第二章 传输线理论

Size: px
Start display at page:

Download "第二章 传输线理论"

Transcription

1 第二章 传输线理论

2 传输线理论 一维分布参数理论 电磁场理论 : 精确 ---- 理论上可包含所有路 理论 电路理论 : 简单 ---- 近似 传输线介于二者之间, 是微波电路设计的基础, 在微波网络分析中也相当重要 基本思路 : 用电磁场理论解出等效分布电路参量 ; 采用电路理论来分析 进行阻抗计算 ( 匹配 ) 可用史密斯圆图

3 主要内容 传输线基本方程 传输下分布参数阻抗 无耗工作状态 ( 特例 ) 有耗工作状态 史密斯圆图 ( 工具 ) 阻抗匹配问题

4 传输线方程 为基本方程, 是描述传输线 : 电压 电流的变化规律及其相互关系的微分方程 1. 可以从场的角度以某种 TEM 传输线导出,. 也可以从路的角度, 由分布参数得到的传输线电路模型导出 本章采用路理论分析, 然后对时諧情况求解, 最后研究传输线的特性参数

5 传输线的电路模型 传输线 (transmission line) 是以 TEM 导模的方式传送电磁波能量或信号的导行系统 特点 : 横向尺寸 << 工作波长 λ 结构 : 平行双导线同轴线带状线准 TEM 模的微带线各种传输 TE 模 TM 模或其混合模的波导都可以认为是广义的传输线

6 基本概念 长线 (long line) 几何长度与工作波长 λ 可比拟, 需用分布参数电路描述 短线 (short line) 几何长度与工作波长 λ 相比可以忽略不计, 可用集总参数分析二者分界 :l/λ>.5 分布参数 (distributed parameter) R C 和 G 分布在传输线上 ( 随频率改变 ) 单位长度上有 : 分布电阻 分布电感 分布电容和分布电导 ( 均匀 非均匀 ) 表.1-1 给出了电磁场的分布参数结果

7 传输线等效电路 对于每一个微小单元 ΔZ<<λ > 集中参数 整体构成 Γ 型 ( 或 Τ 型 ) 网络

8 传输线方程推导 根据基尔霍夫定律有 : izt (,) v( z Δz)-v(z, t)=-r 1Δzi( z, t) 1Δz t vzt (,) i(z Δz)-i(z,t)=-G 1Δzv( z, t) C1Δz t

9 将上式两面同除 Δz 并取 limδz-> 即可得传输线方程 : 传输线方程推导 ( 续 1) vz ( Δz) vz ( ) vzt (, ) i lim = = Ri 1 1 Δ z Δz z t iz ( Δz) iz ( ) izt (, ) v lim = = Gv 1 C1 Δ z Δz z t 限于边界条件, 一般很难精确求解 ( 近似假定 数值分析 )

10 时谐均匀传输线方程 分布参数 R C 和 G 不随位置变化 的均匀传输线稳态情况, 此时 : { V ze jωt} vzt (,) = Re () izt (,) = Re { I( ze ) jωt}.1 代入.1-1 可得时谐均匀传输线方程 :

11 时谐均匀传输线方程 ( 续 1) vzt (,) z izt (,) ( ω ) = R j i = Z i( z) = ( ω ) = z G j C v Yv( z) 串联驻抗.1 3 并联导纳

12 时谐均匀传输线方程 ( 通解 ) 可用代入法得二阶微分方程 : V ''( z) ZYV( z) = 1 1 I''( z) ZYI( z) = 1 1 γz γz 1 V( z) = Ae Ae I( z) = V( z)/ Z.1 6 显见通解为 :(A 1 A 为待定系数, 由边界条件决定 ).1 9 其中 γ = Z Y = ( R jω )( G jω C ) 电压传播 Z = Z / Y = ( R jω )/( G jωc ) 常数特性阻抗

13 电压电流的定解 终端条件 (V I ) 始端条件 (V I ) 信号源与负载条件 (E g Zg Z )

14 电压电流的定解 终端条件 (V( I ) 将 V 和 I ( 已知 ) 代入 (.1-9), 有 :(z=l) γl γl Vl () = V = Ae 1 Ae 1 Il () = I = Ae Ae Z ( γ l γ l) 1 V IZ vl V IZ A1 = e, A = e 带回原式可得到沿线解 : ( 通常情况 ) 可解得常数 : vl

15 V I Z V I Z V( z) = e e V I Z V I Z I( z) = e Z Z e 电压电流的定解 终端 ( 续一 ) γ ( l z) γ ( l z) γ ( l z) γ ( l z) 当然也可以表示为相对终端距离的函数, 令 l-z=d: V IZ V IZ V d e e V ch d sh d V IZ V IZ V Id I γd γd ( ) = = ( γ ) IZ ( γ ) γd γd ( ) = e e = sh( γd) ch( γd) Z Z Z 也可表为矩阵形式 : γ ch d Z sh d V( d) γ V sh γ d Id ( ) = chγ d Z I

16 电压电流的定解 ---- 终端条件 (V( I ) 相同的方法可以解得 : V V I I d z V IZ V IZ V z e e V ch z IZsh z V I Z V I Z V I z e e sh z Ich z γz γz ( ) = = ( γ ) ( γ ) γz γz ( ) = = ( γ ) ( γ ) Z Z Z

17 电压电流的定解 信号源 负载条件 z= 时 : I()=I ; V()=E G -I Z G z= 时 : I()=I ; V()=I Z 代入通解.1-9 可得四个线性方程 ( 四个未知量 :I I A 1 A ) 可解得 : EZ G A1 = Γ Γ ZG Z EZ = Γ Γ ( γ 1 ) G e ( γ 1 ) G G γ A e e ZG Z

18 电压电流的定解 信号源 负载条件 ( 续一 ) 其中 : ZG Z Z Z Γ G = ; Γ = Z Z Z Z G EZ e V d e e γ l EG e γl γd Id ( ) = ( e Γ ) l e γ ZG Z 1 ΓΓGe γ l G γl γd ( ) = ( Γ ) γ l ZG Z 1 ΓΓGe d=l-z.1-15

19 电压电流的定解 ( 小结 ) 从上面三种解可见 : 传输线上的波是由信号源发出的入射波 (e -γz 或 e γd ) 负载反射的波 (e γz 或 e -γd ) 两部分叠加组成 ( 呈行 驻波混合分布 ) 基本处理方法都是 : 1. 将已知条件带入通解 ;. 解常数 A 1 A ; 3 写出通解

20 传输线的特性参数 特性阻抗 :(characteristic impedance) 行波电压与电流之比 : 倒数为特性导纳 Y Z 传播常数 γ R jω = G jωc C 1 1 无耗 ( )( G j C ) γ = αjβ=γ = R jω ω α 衰减常数 ; β 相位常数

21 传输线的特性参数 ( 低耗线近似 ) 低耗线 :R<<ω 1 ; G<<ωC 1 ; 用 (1x) a =1ax Z ω R j R G = = 1 1 G1 jωc1 C1 jω1 jωc1 1 R G 1 - C jω jωc C γ jω C 1 R 1 G jω1 jωc1 书上给出了 : 双导线 同轴线 1 C1 1 α= R1 G1 β ω C ; = C 平行板 1 的近似结果

22 分布参数阻抗 传输线上的电压和电流与电流之比 ( 分布参数阻抗 -- 低频还原成集中参数 ) 1. 阻抗定义 : V( d) Vchγd IZshγd Z Zthγd Zin( d) = = = Z I( d) Ich d V Z Z th γ d Z shγ d γ 为已知负载条件的解 (.-) 距离负载 d 处向负载看去的阻抗 (imput impedance)

23 分布参数阻抗 ( 无耗线 ) 此时 :α=; γ=jβ; th(γd) = jtg(βd) ( ) Z jz tg βd ( ) Z d in = Z Z jz tg d β ( ) 1) 传输线阻抗随位置而变,( 分布参数阻抗 )V 和 I 无明确的物理意义, 无法直接测量, 故传输线阻抗也不能直接测量 ) 传输线段具有阻抗变换作用,Z 通过线段 d 变换成 Z(d), 或相反 3) 无耗线的阻抗呈周期性变化, 具有 l/4 变换性和 l/ 重复性

24 反射参量 ( 便于测试 ) 1) 反射系数 (reflection coefficient) 反射波电压与入射波电压之比 传播方向 :-z --- 反射波 e γz z --- 入射波 e -γz d=l-z 符号刚好相反 V ( d) Γ v ( d) =. 3 V ( d) 由.1 11 可知 : Γ ( d) =-Γ ( d) I 一般采用易测的电压反射系数 ( 记为 Γ(d)) v

25 反射参量 已知终端负载时 V I Z Z Z Γ ( ) = =Γ V I Z Z Z 除以 I d e e e γ d γd γd =Γ e e =Γ e e. 5 jφ γd αd j( φ βd) Z Z Z Z e jφ Γ = =. 6 Z Z Z Z 终端反射系数

26 反射系数在单位圆内的变化 有耗 :Γ(d) 轨道为单位圆向内螺旋线上 无耗 :Γ(d) 轨道为同心圆 相位 -βd 旋转 ( 顺时针旋转 )

27 阻抗与反射系数的关系 线上任意点上的电压 电流 : V( d) = V ( d) V ( d) = V ( d) 1 Γ( d) I( d) = I ( d) I ( d) = I ( d) [ 1 Γ( d) ] [ ]. 8 相除有 : V ( d) [ 1 Γ( d) ] 1 Γ( d) Z in ( d) = Z ( )[ 1 ( )] I = d Γ d 1 Γ( d) 也可解成 : Γ Z ( d) Z = Z ( d) Z in ( d). 11 in Γ(d) 与 Z in 一一对应圆图的基础

28 (3)) 传输系数 T 定 T -- 可用来描述传输线上功率传输关系 传输电压或电流入射电压或电流 = V V t = I I t 设传输线的特性阻抗为 z 1 用阻抗为 Z 的线馈电 : 传输的场分为两部分 : 反射分量 Γ Γ = Z Z 1 1 Z Z 传输分量 T ( 线为无限长或用自身端接 )

29 传输系数 T( ( 续一 ) z< 线上的电压 :V(z)=V (e -jβz Γe -jβz ) 在 z> 部分不存在反射 ( 匹配 )V(z)=V e -jβz T 二者在分界面 (z= 处 ) 连续 (e =1; 约去 V ) 有 Z Z Z T = Γ= = Z Z Z Z 这与电磁场的结果完全一致 电路中的两点间的传输系数常用来表示插入损耗 (Insertion loss) 1 (db)= - lg T db.-15

30 3. 驻波参量 - 由于上面参量为复数不易测试而引入 电压驻波比 :(voltage standing wave ratio) VSWR ( ρ) V V max min 其倒数称为行波系数 : 波腹 : 振幅最大的电压或电流处波谷 : 振幅最小的电压或电流处波节 : 振幅为零的电压或电流处 1 1 V K min. 17 = VSWR = ρ V max

31 驻波参量 ( 续一 ) 由式 (3.-8), 得到 : j( φ βd) V( d) = V ( d) 1 Γ e. 18 j( φ βd) Id ( ) = I( d) 1 Γ e 取模有 :( 用欧拉公式 e jx =cosxjsinx) ( ) = ( ) 1 Γ [ cos( φ β ) sin( φ β )] V d V d d j d { } cos( φ β ( φ β = V ( d) 1Γ d) Γ sin d) { ( ) } cos ( φ β ( φ β cos( φ β = V ( d) 1 Γ d) sin d) Γ d) V( d) = V ( d)[1 Γ Γ cos( φ βd)] Id ( ) = I( d)[1 Γ Γ cos( φ βd)] 1 1

32 驻波参量 ( 续二 ) V( d) V ( d) 1 = Γ ( ) ( ) 1 max V d = V d Γ Id ( ) = I( d) 1 ( ) ( ) 1 max Γ Id = I d Γ min min 显见 : max min Z V( d) V( d) = = Id ( ) Id ( ) min max V I 1Γ VSWR() ρ = max = max =. V I 1 Γ min min 也有一一对应关系 : 可用来描述传输线状态 ρ 1 Γ =. 3 ρ 1

33 () 阻抗参量与驻波参量的关系 由输入特性阻抗表达式.- Z jz tg γ d Z ( d) = Z 可解得 : Z jz tg γ d in Zin( d) jztg βd Z = Z Z jz in( d ) tg β d 通常选取驻波最小点为测量点, 其距负载的距离为 d min 由.-19 式当 cos(φ -βd)= -1 时 V(d) 最小 : V(d) min = V (d min ) (1- Γ ) I(d) min = I (d min ) (1 Γ )

34 阻抗参量与驻波参量的关系 ( 续一 ) 由定义, 该点的阻抗为 : Z in V( d ) 1 Γ = = Z = Id ( ) 1 Z min min Γ ρ 故在 d=d min 点上 : Z jztgβdmin ρ 1 jρtgβd Z = Z = Z Z Z jtg d j tgβd ρ β min ρ 可见当 Z 确定时, 负载阻抗与 ρ 一一对应, 于是可以通过测量 d min 和 ρ 来确定 Z min min

35 .3 无耗线工作状态分析 共有三种状态 : 行波 驻波 行驻波 1. 行波状态 ( 无反射 )- 匹配 条件 :Z =Z => Γ= ρ=1, K=1 特征 : 由 (.1-14) 式 V IZ jβz jβz V( z) = e = V e.3 1 V IZ jβz jβz v( z, t) = V cos( ωt φ I( z) = e = I e Z i( z, t) = I cos( ωt φ 可见 : 电压电流同相, 振幅不变, 各点阻抗为 Z βz) βz)

36 无耗线工作状态分析 ( 续一 : 短路线 ) 驻波 :( 全反射 ) 条件 :Z =/ ( 短路 开路 );Z =±jx ( 纯电抗 ) 特性 : Z (a) 短路时 : Z 1Γ Γ = = 1; ρ = = Z Z 1 Γ ( jβd jβd) V( d) = V ( d) V ( d) = V e e = jv sinβd V Id ( ) = cosβd= I cosβd Z 显见 : 在负载处,d=,V =,I =V /Z 电压为波节点, 电流为波腹点 沿线电阻 Z in sc (d)=jz tgβd ( 纯电抗 )

37 沿线的阻抗呈 : 感抗 并联谐振 容抗 串连谐振 的周期性变化 每 λ/4 改变性质每 λ/ 为一个周期 ( b) 终端开路线 : Z 无耗线工作状态分析 ( 续二 : 短路线 开路线 ) Z Z 1Γ = Γ ; = = 1; ρ = = Z Z 1 Γ

38 分析方法同上 无耗线工作状态分析 ( 续三 : 开路线 ) V( d) = V cosβ d V Id ( ) = j sin βd= I sin βd Z.3 6 显见 : 在负载处,d=,I =,V =V(d) max =V 电压为波腹点, 电流为波节点 沿线电阻 Z oc in (d)=-jz ctgβd ( 纯电抗 ) 综合 可见 : Z oc ( d) Z ( d) Z sc in in =

39 无耗线工作状态分析 ( 续四 : 实际测试 ) 对于一定长度 d 的传输线, 通过短路及开路的 测量, 可以得到 Z β sc Z = Z ( d) Z ( d).3 9 in in oc β = sc in 1 Z ( d) arctg d Z oc ( d) in.3 1

40 (c) 端接纯电感纯电感负载无耗线 此时 :Z =jx jx Z Z X jz X Γ = Γ e = = jφ jx Z Z X ( ) ( Z ) X 4ZX Z X Γ = = = 1 Z X Z X Φ = tg Z X 1 X Z V( d) = V ( d) V ( d) = V ( d) 1 Γ( d) ( j( Φ β d) ) = V ( d) 1 Γ( d) e ( )

41 (c) 端接纯电感纯电感负载无耗线 ( 续一 ) 可见此时终端也产生全反射 (Γ=1), 线上形成驻波 ; 但此时终端 (d=) 既不是电压波节点也不是电压波腹点 沿线的电压 电流和阻抗分布曲线可将电感负载用一段小于 λ/4 的短路线来等效后获得 短路线输入阻抗 :Z in (d)=jz tg(βd)=jx 故有短路线长度 : 1 X λ X le = tg = arctg β Z π Z

42 (c) 端接纯电容纯电容负载无耗线 此时 :Z =- jx Z Z X jz X Γ = Γ e = = jφ jx Z Z X ( ) ( Z ) X 4ZX Z X Γ = = = Z X Z X Φ = tg Z X 1 X Z 1

43 可见此时终端也产生全反射 (Γ=1), 线上形成驻波 ; 但此时终端 (d=) 既不是电压波节点也不是电压波腹点 沿线的电压 电流和阻抗分布曲线可将电感负载用一段小于 λ/4 的开路线来等效后获得 (c) 端接纯电容纯电容负载无耗线 ( 续一 ) 开路线输入阻抗 :Z in (d)=-jz ctg(βd)=-jx 故有短路线长度 : 1 1 X λ 1 X le = ctg = ctg.3 1 β Z π Z

44 小节 : 驻波状态及特点 (1) 电压 V 电流 I 的振幅是位置的函数, 波节和波腹固定, 两相邻波节点之间距离为 λ/ 短路线终端 : 电压波节点 电流波腹点 ; 开路线终端 : 电压波腹点 电流波节点 ; 接纯电感负载时 : 距负载第一个出现的是电压波腹点接纯电容负载时 : 距负载第一个出现的是电压波节点 () 沿线各点的 V,I 随时间和位置 d 变化都有 λ/ 相位差, 故线上既不能传输能量也不能消耗能量 (3) V,I 波节点两侧各点相位相反, 相邻两节点之间各点的相位相同 (4) 传输线的输入阻抗为纯电抗, 且随频率和长度变化 ; 当频率一定时, 不同长度的驻波线可分别等效为 : 电感 电容 串联谐振电路或并联谐振电路

45 3. 行驻波状态 : 部分反射情况 此时 :Z =R±jX ( R Z ± jx )( R Z jx ) Γ = = ( ) R± jx Z R Z X = R Z X ± jz X Γ = ( ) R Z X Φ = R± jx Z tg ( ) ( ) ± Z X R Z X R Z X 1 R Z X

46 jβ d j( φ βd) V( d) = Ve 1 Γ e jβ d j( φ βd) Id ( ) = Ie 1 Γ e 行驻波状态 : 部分反射情况 ( 续一 ).3 13 V V 1 = 1 max Γ V = V min Γ I = I 1 1 max Γ I = I min Γ 此时 Γ <1, 终端产生部分反射, 线上形成行驻波, 无波节点, 驻波最小值不等于零, 驻波最大值不等于终端入射波振幅的两倍 cos(φ -βd)=1,v 最大 I 最小可得 : Φ -βd=-nπ (Φ <βd) d λ λ = φ n n 4π max =,1,,

47 cos = ( φ βd) = 行驻波状态 : 部分反射情况 ( 续二 ) 1 λ λ d = φ (n 1) n min 4 4 = π 电压最小电流最大 Φ -βd=-(n1)π,1,, 行驻波状态下沿线输入阻抗一般为负数 由.3-13 式及定义 : Z in V( d) V = = Id ( ) I 1 1Γ e j( Φ β d) Γ e j( Φ β d )

48 行驻波状态 : 部分反射情况 ( 续三 ) cos(φ -βd)=1,(v 最大 I 最小 ) Z in =R max jx max =Z ρ R max =Z ρ ; X max = cos(φ -βd)=-1,(v 最小 I 最大 ) Z in =R min jx min =Z /ρ R min =Z /ρ = Z K; X min = 电压最大 最小点阻抗均为实数, 二者相距 λ/4 R max R min = Z

49 有耗线的特性计算 讨论损耗对于传输线特性的影响与功率效率计衰减的计算方法 1. 损耗的影响 : 主要为振幅, 其次为色散效应 (β~f; v~f) 有耗线推导与无耗线基本相同 ( 多 α) Γ( d ) = Γ e ad ad 1 Γ e VSWR 1 Γ e ad e j( φ βd ) = Γ 及 ρ 均与位置有关

50 损耗的影响 ( 续一 ) ad jβ d ad j( φ βd) V( d) = Ve e 1 Γ e e V ad jβ d ad j( φ βd) Id ( ) = e e 1 Γ e e Z.4. 用欧拉公式展开可求出振幅 αd 括号部分为 : 1±Γ e cos( Φ βd) jsin( Φ βd) { ( ) ( )} αd 4αd 1 e cos βd ±Γ Φ Γ e sin Φ βd 1 { ( )} 4αd αd 1 e e cos βd = Γ ± Γ Φ 1

51 损耗的影响 ( 续二 ) ad 4ad ad V( d) V e 1 e e cos( φ βd) = Γ Γ V Id ( ) = e 1 Γ e Γ e cos( d) Z 1 ad 4ad ad φ β 由此可得沿线电压和电流的驻波最大值和最小值为 : V( d) = V e 1 Γ e I( d) = I e 1 Γ e ad ad ad ad V( d) = V 1 ( ) 1 min e Γ e I d = I min e Γ e ad ad ad ad max max 可见电压和电流的极值点均与位置有关 Z Zth γ d 1 Γ( d) Zin( d) = Z = Z.4 5 Z Z t h γ d 1 Γ( d ) (.-1) ( 由.4- 按定义除 ) 1/

52 Γ =1;Z = 根据.4.: 损耗的影响 ( 续三 终端开路时 ) ad jβ d ad j( φ βd) V( d) = Ve e 1 Γ e e V ad jβ d ad j( φ βd) Id ( ) = e e 1 Γ e e Z 有 :(γ=αjβ) V( d) = V chγ d V Id ( ) = shγ d Z oc in Z ( d) = Z cth γ d.4.

53 损耗的影响 ( 续四 终端开路 / 短路时 ) 图.4-1 表示有耗开 路线上的电压 电流振幅与阻抗的分布 当终端短路时 :Γ = -1 V( d) = V shγ d V I( d) = chγ d Z sc in Z ( d) = Z th γ d

54 损耗的影响 ( 续五 小结 ) 开路线和短路线成互补关系 (V-I 互换即可 ) 靠近信号源 (d 大时 ) 起伏小 阻抗波动小 传输线特性阻抗 足够长可视为匹配负 显见载 ): sc in oc in Z ( d) Z ( d) = Z.4 1 于是只需作两次测量即可确定有耗线的特性参数 : sc oc Z = Zin ( d) Zin ( d) sc 1 Zin ( d) γ = a jβ = arctg oc d Z ( d) in

55 1) 传输功率. 传输功率与效率 分 :a) 匹配线 b) 失配无耗 c) 失配有耗 三种情况讨论 ( 假定信号源匹配 ) a) 匹配线 无反射功率 P V * Re( V I ).4 13 Z 1 1 = =

56 . 传输功率与效率 ( 续一 ) 失配无耗 b) 失配无耗 有反射传给负载的功率 : 1 1 P = Re( V I ) = Re ( V V )( I I ) * * = Γ Γ * 1 Re V (1 ) (1 * V ) Z 1 V = (1 Γ ) = P(1 Γ ) = P P Z i r 反射功率 匹配功率

57 沿线任意点功率 :. 传输功率与效率 ( 续二 ) 失配无耗 * 1 * 1 V ( d) * P( d) = Re( V( d) I( d) ) = Re V ( d)(1 Γ( d)) (1 Γ( d) ) Z 1 V ( d) = (1 Γ( d) ) Z 对比公式.- V( d) = V ( d) 1 max Γ Id ( ) = I( d) 1 max Γ V( d) = V ( d) 1 min Γ Id ( ) = I( d) 1 Γ min.

58 显然 :. 传输功率与效率 ( 续三 ) 失配无耗 V( d) max ( ) ( ).4 15 max min Z 1 1 P = V d I d = K 1 1 P = V( d) I( d) = I( d) Z min max max K.4 16 设 V br 为击穿电压, 则传输线的功率容量 ( 极限功率 ) 为 : V 1 V( d) br min = 其中 : = = Pbr K K Z ρ V( d) max 1

59 c) 失配有耗线 :. 传输功率与效率 ( 续四 ) 失配有耗 γ d - γ d αd jβd αd j βd) V( d) = Ve V e =Ve e 1 Γe e γd - d V d j d d j d Id ( ) Ie e γ e α e β 1 e α e - β = I = Γ Z P d 1 = V d I d = * ( ) Re( ( ) ( ) ) 线上任一点处的功率为 : αd αd -j d αd j d e e e e e Z V ( Φ β ) ( Φ β ) = Re (1 Γ )(1 Γ ) αd 4αd αd j d j d V = e Re 1 Γ e Γ e e e Z V = Z { ( ( ) ( )) } - Φβ Φ β - αd 4 d e ( 1 ) α -Γ e

60 . 传输功率与效率 ( 续五 ) 失配有耗 即 : V P( d) = e 1 Γ e e Γ e Z αd 4αd αd αd ( ) ( ) - =P - 始端功率 :( d=l ) ( ) α 4α Pi = e 1- Γ e V Z 负载功率 :( d= ) 线上损耗功率 : P V = Γ Z ( 1- ) ( α 1) P = P P = P e α 1 Γ e d i

61 长线的效率为 : η =. 传输功率与效率 ( 续六 ) 效率 P 1 Γ = P e (1 e ) 当传输线匹配时 : Γ = i α Γ 4α η = η = e α max

62 3. 回波损耗与反射损耗 二端口网络问题计算中有时需用到的概念 a) 回波损耗 ( 回程损耗 反射波损耗 ) r P 11g ( db).4 1 P ( I ) ( I ) * V i 1 = 1 lg = 1lg = lg Γ * * V i ΓΓ i 由于 Γ 1 r 必为正值 无耗 : Γ 为常数, r 也为常数 有耗 : Γ d = Γ e αd, 是位置的函数 db

63 3. 回波损耗与反射损耗 ( 续一 ) 由 Γ(d)= Γ e -αd e j(φ βd).-5 有 : r,i = - lg{ Γ e αl }=- lg Γ (αl) lg e = r,l (8.686 αl) 可见输入端回波损耗为 负载端回波损耗 有耗线来回路程衰减 匹配时 : Γ = r = 1% 吸收 全反射 : Γ =1 r = 无吸收 r Γ=1

64 3. 回波损耗与反射损耗 ( 续二 ) b) 反射损耗 (reflection loss) 是功率失配的度量 P z 11 = z g ( db).4 4 R P z z 当 Z G =Z 时, V R 1 1g = 1 lg V ( ) ( ) Z 1 (1 Γ ) Z 1 Γ lg 1 1g ρ = = 1 ρ 1 ρ 1 4ρ ( )

65 3. 回波损耗与反射损耗 ( 续三 ) 当 Γ=.77 时,ρ=(1.77)/(1-.77)=5.83 有 r = 1lg = 3dB 表明 P 仅为信号源功率一半 P z= z 1 ρ 1 R = 1 lg = = 11g P 1 4ρ z z Γ R P r = 1lg lg Γ db P ( ) 回波损耗 : 反射信号本身损耗反射损耗 : 反射信号引起的负载功率减小 ( 失配 ) Γ=1 r Γ=1

66 VSWR G r 与反射功率的关系 如书上图.4- 对应线图, 也可画成下图 :

67 例题.4-1: 如图的传输系统,E, g =V( 有效值 ), Z g =1Ω,Z =1Ω,Z =15Ω; ; 线长 4m, f=5m, 求 a=;a=.5db 的 P in 和 P 解 :V =E g Z /(Z Z G )=14.14 Z Z. Γ = = Z Z ( ) α 4α.96W α = 1- Z α = V Pi = e Γ e = P V ( ).96W α = = 1- Γ = Z.65W α =.5 两者之差即为损耗在线上的功率

68 1. 用分布参数计算 a a a 衰减的计算方法 γ = αjβ=γ = R jω G jωc R ( )( ) 解出实部 对于低耗线有 : GZ = c d = Z. 用围绕法 (perturbation method) 采用无耗线的场, 假定有耗线场差别不大 Pz () Pe az P( z) = az P ape ( ) l = = = ap z z Pl Pl( z = ) a =.4 31 Pz ( ) P

69 衰减的计算方法 ( 续一 ) 3. 用惠勒增量电感法则求 α c ( 常用于求解 TEM 或准 TEM 传输线 ) 用电磁场理论解出 : R Δ s 1 I I ωδ1 Rs Pl = Htan dl = = ( W / m) μσ 由此 : P 1 I ωδ I Z l ωδ ωδz β ΔZ ac = = = = = P Z Z v Z s 1 1 p 由 : δ Z ( ) Z η = μ / s ε δ dz dr 得 : a c = βδ s dz Rs dz = 4Z dr Z η dr

70 例.4.4 用增量电感法则求同轴线的用增量电感法则求同轴线的 α c a b n a b n Z r π η ε = = 同轴线特性阻抗为 : = = = b a Z R da a nb d db a nb d Z R dr dz Z R a s s s / 1 / 1 4 π π η

Ζ # % & ( ) % + & ) / 0 0 1 0 2 3 ( ( # 4 & 5 & 4 2 2 ( 1 ) ). / 6 # ( 2 78 9 % + : ; ( ; < = % > ) / 4 % 1 & % 1 ) 8 (? Α >? Β? Χ Β Δ Ε ;> Φ Β >? = Β Χ? Α Γ Η 0 Γ > 0 0 Γ 0 Β Β Χ 5 Ι ϑ 0 Γ 1 ) & Ε 0 Α

More information

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 /

! /. /. /> /. / Ε Χ /. 2 5 /. /. / /. 5 / Φ0 5 7 Γ Η Ε 9 5 / ! # %& ( %) & +, + % ) # % % ). / 0 /. /10 2 /3. /!. 4 5 /6. /. 7!8! 9 / 5 : 6 8 : 7 ; < 5 7 9 1. 5 /3 5 7 9 7! 4 5 5 /! 7 = /6 5 / 0 5 /. 7 : 6 8 : 9 5 / >? 0 /.? 0 /1> 30 /!0 7 3 Α 9 / 5 7 9 /. 7 Β Χ9

More information

! # % & ( & # ) +& & # ). / 0 ) + 1 0 2 & 4 56 7 8 5 0 9 7 # & : 6/ # ; 4 6 # # ; < 8 / # 7 & & = # < > 6 +? # Α # + + Β # Χ Χ Χ > Δ / < Ε + & 6 ; > > 6 & > < > # < & 6 & + : & = & < > 6+?. = & & ) & >&

More information

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5,

# # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( ( & +. 4 / &1 5, # # # #!! % &! # % 6 & () ) &+ & ( & +, () + 0. / & / &1 / &1, & ( 0 2 3 ( & +. 4 / &1 5, !! & 6 7! 6! &1 + 51, (,1 ( 5& (5( (5 & &1 8. +5 &1 +,,( ! (! 6 9/: ;/:! % 7 3 &1 + ( & &, ( && ( )

More information

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; <

& &((. ) ( & ) 6 0 &6,: & ) ; ; < 7 ; = = ;# > <# > 7 # 0 7#? Α <7 7 < = ; < ! # %& ( )! & +, &. / 0 # # 1 1 2 # 3 4!. &5 (& ) 6 0 0 2! +! +( &) 6 0 7 & 6 8. 9 6 &((. ) 6 4. 6 + ( & ) 6 0 &6,: & )6 0 3 7 ; ; < 7 ; = = ;# > 7 # 0 7#? Α

More information

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /.

!! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. ! # !! # % & ( )!!! # + %!!! &!!, # ( + #. ) % )/ # & /. #! % & & ( ) # (!! /! / + ) & %,/ #! )!! / & # 0 %#,,. /! &! /!! ) 0+(,, # & % ) 1 # & /. / & %! # # #! & & # # #. ).! & #. #,!! 2 34 56 7 86 9

More information

& & ) ( +( #, # &,! # +., ) # % # # % ( #

& & ) ( +( #, # &,! # +., ) # % # # % ( # ! # % & # (! & & ) ( +( #, # &,! # +., ) # % # # % ( # Ι! # % & ( ) & % / 0 ( # ( 1 2 & 3 # ) 123 #, # #!. + 4 5 6, 7 8 9 : 5 ; < = >?? Α Β Χ Δ : 5 > Ε Φ > Γ > Α Β #! Η % # (, # # #, & # % % %+ ( Ι # %

More information

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ

E = B B = B = µ J + µ ε E B A A E B = B = A E = B E + A ϕ E? = ϕ E + A = E + A = E + A = ϕ E = ϕ A E E B J A f T = f L =.2 A = B A Aϕ A A = A + ψ ϕ ϕ .................................2.......................... 2.3.......................... 2.4 d' Alembet...................... 3.5......................... 4.6................................... 5 2 5

More information

&! +! # ## % & #( ) % % % () ) ( %

&! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % &! +! # ## % & #( ) % % % () ) ( % ,. /, / 0 0 1,! # % & ( ) + /, 2 3 4 5 6 7 8 6 6 9 : / ;. ; % % % % %. ) >? > /,,

More information

2.5 史密斯圆图

2.5 史密斯圆图 .5 史密斯圆图 前面讨论的都是求解 : ( d) j tg β d Γ 1Γ ρ 1 Γ j tg β d 之间关系的问题, 一般均为复数, 求解较为复杂, 有耗时更为困难 圆图 : 是一种计算阻抗 反射系数等参量的简便图解方法 圆图的构成 : 均匀传输线特性 : ( ) 1 ( ) ( ) 1 ( ) zz ( ) z Γ z 或 : zd ( ) d Γ d 1 Γ( z) 1 Γ( d) 也可解为

More information

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π

Ρ Τ Π Υ 8 ). /0+ 1, 234) ς Ω! Ω! # Ω Ξ %& Π 8 Δ, + 8 ),. Ψ4) (. / 0+ 1, > + 1, / : ( 2 : / < Α : / %& %& Ζ Θ Π Π 4 Π Τ > [ [ Ζ ] ] %& Τ Τ Ζ Ζ Π ! # % & ( ) + (,. /0 +1, 234) % 5 / 0 6/ 7 7 & % 8 9 : / ; 34 : + 3. & < / = : / 0 5 /: = + % >+ ( 4 : 0, 7 : 0,? & % 5. / 0:? : / : 43 : 2 : Α : / 6 3 : ; Β?? : Α 0+ 1,4. Α? + & % ; 4 ( :. Α 6 4 : & %

More information

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %!

! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! ! # # % & ( ) ! # % & # % & ( ) % % %# # %+ %% % & + %, ( % % &, & #!.,/, % &, ) ) ( % %/ ) 0 + 1 %# / + & + (! ) &, & % & ( ) % % (% 2 & % ( & 3 % /, 4 ) %+ %( %! # ( & & 5)6 %+ % ( % %/ ) ( % & + %/

More information

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9,

!! )!!! +,./ 0 1 +, 2 3 4, # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, , 2 6 9, 2 3 9, 2 6 9, ! # !! )!!! +,./ 0 1 +, 2 3 4, 23 3 5 67 # 8,2 6, 2 6,,2 6, 2 6 3,2 6 5, 2 6 3, 2 6 9!, 2 6 65, 2 6 9, 2 3 9, 2 6 9, 2 6 3 5 , 2 6 2, 2 6, 2 6 2, 2 6!!!, 2, 4 # : :, 2 6.! # ; /< = > /?, 2 3! 9 ! #!,!!#.,

More information

% %! # % & ( ) % # + # # % # # & & % ( #,. %

% %! # % & ( ) % # + # # % # # & & % ( #,. % !!! # #! # % & % %! # % & ( ) % # + # # % # # & & % ( #,. % , ( /0 ) %, + ( 1 ( 2 ) + %, ( 3, ( 123 % & # %, &% % #, % ( ) + & &% & ( & 4 ( & # 4 % #, #, ( ) + % 4 % & &, & & # / / % %, &% ! # #! # # #

More information

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2

., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! # &!! ) ( +, ., /,, 0!, + & )!. + + (, &, & 1 & ) ) 2 2 ) 1! 2 2 ! 2 2 & & 1 3! 3, 4 45!, 2! # 1 # ( &, 2 &, # 7 + 4 3 ) 8. 9 9 : ; 4 ), 1!! 4 4 &1 &,, 2! & 1 2 1! 1! 1 & 2, & 2 & < )4 )! /! 4 4 &! &,

More information

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ;

4= 8 4 < 4 ϑ = 4 ϑ ; 4 4= = 8 : 4 < : 4 < Κ : 4 ϑ ; : = 4 4 : ; ! #! % & ( ) +!, + +!. / 0 /, 2 ) 3 4 5 6 7 8 8 8 9 : 9 ;< 9 = = = 4 ) > (/?08 4 ; ; 8 Β Χ 2 ΔΔ2 4 4 8 4 8 4 8 Ε Φ Α, 3Γ Η Ι 4 ϑ 8 4 ϑ 8 4 8 4 < 8 4 5 8 4 4

More information

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7

! Ν! Ν Ν & ] # Α. 7 Α ) Σ ),, Σ 87 ) Ψ ) +Ε 1)Ε Τ 7 4, <) < Ε : ), > 8 7 !! # & ( ) +,. )/ 0 1, 2 ) 3, 4 5. 6 7 87 + 5 1!! # : ;< = > < < ;?? Α Β Χ Β ;< Α? 6 Δ : Ε6 Χ < Χ Α < Α Α Χ? Φ > Α ;Γ ;Η Α ;?? Φ Ι 6 Ε Β ΕΒ Γ Γ > < ϑ ( = : ;Α < : Χ Κ Χ Γ? Ε Ι Χ Α Ε? Α Χ Α ; Γ ;

More information

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2

,!! #! > 1? = 4!! > = 5 4? 2 Α Α!.= = 54? Β. : 2>7 2 1 Χ! # % % ( ) +,. /0, , ) 7. 2 ! # %!% # ( % ) + %, ). ) % %(/ / %/!! # %!! 0 1 234 5 6 2 7 8 )9!2: 5; 1? = 4!! > = 5 4? 2 Α 7 72 1 Α!.= = 54?2 72 1 Β. : 2>7 2 1 Χ! # % % ( ) +,.

More information

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, )

!!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) ! # % & # % ( ) & + + !!! #! )! ( %!! #!%! % + % & & ( )) % & & #! & )! ( %! ),,, ) 6 # / 0 1 + ) ( + 3 0 ( 1 1( ) ) ( 0 ) 4 ( ) 1 1 0 ( ( ) 1 / ) ( 1 ( 0 ) ) + ( ( 0 ) 0 0 ( / / ) ( ( ) ( 5 ( 0 + 0 +

More information

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02

, ( 6 7 8! 9! (, 4 : : ; 0.<. = (>!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / / < 5 02 ! # % & ( ) +, ) %,! # % & ( ( ) +,. / / 01 23 01 4, 0/ / 5 0 , ( 6 7 8! 9! (, 4 : : ; 0.!? Α% ), Β 0< Χ 0< Χ 2 Δ Ε Φ( 7 Γ Β Δ 5 3 3 5 3 1 Η7 (7 Ι + ) ϑ!, 4 0 / / 2 / 3 0 0 / < 5 02 Ν!.! %) / 0

More information

第一章.doc

第一章.doc = c < < + + = S = c( ) = k =, k =,,, Λ < < + = 4 = = = = 4 k = k =,,, Λ X R X X = f () X X = f ( ) k = + k =,,, Λ = f () X X f ( ) = = = = n n = an + an +... + a + a a n =a +a +a = a + a + a a n f ( )

More information

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π

/ Ν #, Ο / ( = Π 2Θ Ε2 Ρ Σ Π 2 Θ Ε Θ Ρ Π 2Θ ϑ2 Ρ Π 2 Θ ϑ2 Ρ Π 23 8 Ρ Π 2 Θϑ 2 Ρ Σ Σ Μ Π 2 Θ 3 Θ Ρ Κ2 Σ Π 2 Θ 3 Θ Ρ Κ Η Σ Π 2 ϑ Η 2 Ρ Π Ρ Π 2 ϑ Θ Κ Ρ Π ! # #! % & ( ) % # # +, % #. % ( # / ) % 0 1 + ) % 2 3 3 3 4 5 6 # 7 % 0 8 + % 8 + 9 ) 9 # % : ; + % 5! + )+)#. + + < ) ( # )# < # # % 0 < % + % + < + ) = ( 0 ) # + + # % )#!# +), (? ( # +) # + ( +. #!,

More information

×迹ƥÅäÍøÂç

×迹ƥÅäÍøÂç 微波集成电路设计 Smith 圆图与阻抗匹配网络 李芹, 王志功 东南大学射频与光电集成电路研究所 传输线的传播特性 : 沿线电压 电流和反射系数 3 传输线的传播特性 : 电压电流 反射系数 jkz t j jkz t j jkz t j jkz t j e e I e e I t z I e e e e t z ω ω ω ω, (, ( ( (, ( jkz jkz t j jkz jkz t

More information

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 =

8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε Μ Ε 8 > = 8 9 = !! % & ( & ),,., / 0 1. 0 0 3 4 0 5 3 6!! 7 8 9 8!! : ; < = > :? Α 4 8 9 < Β Β : Δ Ε Δ Α = 819 = Γ 8 9 8 Δ 9 = 1 Η Ι4 ϑ< Κ Λ 3ϑ 3 >1Ε 8 9 0 Μ Ε 8 > 9 8 9 = 8 9 = 819 8 9 =

More information

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α

! # %& ( %! & & + %!, ( Α Α Α Α Χ Χ Α Χ Α Α Χ Α Α Α Α Ε! # % & ( )%! & & + %!, (./ 0 1 & & 2. 3 &. 4/. %! / (! %2 % ( 5 4 5 ) 2! 6 2! 2 2. / & 7 2! % &. 3.! & (. 2 & & / 8 2. ( % 2 & 2.! 9. %./ 5 : ; 5. % & %2 2 & % 2!! /. . %! & % &? & 5 6!% 2.

More information

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε

Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :! 9 9 & ϑ Κ & ϑ Λ &! &!! 4!! Μ Α!! ϑ Β & Ν Λ Κ Λ Ο Λ 8! % & Π Θ Φ & Ρ Θ & Θ & Σ ΠΕ # & Θ Θ Σ Ε ! #!! % & ( ) +,. /. 0,(,, 2 4! 6! #!!! 8! &! % # & # &! 9 8 9 # : : : : :!! 9 8 9 # #! %! ; &! % + & + & < = 8 > 9 #!!? Α!#!9 Α 8 8!!! 8!%! 8! 8 Β 8 Α ) ; %! #?! > 8 8 Χ Δ Ε ΦΦ Ε Γ Δ Ε Η Η Ι Ε ϑ 8 9 :!

More information

器之 间 向一致时为正 相反时则为负 ③大量电荷的定向移动形成电 流 单个电荷的定向移动同样形成电流 3 电势与电势差 1 陈述概念 电场中某点处 电荷的电势能 E p 与电荷量 q Ep 的比值叫做该点处的电势 表达式为 V 电场中两点之间的 q 电势之差叫做电势差 表达式为 UAB V A VB 2 理解概念 电势差是电场中任意两点之间的电势之差 与参考点的选择无关 电势是反映电场能的性质的物理量

More information

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 &

) Μ <Κ 1 > < # % & ( ) % > Χ < > Δ Χ < > < > / 7 ϑ Ν < Δ 7 ϑ Ν > < 8 ) %2 ): > < Ο Ε 4 Π : 2 Θ >? / Γ Ι) = =? Γ Α Ι Ρ ;2 < 7 Σ6 )> Ι= Η < Λ 2 % & 1 & ! # % & ( ) % + ),. / & 0 1 + 2. 3 ) +.! 4 5 2 2 & 5 0 67 1) 8 9 6.! :. ;. + 9 < = = = = / >? Α ) /= Β Χ Β Δ Ε Β Ε / Χ ΦΓ Χ Η Ι = = = / = = = Β < ( # % & ( ) % + ),. > (? Φ?? Γ? ) Μ

More information

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η

> # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ # Κ Μ 0 Ν Ο Κ Ι Π, Ι Π Θ Κ Ι Π ; 4 # Ι Π Η Κ Ι Π. Ο Κ Ι ;. Ο Κ Ι Π 2 Η 1 )/ 2 & +! # % & ( ) +, + # # %. /& 0 4 # 5 6 7 8 9 6 : : : ; ; < = > < # ) Β Χ Χ 7 Δ Ε Φ Γ 5 Η Γ + Ι + ϑ Κ 7 # + 7 Φ 0 Ε Φ # Ε + Φ, Κ + ( Λ # Γ Κ Γ #

More information

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 =

2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ! ϑ Β Β Β ϑ Χ Β! Β Χ 5 ϑ Λ ϑ % < Μ / 4 Ν < 7 :. /. Ο 9 4 < / = Π 7 4 Η 7 4 = ! # % # & ( ) % # ( +, & % # ) % # (. / ). 1 2 3 4! 5 6 4. 7 8 9 4 : 2 ; 4 < = = 2 >9 3? & 5 5 Α Α 1 Β ΧΔ Ε Α Φ 7 Γ 9Η 8 Δ Ι > Δ / ϑ Κ Α Χ Ε ϑ Λ ϑ 2 2 Λ ϑ Δ Χ Δ Ι> 5 Λ Λ Χ Δ 5 Β. Δ Ι > Ε!!Χ ϑ : Χ Ε ϑ!

More information

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! <

8 9 < ; ; = < ; : < ;! 8 9 % ; ϑ 8 9 <; < 8 9 <! 89! Ε Χ ϑ! ϑ! ϑ < ϑ 8 9 : ϑ ϑ 89 9 ϑ ϑ! ϑ! < ϑ < = 8 9 Χ ϑ!! <! 8 9 ΧΧ ϑ! < < < < = 8 9 <! = 8 9 <! < ! # % ( ) ( +, +. ( / 0 1) ( 2 1 1 + ( 3 4 5 6 7! 89 : ; 8 < ; ; = 9 ; ; 8 < = 9! ; >? 8 = 9 < : ; 8 < ; ; = 9 8 9 = : : ; = 8 9 = < 8 < 9 Α 8 9 =; %Β Β ; ; Χ ; < ; = :; Δ Ε Γ Δ Γ Ι 8 9 < ; ; = < ; :

More information

Π Ρ! #! % & #! (! )! + %!!. / 0% # 0 2 3 3 4 7 8 9 Δ5?? 5 9? Κ :5 5 7 < 7 Δ 7 9 :5? / + 0 5 6 6 7 : ; 7 < = >? : Α8 5 > :9 Β 5 Χ : = 8 + ΑΔ? 9 Β Ε 9 = 9? : ; : Α 5 9 7 3 5 > 5 Δ > Β Χ < :? 3 9? 5 Χ 9 Β

More information

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι

. /!Ι Γ 3 ϑκ, / Ι Ι Ι Λ, Λ +Ι Λ +Ι ! # % & ( ) +,& ( + &. / 0 + 1 0 + 1,0 + 2 3., 0 4 2 /.,+ 5 6 / 78. 9: ; < = : > ; 9? : > Α

More information

B = F Il 1 = 1 1 φ φ φ B = k I r F Il F k I 2 = l r 2 10 = k 1 1-7 2 1 k = 2 10-7 2 B = ng Il. l U 1 2 mv = qu 2 v = 2qU m = 2 19 3 16. 10 13. 10 / 27 167. 10 5 = 5.0 10 /. r = m ν 1 qb r = m ν qb

More information

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. ()

) & ( +,! (# ) +. + / & 6!!!.! (!,! (! & 7 6!. 8 / ! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. () ! # % & & &! # % &! ( &! # )! ) & ( +,! (# ) +. + / 0 1 2 3 4 4 5 & 6!!!.! (!,! (! & 7 6!. 8 / 6 7 6 8! (! & 0 6! (9 & 2 7 6!! 3 : ; 5 7 6! ) % (. () , 4 / 7!# + 6 7 1 1 1 0 7!.. 6 1 1 2 1 3

More information

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+

9!!!! #!! : ;!! <! #! # & # (! )! & ( # # #+ ! #! &!! # () +( +, + ) + (. ) / 0 1 2 1 3 4 1 2 3 4 1 51 0 6. 6 (78 1 & 9!!!! #!! : ;!! ? &! : < < &? < Α!!&! : Χ / #! : Β??. Δ?. ; ;

More information

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ (

= Υ Ξ & 9 = ) %. Ο) Δ Υ Ψ &Ο. 05 3; Ι Ι + 4) &Υ ϑ% Ο ) Χ Υ &! 7) &Ξ) Ζ) 9 [ )!! Τ 9 = Δ Υ Δ Υ Ψ ( ! # %! & (!! ) +, %. ( +/ 0 1 2 3. 4 5 6 78 9 9 +, : % % : < = % ;. % > &? 9! ) Α Β% Χ %/ 3. Δ 8 ( %.. + 2 ( Φ, % Γ Η. 6 Γ Φ, Ι Χ % / Γ 3 ϑκ 2 5 6 Χ8 9 9 Λ % 2 Χ & % ;. % 9 9 Μ3 Ν 1 Μ 3 Φ Λ 3 Φ ) Χ. 0

More information

: ; # 7 ( 8 7

: ; # 7 ( 8 7 (! # % & ( ) +,. / +. 0 0 ) 1. 2 3 +4 1/,5,6 )/ ) 7 7 8 9 : ; 7 8 7 # 7 ( 8 7 ; ;! #! % & % ( # ) % + # # #, # % + &! #!. #! # # / 0 ( / / 0! #,. # 0(! #,. # 0!. # 0 0 7 7 < = # ; & % ) (, ) ) ) ) ) )!

More information

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ

4 # = # 4 Γ = 4 0 = 4 = 4 = Η, 6 3 Ι ; 9 Β Δ : 8 9 Χ Χ ϑ 6 Κ Δ ) Χ 8 Λ 6 ;3 Ι 6 Χ Δ : Χ 9 Χ Χ ϑ 6 Κ ! # % & & ( ) +, %. % / 0 / 2 3! # 4 ) 567 68 5 9 9 : ; > >? 3 6 7 : 9 9 7 4! Α = 42 6Β 3 Χ = 42 3 6 3 3 = 42 : 0 3 3 = 42 Δ 3 Β : 0 3 Χ 3 = 42 Χ Β Χ 6 9 = 4 =, ( 9 6 9 75 3 6 7 +. / 9

More information

高等数学A

高等数学A 高等数学 A March 3, 2019 () 高等数学 A March 3, 2019 1 / 55 目录 1 函数 三要素 图像 2 导数 导数的定义 基本导数表 求导公式 Taylor 展开 3 积分 Newton-Leibniz 公式 () 高等数学 A March 3, 2019 2 / 55 函数 y = f(x) 函数三要素 1 定义域 2 值域 3 对应关系 () 高等数学 A March

More information

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α

% & :?8 & : 3 ; Λ 3 3 # % & ( ) + ) # ( ), ( ) ). ) / & /:. + ( ;< / 0 ( + / = > = =? 2 & /:. + ( ; < % >=? ) 2 5 > =? 2 Α 1 Β 1 + Α # % & ( ) # +,. / 0 1 2 /0 1 0 3 4 # 5 7 8 / 9 # & : 9 ; & < 9 = = ;.5 : < 9 98 & : 9 %& : < 9 2. = & : > 7; 9 & # 3 2

More information

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9

9. =?! > = 9.= 9.= > > Η 9 > = 9 > 7 = >!! 7 9 = 9 = Σ >!?? Υ./ 9! = 9 Σ 7 = Σ Σ? Ε Ψ.Γ > > 7? >??? Σ 9 ! # %& ( %) & +, + % ) # % % )./ 0 12 12 0 3 4 5 ). 12 0 0 61 2 0 7 / 94 3 : ;< = >?? = Α Β Β Β Β. Β. > 9. Δ Δ. Ε % Α % Φ. Β.,,.. Δ : : 9 % Γ >? %? >? Η Ε Α 9 Η = / : 2Ι 2Ι 2Ι 2Ι. 1 ϑ : Κ Λ Μ 9 : Ν Ο 0

More information

4 4 D R 1 R R 1 R D E 4 D E D (a) (b) 6 在长度为 d 的无损传输线上, 测得 Z sc ( d) j5, Z oc ( d) j5, 接实际负载时,S=, d m,,,..., 求负载 Z 7 传输线的特性阻抗为 Z, 行波系数为 K, 终端负载为

4 4 D R 1 R R 1 R D E 4 D E D (a) (b) 6 在长度为 d 的无损传输线上, 测得 Z sc ( d) j5, Z oc ( d) j5, 接实际负载时,S=, d m,,,..., 求负载 Z 7 传输线的特性阻抗为 Z, 行波系数为 K, 终端负载为 1 均匀无耗传输线的特性阻抗 Z 5, 负载电流 I j, 负载 阻抗 Z 5 j 试求:(1) 把传输线上的电压 U() z 电流 I() z 写成入 射波与反射波之和的形式 ;() 利用欧拉公式改写成正余弦的形式 一无耗线终端阻抗等于特性阻抗, 如图所示, 已知 U 5, ' 求 U 和 U, 并写出, ', ' 处的电压瞬时表达式 Z ' 8 ' 4 ' sc 3 有一长度为 d 的无耗线,

More information

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ

! Β Β? Β ( >?? >? %? Γ Β? %? % % %? Χ Η Ιϑ Κ 5 8 Λ 9. Μ Ν Ο Χ? Π Β # % Χ Χ Θ Ρ% Ρ% Θ!??? % < & Θ ! # % & ( ) +,. / 0 1 + 2. 3 4. 56. / 7 89 8.,6 2 ; # ( ( ; ( ( ( # ? >? % > 64 5 5Α5. Α 8/ 56 5 9. > Β 8. / Χ 8 9 9 5 Δ Ε 5, 9 8 2 3 8 //5 5! Α 8/ 56/ 9. Φ ( < % < ( > < ( %! # ! Β Β? Β ( >?? >?

More information

W L Gates.Open Lecture The influences of the ocean on climate.scientific lecture at the 28th section of the ECWMO.WMO Bulletin. July1977168 169. WCP 1 WCRP2 WCAP 3 WCIP4 WCDP .. 1991 A Henderson-SellersP

More information

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ;

7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β Ε Φ 5Γ 1 Η Η1 Δ 5 1 Α Ι 1 Η Ι 5 Ε 1 > Δ! 8! #! 9 Κ 6 Λ!!!! ; ; 9 # !!6! 6! 6 # ;! ; ! #! % & % ( ) ( +, & %. / & % 0 12 / 1 4 5 5! 6 7 8 7 # 8 7 9 6 8 7! 8 7! 8 7 8 7 8 7 8 7 : 8 728 7 8 7 8 7 8 7 8 7 & 8 7 4 8 7 9 # 8 7 9 ; 8 ; 69 7!# 8! #;! < = >? 2 1! = 5 > Α Β 2 > 1 Χ Δ5 5 Α 9 Α Β

More information

1#

1# ! # % & ( % + #,,. + /# + 0 1#. 2 2 3 4. 2 +! 5 + 6 0 7 #& 5 # 8 % 9 : ; < =# #% > 1?= # = Α 1# Β > Χ50 7 / Δ % # 50& 0 0= % 4 4 ; 2 Ε; %5 Β % &=Φ = % & = # Γ 0 0 Η = # 2 Ι Ι ; 9 Ι 2 2 2 ; 2 ;4 +, ϑ Α5#!

More information

untitled

untitled arctan lim ln +. 6 ( + ). arctan arctan + ln 6 lim lim lim y y ( ln ) lim 6 6 ( + ) y + y dy. d y yd + dy ln d + dy y ln d d dy, dy ln d, y + y y dy dy ln y+ + d d y y ln ( + ) + dy d dy ln d dy + d 7.

More information

4 4 D R 1 R R 1 R D E 4 D E D (a) (b) 6 在长度为 d 的无耗线上, 测得 sc oc Z ( d) j50, Z ( d) j50, 接 实际负载时,S=, d m 0,,,..., 求负载 Z 7 传输线的特性阻抗为 Z 0, 行波系数为 K,

4 4 D R 1 R R 1 R D E 4 D E D (a) (b) 6 在长度为 d 的无耗线上, 测得 sc oc Z ( d) j50, Z ( d) j50, 接 实际负载时,S=, d m 0,,,..., 求负载 Z 7 传输线的特性阻抗为 Z 0, 行波系数为 K, 1 均匀无耗传输线的特性阻抗 Z0 50, 负载电流 I j, 负载 阻抗 Z 50 j 试求:(1) 把传输线上的电压 Uz () 电流 I() z 写成入 射波与反射波之和的形式 ;() 利用欧拉公式改写成正余弦的形式 一无耗线终端阻抗等于特性阻抗, 如图所示, 已知 U 50 0, 求 U 和 U, 并写出 ', ', ' 处的电压瞬时式 Z 0 ' 8 ' 4 ' sc 3 有一长度为 d

More information

第12章_下_-随机微分方程与扩散.doc

第12章_下_-随机微分方程与扩散.doc Ω, F, P } B B ω, ω Ω { B ω ω Φ ω Φ Φ Φ ω ω B ω Φ Φ ω B ω [, ] < L < l l J l ω Φ ω B ω B ω Φ ω B ω l J ω l J ω Φ B l J ω l ω J 343 J J ω, ω Ω } { B : B J B ε > l P ω η ω > ε J Φ ω B ω Φ B η ΦB J, ] B B

More information

PowerPoint 演示文稿

PowerPoint 演示文稿 . ttp://www.reej.com 4-9-9 4-9-9 . a b { } a b { }. Φ ϕ ϕ ϕ { } Φ a b { }. ttp://www.reej.com 4-9-9 . ~ ma{ } ~ m m{ } ~ m~ ~ a b but m ~ 4-9-9 4 . P : ; Φ { } { ϕ ϕ a a a a a R } P pa ttp://www.reej.com

More information

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ

Ⅰ Ⅱ 1 2 Ⅲ Ⅳ Ⅰ Ⅱ 1 2 Ⅲ Ⅳ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

《分析化学辞典》_数据处理条目_2.DOC

《分析化学辞典》_数据处理条目_2.DOC lg lg ) (lg µ lg lg lg g g g lg lg g lg g () f ma m ) ( ma f ) ( m f w w w w w / s s µ w sw w s w m s s m ( y Y ) w[ y ( a b Q w Q w w + Q w w a b )] a b H H H H H H α H α H H β H H H α H H α H H α α H

More information

Φ2,.. + Φ5Β( 31 (+ 4, 2 (+, Η, 8 ( (2 3.,7,Χ,) 3 :9, 4 (. 3 9 (+, 52, 2 (1 7 8 ΙΜ 12 (5 4 5? ), 7, Χ, ) 3 :9, 4( > (+,,3, ( 1 Η 34 3 )7 1 )? 54

Φ2,.. + Φ5Β( 31 (+ 4, 2 (+, Η, 8 ( (2 3.,7,Χ,) 3 :9, 4 (. 3 9 (+, 52, 2 (1 7 8 ΙΜ 12 (5 4 5? ), 7, Χ, ) 3 :9, 4( > (+,,3, ( 1 Η 34 3 )7 1 )? 54 !! # %& ( ) +, ( ),./0 12,2 34 (+,, 52, 2 (67 8 3., 9: ), ; 5, 4, < 5) ( (, 2 (3 3 1 6 4, (+,,3,0 ( < 58 34 3 )7 1 54 5, 2 2 54, +,. 2 ( :5 ( > 4 ( 37 1, ( 3 4 5? 3 1 (, 9 :), ; 5 4 )1 7 4 )3 5( 34 2 Α

More information

5 550A 5 550A 6 38A 5 m 3.39 m 4 800A 5 45A c v n n c / v n c / v sina / sin β = v / v, v Ia 4 λ m m v / c m v 0 n sin( u) S r S - n sin u sin u OA( S) sin( u ) = OA/ S ( ) n n n n S S

More information

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 :

Β Χ + Δ Ε /4 10 ) > : > 8 / 332 > 2 / 4 + Φ + Γ 0 4 Η / 8 / 332 / 2 / 4 + # + Ι + ϑ /) 5 >8 /3 2>2 / 4 + ( )( + 8 ; 8 / 8. 8 : !! # % & % () + (. / 0 ) 1 233 /. / 4 2 0 2 + + 5. 2 / 6 ) 6. 0 ) 7. 8 1 6 / 2 9 2 :+ ; < 8 10 ; + + ( =0 41 6< / >0 7 0?2) 29 + +.. 81 6> Α 29 +8 Β Χ + Δ Ε /4 10 )+ 2 +. 8 1 6 > 2 9 2 : > 8 / 332 > 2

More information

微积分 授课讲义

微积分 授课讲义 2018 10 aiwanjun@sjtu.edu.cn 1201 / 18:00-20:20 213 14:00-17:00 I II Taylor : , n R n : x = (x 1, x 2,..., x n ) R; x, x y ; δ( ) ; ; ; ; ; ( ) ; ( / ) ; ; Ů(P 1,δ) P 1 U(P 0,δ) P 0 Ω P 1: 1.1 ( ). Ω

More information

电子技术基础 ( 第 版 ) 3. 图解单相桥式整流电路 ( 图 4-1-3) 电路名称电路原理图波形图 整流电路的工作原理 1. 单相半波整流电路 u 1 u u sin t a t 1 u 0 A B VD I A VD R B

电子技术基础 ( 第 版 ) 3. 图解单相桥式整流电路 ( 图 4-1-3) 电路名称电路原理图波形图 整流电路的工作原理 1. 单相半波整流电路 u 1 u u sin t a t 1 u 0 A B VD I A VD R B 直流稳压电源 第 4 章 4.1 整流电路及其应用 学习目标 1. 熟悉单相整流电路的组成, 了解整流电路的工作原理. 掌握单相整流电路的输出电压和电流的计算方法, 并能通过示波器观察整流电路输出电压的波形 3. 能从实际电路中识读整流电路, 通过估算, 能合理选用整流元器件 4.1.1 认识整流电路 1. 图解单相半波整流电路 ( 图 4-1-1) 电路名称电路原理图波形图 4-1-1. 图解单相全波整流电路

More information

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ %

# # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % #! # # %! # + 5 + # 4 + % ( ) ( /! 3 (0 0 (012 0 # (,!./ % ,9 989 + 8 9 % % % % # +6 # % 7, # (% ) ,,? % (, 8> % %9 % > %9 8 % = ΑΒ8 8 ) + 8 8 >. 4. ) % 8 # % =)= )

More information

( ) (! +)! #! () % + + %, +,!#! # # % + +!

( ) (! +)! #! () % + + %, +,!#! # # % + +! !! # % & & & &! # # % ( ) (! +)! #! () % + + %, +,!#! # # % + +! ! %!!.! /, ()!!# 0 12!# # 0 % 1 ( ) #3 % & & () (, 3)! #% % 4 % + +! (!, ), %, (!!) (! 3 )!, 1 4 ( ) % % + % %!%! # # !)! % &! % () (! %

More information

untitled

untitled 4 y l y y y l,, (, ) ' ( ) ' ( ) y, y f ) ( () f f ( ) (l ) t l t lt l f ( t) f ( ) t l f ( ) d (l ) C f ( ) C, f ( ) (l ) L y dy yd π y L y cosθ, π θ : siθ, π yd dy L [ cosθ cosθ siθ siθ ] dθ π π π si

More information

x y 7 xy = 1 b c a b = x x = 1. 1 x + 17 + x 15 = 16 x + 17 x 15 + 17 15 x + 17 - x 15 = (x x ) ( ). x + 17 + x 15 x + y + 9 x + 4 y = 10 x + 9 y + 4 = 4xy. 9 4 ( x + ) + ( y + ) = 10 x y 9 ( x + )( ).

More information

《分析化学辞典》_数据处理条目_1.DOC

《分析化学辞典》_数据处理条目_1.DOC 3 4 5 6 7 χ χ m.303 B = f log f log C = m f = = m = f m C = + 3( m ) f = f f = m = f f = n n m B χ α χ α,( m ) H µ σ H 0 µ = µ H σ = 0 σ H µ µ H σ σ α H0 H α 0 H0 H0 H H 0 H 0 8 = σ σ σ = ( n ) σ n σ /

More information

CHCN_8-14_K.indd

CHCN_8-14_K.indd 是德科技矢量网络分析的基本原理 应用指南 引言 (S ) DC-110 GHz 通信系统中的测量要求 ( ) ( 1) Sin 360º * f * t Input DUT A t o A * Sin 360º * f (t t o ) A phase shift = t o * 360º * f f 1 Output Linear behavior input and output frequencies

More information

ο HOH 104 31 O H 0.9568 A 1 1 109 28 1.01A ο Q C D t z = ρ z 1 1 z t D z z z t Qz = 1 2 z D z 2 2 Cl HCO SO CO 3 4 3 3 4 HCO SO 2 3 65 2 1 F0. 005H SiO0. 032M 0. 38 T4 9 ( K + Na) Ca 6 0 2 7 27 1-9

More information

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6

: Π Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ Σ # = Μ 0 ; 9 < = 5 Λ 6 # = = # Μ Μ 7 Τ Μ = < Μ Μ Ο = Ρ # Ο Ο Ο! Ο 5 6 ;9 5 5Μ Ο 6 ! # % # & ( ) +, #,. # / 0. 0 2 3 4! 5 6 5 6 7 8 5 6 5 6 8 9 : # ; 9 < = 8 = > 5 0? 0 Α 6 Β 7 5ΧΔ ΕΦ 9Γ 6 Η 5+3? 3Ι 3 ϑ 3 6 ΗΚ Η Λ!Κ Η7 Μ ΒΜ 7 Ν!! Ο 8 8 5 9 6 : Π 5 6 8 9 9 5 6 Δ 9 Δ 9 Δ 9 7 Θ Μ 9 8 Ρ

More information

数字带通 带阻 高通滤波器的设计 把一个归一化原型模拟低通滤波器变换成另一个所需类型的模拟滤波器, 再将其数字化 直接从模拟滤波器通过一定的频率变换关系完成所需类型数字滤波器的设计 先设计低通型的数字滤波器, 再用数字频率变化方法将其转换成所需类型数字滤波器

数字带通 带阻 高通滤波器的设计 把一个归一化原型模拟低通滤波器变换成另一个所需类型的模拟滤波器, 再将其数字化 直接从模拟滤波器通过一定的频率变换关系完成所需类型数字滤波器的设计 先设计低通型的数字滤波器, 再用数字频率变化方法将其转换成所需类型数字滤波器 数字带通 带阻 高通滤波器的设计 把一个归一化原型模拟低通滤波器变换成另一个所需类型的模拟滤波器, 再将其数字化 直接从模拟滤波器通过一定的频率变换关系完成所需类型数字滤波器的设计 先设计低通型的数字滤波器, 再用数字频率变化方法将其转换成所需类型数字滤波器 模拟原型方法 : 模拟低通 - 模拟带通 H ( j) H ( j) 3 3 3 模拟原型方法 : 模拟低通 - 模拟带通 H ( j) 模拟低通

More information

koji-13.dvi

koji-13.dvi 26 13 1, 2, 3, 4, 5, 6, 7 1 18 1. xy D D = {(x, y) y 2 x 4 y 2,y } x + y2 dxdy D 2 y O 4 x 2. xyz D D = {(x, y, z) x 1, y x 2, z 1, y+ z x} D 3. [, 1] [, 1] (, ) 2 f (1)

More information

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ

Α 3 Α 2Η # # > # 8 6 5# Ι + ϑ Κ Ι Ι Ι Η Β Β Β Β Β Β ΔΕ Β Β Γ 8 < Φ Α Α # >, 0 Η Λ Μ Ν Ο Β 8 1 Β Π Θ 1 Π Β 0 Λ Μ 1 Ρ 0 Μ ϑ Σ ϑ Τ Ο Λ 8 ϑ ! # % & ( ) % + ( ), & ). % & /. % 0 1!! 2 3 4 5# 6 7 8 3 5 5 9 # 8 3 3 2 4 # 3 # # 3 # 3 # 3 # 3 # # # ( 3 # # 3 5 # # 8 3 6 # # # # # 8 5# :;< 6#! 6 =! 6 > > 3 2?0 1 4 3 4! 6 Α 3 Α 2Η4 3 3 2 4 # # >

More information

第一章 绪论

第一章  绪论 1-1 1-1 1-5 0.05 1-6 1 60mm 1.5W/(m K) 5-5 m C 1-7 1cm, 0 m 1.04W/(m K) C C 50 50 4.09 10 kj/kg C 1-9 =69 C f =0 w C =14mm d 80mm 8.5W 1-11 10mm 0 C 85 C ( ) 175 W m K 1mm 1-14 T0 0K T = w 50K ε = 0. 7

More information

υ υ υ υ υ υ υ υ υ υ υ υ υ υ υ è é é è υυ ν ε ε è α α α α α α α α α τ E h L. ν = λ = h p Ξ v k ν pe nµ Λ ν µ ν µ ε µ π ~ n p n np ~ π N Ξ + p n o o Λ Ξ Ξ SU 3

More information

1 2 1.1............................ 2 1.2............................... 3 1.3.................... 3 1.4 Maxwell.................... 3 1.5.......................... 4 1.6............................ 4

More information

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; =

Γ Ν Ν, 1 Ο ( Π > Π Θ 5?, ΔΓ 2 ( ΜΡ > Σ 6 = Η 1 Β Δ 1 = Δ Ι Δ 1 4 Χ ΓΗ 5 # Θ Γ Τ Δ Β 4 Δ 4. > 1 Δ 4 Φ? < Ο 9! 9 :; ;! : 9!! Υ9 9 9 ; = 8; = ; = ! 0 1 # & ( & ) +! &,. & /.#. & 2 3 4 5 6 7 8 9 : 9 ; < = : > < = 9< 4 ; < = 1 9 ; 3; : : ; : ;? < 5 51 ΑΒ Χ Δ Ε 51 Δ!! 1Φ > = Β Γ Η Α ΒΧ Δ Ε 5 11!! Ι ϑ 5 / Γ 5 Κ Δ Ε Γ Δ 4 Φ Δ Λ< 5 Ε 8 Μ9 6 8 7 9 Γ Ν

More information

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7

= > : ; < ) ; < ; < ; : < ; < = = Α > : Β ; < ; 6 < > ;: < Χ ;< : ; 6 < = 14 Δ Δ = 7 ; < Ε 7 ; < ; : <, 6 Φ 0 ; < +14 ;< ; < ; 1 < ; <!7 7 ! # % # & ( & ) # +,,., # / 0 1 3. 0. 0/! 14 5! 5 6 6 7 7 7 7 7! 7 7 7 7 7 7 8 9 : 6! ; < ; < ; : 7 7 : 7 < ;1< = = : = >? ) : ; < = > 6 0 0 : ; < ) ; < ; < ; : < ; < = = 7 7 7 Α > : Β ; < ; 6 < > ;:

More information

; < 5 6 => 6 % = 5

; < 5 6 => 6 % = 5 ! # % ( ),,. / 0. 1, ) 2 3, 3+ 3 # 4 + % 5 6 67 5 6, 8 8 5 6 5 6 5 6 5 6 5 6 5 9! 7 9 9 6 : 6 ; 7 7 7 < 5 6 => 6 % = 5 Δ 5 6 ; Β ;? # Ε 6 = 6 Α Ε ; ; ; ; Φ Α Α Ε 0 Α Α Α Α Α Α Α Α Α Α Α Α Α Β Α Α Α Α Α

More information

9 : : ; 7 % 8

9 : : ; 7 % 8 ! 0 4 1 % # % & ( ) # + #, ( ) + ) ( ). / 2 3 %! 5 6 7! 8 6 7 5 9 9 : 6 7 8 : 17 8 7 8 ; 7 % 8 % 8 ; % % 8 7 > : < % % 7! = = = : = 8 > > ; 7 Ε Β Β % 17 7 :! # # %& & ( ) + %&, %& ) # 8. / 0. 1 2 3 4 5

More information

3 = 4 8 = > 8? = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0 Ι Λ Χ ΦΔ Χ & Φ Μ Χ Ε ΝΓ 0 Γ Κ 6 Δ Χ 1 0

3 = 4 8 = > 8? = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0 Ι Λ Χ ΦΔ Χ & Φ Μ Χ Ε ΝΓ 0 Γ Κ 6 Δ Χ 1 0 / 0 1 0 3!! # % & ( ) ( + % & ( ) &, % &., 45 6!! 7 4 8 4 8 9 : ;< 4 8 3!, 3 9!! 4 8 ; ; 7 3 = 4 8 = > 8? 6 10 1 4 8 = 6 + Α Β Χ Δ Ε Φ Γ Φ 6 Η 0 Ι ϑ ϑ 1 Χ Δ Χ ΦΚ Δ 6 Ε Χ 1 6 Φ 0 Γ Φ Γ 6 Δ Χ Γ 0 Ε 6 Δ 0

More information

% % %/ + ) &,. ) ) (!

% % %/ + ) &,. ) ) (! ! ( ) + & # % % % %/ + ) &,. ) ) (! 1 2 0 3. 34 0 # & 5 # #% & 6 7 ( ) .)( #. 8!, ) + + < ; & ; & # : 0 9.. 0?. = > /! )( + < 4 +Χ Α # Β 0 Α ) Δ. % ΕΦ 5 1 +. # Ι Κ +,0. Α ϑ. + Ι4 Β Η 5 Γ 1 7 Μ,! 0 1 0

More information

-2 4 - cr 5 - 15 3 5 ph 6.5-8.5 () 450 mg/l 0.3 mg/l 0.1 mg/l 1.0 mg/l 1.0 mg/l () 0.002 mg/l 0.3 mg/l 250 mg/l 250 mg/l 1000 mg/l 1.0 mg/l 0.05 mg/l 0.05 mg/l 0.01 mg/l 0.001 mg/l 0.01 mg/l () 0.05 mg/l

More information

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ

7 6 Η : Δ >! % 4 Τ & Β( Β) 5 &! Α Υ Υ 2 Η 7 %! Φ! Β! 7 : 7 9 Λ 9 :? : 9 Λ Λ 7 Φ! : > 9 : 7Δ 2 Η : 7 ΛΔ := ς : Ν 7 Λ Δ = Ν : Ν 7 ΛΔ : = Λ ς :9 Λ 7 Λ! Λ ! % & ( ),. / & 0 1 & 2 1 // % & 3 0 4 5 ( 6( ) ( & 7 8 9:! ; < / 4 / 7 = : > : 8 > >? :! 0 1 & 7 8 Α :! 4 Β ( & Β ( ( 5 ) 6 Χ 8 Δ > 8 7:?! < 2 4 & Ε ; 0 Φ & % & 3 0 1 & 7 8 Α?! Γ ), Η % 6 Β% 3 Ι Β ϑ Ι

More information

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9

< < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ 3 % & % & + 9 Β 9 !! #! % & ( ) +,. / 0 1 2 34 5 6 % & +7 % & 89 % & % & 79 % & : % & < < ; : % & < % & > & % &? > & 5 % & ( ; & & % & Α Β + 8 ; Α9 Χ Δ () Χ Δ Ε 41 Φ # (Β % Γ : 9 Χ Δ Η +9 Χ Δ 2 9 Χ Δ 2 0 /? % & Ι 1 ϑ Κ

More information

4 4 4 4 4 4! # % & ( # ) )! ) & +!. # / 0! + 1 & % / 0 2 & #. 3 0 5. 6 7 8 0 4 0 0 # 9 : ; < 9 = >9? Α = Β Χ Δ6 Ε9 8 & 9 : # 7 6 Φ = Γ Η Ι 0 ϑ 9 7 Κ 1 Λ 7 Κ % ΓΗ Δ 9 Η ΕΔ 9 = ;

More information

m0 m = v2 1 c 2 F G m m 1 2 = 2 r m L T = 2 π ( m g 4 ) m m = 1 F AC F BC r F r F l r = sin sinl l F = h d G + S 2 = t v h = t 2 l = v 2 t t h = v = at v = gt t 1 l 1 a t g = t sin α 1 1 a = gsinα

More information

( )

( ) ( ) * 22 2 29 2......................................... 2.2........................................ 3 3..................................... 3.2.............................. 3 2 4 2........................................

More information

10-03.indd

10-03.indd 1 03 06 12 14 16 18 é 19 21 23 25 28 30 35 40 45 05 22 27 48 49 50 51 2 3 4 é é í 5 é 6 7 8 9 10 11 12 13 14 15 16 17 18 19 é 20 21 22 23 ü ü ü ü ü ü ü ü ü 24 ü 25 26 27 28 29 30 31 32 33 34 35 36 37 38

More information

例15

例15 cos > g g lim lim cos lim lim lim g lim ) ) lim lim g ) cos lim lim lim 3 / ) ) y, ) ) y o y y, ) y y y) y o y) ) e, ), ) y arctan y y Ce y) C y ) e y) y ) e g n www.tsinghuatutor.com [ g ] C k n n) n

More information

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. &

) ) ) Ο ΛΑ >. & Β 9Α Π Ν6 Γ2 Π6 Φ 2 Μ 5 ΝΒ 8 3 Β 8 Η 5 Φ6 Β 8 Η 5 ΝΒ 8 Φ 9 Α Β 3 6 ΝΒ 8 # # Ε Ο ( & & % ( % ) % & +,. & !! # % & ( ) +,.% /.0.% 1 2 3 / 5,,3 6 7 6 8 9 6!! : 3 ) ; < < = )> 2?6 8 Α8 > 6 2 Β 3Α9 Α 2 8 Χ Δ < < Ε! ; # < # )Φ 5 Γ Γ 2 96 Η Ι ϑ 0 Β 9 Α 2 8 Β 3 0 Β 9 Β ΦΚ Α 6 8 6 6 Λ 2 5 8 Η Β 9 Α 2 8 2 Μ 6 Ν Α

More information

04.广义S参数

04.广义S参数 Ⅳ. 广义 S 参数 西安电子科技大学, 电子工程学院苏涛 n [ S ] i S S b a a b a 端口匹配时, 端口自反射系数 a 端口匹配时, 传输 S 参数, 必须使网络的端口归于某些特定的阻抗, 归一化参数 广义散射参数是指对广义下各种电路都适用的, 即不论电路是时谐的还是非时谐的, 也不论电路是集总参数的还是分布参数的, 都能适用的一种散射参数 它实际上是将常用的散射参数推广引用于非时谐集总参数电路的结果

More information

第一章三角函数 1.3 三角函数的诱导公式 A 组 ( ) 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角, 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C 2 ( 中诱导公式 ) ( ) B. cos(

第一章三角函数 1.3 三角函数的诱导公式 A 组 ( ) 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角, 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C 2 ( 中诱导公式 ) ( ) B. cos( 第一章三角函数 1. 三角函数的诱导公式 A 组 一 选择题 : 共 6 小题 1 ( 易诱导公式 ) 若 A B C 分别为 ABC 的内角 则下列关系中正确的是 A. sin( A B) sin C C. tan( A B) tan C ( 中诱导公式 ) B. cos( B C) cos A D. sin( B C) sin A sin60 cos( ) sin( 0 )cos( 70 ) 的值等于

More information

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9!

Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3 Ε Φ Γ ΕΙΙ 3 Χ 3 Φ 4 Κ? 4 3 Χ Λ Μ 3 Γ Ε Φ ) Μ Ε Φ? 5 : < 6 5 % Λ < 6 5< > 6! 8 8 8! 9 9 9! 9 =! = 9! # %!!! ( ) ( +, +. ( / 0 1) ( 21 1) ( 2 3 / 4!! 5 6 7 7! 8 8 9 : ; < 9 = < < :! : = 9 ; < = 8 9 < < = 9 8 : < >? % > % > % 8 5 6 % 9!9 9 : : : 9 Α % 9 Α? Β / Χ 3 Δ Ε/ Ε 4? 4 Ε Φ? ΧΕ Γ Χ Η ΙΙ ϑ % Η < 3

More information

untitled

untitled + lim = + + lim = + lim ( ) + + + () f = lim + = + = e cos( ) = e f + = e cos = e + e + + + sin + = = = = = + = + cos d= () ( sin ) 8 cos sin cos = ( ) ( sin ) cos + d= ( + ) = cos sin cos d sin d 4 =

More information

! # %! #! #! # % + &, % % ) %. /! # 0 1

! # %! #! #! # % + &, % % ) %. /! # 0 1 ! # %! #! #! # % + &, % % ) %. /! # 0 1 2 32 % 4! #! # 4 4 2 32 4 4! # 2 32 ! # % 2 5 2 32 % % 6 2 7 8 %! 6 # %3 3 9 % /, 9 % 2 % % 3 #7 9 % 2 8 7 2 % 3 7 7 7 8 7 7 7 7 3 9 8 8 % 3! # 7 12 1191 1 ; % %

More information

WL100014ZW.PDF

WL100014ZW.PDF A Z 1 238 H U 1 92 1 2 3 1 1 1 H H H 235 238 92 U 92 U 1.1 2 1 H 3 1 H 3 2 He 4 2 He 6 3 Hi 7 3 Hi 9 4 Be 10 5 B 2 1.113MeV H 1 4 2 He B/ A =7.075MeV 4 He 238 94 Pu U + +5.6MeV 234 92 2 235 U + 200MeV

More information

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5

8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, ; > 8? : 5 4 +? Α > 6 + > 3, > 5 <? 9 5 < =, Β >5 0 ( 1 0 % (! # % & ( ) + #,. / / % (! 3 4 5 5 5 3 4,( 7 8 9 /, 9 : 6, 9 5,9 8,9 7 5,9!,9 ; 6 / 9! # %#& 7 8 < 9 & 9 9 : < 5 ( ) 8 9 : < : 3, 1 4 < 8 3 = >? 4 =?,( 3 4 1( / =? =? : 3, : 4 9 / < 5 3, 5 4

More information