2.1.1 ( ) U V. U λ F, α, β U, α + β U λα U. 0 (, ),. ( 2 ): (1) : U V, W U, W V ; (2) ( ),, ;, U W U W., U W (?). V U W, U W?, α + β, α U, β W.

Size: px
Start display at page:

Download "2.1.1 ( ) U V. U λ F, α, β U, α + β U λα U. 0 (, ),. ( 2 ): (1) : U V, W U, W V ; (2) ( ),, ;, U W U W., U W (?). V U W, U W?, α + β, α U, β W."

Transcription

1 ,. Ax = b, ( ),,.,, Ax = b ( ) F n F m σ : x Ax b F m., Ax = 0 ( ) σ : x Ax. σ : x Ax (T1) ( ) σ(x + y) = σ(x) + σ(y); (T2) ( ) σ(ax) = aσ(x), a F., τ : F n F m, A m n σ(x) = Ax, x F n., b F m σ Ax = b., A (T1) (T2) ( : ),. : C R 2, 1, R C., ( ) V, U V. U V, U V., {0},.. 0 ( 0 ). V, R C, R C, R C, R C.,, 1.4.1, V = { } R, V, R, V R F[x] n F[x] n. [a, b], R[x] R[x] n [a, b] C[a, b],, C[a, b]. V U, U V ;, :,, 1.4.1, n n V. ( 1 ), : 29

2 2.1.1 ( ) U V. U λ F, α, β U, α + β U λα U. 0 (, ),. ( 2 ): (1) : U V, W U, W V ; (2) ( ),, ;, U W U W., U W (?). V U W, U W?, α + β, α U, β W. U + W, U + W, U W, U W.. U 1, U 2,, U s V, {α 1 + α α s α j U j, 1 j s} (?), U 1, U 2,, U s, U 1 + U U s V, S V. V S S ( ), Span S, S Span S., S = S = {0}, Span S = 0 ; S = {α} α 0, Span{α} = {kα k F}, Fα; S = {α 1, α 2,, α s }, Span S = Span{α 1, α 2,, α s },,, Span{α 1, α 2,, α s } = {k 1 α 1 + k 2 α k s α s k j F, 1 j s}. Span S = {k 1 α 1 + k 2 α k s α s α j S, k j F, s 0}, Span S S ( )., U W U + W = Span U W. s j=1 U j V = M n (R) n. D = { }, U = { }, W = { }. D, U W V, U +W = V ; U W = D; U W ( ). D n; U W n(n + 1)/2; U + W = V n 2. (dim U + dim W ) dim (U + W ) = dim (U W ). (2.1.1) ( : A B = A + B A B, A A. ) 30

3 2.1.3 V = R[x] n, U = {f(x) V f(1) = 0}, W = {f(x) V f(2) = 0}. U + W = V, U W = {f(x) V f(1) = 0 f(2) = 0}. U W = {f(x) V f(1) = 0 f(2) = 0} (, x 1 + x 2 U W )., dim U = n 1 = dim W, dim (U W ) = n 2. (2.1.1) ( ) V, U W V. dim (U + W ) = (dim U + dim W ) dim (U W ). (2.1.2), 3. dim U = s, dim W = t, dim (U W ) = r. U W α 1, α 2,, α r. U W U W, U W U W, U W. α 1, α 2,, α r, β r+1, β r+2,, β s α 1, α 2,, α r, γ r+1, γ r+2,, γ t U W. α 1, α 2,, α r, β r+1, β r+2,, β s, γ r+1, γ r+2,, γ t U + W. (, U + W.), U +W, U W = 0, U W. U +W, U W. dim (U W ) = dim U +dim W R 2 x y ( 1 )., R 3 x, yoz ( 2 ) ( ) ( ). 0. ( ), ( ) n M n (F) {A M n A = λi, λ F} 0 {A M n tra = 0} ( ) U W V, : (1) U + W ( U W = 0); (2) α U + W, α = u + w, u U, w W, α = u + w, u = u, w = w ; (3) ; 0 = u + w, u U, w W, u = w = 0; (4) dim (U + W ) = dim U + dim W. : 2.1.3(3). 31

4 , (1) (4), (2) (3). (3)= (1)= (2). (3), α U W, α U W, 0 = α + ( α),, α = α = 0, U W = 0, (1). (1), α U +W α = u+w = u +w, u, u U, w, w W, u u = w w, u u U, w w W, u u = w w U W = 0, u = u, w = w, (2)., W 1, W 2,, W s W 1 W 2 W s (W 1 + W W s 1 ) W s. 0.,, ( ) W 1, W 2,, W s V, : (1) W 1 +W 2 + +W s dim (W 1 +W 2 + +W s ) = dim W 1 +dim W 2 + +dim W s ; (2) W j k j W k = 0, 1 j s, 1 k s; (3) α W 1 + W W s ; (4) R 3 x, y z, R 3 = R i R j R k α 1, α 2,, α n n V, V = Fα 1 Fα 2 Fα n n, V, U V. W V = U W ( U V, W ). W U. U (?) V = R 3. V 1 ; A 3, V = R 3. Ax = 0 U V 3 r(a). A ( A, ) Span{A 1, A 2, A 3 }. A m n : (1) A ( ) N(A): Ax = 0 ; (2) A (, )R(A): A ; 32

5 (3) A R(A T ): A ; (4) A ( ) N(A T ): y T A = 0 A T x = 0., N(A) R(A T ) F n ; R(A) N(A T ) F m, dim N(A) + dim R(A T ) = n; dim N(A T ) + dim R(A) = m.,.,. : A Hermite H A. Ax = 0 H A x = 0, N(A) = N(H A ),,, H A A, R(A) ;, H A A, A H A, R(A T ) = R(H T A ). H A A., A Hermite P ( ), P A = H A. r(a) = r, H A m r 0,, P m r y T A = 0, A N(A T ) A = , A. A Hermite, P : (A, I 3 ) = P A = H A, = = (H A, P ), A = 2, H A, A, R(A) = Span{A 1, A 2 } = Span{(1, 0, 1) T, (1, 1, 2) T }; R(A T ) = R(H T A ) = Span{(H1 A )T, (H 2 A )T } = Span{(1, 0, 1) T, (0, 1, 1) T }; N(A) = N(H A ) = Span{( 1, 1, 1) T }., N(A T ), P, A, xa = 0. N(A T ) = Span{(P 3 ) T } = Span{( 1, 1, 1) T }. 1.? 33

6 2.? 3.,? 4. R?? 5. C?? 6. 3 A. 7. F = C R. F n F ( 5 ).?? 8. F = C R. F n F ( 5 ). n?,, (T1) (T2). R, f R R (T1) (T2) ( ). (T2), x R, f(x) = xf(1), f(x) = kx,,. f (T1) (T2), R R 2, R, (!)f(x, y) = ax + by, a = f(1, 0) b = f(0, 1).., f R R 2? (T1) (T2)? θ, P (x, y) P (x, y )., : x = x cos θ + y sin θ, y = x sin θ + y cos θ. (2.2.1), P Q P Q, P + Q kp (!) P + Q kp! P (x, y) α, f(α), f(α + β) = f(α) + f(β); f(kα) = kf(α). (T1) (T2).,, R V ( ) : f(x) f (x), V., (f + g) = (f) + (g); (kf) = k (f)., f(x) x a f(x) d x V (T1) (T2),, n y (n) + f 1 (x)y (n 1) + f 2 (x)y (n 2) + + f n 1 (x)y + f n (x)y = 0, (2.2.2) y (i) = d i y, i = 1, 2,, n. L(y), L : y L(y) d x i n ( ), L (T1) (T2). (2.2.2) L {y : L(y) = 0}. 34

7 2.2.4 f(x) Laplace L(f(x)) = + f(t)e ixt d t. L (T1) (T2). (. ), (T1) (T2), U V. U V σ (T1) (T2), σ U V (linear transformation) (linear map). U ( ), U V Hom(U, V ) (, Hom F (U, V ))., Hom(V, V ) End V, Hom(V, F) V, V Hom R (R, R) = R,,,.,. σ Hom(U, V ). σ ( ), σ ( ).. σ Hom(U, V ), U V, U = V. 1. (T1) (T2) : σ(aα + bβ) = aσ(α) + bσ(β), a, b F, α, β U. (2.2.3) ( )., σ(a 1 α 1 + +a s α s ) = a 1 σ(α 1 )+ +a s σ(α s ), a j F, α j U. (2.2.4), f r- r x f(kx) = k r (x). f, r-, r = 1,. 2. F Q,. (T1), n, m f(2x) = f(x + x) = 2f(x), f(nx) = f(x + (n 1)x) = nf(x). f(nx) = f(m ( n m x)) = mf( n m x), f( n m x) = n m f(x), 35

8 r f(rx) = rf(x). f(0) = f(0 + 0) = f(0) + f(0), f(0) = 0, 0 = f(x + ( x)) = f(x) + f( x), f( x) = f(x), T(2)., F Q, (T2) (T1)., F C,, F = Q( 2 ), F 1. α = a + b 2 F, a, b Q, σ(α) = σ(a + b 2 ) = a, σ F, σ, σ( 2 2 ) = σ(2) = 2 2σ( 2 ) = ( ) ( ) ( ) r r cos θ θ r sin θ (2.2.5)., (1) σ(0) = 0; σ( α) = σ(α); (2) α 1, α 2,, α s, σ(α 1 ), σ(α 2 ),, σ(α s ) ; (3) σ(α 1 ), σ(α 2 ),, σ(α s ), α 1, α 2,, α s. ( (2) (3) 15.) σ(0) = 0, (?) ( ) α 1, α 2,, α n U, β 1, β 2,, β n V n, σ σ(α j ) = β j, 1 j n.. σ, σ U α = k 1 α 1 + k 2 α k n α n σ(α) = k 1 σ(α 1 ) + k 2 σ(α 2 ) + + k n σ(α n ) = k 1 β 1 + k 2 β k n β n., σ U V σ(α j ) = β j, 1 j n,. 1. σ,,,, , n,,,,. n n

9 2.2.8 ( ) R n R σ,,, σ, σ(e i ) = a i, 1 i n. x = (x 1, x 2,, x n ) T R n, n σ(x) = σ( x i e i ) = i=1 n x i σ(e i ) = i=1 n a i x i. i=1 R n R σ n., R n (R n ) n., (R n )., V V., F U V Hom F (U, V ) F. : (1) : V 0 ( V ),, 0 (, 0 V ); α V, 0(α) = 0. (2) : V,, I V ( I 1 ); α V, I(α) = α. V ( V ). (3) : k F. V α kα σ ( ) k, σ(α) = kα. k = 0 k = 1.. (4) : σ Hom(U, V ), τ Hom(V, U) α U, β V, τ(σ(α)) = α, σ(τ(β)) = β, σ, τ., σ, σ 1, (σ 1 ) 1 = σ( 16)., k(k 0), k 1., R 2, θ θ R ( ), R f f f A M n (F). F n A σ A : x Ax, σ A A, σ 1 : x A 1 x, (σ A ) 1 = σ A ( ) P n, X P 1 XP (2.2.6) M n (F), P. A A. 37

10 σ Hom(U, V ), {α U σ(α) = 0}, σ, Ker(σ) σ 1 (0);, {α V β U α = σ(β)}, σ, Im(σ) σ(u)., Kerσ Imσ U V ( 17), η(σ) r(σ), σ U = F n, V = F m, A m n. x U, U V σ σ(x) = Ax. σ A, σ n r(a) ( A ); σ A R(A), σ A r(a) U V. x U, U V ι ι(x) = x. ι,., U, V F ( ), σ Hom(U, V ). U Im(σ) σ σ(x) = σ(x). σ., σ., σ Ker(σ) ι U ι ( ). eσ Im(σ) ι V U, V F ( ), σ Hom(U, V ). (1) σ Ker(σ) = 0; (2) σ Im(σ) = V ; (3) σ σ., U = V, σ EndV, σ σ σ. (3), 16.,,., σ Hom(U, V ) τ : β V, σ, α U σ(α) = β, τ : β α. σ,. τσ = I U, στ = I V τ. σ Hom(U, V ),, σ.,? α U? α 1, α 2,, α n U, α 1, α 2,, α m V. σ(α 1 ) = a 11 α 1 + a 21α a m1α m, σ(α 2 ) = a 12 α 1 + a 22α a m2α m, σ(α n ) = a 1n α 1 + a 2nα a mnα m, 38

11 (σ(α 1 ), σ(α 2 ),, σ(α n )) = (α 1, α 2,, α m)a, (2.2.7) A = (a ij ) F m n σ α α., U = V, α α, σ α α σ α. (2.2.7) σ(α 1, α 2,, α n ), σ(α 1, α 2,, α n ) = (α 1, α 2,, α m)a. (,, ( )!!) (2.2.7),, ( ) σ Hom(U, V ) α α A, α U α x, σ(α) α A x σ e 1 = (1, 0) T, e 2 = (0, 1) T A, σ(e 1 ), σ(e 2 )., σ(e 1 ) = ( cos θ, sin θ) T, σ(e 2 ) = ( sin θ, cos θ) T. ( cos θ sin θ A = sin θ cos θ ) V = F n, σ V, e 1, e 2,, e n A. α = (x 1, x 2,, x n ) T = (e 1, e 2,, e n )(x 1, x 2,, x n ) T, σ(α) = σ(e 1, e 2,, e n )(x 1, x 2,, x n ) T = (e 1, e 2,, e n )A(x 1, x 2,, x n ) T = A(x 1, x 2,, x n ) T. σ : α Aα., F n ( )., A = (a ij ), σ(α) = A(x 1, x 2,, x n ) T = (a 11 x 1 + a 12 x a 1n x n,, a n1 x 1 + a n1 x a nn x n ) T = (σ 1 (α),, σ n (α)), σ j (α) = a j1 x 1 + a j2 x a jn x n, 1 j n n ;,.,,..,?, { α 1, α 2,, α n }, {β 1, β 2,, β n } 39

12 U, P α- β- ; { α 1, α 2,, α m}, { β 1, β 2,, β m} V, Q α β -. σ Hom(U, V ) α α - A, β β B. α = (α 1, α 2,, α n )x, σ(α) β?, α β P 1 x; (2.2.7), σ(α) α Ax, β BP 1 x., Q 1 Ax = BP 1 x. Q 1 A = BP 1, QB = AP B = Q 1 AP. (2.2.8), α- α - σ α-α -, σ α- i α - i. (2.2.8) ( ) (α )U σ A V (β ) P 1 (α )U B σ Q 1 V (β ) (2.2.8) α-α - β-β - ;, A B, (2.2.8), σ, A B σ α-α - β-β -, 5. U = V α- β-, α - β -, P Q, (2.2.8) B = P 1 AP. (2.2.9) V n, σ V. α 1,, α n β 1,, β n V, A B σ. A B. B = P 1 AP,, P.., σ σ, σ tr(σ) σ R 2 π/4. σ ] A = [

13 σ (1, 0) T, (1, 1) T [ 0 2 B = ]. (1, 0) T, (1, 1) T T = [ AT = T B, B = T 1 AT. σ = 1, tr(σ) = 2. ].? (2.2.9),., A B, (2.2.9), σ EndV σ α- A; V α -, α- α - P, σ α - B!!, σ τ,? 18. (,.) σ EndR 2 x- : σ((x, y) T ) = (x, 0) T. σ (α- ) A = ( ) σ (α - ){β 1 = (1, 1) T, β 2 = (1, 1) T } B = 1 2 ( ) (2.2.9), B = P 1 AP, P α- α - P = ( ) ( α -, P (β 1, β 2 ).), A B A 2 = A, B 2 = B.., σ ( ) F U V dim F U = dim F V.., U V, U V., U V, U V

14 2.2.5,, F n V F n,,, V F n,, U = F[x] n, V = F n (, F n ). n, U V., U V U. U V σ: n 1 σ : f(x) = a i x i (a 0, a 1,, a n 1 ). σ, U f(x) = n 1 i=0 i=0 a i x i ( ) (a 0, a 1,, a n 1 ). U, U (, 1 + x 2 x + x 2 (1, 1, 0, 0) (2, 1, 1, 0,, 0), 3 + x 2, (3, 0, 1, 0,, 0)., 3 + x 2 )., U V! ( n,,,,.) A, A = n. F A = F n ; F A ( ) F n ( 24) V = { }?, V R, dim V 1. x log x V R, dim V = dim R = 1.,,, (, x log x).. Hom(U, V ). Hom(U, V ),. σ, τ Hom (U, V ), α V, k F, σ + τ : α σ(α) + τ(α); kσ : α kσ(α). (2.2.10), (2.2.10) σ + τ kσ U V, σ τ k σ., Hom (U, V )., Hom (U, V ), F. dim F U = n, dim F V = m, ( 21) dim F Hom(U, V ) = mn = (dim F U)(dim F V ). (2.2.11), U = V, End V σ τ στ : α σ(τ(α)), α V (2.2.12) 42

15 ,, (2.2.12),. σ σσ σ 2., k, σ k σ k = σ k 1 σ (, σ 0 = I)., F f(x), σ f(σ). ( ), σ, σ f(σ) = f(σ)σ., σ 2 = σ. σ k = 0 ( σ ) V = F n. α = (x 1, x 2,, x n ) T, σ(α) = (x 1, 0,, 0) T ; τ(α) = (x 2, x 3,, x n, 0) T. σ τ V, σ, τ (?) , ;, V σ, V = Im(σ) Ker(σ) (!), σ V ( Ker(σ)) Im(σ) ( ) V F n, α 1, α 2,, α n V. M n (F) F n. σ End V, A(σ) σ. End V M n (F) ψ ψ : End V M n (F) σ A(σ) ψ (, ), : (1) A(σ + τ) = A(σ) + A(τ); (2) A(kσ) = ka(σ), k F; (3) A(στ) = A(σ)A(τ); (4) σ A(σ) ; A(σ) 1 = A(σ 1 ); (5) A(0) = 0; A(I) = I. ψ, 22. ψ. ψ, Ker(ψ) = 0. ψ(σ) = 0, A(σ) = 0. α V, x α, σ(α) A(σ)x = 0x = 0. σ = 0. ψ. B n. σ(α) = (α 1, α 2,, α n )Bx. σ V, σ B, ψ(σ) = B, ψ σ EndR 2. α = (x, y) T R 2, σ(α) = σ(xe 1 ) + σ(ye 2 ) = xσ(e 1 ) + yσ(e 2 ). 43

16 σ(e 1 ) = (a 11, a 12 ) T, σ(e 2 ) = (a 21, a 22 ) T. ( a11 a σ(α) = xσ(e 1 ) + yσ(e 2 ) = 12 a 21 a 22 ) ( x y ). σ. ( a11 a 12 a 21 a 22 ) (, ) (F) (F).,. End V V ψ End V M n (F), End V M n (F).,! End V,,,,. V n, End V, Aut V, V, ( ) , Aut V n GL n (F),, (F ),.,, Aut V GL n (F) ( 23): ( ) U V n m F. Hom F (U, V ) = F m n., V V. V V, V = R n. V = (R n ) n.. R n ( )v = (v 1, v 2,, v n ), (v) : x = (x 1, x 2,, x n ) R n, (v) : (x 1, x 2,, x n ) v T x = v 1 x 1 + v 2 x v n x n (v) v, R n (R n ) R n v (R n ) ( 1, v) v. : R ( 1, v) v (R n ) R n v

17 , ( )., R 2 (R 2 ) ( )(A, B) (R 2 ) z = Ax + By, R 3 ( 1, A, B) ( ) ( ) n V α 1, α 2,, α n, V α1, α 2,, α n : α i (α j ) = δ ij, 1 i, j n. (2.2.13) α 1, α 2,, α n., R 2 e 1, e 2 e 1, e 2, e 1(x, y) = x, e 2(x, y) = y , f(x, y) = a 1 x + a 2 y (R 2 ) ( R 2 ), f = a 1 e 1 + a 2e ( ) V V (V ) V, V. ( )., V, V = V = V. V V,. v V, f V, V V φ : φ : v φ(v) : f f(v). φ V V, ? 2. ( R 2 )?? ( R 3 )?? 3.? 4. (2.2.8)? V 1, EndV AutV?, EndR, AutR, EndC, AutC? 7.,? 8. R = R R 3 = (R 3 )? 9. V x + y + z = 0, V?,,,. V n, U V. W = {α V (α, β) = 0, β U}. ( 30), W V, U, U V n, U V. V = U U., dim U = n dim U. 45

18 , V U, U : U ( )α 1, α 2,, α s V α 1, α 2,, α s, α s+1,, α n, U = Span{α s+1, α s+2,, α n }., U = W, W = U, : (U ) = U., V., v V v, dim v = dim V 1, v V. m n A : N(A) R(A ) F n ; R(A) N(A ) F m. R(A ) ; R(A) N(A ) ;, ( )., N(A) (1) N(A) = R(A ) ; (2) R(A) = N(A ). A F m n. (1), (2), 31. x N(A), Ax = 0, A (i) x = 0, i = 1, 2,, m. C n ( ), Ā( : A!) A (i) x. Ā x. x R(A ) (Fourier ) V = {f(x) f(x) = m (a n cos nx + b n sin nx), a n, b n R}. V 2m + 1. : (f(x), g(x)) = 1 π π π n=0 f(x)g(x) d x. 1 2, cos x, sin x, cos 2x, sin 2x,, cos mx, sin mx V ( 1 π ). c ( 34) c = 1 = Span{ cos x, sin x, cos 2x, sin 2x,, cos mx, sin mx}. a n = 1 π π π f(x) cos nx d x, b n = 1 π π π f(x) sin nx d x., a n = (f(x), cos nx) b n = (f(x), sin nx) f(x)., : ( ) U V, β V. α U β α β γ, γ U. α β U ( ), ˆβ( U). 46

19 , β U ( ) U β ( ), (?) ( ) U R 3 U,, α = (x, y, z) U α U, ˆβ = Proj U α R 3, α = (x, y, z) x- (x, 0, 0) ( ) U V, β V, α U. α β U β α U. γ U, β γ = (β α) + (α γ), β α U, α γ U, β γ 2 = β α 2 + α γ 2 β α 2., γ U, β α β γ, α β U., β U, β V = U U, β = α + γ, α U, γ U, α β U ˆβ.,? U = Rv 1. β U ˆβ = xv,, (β xv, v) = 0, x = (β, v) (v, v) (2.3.1) ˆβ = (β,v) (v,v) v, β v Proj vβ, γ = β Proj v β β U ( U ). U = Rv 1 Rv 2 2, ˆβ = x 1 v 1 + x 2 v 2 (2.3.2) (β ˆβ, v i ) = 0, i = 1, 2, (β x 1 v 1 x 2 v 2, v i ) = 0, i = 1, 2 (2.3.3) v 1, v 2, (2.3.3), ˆβ., v 1, v 2, x 1 = (β, v 1) (v 1, v 1 ), x 2 = (β, v 2) (2.3.4) (v 2, v 2 ) ˆβ (2.3.2) x 1 v 1 x 2 v 2 β v 1 v 2 Proj v1 β Proj v2 β. β U β U Proj v1 β + Proj v2 β., U 0, ( 35) 47

20 2.3.1 β V, U V, α 1,, α s U, β U ˆβ = Proj v1 β + + Proj vs β = (β, α 1) (α 1, α 1 ) α (β, α s) (α s, α s ) α s. (2.3.5), α 1,, α s U, β U ˆβ = (β, α 1 )α 1 + (β, α 2 )α (β, α s )α s. (2.3.6) β U Proj U β, Proj U β = ˆβ β U U, U R 3, α = (x, y, z) xoy (x, y, 0), α xoy ( ){(1, 0, 0), (0, 1, 0)} (x, 0, 0) (0, y, 0).. Ax = b, x = (x 1, x 2,, x n ) T R n Ax b., x 0 R n x R n, Ax 0 b Ax b, x 0. ( : y = Ax b, b ( )R(A). y = Ax b y = Ax b 2 = (Ax b) T (Ax b) = x T A T Ax 2x T Ab + b T b,,,.) x R n, Ax A R(A). Ax = b x 0 Ax 0 b R(A)., Ax 0 b R(A) = N(A T )., Ax 0 b A T (Ax 0 b) = 0, x 0 A T Ax = A T b. (2.3.7) Ax = b. 5, (2.3.7)!,, Ax = b,! A T Ax = A T b Ax = Proj R(A) b, Ax = b Ax = Proj R(A) b. Proj R(A) b b x 1, x 2. : 48

21 : b = a 1 x 1 + a 2 x 2. b x 1 x , a 1 6a 2 = 1 a 1 2a 2 = 2 a 1 + a 2 = 1 a 1 +7a 2 = 6 Ay = β, A = , β = , y = ( a1 a 2 ),,.. A A 1, A 2, (2.3.5) β R(A) ˆβ = (β, A 1) (A 1, A 1 ) A 1 + (β, A 2) (A 2, A 2 ) A 2 = 8 4 A A Ay = β (?) b = 2x x 2. a 1 = 2, a 2 = 1/2.. V, (α, v) = 0, v V, α = 0 V Minkowski 18, Minkowski. : (α, β) = 0, α, β V. Minkowski,., Minkowski ( ). 4 Minkowski V ( Minkowski 4- ), e 0, e 1, e 2, e 3, (e 0 ) 2 = (e 1 ) 2 = (e 2 ) 2 = (e 3 ) 2 = 1., α = (x 0, x 1, x 2, x 3 ) T β = (y 0, y 1, y 2, y 3 ) T (α, β) = x 0 y 0 + x 1 y 1 + x 2 y 2 + x 3 y 3, 18 Hermann Minkowski( ),, (geometry of numbers),, Albert Einstein ( ). 49

22 α = (x 0, x 1, x 2, x 3 ) T, : (1) ( spacelike): α 2 > 0; (2) ( timelike): α 2 < 0; (3) ( lightlike): α 2 = 0. α 2 = x x x x 2 3. ( ) (light cone)., V W : (a) ( spacelike): α 2 > 0, α W ; (b) ( lightlike): α 2 0, α W 0 α W α 2 = 0; (c) ( timelike): ( ) W Minkowski 4- V. (1) W W, ; (2) W W W 0 W. : ( = ) ( ) ? 3.? 4. R 3 (x, y) = x 1 y 1 + x 2 y 2 x 3 y 3,? x?,,??., ( 38 ) V, σ End V. σ, α, β V, d(σ(α), σ(β)) = d(α, β), σ.. ; R 2 ; V, σ End V. σ σ σ. 50

23 α V, α = (α, α) = d(α, 0),.,. σ, (σ(α + β), σ(α + β)) = (σ(α), σ(α)) + (σ(α), σ(β)) + (σ(β), σ(α)) + (σ(β), σ(β)) = (α, α) + (σ(α), σ(β)) + (σ(β), σ(α)) + (β, β). (α + β, α + β) = (α, α) + (α, β) + (β, α) + (β, β) = (α, α) + (α, β) + (β, α) + (β, β). (σ(α), σ(β)) + (σ(α), σ(β)) = (α, β) + (α, β), (σ(α), σ(β)) (α, β). (!) Re(α, iβ) = Im(α, β), (α, iβ) (α, β), (σ(α), σ(β)) (α, β), (σ(α), σ(β)) = (α, β), V n, α 1, α 2,, α n V, σ End V, A σ. σ A. α V, α = (α 1, α 2,, α n )x, x C n, α 1, α 2,, α n, α = (α, α) = x x. σ(α) = β = (α 1, α 2,, α n )Ax, β = (Ax) (Ax) = x (A A)x. A A = I, σ(α) = β = x x = α, σ, σ., σ, σ, x C n ( R n ), (β, β) = x (A A)x = (α, α) = x x. Hermite x (I A A)x = 0 x, I A A = 0( 46), A A = I. A., 2.4.2,, σ π/2, {e 1, e 1 + e 2 } ( ) , ;.,. Aut V,.,., GL n (R), V, σ End V. σ σ. 51

24 α 1, α 2,, α n V, A σ, β j = σ(α j ), 1 j n. σ, 2.4.1, σ, β 1, β 2,, β n., σ, σ, 4,, σ ( ) R ± I, ( x x). R 2 : e 1, e 2. σ A, A, ( ) c s Q = (2.4.1) s c ( ) c s P = s c (2.4.2) c 2 + s 2 = 1. Q, P, ( y = 1 c s x, 39), ( ) R 3, 6 ( 40): , 1, cos θ sin θ, sin θ, cos θ cos θ sin θ, sin θ. cos θ,., 6., :, A = ,. A 1, α = (x 1, x 2, x 3 ) T, Aα = α α = ( 3, 1, 1) T, (0, 0, 0) ( 3, 1, 1). A,, B = cos θ sin θ 0 sin θ cos θ 52 = Q 1 AQ,

25 tr B = tr A, cos θ = = 3 4, cos θ = 7 8..,,,,.., x x, y = x 2 x., Householder 19 Givens 20, ( Householder ) v C n, n H : H = I 2vv v v. (2.4.3) H Householder. H H v Householder, x C n H v x = x 2vv v x. (2.4.4) v, Householder H v v ( v, v v, 43). x C n = Span{v} v x = P v x + P v x,. H v x = P v x P v x. v H v x Pv x x P v x P v x Cv v = e 3 R 3, v v = 1, Householder H v H v x = x 2vv x. H v xoy ( Givens ) (2.4.1) Jacobi 21 ( 2 ) Givens., c 2 + s 2 = 1, θ = arctan s c, n G(i, j, θ) = I n (1 c)(e ii + E jj ) + s(e ij E ji ) (2.4.5) 19 Alston Scott Householder( ),, Householder., Association for Computing Machinery. 20 James Wallace Givens( ),,.. 21 Carl Gustav Jacob Jacobi( ),, Jacobian Conjecture ( ),. 53

26 Givens ( ). ( 44). Householder Givens 0,.,, σ V. α, β V, (σ(α), β) = (α, σ(β)) (2.4.6) σ...,, σ σ. σ α 1, α 2,, α n A. α, β x, y. σ(α) = (α 1, α 2,, α n )Ax, σ(β) = (α 1, α 2,, α n )Ay, (σ(α), β) = (Ax, y) = y T Ax = (A T y) T x = (Ay) T x = (x, Ay) = (α, σ(β)).. σ, α 1, α 2,, α n A = (a ij ). σ(α j ) = n i=1 a ijα i. a ij = (σ(α j ), α i ) = (α i, σ(a j )) = (σ(α i ), α j ) = a ji,, σ ,,.,,, (x, y) T (x + y, x) T, 0 x, y 1 (1,1) (2,1) ,,. 54

27 2.4.3 σ, τ V. α, β V, (σ(α), β) = (α, τ(β)) (2.4.7) τ σ. ( 45 ), σ, σ. σ = σ, σ.,., σ ( 45 )σ σ σ : (x, y) T (a 1 x + b 1 y, a 2 x + b 2 y) T. σ : (x, y) T (a 1 x + a 2 y, b 1 x + b 2 y) T. σ σ!,.,, σ, τ V, A, B σ, τ. (1) (σ ) = σ; (2) (σ + τ) = σ + τ ; (3) (λσ) = λσ, λ R; (4) (στ) = τ σ ; (5) τ = σ B = A T ( ) 2.3.1, x V x = P U x + P U x, P U x U, PU x U x U., P U PU V U U, P U : x P U x P U : x P U x. P U = P U P U + P U = I., U = Span{v} 1, U v, P U x P v x σ V. σ V U σ. 55

28 . σ V U, σ = P U. σ. x, y V, (P U x, y) = (P U x, P U y + P U y) = (P U x, P U y) = (x P U x, P U y) = (x, P U y), σ.. σ σ V Im(σ). σ, Im(σ) = Ker(σ), σ A M n (C) x Ax A 2 = A, A = A., A C n A R(A). 1. ( R 2 ),? 2. ( R 3 )? 1 1?,?? 3.?? ,,? 5.? 6.?? ? :,. F U V.,,. U V ( )U V = {(u, v) u U, v V }; U V, (u, v), (u 1, v 1 ), (u 2, v 2 ) U V λ : (u 1, v 1 ) + (u 2, v 2 ) = (u 1 + u 2, v 1 + v 2 ), λ(u, v) = (λu, λv)., U V, U V, U V, U V. ( 47): ( ) α 1, α 2,, α n ( α- ) β 1, β 2,, β m ( β- ) U V, U V, α β-., (α i, 0), (0, β j ), 1 i n, 1 j m (2.5.1) dim (U V ) = dim U + dim V. (2.5.2) ( U V, U V, ((u 1, v 1 ), (u 2, v 2 )) = (u 1, u 2 ) + (v 1, v 2 ). (2.5.3) 56

29 48.),.. U V U V W = U V {(u, v) W u U, v = 0} {(u, v) W v V, u = 0}. R 2 x y,, x y. U V (u, v) u + v,., α β- α β-... σ i Hom(U i, V i ), i = 1, 2. U 1 U 2 V 1 V 2 σ ( u i U i ): σ(u 1 + u 2 ) = σ 1 (u 1 ) + σ 2 (u 2 ) (2.5.4) ( 49), σ, σ 1 σ 2, σ 1 σ 2. : σ 1 σ 2 α-α - β-β - A B, σ 1 σ 2 α β-α β - A B. σ 1 σ 2 α β-, σ 1 σ 2 (α i ) = σ 1 (α i ), σ 1 σ 2 (β j ) = σ 2 (β j ). σ 1 σ 2 (α β) = (σ 1 (α 1 ),, σ 1 (α n ), σ 2 (β 1 ),, σ 2 (β m )) = (α β)(a B) σ, τ (R 2 ) σ(x, y) = ax + by τ(x, y) = cx + dy. σ τ Hom(R 2 R 2, R R) : σ τ(x, y, u, v) = (ax + by, cu + dv)., σ τ - C = ( a b 0 ) c d σ τ A = (a b) B = (c d), C = A B , ( 50): σ i Hom(U i, V i ), 1 i n. σ α i -α i - A i. n σ i Hom( n n U i, V i ) n α i - n α i - n A i. i=1 i=1 i=1 i=1 57 i=1 i=1

30 .,. V = U W, σ EndV. σ σ 1 EndU σ 2 EndW, σ = σ 1 σ 2, σ(u + w) = σ 1 (u) + σ 2 (w)., u U, w W, σ(u) = σ 1 (u) U, σ(w) = σ 2 (w) W., σ(u) U, σ(w ) W. U( W ) σ.., V = V 1 V 2 V s, σ EndV. V i σ, σ i EndV i, 1 i s, σ = σ 1 σ 2 σ s. V i σ, V i σ i : σ i, v V, σ i (x) = σ(x), x V i. v = v 1 + v v s, v i V i, σ 1 σ 2 σ s (v) = σ 1 (v 1 ) + σ 2 (v 2 ) + + σ s (v s ) = σ(v 1 ) + σ(v 2 ) + + σ(v s ) = σ(v 1 + v v s ) = σ(v), σ = σ 1 σ 2 σ s. σ i σ V i, σ Vi V = V 1 V 2 V s, σ EndV. V i σ, V, σ. σ 2.5.4, σ = σ 1 σ 2 σ s. σ i V i α i - A i, s i= σ α i - s A i. i=1 σ EndV. v, x P v x. V = Ker(σ) Im(σ) (2.5.5) v = (v σ(v))+σ(v), v σ(v) Ker(σ), σ(v) Im(σ) Ker(σ) Im(σ) = 0. Ker(σ) Im(σ), V,, σ 0 n r I r, 58

31 r σ, n V., σ Ker(σ) 0, Im(σ)., A x Ax,.,,. U V, (α i, β j ), 1 i n, 1 j m (2.5.6), U V 22, U V., U V (2.5.6) α i β j, 1 i n, 1 j m (2.5.7) U V n m x ij α i β j. (2.5.8) i=1 j= U V, dim (U V ) = (dim U)(dim V ).., ( (2.5.8) ) U = F 1 n V = F m 1. U V e T 1,, et n e (m) 1,, e (m) m ( e (m) i i m ). F 1 n F m 1 : e T i e (m) j, 1 i n, 1 j m. (2.5.9) e T i e (m) j E ji, F 1 n F m 1 = F m n. (2.5.10) ( ) F[x] F[y] = F[x, y]. F[x] F[y] 1, x, x 2,, x n, 1, y, y 2,, y m, 22 ( ) Gregorio Ricci-Curbastro ( ), Tullio Levi-Civita ( ) ( ). 59

32 F[x] F[y] x n y m, m, n 0. x n y m x n y m.,,.. σ i Hom(U i, V i ), i = 1, 2., U 1 U 2 V 1 V 2 σ 1 σ 2 ( u i U i ): σ 1 σ 2 (u 1 u 2 ) = σ 1 (u 1 ) σ 2 (u 2 ) (2.5.11) ( 51), σ 1 σ 2, σ 1 σ 2., U 1 U 2 (2.5.8), (2.5.11) U 1 U 2,, , σ (F 2 ), τ Hom(F, F 2 ). σ τ - A = (a b) B = (x y) T. σ τ F 2 F σ τ(e 1 1) = σ(e 1 ) τ(1) = a (x, y) T = ax(1 e 1 ) + ay(1 e 2 ) σ τ(e 2 1) = σ(e 2 ) τ(1) = b (x, y) T = bx(1 e 1 ) + by(1 e 2 ). ( ax bx σ τ {e 1 1, e 2 1}-{1 e 1, 1 e 2 }- ay by A = (a b) B = (x y) T., ) ( ) A = (a ij ) B = (b st ) m n p q. A B ( ) ( ) Kronecker, A B, mp nq a 11 B a 12 B a 1n B a 21 B a 22 B a 2n B. a m1 B a m2 B a mn B (1) e (n) i (2) I n I m = I mn ; ( ) a (3) ( x y ) = b (4) ( a b ) ( ) x = y (e (m) j ) T = E ij ; ( ) ax ay = bx by ( ) ax bx ( a ay by ( ) a (x ) y. b b ) ( ) x = ax + by. y A, B 2. σ F 2 2, σ : X σ(x) = AXB T., σ ( ) E 11, E 12, E 21, E 22 A B, ( ) E 11, E 21, E 12, E 22 B A. 60

33 AXB = C. ( 52) (1)( ) (A B) C = A (B C); (2)( 1) (A B)(C D) = AC BD; (3)( 2) A (B ± C) = A B ± A C; (4)( ) (A B) T = A T B T ; (5)( ) (A B) 1 = A 1 B 1 ( A B A B ); (6) A B m n, A B = A m B n ; (7)( ) r(a B) = r(a)r(b); tr(a B) = tr(a)tr(b); (8)( ) λ µ m A n B, x y, λµ A B, λ + µ A I m + I n B, x y , ( 53): σ i Hom(U i, V i ), i = 1, 2. σ i α i -α i A i, i = 1, 2. σ 1 σ 2 α 1 α 2 -α 1 α 2 A 1 A 2. (2.5.7),,. U V. α V, V {β V β = α + u, u U} α U, α + U. α 1 α 2,, α 1 + U = α 2 + U. V U V/U. ( 54), (α 1 + U) + (α 2 + U) = (α 1 + α 2 ) + U, a(α + U) = aα + U. (2.5.12) V/U V U., V/U α + U ᾱ V = R 2 U = x-. α R 2, α + U x- α x-, x- x-, V/U ( ). V/U x-, y-, V/U y-, V/U = y , V U α + U U α,,,.,.,., Z, 2Z. a b 2Z, a b., n n + 2Z = 0 + 2Z = 0;, m m + 2Z = 1 + 2Z = 1. 61

34 Z/2Z 2 { 0, 1}. + ( Z ) : = 0, = = = 0 1 = 1 0 = 0, 1 1 = 1 (2.5.13), (2.5.13) Z/2Z + =, =., Z/2Z Z 2 F 2., , F 2 = {0, 1}. p, 2Z pz, F p = Z/pZ.,, (1) u U, u + U = 0 + U = U, U V/U 0 ; (2) v + U = 0 v U; (3) α + U = β + U α β U V = U W, V/U = W., dim V/U = dim V dim U. α 1,, α s U, α s+1,, α n W. V. α 1,, α s, α s+1,, α n V/U., : α s+1 + U,, α n + U (2.5.14) k 1 (α s+1 + U) + + k n s (α n + U) = 0, (k 1 α s k n s α n ) + U = 0, k 1 α s k n s α n U, 0., α + U V/U, α = x 1 α x s α s + x s+1 α s x n α n, α + U = (x 1 α x s α s + x s+1 α s x n α n ) + U = [(x 1 α x s α s ) + U] + [(x s+1 α s x n α n ) + U] = (x s+1 α s x n α n ) + U = x s+1 (α s+1 + U) + + x n (α n + U), (2.5.14) V/U., α 1,, α s U, α 1,, α s, α s+1,, α n V. α s+1 + U,, α n + U V/U. 62

35 2.5.2 σ : V, σ EndV. U σ. V/U σ : α + U σ(α) + U. (2.5.15) σ ( 56), σ σ R 3 xoy-. σ e 3, e 1, e 2 (0) I 2. U z- ( R 3 ), σ V/U σ((x, y, z) T + U) = (x, y, 0) T + U = (x, y, z) T + U, σ ē 1, ē 2 I 2. σ e 3, e 1 + e 3, e 2 + e σ e 1 + e 3, e 2 + e 3 I 2 ( σ ) A M s (F), B, C M n s (F). V, σ EndV. σ V α 1,, α s, α s+1,, α n α 1,, α s, β s+1,, β n A B A C. U = Span{α 1,, α s } σ, σ σ V/U ᾱ s+1,, ᾱ n β s+1,, β n B C. σ, U = Span{α 1,, α s } σ, Span{α s+1,, α n } Span{β s+1,, β n } σ , ᾱ s+1,, ᾱ n β s+1,, β n V/U. σ ᾱ 1 = 0,, ᾱ s = 0, ( σ(ᾱ s+1 ),, σ(ᾱ n )) = (ᾱ 1,, ᾱ s, ᾱ s+1,, ᾱ n ) ( σ(ᾱ s+1 ),, σ(ᾱ n )) = (ᾱ s+1,, ᾱ n )B, ( ) 0. B σ ᾱ s+1,, ᾱ n B. σ β s+1,, β n C. Span{α s+1,, α n } Span{β s+1,, β n } σ, 57., A, B, C, A B A C B C.. U V, U V F (U V ), U V, F (U V ) = { n x i (u i, v i ) u U, v V, x i F, n N} (2.5.16) i=0 63

36 F (U V ) N: (u 1 + u 2, v) (u 1, v) (u 2, v) (u, v 1 + v 2 ) (u, v 1 ) (u, v 2 ) x(u, v) (xu, v), x(u, v) (u, xv) F (U V )/N U V ( ). F (U V )/N U V,, F (U V ), N , U = V = F. U V α β N : (x 1 α + x 2 α, yβ) (x 1 α, yβ) (x 2 α, yβ) (xα, y 1 β + y 2 β) (xα, y 1 β) (xα, y 2 β) z(xα, yβ) (zxα, yβ), z(xα, yβ) (xα, zyβ) F (U V )/N, (xα, yβ) + N = xy(α, β) + N, (α, β) + N F (U V )/N. F (U V )/N 1., (α, β) α β F (U V )/N U V, 61., ( 62) U V, F (U V )/N U V..,. P 1. U i, V j, 1 i n, 1 j m. Hom( n mp U i, V i),. 2. Q( 2) 2. Q ( )? 3. C R 2. C/R? 4. p, F p = Z/pZ? F 2( F p) ( )? 5. R[x] C R,? 6. V, σ EndV (,, ). U σ, σ σ V/U, σ (,, )? i=1 j=1 :,,,,,.. 64

37 ,,,, (x 1, y 1 ),, (x n, y n ), y = a 0 + a 1 x + a 2 x 2., Y = Xα X, α ( ), y. ( )Y Xα, Y = Xα, X T Y = X T Xα ( 2, 12), ( 1, 5), (0, 3), (1, 2), (2, 4).( 63) S = {{x k } = (, x 2, x 1, x 0, x 1, x 2, ) x i R}, S, V. S ( ). S, l 2 = {{x k } S S : (1) (2) + k= l 1 = {{x k } S x k = 0, k 0 x 2 k < + }. + k=1 x k < + }; {{x k } S x k 0 } ( x k 0 ) (3) l = {{x k } S x k = 0, k 0, C, x k < C, k}. l 2, ( 64), ({x k }, {y k } ) = 65 + k= x k y k. (2.6.1)

38 {x k } {y k } + k= x k y k = 0.,,,, {x k } {y k }, x k y k = 0, k ( {x k } {y k } 0, ), {x k } {y k }....., n (a i a 0 a n 0) y k = a n x k + a n 1 x k a 1 x k+n 1 + a 0 x k+n (2.6.2) {x k } {y k }. {y k },, ( ) y k = x k x k x k+2 ( x = cos πt 4 ) {x k } = {, x 0 = 1, ( 65) {y k } = {, y 0 = 1 2, y 1 = 1, 1, 0, 1, 1, 1 1, 0,, 1, 1, 0, } , 0, 1, 1, 1 1, 0,, 1, 1, 0, } {u k }( x = cos 3πt 4 ), ( 65) {u k } = {, u 0 = 1, 1 2, 0, 1 1, 1,, 0, 1, 1, 1, 0, } , ( ) n n.,. n,, : y k+1 = Ay k, k (2.6.3) y k R n, A M n (R). ( a 0 = 1) a n x k + a n 1 x k a 1 x k+n 1 + x k+n = 0, k y k+1 = Ay k ( k), y k = (x k, x k+1,, x k+n 1 ) T, A = a n a n 1 a n 2 a 1 66

39 , A f(x) = a n + a n 1 x + + a 1 x n 1 + x n. x k = 0, k < 0, (2.6.3) y k = A k y 0 (2.6.4) y 0 = (x 0, x 1,, x n 1 ) T. A..., 2 3 ( ).,., S V ( R 2 R 3, ), σ V, σ(s) = {y V y = σ(x), x S} S. ( 67) V S vol(s). vol(σ(s)) = σ vol(s) , S = {(x, y) x2 + y2 1}. a 2 b 2. ( ) a 0 α Aα, A = S A π = πab. 0 b ( AB = A B ) A, B M n (F), G F n V 0. F n σ : x Ax τ : x Bx στ : x (AB)x , τ(g) B V, σ(τ(g)) A B V, στ(g) AB V. σ(τ(g)) = στ(g), AB V = A B V.. AB = A B. A 1 XB 1 + A 2 XB A s XB s = C (2.6.5), A i M m (C), B i M n (C), C C m n, X C m n. (2.6.5)., AXB T = C C σ, σ : X AXB T C m n , σ ( ) E ij B A, X ( ) x, σ σ : (E 11,, E mn )x (E 11,, E mn )(B A)x (2.6.6) AXB T = C (B A)x = c (2.6.7) c C ( )., m n ( ) mn, 67

40 2.6.1 A = (a ij ) m n, A mn, A, vec(a), vec(a) = (a 11, a 21,..., a m1, a 12, a 22,..., a m2,..., a 1n, a 2n,..., a mn ) T., A : rvec(a) = (a 11, a 12,..., a 1n, a 21, a 22,..., a 2n,..., a m1, a m2,..., a mn )., vec F m n F mn, ( )., rvec(a T ) = (vec(a)) T, vec(a T ) = rvec(a) T. ( ), (1) rvec(abc) = rvec(b)(a T C), vec(abc) = (C T A)vec(B)., vec(a m m B m n ) = (I n A)vec(B), vec(b m n C n n ) = (C T I m )vec(b); (2) vec(xa + yb) = xvec(a) + yvec(b), x, y C; (3) vec(ac + CB) = (I n A + B T I m )vec(c). (2.6.5) X C m n (2.6.5) vec(x) Gx = c, x = vec(x), c = vec(c), G = s i=1 (BT i A i ). (2.6.5), c = vec(c) = s i=1 vec(a ixb i ) = s i=1 (BT i A i )vec(x) = G vec(x) = Gx (2.6.5) r([g, c]) = r(g); G Lyapunov 23 AX + XB = C, A = ( ) ( 2 1, B = 0 2 ) ( 2 3, C = 3 4 ). G = I 2 A + B T I 2 = , c = vec(c) = ( 2, 3, 3, 4) T. Gx = c x = ( 1, 1, 1, 1) T. 23 Aleksandr Mikhailovich Lyapunov( ),,,,.. 68

41 X = ( ) (1) ( 2.1.2); (2) V. : dim V = max{m 0 = V 0 V 1 V m 1 V m = V, V i V i+1 } ( ) A A, A. 6. V, W 1, W 2,, W s V. W 1 W 2 W s V.( : Vandermonde.) 7. V n, U V. U V, U. 8. V n, U = {f(x) V f(1) = 0}. U V, V.. 9. U = [(1, 2, 3, 6) T, (4, 1, 3, 6) T, (5, 1, 6, 12) T ], W = [(1, 1, 1, 1) T, (2, 1, 4, 5) T ] R 4, (1) U W ; (2) U W, U ; (3) U W, W ; (4) U + W. 10. U = {(x, y, z, w) x + y + z + w = 0}, W = {(x, y, z, w) x y + z w = 0}. U W, U + W 11. A, B n m, m p, V xab = 0. U = {y = xa x V } F n, U. 12. A n. (1) A. ; (2) A Hermite Hermite. ; (3) R ; (4) (1)-(3). 13. F : f(x), g(x), g(x) 0, q(x) r(x) f(x) = g(x)q(x) + r(x) r(x) = 0 r(x) < g(x) (1) f. : f,, ; (2) (1). 69

42 15. σ(α 1 ), σ(α 2 ),, σ(α s ), α 1, α 2,, α s. 16.(1) 2.2.2; (2) σ Hom(U, V ),, τ = σ 1, σ = τ 1 ; (3) 2 C. 17. σ Hom(U, V ). (1) σ Kerσ Imσ U V ; (2) U/Kerσ Imσ. 18. σ EndV V A. : τ EndV, τ σ, τ A ? R n. 21. U V, dim F Hom(U, V ) = (dim F U)(dim F V ) ( 2.2.7) φ V V. 25. : f(x) f (x) 1, x, x 2,, x n 1 1, (x a), (x a) 2,, (x a) n 1.?. 26. V F n, σ V 0. σ V., ; V, σ. 27. (1) τ ; (2) σ, τ EndV V, σ + τ V ; «A B (3) A, D, B, C,. C D 28. V F n, A V, P V, σ A, τ P P. σ τ V.,. V, σ τ. 29. V = R 3, σ(x, y, z) = (x + 2y z, y + z, x + y 2z). (1) σ ; (2) σ. 30. V n, U V. W = {α V (α, β) = 0, β U}. W V V = U W (2). 32. V = R[x] n, U = {f(x) V f(0) = 0}. (f(x), g(x)) = Z 1 (1) U V n 1, U ; (2) n = 3, U U. 0 f(x)g(x) d x. 33. R n W, e 1 + e 2 W e : f(x) Fourier a n, b n (n > 0) f(x) cos nx, sin nx 70

43 V V σ, σ 5., V, Imσ. τ, Kerτ = Imσ, Imτ = Kerσ. 37. α 0 V, σ(α) = α 2(α, α 0)α 0, α V. (1) σ ; (2) σ. 38. : V σ ( (σ(α), β) = (α, σ(β))) σ V. 39. σ R 2, «c s P = s c c 2 + s 2 = 1. σ, ( : 1 3.) 41. σ EndR 2. S = {(x, y) : 0 x, y 1} σ G = σ(s) = {σ(x, y) : (x, y) S}. : (1) G ; (2) G, σ? (3) σ, G? 42. (1) σ EndR 2. C (, ). σ(c) ( C ); (2) P n ( C n ), σ(q) ; (3),, σ ; (4) σ EndR 3. Q. σ(q) ( Q ). 43. Householder H v v,. Householder. 44. Givens G. x = (x 1, x 2,, x n ) T, Gx. x, Givens x e (1) ; (2) 2.4.9, 2.4.5; (3). 46. (1) Hermite Hermite? Hermite ; (2), ( 2.4.5) (2.5.3) U V. 49. (2.5.4) (2.5.11) V/U (2.5.12). 71

44 (2.5.15) σ. U σ 57. A M s(f ), B, C M n s(f ). V, σ EndV. σ V «A X 0 B α 1,, α s, α s+1,, α n α 1,, α s, β s+1,, β n «A Y. U = Span{α 0 C 1,, α s } σ, σ σ V/U ᾱ s+1,, ᾱ n β s+1,, β n B C , A, B n. σ F n n, σ : X σ(x) = AXB T. σ E 11,, E 1n, E 21,, E 2n, E n1,, E nn B A. 59. (, ) σ C, ««x x σ : A, y y (x, y) T «a b A =. b a x + yi, σ((x, y) T ) = (a + bi)(x + yi) V = M 2 (C), U = M 2 (R). iu = {A V A = ix, X U}. ( ) U (iu), V/U (V/U) C ,. 64. (2.6.1) C. S? {u k }.? 66. y k+3 2y k+2 5y k+1 + 6y k = 0( k ), σ 29, S = {(x, y, z) T R 3 0 x, y, z 1}. σ(s) AX + XB = C, A A, B = C A, C = A. 72. σ : X AX + XB M n (C). σ A B. 73. U, W V. (1) (U + W )/W U/(U T W ) ; (2) (1). 74. ( ) A F m n. x F m, y F m, f(x, y) = x T Ay. 72

45 f(x, y) F m n, A. F m n B(m, n). (1) B(m, n) F ;( 6 ) (2) B(m, n) ; (3) B(m, n) Hom F (F m F n, F ) = (F m F n ) U W V, α, β V. : (1) α + U = P U (α) + U; (2) (α + U) + (β + W ) = (α + β) + (U + W ); (3) (α + U) (β + W ) α β U + W. 76. tr : X tr(x) M n (F ) F σ(xy ) = σ(y X) σ(i) = n. 73

,,,,,,., Penrose i,, i j X A {i,, i j }-, X A {, 3}-, A,3 ; A Moore- Penrose A = A,2,3,4., A 5,, Moore-Penrose A {}- A, A. m n Moore-Penrose A, {}- A,

,,,,,,., Penrose i,, i j X A {i,, i j }-, X A {, 3}-, A,3 ; A Moore- Penrose A = A,2,3,4., A 5,, Moore-Penrose A {}- A, A. m n Moore-Penrose A, {}- A, , Ax = b A m n m = n, x = A b., A, A A = UR : x = R U b 6.. A Ax = A b, A A. A = R U, A A = I n,, A, A A. n < m, AA = In m m 6..2 A n < m, AA = I m,, A = R U A. A? A, B, AB BA,., A m n F n F m. A A F m

More information

AU = U λ c 2 c 3 c n C C n,, n U 2 U2 C U 2 = B = b 22 b 23 b 2n b 33 b 3n b nn U = U ( U 2, U AU = = = ( ( U 2 U 2 U AU ( U2 λ λ d 2 d 3 d n b 22 b 2

AU = U λ c 2 c 3 c n C C n,, n U 2 U2 C U 2 = B = b 22 b 23 b 2n b 33 b 3n b nn U = U ( U 2, U AU = = = ( ( U 2 U 2 U AU ( U2 λ λ d 2 d 3 d n b 22 b 2 Jordan, A m? (264(, A A m, A (, P P AP = D, A m = P D m P, P AP 837, Jacobi (, ( Jacobi,, Schur 24 Cayley-Hamilton 25,, A m Schur Jordan 26 Schur : 3 (Schur ( A C n n, U U AU = B, (3 B A n n =, n, n λ

More information

4 A C n n, AA = A A, A,,, Hermite, Hermite,, A, A A, A, A 4 (, 4,, A A, ( A C n n, A A n, 4 A = (a ij n n, λ, λ,, λ n A n n ( (Schur λ i n

4 A C n n, AA = A A, A,,, Hermite, Hermite,, A, A A, A, A 4 (, 4,, A A, ( A C n n, A A n, 4 A = (a ij n n, λ, λ,, λ n A n n ( (Schur λ i n ,?,,, A, A ( Gauss m n A B P Q ( Ir B = P AQ r(a = r, A Ax = b P Ax = P b, x = Qy, ( Ir y = P b (4 (4, A A = ( P Ir Q,,, Schur, Cholesky LU, ( QR,, Schur,, (,,, 4 A AA = A A Schur, U U AU = T AA = A A

More information

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P.

. () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) : P.33 A (9),. (4) : P. B 5, 7(). (5) : P.8 3.3; P ; P.89 A 7. (6) : P. () * 3 6 6 3 9 4 3 5 8 6 : 3. () ; () ; (3) (); (4) ; ; (5) ; ; (6) ; (7) (); (8) (, ); (9) ; () ; * Email: huangzh@whu.edu.cn . () ; () ; (3) ; (4).. () : P.4 3.4; P. A (3). () : P. A (5)(6); B. (3) :

More information

,

, zwp@ustc.edu.cn Office: 1006 Phone: 63600565 http://staff.ustc.edu.cn/~zwp/ http://fisher.stat.ustc.edu.cn 1.1................. 2 1.2,........... 9 1.3................. 13 1.4.................... 16 1.5..................

More information

( ) Wuhan University

( ) Wuhan University Email: huangzh@whueducn, 47 Wuhan Univesity i L A TEX,, : http://affwhueducn/huangzh/ 8 4 49 7 ii : : 4 ; 8 a b c ; a b c 4 4 8 a b c b c a ; c a b x y x + y y x + y x x + y x y 4 + + 8 8 4 4 + 8 + 6 4

More information

3978 30866 4 3 43 [] 3 30 4. [] . . 98 .3 ( ) 06 99 85 84 94 06 3 0 3 9 3 0 4 9 4 88 4 05 5 09 5 8 5 96 6 9 6 97 6 05 7 7 03 7 07 8 07 8 06 8 8 9 9 95 9 0 05 0 06 30 0 .5 80 90 3 90 00 7 00 0 3

More information

untitled

untitled 995 + t lim( ) = te dt =. α α = lim[( + ) ] = e, α α α α = t t t t te dt = tde = te α α e dt = αe e, =, e α = αe α e α, α =. y z = yf, f( u) z + yz y =. z y y y y y y z = yf + y f = yf f, y y y y z y =

More information

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

More information

PowerPoint Presentation

PowerPoint Presentation 1 1 2 3 4 2 2004 20044 2005 2006 5 2007 5 20085 20094 2010 4.. 20112116. 3 4 1 14 14 15 15 16 17 16 18 18 19 19 20 21 17 20 22 21 23 5 15 1 2 15 6 1.. 2 2 1 y = cc y = x y = x y =. x. n n 1 C = 0 C ( x

More information

《分析化学辞典》_数据处理条目_1.DOC

《分析化学辞典》_数据处理条目_1.DOC 3 4 5 6 7 χ χ m.303 B = f log f log C = m f = = m = f m C = + 3( m ) f = f f = m = f f = n n m B χ α χ α,( m ) H µ σ H 0 µ = µ H σ = 0 σ H µ µ H σ σ α H0 H α 0 H0 H0 H H 0 H 0 8 = σ σ σ = ( n ) σ n σ /

More information

x y z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.1. (X, Y ) 3.2 P (x 1 < X x 2, y 1 < Y y 2 ) = F (x 2, y 2 ) F (x 2, y 1 ) F (x 1, y 2

x y z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.1. (X, Y ) 3.2 P (x 1 < X x 2, y 1 < Y y 2 ) = F (x 2, y 2 ) F (x 2, y 1 ) F (x 1, y 2 3 3.... xy z.... X Y (cdf) F (x, y) = P (X x, Y y) (X, Y ) 3.. (X, Y ) 3.2 P (x < X x 2, y < Y y 2 ) = F (x 2, y 2 ) F (x 2, y ) F (x, y 2 ) + F (x, y ) 3. F (a, b) 3.2 (x 2, y 2) (x, y 2) (x 2, y ) (x,

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

x y 7 xy = 1 b c a b = x x = 1. 1 x + 17 + x 15 = 16 x + 17 x 15 + 17 15 x + 17 - x 15 = (x x ) ( ). x + 17 + x 15 x + y + 9 x + 4 y = 10 x + 9 y + 4 = 4xy. 9 4 ( x + ) + ( y + ) = 10 x y 9 ( x + )( ).

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

iv 2 6 [1] [2] [1] A.. [ ], [ ]. 3 [M]. :, 2008 [2] R. [ ], [ ]. [M]. :, 2013 [3]. [M]. :, [4]. 2 [M]. :, [5]. 2 [M]. :, [6]

iv 2 6 [1] [2] [1] A.. [ ], [ ]. 3 [M]. :, 2008 [2] R. [ ], [ ]. [M]. :, 2013 [3]. [M]. :, [4]. 2 [M]. :, [5]. 2 [M]. :, [6] iv 2 6 [1] [2] 2015 11 [1] A.. [ ], [ ]. 3 [M]. :, 2008 [2] R. [ ], [ ]. [M]. :, 2013 [3]. [M]. :, 2005. [4]. 2 [M]. :, 2002. [5]. 2 [M]. :, 2003. [6],,. [M]. :, 2000. 3 a b c d e a c vi b 1 1 2 1 P 10

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

untitled

untitled 1.1 1.1.1 1.1.2 A, B, C, X, Y, Z 1 a, b, c, x, y, z N, Z, Q R 1.1.3 a A a A a A a A a A a A a A b A a, b A a 1 A,, a n A a 1,, a n A 1.1.4 1.1.5 3 N 3 2 Q 2 R 3 2 N 2 Q {a 1,, a n } {,,,,,,,, }, {, } {,

More information

Solutions to Exercises in "Discrete Mathematics Tutorial"

Solutions to Exercises in Discrete Mathematics Tutorial 1 2 (beta 10 ) 3 SOLVED AND TEXIFIED BY 4 HONORED REVIEWER BBS (lilybbs.us) 1 2002 6 1 2003 1 2 2 ( ) (E-mail: xiaoxinpan@163.com) 3 beta 2005 11 9 ( / ) 40.97% 4 02CS chouxiaoya tedy akaru yitianxing

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information

Microsoft Word - xxds fy.doc

Microsoft Word - xxds  fy.doc , 5, ;,,,,,, ; ; 4,,, ; () 1345, 2,,,,,,,, 2014 2 1 1 11 1 111 1 112 2 113 Cramer 3 12 3 121 3 122 4 123 4 13 5 131 5 132 13 133 13 134 Cramer 14 135 16 14 17 15 20 16 () 27 2 30 21 31 211 31 212 31 213

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

! + + / > / + / + > > > +, + &+ 0.? Α Β Χ Β / Δ Δ Α Β Χ Β + & , + ΕΦ (?Γ Η.Δ. + Ι + 1 %+ : +, 5+ + ; +, + Ι + : + ; ϑ + ;! + + Ι & + & ϑ

! + + / > / + / + > > > +, + &+ 0.? Α Β Χ Β / Δ Δ Α Β Χ Β + & , + ΕΦ (?Γ Η.Δ. + Ι + 1 %+ : +, 5+ + ; +, + Ι + : + ; ϑ + ;! + + Ι & + & ϑ ! # % & () +, () (+. / & # % & () (+ () + 0 1 & ) + + + 2 2 2 1 / & 2 3 ( + (+ 41 ( + 15. / + 6 7 / 5 1 + 1 + 8 8 1/, 4 9 + : 6 ; < ; 6 ; = 9 04 ; 6 ; 49 / &+ > + > + >,+ & &+ / > ! + + / > / + / + > >

More information

Π Ρ! #! % & #! (! )! + %!!. / 0% # 0 2 3 3 4 7 8 9 Δ5?? 5 9? Κ :5 5 7 < 7 Δ 7 9 :5? / + 0 5 6 6 7 : ; 7 < = >? : Α8 5 > :9 Β 5 Χ : = 8 + ΑΔ? 9 Β Ε 9 = 9? : ; : Α 5 9 7 3 5 > 5 Δ > Β Χ < :? 3 9? 5 Χ 9 Β

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5 0 ( 1 0 % (! # % & ( ) + #,. / / % (! 3 4 5 5 5 3 4,( 7 8 9 /, 9 : 6, 9 5,9 8,9 7 5,9!,9 ; 6 / 9! # %#& 7 8 < 9 & 9 9 : < 5 ( ) 8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, 5 4

More information

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) ! # % & # % ( ) & + + !!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) 6 # / 0 1 + ) ( + 3 0 ( 1 1( ) ) ( 0 ) 4 ( ) 1 1 0 ( ( ) 1 / ) ( 1 ( 0 ) ) + ( ( 0 ) 0 0 ( / / ) ( ( ) ( 5 ( 0 + 0 +

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

2 2 2 : (1) : A 0, A 1, A 2, (2) : (3) : (, ) : ?? ( A 1 ) ((A

2 2 2 : (1) : A 0, A 1, A 2, (2) : (3) : (, ) : ?? ( A 1 ) ((A 2 1 1 2 2 2 : (1) : A 0, A 1, A 2, (2) : (3) : (, ) : 1. 2. 3. 4. 5.?? ( A 1 ) ((A 1 2.1. 2 2 2 : (a) A i (b) α β ( α) (α β) (α β) (α β) (α β) (c) 1. α β 2. A 0, A 1, A 2, A B P Q (a) (b) (c) (b) X X α

More information

( ) : ( ) (CIP) /.. :,003. () ISBN O4 44 CIP (00) : : 7 : 7007 : (09 ) : : :850 mm 68 mm / 3 :0.5 :60 :00 0

( ) : ( ) (CIP) /.. :,003. () ISBN O4 44 CIP (00) : : 7 : 7007 : (09 ) :   : :850 mm 68 mm / 3 :0.5 :60 :00 0 ( ) ( ) : ( ) (CIP) /.. :,003. () ISBN 7 56 448 0.... O4 44 CIP (00) 007344 : : 7 : 7007 : (09 )8493844 : www.nwpup.com : :850 mm 68 mm / 3 :0.5 :60 :00 003 3 :0 006 000 :3: 00 00, ( ),,,,,,,, 003 8 (

More information

1 2 1.1............................ 2 1.2............................... 3 1.3.................... 3 1.4 Maxwell.................... 3 1.5.......................... 4 1.6............................ 4

More information

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5, # # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( 0 2 3 ( & +. 4 / &1 5, !! & 6 7! 6! &1 + 51, (,1 ( 5& (5( (5 & &1 8. +5 &1 +,,( ! (! 6 9/: ;/:! % 7 3 &1 + ( & &, ( && ( )

More information

5 (Green) δ

5 (Green) δ 2.............................. 2.2............................. 3.3............................. 3.4........................... 3.5...................... 4.6............................. 4.7..............................

More information

ü ü ö ä r xy = = ( x x)( y y) ( x x) ( y y) = = x y x = x = y = y rxy x y = Lxy = x x y y = xy x y ( )( ) = = = = Lxx = x x = x x x ( ) = = = Lyy = y y = y y ( ) = = = r xy Lxy = ( ) L L xx yy 0

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

koji-13.dvi

koji-13.dvi 26 13 1, 2, 3, 4, 5, 6, 7 1 18 1. xy D D = {(x, y) y 2 x 4 y 2,y } x + y2 dxdy D 2 y O 4 x 2. xyz D D = {(x, y, z) x 1, y x 2, z 1, y+ z x} D 3. [, 1] [, 1] (, ) 2 f (1)

More information

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

More information

b1²Ä¤@³¹¼Æ»P§¤¼Ð¨t

b1²Ä¤@³¹¼Æ»P§¤¼Ð¨t 第 一 章 數 與 坐 標 系 大 學 聯 考 試 題 與 推 薦 甄 選 試 題 第 一 類 大 學 入 學 甄 試 試 題 評 量 1. 下 列 何 者 是 2 100 除 以 10 的 餘 數? (1) 0 (2) 2 (3) 4 (4) 6 (5) 8 88 年 2. 一 個 正 三 角 形 的 面 積 為 36, 今 截 去 三 個 角 ( 如 右 圖 ), 使 成 為 正 六 邊 形,

More information

: : : ( CIP ) : ( ) /. :, ISBN :. G7. 4 CIP ( 00 ) 005 : : ( ) : : ( 0 : 0004) : : : / 6 : 7 ( ) : 408 () : 00

: : : ( CIP ) : ( ) /. :, ISBN :. G7. 4 CIP ( 00 ) 005 : : ( ) : : ( 0 : 0004) : : : / 6 : 7 ( ) : 408 () : 00 () ( ) ( : ) : : : ( CIP ) : ( ) /. :, 00. 7 ISBN 7-8008 - 958-8... :. G7. 4 CIP ( 00 ) 005 : : ( ) : : ( 0 : 0004) : : 00 7 00 7 : 78709 / 6 : 7 ( ) : 408 () : 000 : ISBN 7-8008 - 958-8/ G89 : 9 98. 00

More information

Ps22Pdf

Ps22Pdf ) ,,, :,,,,,,, ( CIP) /. :, 2001. 9 ISBN 7-5624-2368-7.......... TU311 CIP ( 2001) 061075 ( ) : : : : * : : 174 ( A ) : 400030 : ( 023) 65102378 65105781 : ( 023) 65103686 65105565 : http: / / www. cqup.

More information

微积分 授课讲义

微积分 授课讲义 2018 10 aiwanjun@sjtu.edu.cn 1201 / 18:00-20:20 213 14:00-17:00 I II Taylor : , n R n : x = (x 1, x 2,..., x n ) R; x, x y ; δ( ) ; ; ; ; ; ( ) ; ( / ) ; ; Ů(P 1,δ) P 1 U(P 0,δ) P 0 Ω P 1: 1.1 ( ). Ω

More information

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 & ! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ

More information

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α Ε! # % & ( )%! & & + %!, (./ 0 1 & & 2. 3 &. 4/. %! / (! %2 % ( 5 4 5 ) 2! 6 2! 2 2. / & 7 2! % &. 3.! & (. 2 & & / 8 2. ( % 2 & 2.! 9. %./ 5 : ; 5. % & %2 2 & % 2!! /. . %! & % &? & 5 6!% 2.

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

ΟΠΟ ΟΠ 8 ΠΠ Π8 ΡΟ Σ Β Θ 1 7 Τ 1 Υ 4? = ; > ; 1.= 3 Α14? 4Ι ϑ1 Α 3Ε3 ΕΛ?Τ %1 >: : : ; : : 9 = 7,Ι ΕΑ 8 7,Ι Τ3? 8 7 ΛΙ 3ς 8 7Μ 8 7 Ω ΙςΙ = 8 7 Τ Μ 3Ε Δ?

ΟΠΟ ΟΠ 8 ΠΠ Π8 ΡΟ Σ Β Θ 1 7 Τ 1 Υ 4? = ; > ; 1.= 3 Α14? 4Ι ϑ1 Α 3Ε3 ΕΛ?Τ %1 >: : : ; : : 9 = 7,Ι ΕΑ 8 7,Ι Τ3? 8 7 ΛΙ 3ς 8 7Μ 8 7 Ω ΙςΙ = 8 7 Τ Μ 3Ε Δ? !! 0 1 # % & ( ) ( +,.% /.#.% / 3, 4! 5 6 7 8 %1 9 9 9 9 : ;: 5 : < %1 = 7 8 7 1 1 > 8 7? Α Β Α 9 % 3 Χ Δ Ε? Φ? Α Ε? 8 7 ; 8 7 Γ? Α Β Α Η Ι Ε 9Ε = ϑ 1 ΑΚΕ 3 Ε Λ? 3 Μ 8 6 8! Ν! ΟΠΟ ΟΠ 8 ΠΠ Π8 ΡΟ Σ Β Θ 1

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

( CIP).:,3.7 ISBN TB CIP (3) ( ) ISBN O78 : 3.

( CIP).:,3.7 ISBN TB CIP (3) ( ) ISBN O78 : 3. ( CIP).:,3.7 ISBN 7 568 383 3.......... TB CIP (3) 334 3 37 ( ) 64536 www.hdlgpress.com.c 7879 6 9.75 479 3 7 3 7 45 ISBN 7 568 383 3O78 : 3. 995,.,.,.,. :,,,,.. :,,,,,,.,,,,.,,. ,,.,,,.,,,.,,,,.,.,,,

More information

UDC

UDC CECS 102:2002 Technical specification for steed structure of light-eight Buildings ith gabled frames 2003 1 Technical specification for steed structure of light-eight Buildings ith gabled frames CECS102:2002

More information

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; <

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; < ! # %& ( )! & +, &. / 0 # # 1 1 2 # 3 4!. &5 (& ) 6 0 0 2! +! +( &) 6 0 7 & 6 8. 9 6 &((. ) 6 4. 6 + ( & ) 6 0 &6,: & )6 0 3 7 ; ; < 7 ; = = ;# > 7 # 0 7#? Α

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

:,,,, ( CIP ) /,. :, ISBN CIP ( 2001) : : 127, : : : ht t p: / / www. nwpup. com : :

:,,,, ( CIP ) /,. :, ISBN CIP ( 2001) : : 127, : : : ht t p: / / www. nwpup. com : : :,,,, ( CIP ) /,. :, 2001. 8 ISBN 7 5612 1363 8............. 0342 CIP ( 2001) 027392 : : 127, : 710072 : 029-8493844 : ht t p: / / www. nwpup. com : : 787mm1 092mm : 19. 75 : 480 : 2001 8 1 2001 8 1 :

More information

( ) (! +)! #! () % + + %, +,!#! # # % + +!

( ) (! +)! #! () % + + %, +,!#! # # % + +! !! # % & & & &! # # % ( ) (! +)! #! () % + + %, +,!#! # # % + +! ! %!!.! /, ()!!# 0 12!# # 0 % 1 ( ) #3 % & & () (, 3)! #% % 4 % + +! (!, ), %, (!!) (! 3 )!, 1 4 ( ) % % + % %!%! # # !)! % &! % () (! %

More information

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

More information

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

More information

# #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. /

# #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. / ! ( ) # # % % ( % % %! % % & % # #! ) ( ( +,! %,! ( # # %& % ( ) +! +, +. / 12 23 4 5 6 7 3.! (. ( / ( ) ). 1.12 ( 4 4 % & &!7 % (!!!!, (! % !!! % %!,! ( & (!! 8!!!,!!+!! & !!%! & 9 3 3 :;

More information

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

More information

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7

Β Χ Χ Α Β Φ Φ ; < # 9 Φ ; < # < % Γ & (,,,, Η Ι + / > ϑ Κ ( < % & Λ Μ # ΝΟ 3 = Ν3 Ο Μ ΠΟ Θ Ρ Μ 0 Π ( % ; % > 3 Κ ( < % >ϑ Κ ( ; 7 ! # % & ( ) +, + )% ). )% / 0 1. 0 3 4 5 6 7 8 7 8 9 : ; < 7 ( % ; =8 9 : ; < ; < > ;, 9 :? 6 ; < 6 5 6 Α Β 5 Δ 5 6 Χ 5 6 5 6 Ε 5 6 Ε 5 5 Β Χ Χ Α Β 7 8 9 Φ 5 6 9 Φ ; < # 9 Φ ; < # 7 8 5 5 < % Γ & (,,,,

More information

-2 4 - cr 5 - 15 3 5 ph 6.5-8.5 () 450 mg/l 0.3 mg/l 0.1 mg/l 1.0 mg/l 1.0 mg/l () 0.002 mg/l 0.3 mg/l 250 mg/l 250 mg/l 1000 mg/l 1.0 mg/l 0.05 mg/l 0.05 mg/l 0.01 mg/l 0.001 mg/l 0.01 mg/l () 0.05 mg/l

More information

2

2 April, 2010 2 Contents 1 7.......................... 7 1.1........................................ 7 1.2..................................... 8 1.3.................................. 8 1.4........................................

More information

ο HOH 104 31 O H 0.9568 A 1 1 109 28 1.01A ο Q C D t z = ρ z 1 1 z t D z z z t Qz = 1 2 z D z 2 2 Cl HCO SO CO 3 4 3 3 4 HCO SO 2 3 65 2 1 F0. 005H SiO0. 032M 0. 38 T4 9 ( K + Na) Ca 6 0 2 7 27 1-9

More information

untitled

untitled 1. S {2 {3} 4} R {{} 3 4 1} {} S,{} R,{,4,{3}} S,{{},1,3,4} R,RS,{} S,{} R,φ R,φ {{}} R E,{φ} S,φ R, φ {{3},4} {} S {} R { 4 {3}} S {{} 1 3 4 } R R S {} S {} R φ R φ {{}} R E {φ} S φ φ {{3} 4 } 2 { {}}

More information

习 题 12

习    题  12 .7 Lgrge. ( + = f, ) = f (,, ) = + + + = + + =, f (,, ) = + + A + B + C = 0, > > > 0 A + B + C = L (,, λ) = λ( + ) L = λ = 0 L = λ = 0 λ = ( + ) = 0, = =, + = 4, f m f(, ) = = 4 L (,,, λ) = + λ( + + )

More information

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ ! # % & ( ) % + ( ), & ). % & /. % 0 1!! 2 3 4 5# 6 7 8 3 5 5 9 # 8 3 3 2 4 # 3 # # 3 # 3 # 3 # 3 # # # ( 3 # # 3 5 # # 8 3 6 # # # # # 8 5# :;< 6#! 6 =! 6 > > 3 2?0 1 4 3 4! 6 Α 3 Α 2Η4 3 3 2 4 # # >

More information

untitled

untitled arctan lim ln +. 6 ( + ). arctan arctan + ln 6 lim lim lim y y ( ln ) lim 6 6 ( + ) y + y dy. d y yd + dy ln d + dy y ln d d dy, dy ln d, y + y y dy dy ln y+ + d d y y ln ( + ) + dy d dy ln d dy + d 7.

More information

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ

ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν Α Γ Β 1 Α Ο Α : Α 3. / Π Ο 3 Π Θ # % & ( ) +,& ( + &. / 0 1 2 3 ( 4 4 5 4 6 7 8 4 6 5 4 9 :.; 8 0/ ( 6 7 > 5?9 > 56 Α / Β Β 5 Χ 5.Δ5 9 Ε 8 Φ 64 4Γ Β / Α 3 Γ Β > 2 ϑ 3 : Α 3 Η ϑ 1 Ι Η Ι + Ι 5 Κ ϑ Λ Α ΜΛ Ν Ν Ν Ν 3 3 3 Α3 3

More information

%? = Β 2Β 2 2 <Χ Φ Α Γ 7Δ 8 3 Ε & % # %& Η! % & &, &), 1 & % & +&,,. & / 0, & 2 %. % 3 % / % 4 %

%? = Β 2Β 2 2 <Χ Φ Α Γ 7Δ 8 3 Ε & % # %& Η! % & &, &), 1 & % & +&,,. & / 0, & 2 %. % 3 % / % 4 % ! # % # & ) + ),. / 0 1 2 ) 1 2 2 ) 3 4 5 6! 7 8 9&3 78 : & ; =? > > > 7 8 9&3 : = = = Α + =?! %? = Β 2Β 2 2

More information

9 : : ; 7 % 8

9 : : ; 7 % 8 ! 0 4 1 % # % & ( ) # + #, ( ) + ) ( ). / 2 3 %! 5 6 7! 8 6 7 5 9 9 : 6 7 8 : 17 8 7 8 ; 7 % 8 % 8 ; % % 8 7 > : < % % 7! = = = : = 8 > > ; 7 Ε Β Β % 17 7 :! # # %& & ( ) + %&, %& ) # 8. / 0. 1 2 3 4 5

More information

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ ! # % & ( ) +,. / 0 1 + 2. 3 4. 56. / 7 89 8.,6 2 ; # ( ( ; ( ( ( # ? >? % > 64 5 5Α5. Α 8/ 56 5 9. > Β 8. / Χ 8 9 9 5 Δ Ε 5, 9 8 2 3 8 //5 5! Α 8/ 56/ 9. Φ ( < % < ( > < ( %! # ! Β Β? Β ( >?? >?

More information

: ; # 7 ( 8 7

: ; # 7 ( 8 7 (! # % & ( ) +,. / +. 0 0 ) 1. 2 3 +4 1/,5,6 )/ ) 7 7 8 9 : ; 7 8 7 # 7 ( 8 7 ; ;! #! % & % ( # ) % + # # #, # % + &! #!. #! # # / 0 ( / / 0! #,. # 0(! #,. # 0!. # 0 0 7 7 < = # ; & % ) (, ) ) ) ) ) )!

More information

2.1 1980 1992 % 80 81 82 83 84 85 86 87 88 89 90 91 92 81.9 69.5 68.7 66.6 64.7 66.1 65.5 63.1 61.4 61.3 65.6 65.8 67.1 5.0 12.0 14.2 10.9 13.0 12.9 13.0 15.0 15.8 13.8 10.9 12.7 17.3 13.1 18.6 17.1 22.5

More information

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ; ! #! % & % ( ) ( +, & %. / & % 0 12 / 1 4 5 5! 6 7 8 7 # 8 7 9 6 8 7! 8 7! 8 7 8 7 8 7 8 7 : 8 728 7 8 7 8 7 8 7 8 7 & 8 7 4 8 7 9 # 8 7 9 ; 8 ; 69 7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β

More information

:

: : : 4.1....................... 1 4.1.1............... 1 4.2........... 10 4.2.1............... 10 4.2.2..... 14 4.2.3................ 18 4.2.4................ 24 4.3...................... 26 4.3.1..............

More information

untitled

untitled 4 6 4 4 ( n ) f( ) = lim n n +, f ( ) = = f( ) = ( ) ( n ) f( ) = lim = lim n = = n n + n + n f ( ), = =,, lim f ( ) = lim = f() = f ( ) y ( ) = t + t+ y = t t +, y = y( ) dy dy dt t t = = = = d d t +

More information

1 32 a + b a + b 2 2 a b a b 2 2 2 4a 12a + 9 a 6 2 4 a 12a + 9 a 6 ( 2a 3) 2 a 6 3 1 2 4 + 2 4 8 + 3 6 12 + 1 3 9 + 2 6 18+ 3 9 27 + 1 10 1 10 ax + by = 2 cx 7y = 8 1 2 1 4 1 8 1

More information

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ!

. Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )? : Β Ν :) Ε Ν & Ν? ς Ε % ) Ω > % Τ 7 Υ Ν Ν? Π 7 Υ )? Ο 1 Χ Χ Β 9 Ξ Ψ 8 Ψ # #! Ξ ; Ξ > # 8! Ζ! #!! Θ Ξ #!! 8 Θ! !! # %& + ( ) ),., / 0 12 3, 4 5 6, 7 6 6, 8! 1 9 :; #< = 1 > )& )? Α Β 3 % Χ %? 7) >ΔΒ Χ :% Ε? 9 : ; Φ Η Ι & Κ Λ % 7 Μ Ν?) 1!! 9 % Ο Χ Χ Β Π Θ Π ; Ρ Ρ Ρ Ρ Ρ ; . Ν Σ % % : ) % : % Τ 7 ) & )? Α Β? Χ )?

More information

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. &

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. & !! # % & ( ) +,.% /.0.% 1 2 3 / 5,,3 6 7 6 8 9 6!! : 3 ) ; < < = )> 2?6 8 Α8 > 6 2 Β 3Α9 Α 2 8 Χ Δ < < Ε! ; # < # )Φ 5 Γ Γ 2 96 Η Ι ϑ 0 Β 9 Α 2 8 Β 3 0 Β 9 Β ΦΚ Α 6 8 6 6 Λ 2 5 8 Η Β 9 Α 2 8 2 Μ 6 Ν Α

More information

Å ü = 1 ij (u i, j + u j,i ) + ( 3) 2 ϕ

More information

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ <

Ψ! Θ! Χ Σ! Υ Χ Ω Σ Ξ Ψ Χ Ξ Ζ Κ < < Κ Ζ [Ψ Σ Ξ [ Σ Ξ Χ!! Σ > _ Κ 5 6!< < < 6!< < α Χ Σ β,! Χ! Σ ; _!! Χ! Χ Ζ Σ < Ω <!! ; _!! Χ Υ! Σ!!!! ββ /β χ < ! # %!! ( (! +,. /0 0 1 2,34 + 5 6 7,3. 7, 8, 2 7 + 1 9 #. 3 : + ; + 5 83 8 % 8 2 ; , 1 1 8 2 =? : + 2 = 2 = Α 1,!. Β 3 + 5 Χ Β Β

More information

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9 !! #! % & ( ) +,. / 0 1 2 34 5 6 % & +7 % & 89 % & % & 79 % & : % & < < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ

More information

m0 m = v2 1 c 2 F G m m 1 2 = 2 r m L T = 2 π ( m g 4 ) m m = 1 F AC F BC r F r F l r = sin sinl l F = h d G + S 2 = t v h = t 2 l = v 2 t t h = v = at v = gt t 1 l 1 a t g = t sin α 1 1 a = gsinα

More information

untitled

untitled 00, + lim l[ ] =. ( + lim[ ] = lim[ ] ( + i e ( = ( + lim l[ ] = l e = ( 4 (, (, (, 0 d f d D= D + D, d f d + d f d =. 0 D = (, 0,, 4 D = (,, 4 D ( D =, 0,. 4 0 0 4 ( + ( = ( d f, d d f, d d f, d. - =

More information

数 学 高 分 的 展 望 一 管 理 类 联 考 分 析 第 一 篇 大 纲 解 析 篇 编 写 : 孙 华 明 1 综 合 能 力 考 试 时 间 :014 年 1 月 4 日 上 午 8:30~11:30 分 值 分 配 : 数 学 :75 分 逻 辑 :60 分 作 文 :65 分 ; 总

数 学 高 分 的 展 望 一 管 理 类 联 考 分 析 第 一 篇 大 纲 解 析 篇 编 写 : 孙 华 明 1 综 合 能 力 考 试 时 间 :014 年 1 月 4 日 上 午 8:30~11:30 分 值 分 配 : 数 学 :75 分 逻 辑 :60 分 作 文 :65 分 ; 总 目 录 数 学 高 分 的 展 望... 1 第 一 篇 大 纲 解 析 篇... 1 一 管 理 类 联 考 分 析... 1 二 最 新 大 纲 解 析... 1 三 考 前 复 习 资 料 及 方 法... 第 二 篇 总 结 篇... 4 1 应 用 题 考 点 总 结 与 技 巧 归 纳... 4 代 数 模 块 题 型 归 纳 及 考 点 总 结... 9 3 数 列 模 块 题 型 归

More information

P r = 1 + ecosθ 2 V = V + V 1 2 2V1V2 cosθ 2 2 = ( V V ) + 2V V ( 1 cos θ) 1 2 1 2 40000 V = 0. 5( / ) 24 60 60 λ m = 5100A = 0.51 Å 2 u e d s 3 1 e uud udd 3 2 3 e 1 3 e V = 2 9. 8 2000 = 198 V

More information

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ ! % & ( ),. / & 0 1 & 2 1 // % & 3 0 4 5 ( 6( ) ( & 7 8 9:! ; < / 4 / 7 = : > : 8 > >? :! 0 1 & 7 8 Α :! 4 Β ( & Β ( ( 5 ) 6 Χ 8 Δ > 8 7:?! < 2 4 & Ε ; 0 Φ & % & 3 0 1 & 7 8 Α?! Γ ), Η % 6 Β% 3 Ι Β ϑ Ι

More information

3.1 ( ) (Expectation) (Conditional Mean) (Median) Previous Next

3.1 ( ) (Expectation) (Conditional Mean) (Median) Previous Next 3-1: 3.1 ( )........... 2 3.1.1 (Expectation)........ 2 3.1.2............. 12 3.1.3 (Conditional Mean)..... 17 3.1.4 (Median)............ 22 Previous Next First Last Back Forward 1 1.. 2. ( ): ( ), 3.

More information

! # %! #! #! # % + &, % % ) %. /! # 0 1

! # %! #! #! # % + &, % % ) %. /! # 0 1 ! # %! #! #! # % + &, % % ) %. /! # 0 1 2 32 % 4! #! # 4 4 2 32 4 4! # 2 32 ! # % 2 5 2 32 % % 6 2 7 8 %! 6 # %3 3 9 % /, 9 % 2 % % 3 #7 9 % 2 8 7 2 % 3 7 7 7 8 7 7 7 7 3 9 8 8 % 3! # 7 12 1191 1 ; % %

More information

Solutions to Exercises in "Discrete Mathematics Tutorial"

Solutions to Exercises in Discrete Mathematics Tutorial 1 2 (beta 16.11 ) 3 SOLVED AND TEXIFIED BY 4 (http://www.ieee.org.cn/list.asp?boardid=67) 1 2002 6 1 2003 1 2 2 (E-mail: xiaoxinpan@163.com) 3 2006 11 1 ( / ) 60.17% 4 xbz 02 chouxiaoya tedy akaru yitianxing

More information

a b a = a ϕ λ ϕ λ ρ δ ρ δ ϕ λ M' J' x' = = m MJ x M' K' y' = = n MK y x' x = m 2-1 y' y = n 2 2 x + y = 1 2-2 2 2 x' y' 2 + 2 = 1 m n µ = ds ' ds 2 2 2 2 m + n = a + b 2-3 mnsinθ = ab 2-4 2 2 2 (

More information

1. PDE u(x, y, ) PDE F (x, y,, u, u x, u y,, u xx, u xy, ) = 0 (1) F x, y,,uu (solution) u (1) u(x, y, )(1)x, y, Ω (1) x, y, u (1) u Ω x, y, Ωx, y, (P

1. PDE u(x, y, ) PDE F (x, y,, u, u x, u y,, u xx, u xy, ) = 0 (1) F x, y,,uu (solution) u (1) u(x, y, )(1)x, y, Ω (1) x, y, u (1) u Ω x, y, Ωx, y, (P 2008.9-2008.12 Laplace Li-Yau s Harnack inequality Cauchy Cauchy-Kowalevski H. Lewy Open problems F. John, Partial Differential Equations, Springer-Verlag, 1982. 2002 2008 1 1. PDE u(x, y, ) PDE F (x,

More information