t D z z z t Qz = 1 2 z D z 2 2 Cl HCO SO CO 3 4 3 3 4 HCO SO 2 3 65 2 1 F0. 005H SiO0. 032M 0. 38 T4 9 ( K + Na) Ca 6 0 2 7 27 1-9

More information

untitled

untitled f ( ) tan e, > = arcsin a = ae, a = tan e tan lim f ( ) = lim = lim =, arcsin + + + lim f = lim ae = a, y e ( ) =

More information

untitled

untitled 4 6 4 4 ( n ) f( ) = lim n n +, f ( ) = = f( ) = ( ) ( n ) f( ) = lim = lim n = = n n + n + n f ( ), = =,, lim f ( ) = lim = f() = f ( ) y ( ) = t + t+ y = t t +, y = y( ) dy dy dt t t = = = = d d t +

More information

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ Ⅰ Ⅱ 1 2 Ⅲ Ⅳ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

Microsoft PowerPoint - 第13讲 习题课

Microsoft PowerPoint - 第13讲 习题课 电磁场与电磁波基础 主讲 : 徐乐 8 年 4 月 9 日星期二 矢量分析与场论 矢性函数 A = A x (t)x + A y(t)ŷ + A z (t)ẑ 运算 L[A(t)] = L[A (t)]x + L[A (t)]y+l[a ˆ (t)]zˆ x y z L 是算子符号, 代表一种运算 ( 极限 导数 积分 ) b= b cosθ (b c) = b 一些基本矢量运算 xˆ yˆ zˆ

More information

微分流形上积分学 流形上 Stokes 公式 复旦力学 谢锡麟 1 知识要素 1.1 单位 1 分解 2016 年 4 月 21 日 引理 1.1. 设 U, V R m 为开集, 且 V U, 则 ϕ(x) Cc (R m ), 满足 : supp ϕ(x) U, ϕ(x) 1, x V, ϕ(x

微分流形上积分学 流形上 Stokes 公式 复旦力学 谢锡麟 1 知识要素 1.1 单位 1 分解 2016 年 4 月 21 日 引理 1.1. 设 U, V R m 为开集, 且 V U, 则 ϕ(x) Cc (R m ), 满足 : supp ϕ(x) U, ϕ(x) 1, x V, ϕ(x 复旦力学 知识要素. 单位 分解 206 年 4 月 2 日 引理.. 设 U, V R m 为开集, 且 V U, 则 ϕx Cc R m, 满足 : supp ϕx U, ϕx, x V, ϕx [0, ], x R m. 如图 所示. X m O εε X α V 2ε X V U V ε O y 图 : 单位 分解示意证明由于 V U, 则有 dv, U : δ > 0, 故可作 X m X

More information

m0 m = v2 1 c 2 F G m m 1 2 = 2 r m L T = 2 π ( m g 4 ) m m = 1 F AC F BC r F r F l r = sin sinl l F = h d G + S 2 = t v h = t 2 l = v 2 t t h = v = at v = gt t 1 l 1 a t g = t sin α 1 1 a = gsinα

More information

Microsoft Word - 第二十六讲.doc

Microsoft Word - 第二十六讲.doc 第二十六讲 上次课 : 绝对时空观的困难 ( 麦 - 莫实验 ) 相对时空观,Loentz 变换, 四维空间, x ' 标量 矢量 张量 = α x ν ν 4. 速度及四维速度矢量 d 假定在 S 系中考察一个物体的运动, 其速度的定义是 = 现在假定 S 系 dt d ' 相对 S 系以速度 v 沿着 x 轴运动, 则在 S 系中同一粒子的速度定义为 = 因 dt ' 为在相对论时空观中, 时间和空间是一起变换的,

More information

! # Χ Η Ι 8 ϑ 8 5 Χ ΚΗ /8 Η/. 6 / Λ. /. Η /. Α Α + Α 0. Η 56 + Α : Α Μ / Η +9 Δ /. : Α : ϑ. Η. /5 % Χ

! # Χ Η Ι 8 ϑ 8 5 Χ ΚΗ /8 Η/. 6 / Λ. /. Η /. Α Α + Α 0. Η 56 + Α : Α Μ / Η +9 Δ /. : Α : ϑ. Η. /5 % Χ ! # % ( ) +. / 0 1 + 2+ 3 4. 56. / 7 8 9 8. 6 2 # :! # # ( : : :! ( = = ( = > > : > : (? : : # : :! :!? : ( : # Α Β Α # : Α > % : Α : Α ( Χ #! Χ # Δ Χ ( Χ ( Φ Χ : Χ ( Χ ( #! / 2 (!( Α Α ( Α Α : =! Γ6 Α

More information

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε

3 4 Ψ Ζ Ζ [, Β 7 7>, Θ0 >8 : Β0 >, 4 Ε2 Ε;, ] Ε 0, 7; :3 7;,.2.;, _ & αε Θ:. 3 8:,, ), β & Φ Η Δ?.. 0?. χ 7 9 Ε >, Δ? Β7 >7 0, Τ 0 ΚΚ 0 χ 79 Ε >, Α Ε (! # # %& ) +,./ 0 & 0 1 2 / & %&( 3! # % & ( ) & +, ), %!,. / 0 1 2. 3 4 5 7 8 9 : 0 2; < 0 => 8?.. >: 7 2 Α 5 Β % Χ7 Δ.Ε8 0Φ2.Γ Φ 5 Η 8 0 Ι 2? : 9 ϑ 7 ϑ0 > 2? 0 7Ε 2?. 0. 2 : Ε 0 9?: 9 Κ. 9 7Λ /.8 720

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 . ttp://www.reej.com 4-9-9 4-9-9 . a b { } a b { }. Φ ϕ ϕ ϕ { } Φ a b { }. ttp://www.reej.com 4-9-9 . ~ ma{ } ~ m m{ } ~ m~ ~ a b but m ~ 4-9-9 4 . P : ; Φ { } { ϕ ϕ a a a a a R } P pa ttp://www.reej.com

More information

stexb08.dvi

stexb08.dvi B 1 1.1 V N 1 H = p 2 i 2m i 1. Z = β =(k B T ) 1. 1 h 3N N! exp( βh)d p 1 d p N d x 1 x N 2. F ( F = k B T log Z ) 3. ( ) F p = V T 1.2 H μ μh μh N H T 1. Z Z 1 N Z 1 Z 2. F S ( ) F S = T 3. U = F + TS

More information

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2

! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ! 7 7 Δ Δ 2! Χ Δ = Χ! Δ!! =! ; 9 7 Χ Χ Χ <? < Χ 8! Ε (9 Φ Γ 9 7! 9 Δ 99 Φ Γ Χ 9 Δ 9 9 Φ Γ = Δ 9 2 ! # % ( % ) +,#./,# 0 1 2 / 1 4 5 6 7 8! 9 9 : ; < 9 9 < ; ?!!#! % ( ) + %,. + ( /, 0, ( 1 ( 2 0% ( ),..# % (., 1 4 % 1,, 1 ), ( 1 5 6 6 # 77 ! ΑΒ 9 9 Χ! Δ? Δ 9 7 Χ = Δ ( 9 9! Δ! Δ! Δ! 8 Δ!

More information

(p.29). (a) F Qq r 2 ()() N (b) Q 2 r 2 F ( 2 )() Q 0 5 C 2. (a) F (b) F 3. 7 (p.42). (a) T (b) F (c) T 2. (a) A (b) (c) 4. (a) 4 (b) (

(p.29). (a) F Qq r 2 ()() N (b) Q 2 r 2 F ( 2 )() Q 0 5 C 2. (a) F (b) F 3. 7 (p.42). (a) T (b) F (c) T 2. (a) A (b) (c) 4. (a) 4 (b) ( 20 (p.7). (a) T (b) T (c) T (d) F 2. B 3. 3 (p.4). D 2. C D A B D B D B D 3. (a) F (b) F (c) T 4. 2 (p.0) 4 (p.23). (a) B (b) A P 2. (a) F (b) T 3. 4. 5. 6. (a) (b).6 0 9.6 0 9 0 0. (a) X Y (b) X Y Z 2.

More information

B = F Il 1 = 1 1 φ φ φ B = k I r F Il F k I 2 = l r 2 10 = k 1 1-7 2 1 k = 2 10-7 2 B = ng Il. l U 1 2 mv = qu 2 v = 2qU m = 2 19 3 16. 10 13. 10 / 27 167. 10 5 = 5.0 10 /. r = m ν 1 qb r = m ν qb

More information

1984 1985 2130 1006 366 405 379 324 4601 2327 1169 524 555 440 361 5376 1984 51.4 31.8 56.2 2.6 45.4 28.3 29.8 16.7 44.2 34.9 665.4 10.1 1989 1990 1991 1992 1993 121.1 124.5 116.0 117.9 130.1 81.6

More information

第三节 姓氏

第三节  姓氏 1988 iz 180 180 23 180 9 860 N 874 M 90 35 25 1 1 JT7 -z;;- 1V` 1821 6 7 2 6 7 1915 8 1034 9 17 160 6 5 64 70 74 1079 900 117 20 1526 1541 1550 1 1154 1 1005 N 1274 16 J CJ V` 197 11 2 2 15 97 51 119

More information

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α # % & ( ) # +,. / 0 1 2 /0 1 0 3 4 # 5 7 8 / 9 # & : 9 ; & < 9 = = ;.5 : < 9 98 & : 9 %& : < 9 2. = & : > 7; 9 & # 3 2

More information

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % #! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )

More information

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7 ! # % # & ( & ) # +,,., # / 0 1 3. 0. 0/! 14 5! 5 6 6 7 7 7 7 7! 7 7 7 7 7 7 8 9 : 6! ; < ; < ; : 7 7 : 7 < ;1< = = : = >? ) : ; < = > 6 0 0 : ; < ) ; < ; < ; : < ; < = = 7 7 7 Α > : Β ; < ; 6 < > ;:

More information

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ!

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ! !! # %& + ( ) ),., / 0 12 3, 4 5 6, 7 6 6, 8! 1 9 :; #< = 1 > )& )? Α Β 3 % Χ %? 7) >ΔΒ Χ :% Ε? 9 : ; Φ Η Ι & Κ Λ % 7 Μ Ν?) 1!! 9 % Ο Χ Χ Β Π Θ Π ; Ρ Ρ Ρ Ρ Ρ ; . Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )?

More information

幻灯片 1

幻灯片 1 第一类换元法 ( 凑微分法 ) 学习指导 复习 : 凑微分 部分常用的凑微分 : () n d d( (4) d d( ); (5) d d(ln ); n n (6) e d d( e ); () d d( b); ); () d d( ); (7) sin d d (cos ) 常见凑微分公式 ); ( ) ( ) ( b d b f d b f ); ( ) ( ) ( n n n n d f

More information

whitepaper.dvi

whitepaper.dvi π + π ϕ ϕ ϕ ϕ = ) cos( ) cos( cos cos sin sin cos 3 3 0 1 1 1 3 θ θ θ 3 3 V V q d ϕ ϕ ϕ ϕ ŵϕ ST 1+ ST n n s s + ω ςω + T m p / V K m p T V K (z - 1) ) - z(z α V 1 1 X X C LC L di d dt di q dt 1 1 R sl

More information

: ; # 7 ( 8 7

: ; # 7 ( 8 7 (! # % & ( ) +,. / +. 0 0 ) 1. 2 3 +4 1/,5,6 )/ ) 7 7 8 9 : ; 7 8 7 # 7 ( 8 7 ; ;! #! % & % ( # ) % + # # #, # % + &! #!. #! # # / 0 ( / / 0! #,. # 0(! #,. # 0!. # 0 0 7 7 < = # ; & % ) (, ) ) ) ) ) )!

More information

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ <

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ < ! # %!! ( (! +,. /0 0 1 2,34 + 5 6 7,3. 7, 8, 2 7 + 1 9 #. 3 : + ; + 5 83 8 % 8 2 ; , 1 1 8 2 =? : + 2 = 2 = Α 1,!. Β 3 + 5 Χ Β Β

More information

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ ! # % & ( ) % + ( ), & ). % & /. % 0 1!! 2 3 4 5# 6 7 8 3 5 5 9 # 8 3 3 2 4 # 3 # # 3 # 3 # 3 # 3 # # # ( 3 # # 3 5 # # 8 3 6 # # # # # 8 5# :;< 6#! 6 =! 6 > > 3 2?0 1 4 3 4! 6 Α 3 Α 2Η4 3 3 2 4 # # >

More information

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ ! # % & ( ) +,. / 0 1 + 2. 3 4. 56. / 7 89 8.,6 2 ; # ( ( ; ( ( ( # ? >? % > 64 5 5Α5. Α 8/ 56 5 9. > Β 8. / Χ 8 9 9 5 Δ Ε 5, 9 8 2 3 8 //5 5! Α 8/ 56/ 9. Φ ( < % < ( > < ( %! # ! Β Β? Β ( >?? >?

More information

x y 7 xy = 1 b c a b = x x = 1. 1 x + 17 + x 15 = 16 x + 17 x 15 + 17 15 x + 17 - x 15 = (x x ) ( ). x + 17 + x 15 x + y + 9 x + 4 y = 10 x + 9 y + 4 = 4xy. 9 4 ( x + ) + ( y + ) = 10 x y 9 ( x + )( ).

More information

x y z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.1. (X, Y ) 3.2 P (x 1 < X x 2, y 1 < Y y 2 ) = F (x 2, y 2 ) F (x 2, y 1 ) F (x 1, y 2

x y z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.1. (X, Y ) 3.2 P (x 1 < X x 2, y 1 < Y y 2 ) = F (x 2, y 2 ) F (x 2, y 1 ) F (x 1, y 2 3 3.... xy z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.. (X, Y ) 3.2 P (x < X x 2, y < Y y 2 ) = F (x 2, y 2 ) F (x 2, y ) F (x, y 2 ) + F (x, y ) 3. F (a, b) 3.2 (x 2, y 2) (x, y 2) (x 2, y ) (x,

More information

untitled

untitled 6.1 ( ) 6.1.1 1. θ (6-1) θ (V w ) V S w (6-) S w (V ) θ n S w 1 θ ns w (6-3) 179 6-1 ( ) ( ) p c pc = pa pw (6-4) p p 1135Pa( a ) p c p w w p a = (6-5) ( ) 6-6 γ pc pw h = = (6-7) c γ γ ψ ψ = pw γ > (6-8)

More information

80000 400 200 X i X1 + X 2 + X 3 + + X n i= 1 x = n n x n x 17 + 15 + 18 + 16 + 17 + 16 + 14 + 17 + 16 + 15 + 18 + 16 = 12 195 = = 1625. ( ) 12 X X n i = = 1 n i= 1 X f i f Xf = f n i= 1 X f ( Xf). i i

More information

ⅠⅡⅢ Ⅳ

ⅠⅡⅢ Ⅳ ⅠⅡⅢ Ⅳ ! "!"#$%&!!! !"#$%& ()*+,!"" *! " !! " #$%& ( Δ !"#$%& ()*+,!"" * !! " #$%& ( !"#$%& ()*+,!"" * !! " #$%& ( !"#$%& ()*+,!"" * !! " #$%& (! # !"#$%& ()*+,!"" * !! " #$%& ( 1 1 !"#$%& ()*+,!"" *

More information

koji-13.dvi

koji-13.dvi 26 13 1, 2, 3, 4, 5, 6, 7 1 18 1. xy D D = {(x, y) y 2 x 4 y 2,y } x + y2 dxdy D 2 y O 4 x 2. xyz D D = {(x, y, z) x 1, y x 2, z 1, y+ z x} D 3. [, 1] [, 1] (, ) 2 f (1)

More information

Reconstruction of the dark energy model 2006 9 .......................................................................... 2 Abstract.......................................................................

More information

( ) 1 2 1 3 1 11 1 12 1 n( n 1) 2 2 1 2 4 100 1 3 4 5 6 7 8 9 10 11 12 6 1 3 7 9 11 8 8 6 7 10 13 14 15 16 18 20 21 23 24 8 4 1 5 11 1 1 2 1 100 3 1 3 2 1. 2. 3.

More information

定积分的基本概念问题的提出 Yunming Xio ( 南京大学数学系 ) 微积分 I( 高等数学 ) Autumn / 23

定积分的基本概念问题的提出 Yunming Xio ( 南京大学数学系 ) 微积分 I( 高等数学 ) Autumn / 23 定积分的基本概念内容提要 1 定积分的基本概念 2 定积分的几何意义 3 定积分的基本性质 4 定积分中值定理 5 变限积分及其性质 6 微积分基本公式 Yunming Xio ( 南京大学数学系 ) 微积分 I( 高等数学 ) Autumn 2016 1 / 23 定积分的基本概念问题的提出 Yunming Xio ( 南京大学数学系 ) 微积分 I( 高等数学 ) Autumn 2016 2 /

More information

9 : : ; 7 % 8

9 : : ; 7 % 8 ! 0 4 1 % # % & ( ) # + #, ( ) + ) ( ). / 2 3 %! 5 6 7! 8 6 7 5 9 9 : 6 7 8 : 17 8 7 8 ; 7 % 8 % 8 ; % % 8 7 > : < % % 7! = = = : = 8 > > ; 7 Ε Β Β % 17 7 :! # # %& & ( ) + %&, %& ) # 8. / 0. 1 2 3 4 5

More information

信号与系统 (Signal & system)

信号与系统 (Signal & system) Signl & sysem xucb@cqup cqup.edu.cn 5-3- ...3.4.5 .......3 3 .. δ δ d δ 4 .. i K V CF u c i δ u c - 5 .. ϕ δ ϕ δ ϕ δ d ϕ ϕ δ ϕ δ ϕ δ d ϕ 6 .. e δ e δ δ δ δ 3δ δ π sin δ d 3 e δ d 3 δ d 5 4 7 .. 3 ϕ δ ϕ

More information

穨米氏散射.PDF

穨米氏散射.PDF (aerosol),,, λ = 5 µ m,, 5 4,, Mie, a Maxwell,,, a λ,,, (Liou, 98; va de Hulst, 957): E l -ikr+ ikz e = S ( θ ) El (a) ikr E r -ikr+ ikz e = S ( θ ) Er (b) ikr E l, E r ( ), E l E r θ, ( ) k = π / λ, r,

More information

; < 5 6 => 6 % = 5

; < 5 6 => 6 % = 5 ! # % ( ),,. / 0. 1, ) 2 3, 3+ 3 # 4 + % 5 6 67 5 6, 8 8 5 6 5 6 5 6 5 6 5 6 5 9! 7 9 9 6 : 6 ; 7 7 7 < 5 6 => 6 % = 5 Δ 5 6 ; Β ;? # Ε 6 = 6 Α Ε ; ; ; ; Φ Α Α Ε 0 Α Α Α Α Α Α Α Α Α Α Α Α Α Β Α Α Α Α Α

More information