Attenuator Design Tutorial

Similar documents
TB215.doc

Varactor SPICE Models for RF VCO Applications Parameter Description Unit Default IS Saturation current (with N, determine the DC characteristics of th

ANSYS 在航空航天器电磁兼容、电磁干扰分析中的应

Phase Shifter Design Tutorial

PowerPoint Presentation

pages.pdf

Directional Couplers.doc

BranchLine Coupler - Quadrature

Balun Design

usbintr.PDF

PCB Layout using ADS November 29, 2005 PCB Layout using ADS Dr. B. Frank Department of Electrical and Computer Engineering Queen's University Slide 1

,,: 65,A - 10A, 9, M1A1, 85 %: 148,35 72,1/ 6, 17 % (20 15 %) [1 ] ;1994,, 2 2,;2001, ; , ; ; F - 16 ;2 ;; F - 15 ; ;, :,,,, ,,,, M

Special Materials in CST STUDIO SUITE 2012

Combline Cavity Filter Design in HFSS

Ω Ω 75Ω

RFID Transponder operating at MHz

PCB a 2.5mm b 4.0mm A mm W/cm 3 PCB PCB 2.0mm 1.5mm PCB PCB

投影片 1

DATASHEET SEARCH SITE |

amp_b3.PDF

No Slide Title

Microsoft Word - AN95007.doc

Introduction In this tutorial, a dipole antenna will be constructed and analyzed using the HFSS simulation software by Ansoft. The example will illust

Balun Design

A stair-shaped slot antenna for the triple-band WLAN applications

第1讲-电磁兼容导论.ppt

CAM350 CAM350 CAM350 CAM350 Export Gerber 274D 274X Fire9000 Barco DPF NC Drill Mill Excellon Sieb Meyer IPC D 350 IPC D A Modification CAM/Ger

iml88-0v C / 8W T Tube EVM - pplication Notes. IC Description The iml88 is a Three Terminal Current Controller (TTCC) for regulating the current flowi

DSCHA Jun 06

, V m 3,, I p R 1 = ( I p + I 1 ) / R 0 I p, R 1 / 4, R m V d, 1. 1 Doherty MRF6P21190 LDMOS,,, Doherty B Freescale M6P21190 ADS 2 Doherty 3 Doherty,

Yageo Chip Antenna Sum V doc

Design System Designer RF Analog - Designer Ptolemy Simulator System level - Designer E D A - s Modelsim RTL EDGE GSM WLAN Numeric Ptolemy Timed NC-Ve

3.1.doc

4.2 DC Bias

APPLI002.DOC

Microsoft PowerPoint - Pres_ansoft_elettronica.ppt

Microsoft Word - SLVU2.8-4 Rev04.doc

SGS-Apache BQB proposal_04_11_2003

Presentation - Advanced Planar Antenna Designs for Wireless Devices

Microsoft PowerPoint - seminaari 26_5_04_antenniteknologiat.ppt

apn1003.qxd

iml v C / 0W EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the current flowin

HFSS Antenna Design Kit

iml v C / 4W Down-Light EVM - pplication Notes. IC Description The iml8683 is a Three Terminal Current Controller (TTCC) for regulating the cur

lumprlc.fm

<4D F736F F D C4EAC0EDB9A4C0E04142BCB6D4C4B6C1C5D0B6CFC0FDCCE2BEABD1A15F325F2E646F63>

Filter Design in Thirty Seconds

BC04 Module_antenna__ doc

A Miniature GPS Planar Chip Antenna Integrated with Low Noise Amplifier

untitled

Eminence Workshop (II)

Pin Configurations Figure2. Pin Configuration of FS2012 (Top View) Table 1 Pin Description Pin Number Pin Name Description 1 GND 2 FB 3 SW Ground Pin.

Novel 2-D Photonic Bandgap Structure For Microstrip Lines - IEEE Microwa ve and Guided Wave Letters

AWT6166_Rev_0.3.PMD

Microsoft PowerPoint - STU_EC_Ch08.ppt

( ) T arget R ecogn ition),,,,,,, ( IFF, Iden tification F riend o r Foe),,,,,,, ( N CTR, N on2 Cooperative T arget R ecogn ition), (

A stair-shaped slot antenna for the triple-band WLAN applications

Microsoft Word - Differential Circuit Comparison App note_B.doc

1.ai

High-Q RF-MEMS Tunable Evanescent-Mode Cavity Filter

FSA W Low Voltage Dual DPDT Analog Switch

Microsoft Word - PZ series.doc

CSTHandOut

TX-NR3030_BAS_Cs_ indd

書名:

Full Band Waveguide-to-Microstrip Probe Transitions - Microwave Symposium Digest, 1999 IEEE MTT-S International

Practical RF Printed Circuit Board Design

Transcription:

1 of 14 Attenuator Design Tutorial Introduction Attenuators are devices used to adjust signal levels, to control impedance mismatch and to isolate circuit stages. Passive design Passive attenuators consist of two types pi and Tee attenuators. (1) Pi Attenuator The circuit for the Pi attenuator is shown in Figure 1. R3 Zout Zin R1 R2 Zin >= Zout Figure 1 Pi Attenuator R3 = 1 2 1 Zin * Zout R2 = R1 = + 1 1 R3 Zout 1 1 1 + 1 Zin 1 1 R3 Where = desired loss in db Zin = desired input impedance (ohms) Zout = desired output impedance (ohms)

2 of 14 (2) Tee Attenuator The circuit for the T attenuator is shown in Figure 2 R1 R2 Zin Zout R3 Zin >= Zout Figure 2 ircuit of the T attenuator R3 = 2 Zin * Zout * 1 R2 = + 1 Zout R3 1 R2 = + 1 Zin R3 1 Where = desired loss in db Zin = desired input impedance (ohms) Zout = desired output impedance (ohms)

3 of 14 (3) Bridged T Attenuator The circuit of the bridge T attenuator is shown in Figure 3 R1 Zin Zout R=Zo R=Zo R4 Figure 3 ircuit of the Bridged-T attenuator R1= Zo 20 1 R4 = Zo 20 1 Where = desiredlossin db Zin = desiredinput impedance(ohms) Zout = desiredoutput impedance(ohms) Zo = ircuitcharacteristic impedance(ohms) This circuit is commonly used with PIN diodes to form an electronic attenuator, as only two variable resistors are required (instead of 3 for the Pi or T attenuators).

4 of 14 Narrow-band active variable attenuator design If we use the bridged-t network as a basis of an active attenuator we need to add the bias circuits to complete a basic design. Figure 4 Shows the complete electronic bridged-t attenuator together with the correct bias circuits. The circuit has been set up such that the currents through D1 and D4 are inverse to each other ie when D1 current is high then D4 current is low and visa versa. When the PIN diode is on (high current)is has low attenuation. So when D1 is on and D4 is off, the two R s and D4 are out of circuit and the attenuation through the circuit is low. When D1 is off and D4 is on the signal instead of passing through D1 will pass to ground via D4 and the circuit will be in a high attenuation state. Intermediate currents through D1 & D4 will allow attenuation from max to min. Fixed V D1 Zout Zin 1 R=Zo R=Zo Vcontrol D4 4 Figure 4 Electronic version of the Bridged T attenuator, where resistors R1 & R4 have been replaced by PIN diodes D1 and D4. A typical microwave PIN diode is from Agilent HSMP-38 has a low resistance of ohms and a high resistance of 1500 ohms.

5 of 14 Therefore, using such a device we could design an attenuator with the following min and max attenuations:- Minimumattenuation R1 = 20log + 1 50 = 20log + 1 50 = 1.58dB approx Where = desiredloss in db Maximumattenuation R1 = 20log + 1 50 = 1500 20log + 1 50 = 29dB approx Using the data sheet it is possible to design a model in ADS and the resulting circuit is shown in Figure 5. Var Eqn VAR VAR1 Rj=80/(I^0.9) Port P1 Num=1 2 =0.8 nh R= 2 =0.05 pf 7 =0.035 pf 5 =0.05 pf 3 =0.03 pf 1 =0.70 nh R= R R1 R=2.5 Ohm 1 =0.18 pf R R2 R=Rj Ohm 6 =1.0 pf 3 =0.8 nh R= 4 =0.05 pf Port P2 Num=2 Figure 5 ADS sub-circuit of the PIN diode Agilent HSMP-38. The diode chip consists of R1, 2 and the variable resistor R2 defined by the equation Rj. When designing subcircuits in ADS you need to select File-Design Parameters and add any variables you want to pass through a higher simulation in this case I has been added and given a default value of 1mA. You can also switch to create/edit schematic symbol (under the view menu) to draw the component symbol. The Bridge-T circuit was set up in ADS to include an S-parameter simulation box set to 2-2GHz and is shown in.

6 of 14 S-PARAMETERS S_Param SP1 Start=1 GHz Stop=2.0 GHz Step=2 MHz Term Ter Num=1 Z=50 Ohm R R1 R=50 Ohm PIN_Diode X1 I=0.01 R R2 R=50 Ohm Term Term2 Num=2 Z=50 Ohm PIN_Diode X2 I=0 Figure 6 ADS schematic of the bridged-t attenuator. If you push into either X1 or X2 you will see the circuit shown in Figure 5. The values of I are set to 0.01 and 0 and then swapped to view the resulting simulations. The two resulting simulations of the circuit shown above in Figure 6 are shown in Figure 8 (Minimum attenuation state) and Figure 9 (High attenuation state). Note how the slope changes with frequency and attenuation. It s possible to match the PIN diodes using lumped or distributed matching circuits to minimise this slope. If look at the input return loss of the diode at mid-bias using the circuit shown in Figure 7, we obtain the smith chart shown in Term Ter Num=1 Z=50 Ohm PIN_Diode X1 I=50 S-PARAMETERS S_Param SP1 Step=1.0 GHz enter=1.5 GHz Span=0 MHz

7 of 14 Figure 7 ADS schematic to measure the input return loss of the PIN diode at 1.5GHz.

8 of 14 db(s(2,1)) -0.5-0.6-0.7-0.8-0.9-1.0 freq=1.504ghz db(s(2,1))=-0.755-1.1 1.0 1.2 1.4 1.6 1.8 2.0 Figure 8 Minimum attenuation state with D1 set to 0mA and D4 set to 0.01mA (ie off) -9 freq=1.504ghz db(s(2,1))=-12.082 db(s(2,1)) - -11-12 -13-14 -15-16 1.0 1.2 1.4 1.6 1.8 2.0 Figure 9 High attenuation state with D1 set to 0.01mA (ie off) and D4 set to 0mA. Figure Shows the input return loss of the Pin diode showing that it has inductance at 1.5GHz of some 22 ohms this equates to an inductance of ~ 2nH. So if we resonate this inductance with a capacitor of 4pF we should improve our frequency response. The new set of plots is shown in

9 of 14 freq=1.550e9hz S(1,1)=0.846 / 130.962 impedance = Z0 * (0.1 + j0.452) S(1,1) freq (1.450GHz to 1.550GHz) Figure Input return loss of the PIN diode showing that at 1.5GHz it has an inductive impedance with a value of +j0.452*50 = 22 ohms. -0.4-0.6-0.8-1.0 freq=1.506ghz db(s(2,1))=-0.503-1.2 1.0 1.2 1.4 1.6 1.8 2.0 db(s(2,1)) Figure 11 Minimum attenuation state with series 4pF capacitors added to each Pin diode. -14-16 -18-20 freq=1.506ghz db(s(2,1))=-25.721-22 -24-26 1.0 1.2 1.4 1.6 1.8 2.0 db(s(2,1)) Figure 12 Maximum attenuation state with series 4pF capacitors added to each PIN diode. learly such circuits have narrow band attenuation and for broader band type circuits lange couplers can be used:

of 14 Broad-band active variable attenuator design In many situations it is better to have a broad-band attenuator that can be used at many different frequencies. So for example assume we to design a broad-band attenuator with the following parameters:- Parameter Units Frequency range 6 to GHz Minimum attenuation <1 db Maximum attenuation >20 db Frequency ripple < 2 db pk-pk Return loss < - db The first thing we need to do is select a Pin diode that is designed for these frequencies. In this case a Maom MA4P202 PIN diode was chosen as it s operating frequency range is specified as 50MHz to 18GHz and is available in chip form. The model of the Pin is very simple and is shown in Figure 13. The variable resistance is actually non-linear but for the purposes of this example we will only be looking at max and min attenuation cases ie currents of 20uA and ma. Var Eqn VAR VAR1 Rj=20/I 1 =0.05 pf Port P1 Num=1 R R1 R=0.2 Ohm R R2 R=Rj Ohm Port P2 Num=2 Figure 13 Simple model of the MAOM MAP202 PIN diode in chip form. The full circuit of the broad-band attenuator circuit is shown in Figure 14. The circuit is configured as a balanced attenuator with the use of the two ange couplers as with balanced amplifiers the poor return loss of the PIN diodes is greatly improved using quadrature hybrids. The inductors B are the bond wires required to connect the chip to micro-strip lines either side of it (the other connection to ground is made on the underside of the PIN diode). apacitor B is added to cancel out the effects of the bond wires and is set as an optimised variable as are the ange variables Finger_spacing, Finger_length and ange length. The Msub box defines the micro-strip substrate the circuit is to be made on in this case Alumina thou (0.25mm) thick. There are three goals each tied to the S-parameter simulation SP1. Each goal has a specified parameter in these cases db S-parameters, a frequency range and a minimum/maximum goal.

11 of 14 The OPTIM box is used to specify the optimiser ie how many runs, the type of optimisation etc. When a simulation is run and completed and the results satisfactory update optimisation variables under the simulate menu to update the schematic you can then check the simulation after disabling the OPTIM dialogue. The first case to be run was minimum attenuation setting and for this the diodes were set to 20uA through the Ibias variable. The results of the optimisation are shown in S_Param SP1 Start=4 GHz Stop=12 GHz Step=4 MHz S-PARAMETERS MANG ang1 Subst="MSub1" W=Finger_width mm S=Finger_spacing mm =ange_length mm Var Eqn VAR VAR1 Finger_width=0.07 opt{ 0.01 to 0.5 } Ibias=0.02 Finger_spacing=0.04 opt{ 0.01 to 0.2 } ange_length=2.67 opt{ 1 to 5 } B=0.15 B=62 opt{ 25 to 0 } 1 =B pf 3 =B nh R= PIN_Diode X1 I=Ibias 1 =B nh R= MANG ang2 Subst="MSub1" 3 W=Finger_width mm =B pf S=Finger_spacing mm =ange_length mm Term Ter Num=1 Z=50 Ohm R R2 R=50 Ohm MSub MSUB MSub1 H=0.25 mm Er=9.9 Mur=1 ond=1.0e+50 Hu=1.0e+033 mm T=0.15 mm TanD=0 Rough=0 mm R R1 R=50 Ohm GOA 2 =B pf Goal OptimGoal1 Expr="dB (S(1,1))" SimInstanceName="SP1" Min= Max=-15 Weight= RangeVar[1]="freq" RangeMin[1]=6.0GHz RangeMax[1]=.0GHz 4 =B nh R= PIN_Diode X2 I=Ibias GOA Goal OptimGoal2 Expr="dB (S(2,2))" SimInstanceName="SP1" Min= Max=-15 Weight= RangeVar[1]="freq" RangeMin[1]=6.0GHz RangeMax[1]=.0GHz 2 =B nh R= 4 =B pf GOA Goal OptimGoal3 Expr="dB (S(2,1))" SimInstanceName="SP1" Min=-22 Max=-20 Weight= RangeVar[1]="freq" RangeMin[1]=6.0GHz RangeMax[1]=.0GHz Term Term2 Num=2 Z=50 Ohm OPTIM Optim Opti OptimType=Random ErrorForm=2 MaxIters=50 P=2 DesiredError=0.0 Statusevel=4 SetBestValues=yes Seed= SaveSolns=yes SaveGoals=no SaveOptimVars=no UpdateDataset=yes UseAllGoals=yes Figure 14 ADS simulation of the broad-band attenuator see text for details on all the elements.

12 of 14 0-1 db(s(2,1)) -2-3 -4 freq=8.064ghz db(s(2,1))=-0.329-5 4 5 6 7 8 9 11 12-20 m2-20 -30-30 db(s(1,1)) -40-50 -60 m2 freq=9.992ghz db(s(1,1))=-24.4 4 5 6 7 8 9 11 12 db(s(2,2)) -40-50 -60 4 5 6 7 8 9 11 12 Figure 15 Minimum attenuation result after optimisation

13 of 14 db(s(2,1)) -20-21 -22-23 -24-25 -26-27 -28-29 -30 freq=8.064ghz db(s(2,1))=-26.0 4 5 6 7 8 9 11 12 db(s(1,1)) 0 - -20-30 m2 m2 freq=5.984ghz db(s(1,1))=-15.062 db(s(2,2)) 0 - -20-30 -40 4 5 6 7 8 9 11 12-40 4 5 6 7 8 9 11 12 Figure 16 Maximum attenuation result, using values obtained during the minimum attenuation optimisation. The return losses have degraded but are still > 15dB as required by our specification. Summary The broad-band attenuator uses ange couplers to provide a wide bandwidth attenuator capable of providing < 1dB loss over the pass-band with return losses >15dB as shown in Figure 15. In maximum attenuation state, the attenuator can insert >20dB of attenuation with again >15dB return loss as shown in Figure 16. Broad-band active switched attenuator design In some circumstances we want to be able to switch in a fixed amount of attenuation. The easiest way of doing this is to use two SPDT FET switches and a broad-band fixed attenuator as shown in.

14 of 14 Vcontrol Attenuator Figure 17 Switching fixed attenuator circuit used in gain step applications where the switches are formed by GaAs SPDT switches eg MA4AGSW2 50MHz to 70GHz SPDT MMI.

易迪拓培训 专注于微波 射频 天线设计人才的培养网址 :http://www.edatop.com A D S 视频培训课程推荐 ADS Advanced Design System 是由原美国安捷伦科技 ( 现更名为是德科技 ) 推出的微波射频电路 通信系统和 MMI/RFI 仿真设计软件, 其功能强大 应用广泛, 被国内高校 科研院所和大型科技公司使用广为使用 掌握 ADS 无疑能提升相关设计领域工程师的技术实力 提高工作效率 为了帮助工程技术人员更好 更快的学习掌握 ADS 的使用, 易迪拓培训 (www.edatop.com) 特聘多年 ADS 使用经验的资深专家精心制作推出了多套 ADS 视频培训课程, 由浅入深 全面系统地讲授了 ADS 在微波射频电路设计 通信系统设计和电磁仿真设计方面的仿真设计和应用操作 其中, 视频课程多以设计实例边操作边讲解, 工程实践强, 且直观易学, 能够帮助您在最短的时间内学会使用 ADS, 并把 ADS 真正应用到设计研发工作中去... ADS 学习培训课程套装该套装是易迪拓培训和微波 EDA 网联合推出的迄今为止国内最全面 最权威的 ADS 培训教程, 共包含 门 ADS 学习培训课程 课程是由具有多年 ADS 使用经验的微波射频与通信系统设计领域资深专家讲解, 并多结合设计实例, 由浅入深 详细而又全面地讲解了 ADS 在微波射频电路设计 通信系统设计和电磁仿真设计方面的内容 能让您在最短的时间内学会使用 ADS, 迅速提升个人技术能力, 把 ADS 真正应用到实际研发工作中去, 成为 ADS 设计专家... 课程网址 : http://www.edatop.com/peixun/ads/13.html 更多 ADS 视频培训课程 : 两周学会 ADS 中文视频培训教程最新版 ADS 的入门和进阶培训课程, 适合 ADS2011 ~ ADS2014 以及更新版本 ADS 的学习 是 ADS 初学者的最佳课程, 网址 :http://www.edatop.com/peixun/ads/14.html ADS 射频模拟电路设计详解 中文视频教程本课程基于新版的 ADS 软件, 由李明洋老师讲授, 讲解了 ADS 在微波射频模拟电路设计中的具体应用, 视频课程, 直观易学, 网址 :http://www.edatop.com/peixun/ads/15.html ADS 高低阻抗线微带滤波器设计 (ADS2014 版 ) 中文视频教程该门课程旨在帮助学员快速 全面 透彻地理解高低阻抗线微带滤波器的设计原理和设计步骤, 帮助学员学会并掌握使用 ADS 软件仿真分析和优化设计微带线滤波器的实际操作 ; 课程网址 : http://www.edatop.com/peixun/filter/128.html 更多 ADS 培训课程, 敬请浏览 :http://www.edatop.com/peixun/ads

` 专注于微波 射频 天线设计人才的培养易迪拓培训网址 :http://www.edatop.com 关于易迪拓培训 : 易迪拓培训 (www.edatop.com) 由数名来自于研发第一线的资深工程师发起成立, 一直致力和专注于微波 射频 天线设计研发人才的培养 ; 后于 2006 年整合合并微波 EDA 网 (www.mweda.com), 现已发展成为国内最大的微波射频和天线设计人才培养基地, 成功推出多套微波射频以及天线设计相关培训课程和 ADS HFSS 等专业软件使用培训课程, 广受客户好评 ; 并先后与人民邮电出版社 电子工业出版社合作出版了多本专业图书, 帮助数万名工程师提升了专业技术能力 客户遍布中兴通讯 研通高频 埃威航电 国人通信等多家国内知名公司, 以及台湾工业技术研究院 永业科技 全一电子等多家台湾地区企业 我们的课程优势 : 成立于 2004 年, 多年丰富的行业经验 一直专注于微波射频和天线设计工程师的培养, 更了解该行业对人才的要求 视频课程 既能达到现场培训的效果, 又能免除您舟车劳顿的辛苦, 学习工作两不误 经验丰富的一线资深工程师讲授, 结合实际工程案例, 直观 实用 易学 联系我们 : 易迪拓培训官网 :http://www.edatop.com 微波 EDA 网 :http://www.mweda.com 官方淘宝店 :http://shop36920890.taobao.com 专注于微波 射频 天线设计人才的培养易迪拓培训官方网址 :http://www.edatop.com 淘宝网店 :http://shop36920890.taobao.com